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Diffusion phenomena in a multiple component lattice Boltzmann equation~LBE! model are discussed in
detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-
Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients
are obtained analytically. The analytical results are further confirmed by numerical simulations in a few
solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass
transfer in fluid systems with external forces.@S1063-651X~96!04708-3#

PACS number~s!: 47.55.Kf, 02.70.2c, 05.70.Ln, 51.20.1d

I. INTRODUCTION

The lattice Boltzmann equation~LBE! method is an in-
creasingly popular method of computational fluid dynamics.
As an extension of the lattice gas cellular automaton@1,2#,
this method simulates fluid motion by following the evolu-
tion of a prescribed Boltzmann equation instead of solving
the Navier-Stoke equations. At the macroscopic level, it has
been proved that the Navier-Stokes equations can be recov-
ered from the Boltzmann equation. There have been many
publications on this subject, and interested readers are re-
ferred to these publications@3,4# and the references therein
for the history, background, and details of this method. Re-
cently, convincing numerical simulations have shown that
the LBE method can simulate fluid flow at high Reynolds
number with very good accuracy@5,6#.

An important advantage of the LBE method is that, since
it deals with the distribution functions, microscopic physical
interactions of the constituent fluid particles can be conve-
niently incorporated. For complex fluid flows with interfaces
between multiple phases and phase transitions, the complex
macroscopic behavior is the consequence of the interactions
between the fluid particles. Since the early stage of the de-
velopment of the lattice gas and lattice Boltzmann method,
considerable effort has been invested in incorporating par-
ticle interactions into the lattice models so that complex fluid
behavior including multiphase flows can be simulated. Roth-
man and Keller@7# developed the first lattice gas model for
two immiscible fluids. A Boltzmann version was formulated
later @8#. In this scheme, the particle distributions of the two
species are rearranged in the interfacial region in a way de-
pendent upon concentration gradients. The same idea was
also used to reduce the diffusivity in a miscible two-
component system@9#. Flekko/y introduced another two-
component LBE model of two miscible components@10,11#,
in which the sum of the distribution functions of the two
components and the difference between them are made to
relax at difference rates to the specified distribution functions
so that the diffusivity is independent of the viscosity of the
fluid mixture. In another lattice gas model of liquid-vapor
phase transition@12#, the long-range interaction was intro-
duced by exchanging momentum over several lattice spac-
ings.

In a previous publication@13#, we presented an LBE

model for multiple component systems that includes interac-
tions between particles of the same and different compo-
nents. An interaction potential is defined for each of the com-
ponents, and an additional momentum exchange is
introduced as the consequence. By considering nearest-
neighbor interactions only, we were able to alter the equation
of state of the fluid to a general class of functional form,
allowing the simulation of nonideal gases and their mixtures.
With this model, we can simulate the motion of the inter-
faces and mass transfer between different phases. The com-
ponents in the system can be completely miscible or partially
immiscible depending on the temperature and the relative
strengths of the interactions. Given the interaction potentials,
we have also analytically obtained the coexistence curve, the
density profile across a liquid-vapor interface, and the sur-
face tension@14#.

In many real-world multiphase problems, mass transfer in
the presence of external forces is involved. An example is
the centrifugal separation of components of a fluid mixture.
In centrifugal separation, a large acceleration is applied to
the fluid mixture and the particles of different components
diffuse through the mixture at different rates. Moreover,
when dealing with problems involving phase transitions such
as dissolution and evaporation, the boundaries of the flow
field usually move. Because the lattice Boltzmann method
treats the multiphase problem using a single equation, many
complicated effects can be naturally integrated into the algo-
rithm.

Before the LBE model can be used to quantitatively simu-
late complex fluid flow problems, we must have a thorough
understanding of the behavior of the model itself. It is essen-
tial that the physical parameters of real systems can be
matched. In a previous publication@15#, we derived the mac-
roscopic equations for the multiple component lattice Boltz-
mann model and obtained the mutual diffusivity in a binary
mixture by calculating the decay rate of an infinitesimal con-
centration perturbation. We found that the diffusivity de-
pends on the collision times, the concentrations of the com-
ponents, and the interaction potentials in a complicated way.
The diffusivity can be tuned to be arbitrarily close to zero
and even negative.

In this paper, we provide a detailed study of diffusion in
the multiple component LBE model including interparticle
interactions and external forces. Compared with other LBE
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miscible model, the current scheme has the following fea-
tures. First of all, the diffusion in this model is Galilean
invariant. The diffusivity is independent of the flow velocity.
Second, multiple diffusion in a system with an arbitrary
number of components can be simulated. Third, since the
constituent components can be either miscible or immiscible
to each other depending on the interaction force, this model
can be used to simulate diffusion in a multiphase system
with mass transfer between different phases. In Sec. II, we
briefly review the multiple component nonideal gas lattice
Boltzmann model and give the macroscopic fluid equations
satisfied. In Sec. III, mass fluxes are calculated using the
same Chapman-Enskog technique that we previously devel-
oped. The effects of different mechanisms that drive the dif-
fusion are identified and the multiple diffusion coefficients
are obtained. The results are further confirmed by numerical
simulation of a few analytically solvable limiting cases. In
Sec. IV, we give the conclusion and offer some more discus-
sion on simulation of multiple component systems with this
model.

II. THE MULTICOMPONENT LBE MODEL
For completeness, we briefly review the LBE model for a

multiple component fluid mixture with interparticle forces
@13–15#. Consider a lattice gas system inD-dimensional
space with particles ofS components moving from one lat-

tice site to itsb nearest neighbors and colliding with each
other at lattice sites at each time step. The particles of the
sth component have the molecular massms . The distribu-
tion function of the particles of thesth component is as-
sumed to evolve according to the following Boltzmann equa-
tion:

na
s~x1ea ,t11!2na

s~x,t !52
1

ts
@na

s~x,t !2na
s ~eq!~x,t !#,

~1!

where $ea ;a51, . . . ,b% is the set of vectors of lengthc
pointing fromx to its b neighbors;na

s(x,t) is the population
of the particles of components having velocityea at lattice
site x and timet. The collision term on the right-hand side
takes the form of single-relaxation-time for each component.
This collision term has the BGK form, named after Bhatna-
gar Gross and Krook@16#. It can be efficiently implemented
on computers. It has been shown that with a properly chosen
distribution function,na

s(eq)(x,t), the correct Navier-Stokes
equation can be recovered from Eqs.~1! at the macroscopic
level @15,17,18#.

For the multiple component LBE model, we chose
na

s(eq)5Na(ns ,us
eq), wherens5(ana

s is the number density
of thesth component. The functional form

Na~n,u!5H nS 12ds

b
1

D

c2b
ea•u1

D~D12!

2c4b
eaea :uu2

Du2

2c2bD , a51, . . . ,b

nS ds2
u2

c2D , a50

~2!

is the same one that yields the correct Navier-Stokes equa-
tions for a single component LBE model. For simplicity, we
choseds5d0 in previous publications. This choice is not
required to obtain the Navier-Stokes equations. We will al-
low ds to be different for each component. The parameters
us
eq in the above distribution function are chosen to be

rsus
eq5rsu81tsFs , ~3!

wherers5msns is the density of thesth component and
Fs is the total external force acting on particles of thesth
component.Fs includes both external forces and interparticle
forces. Withus

eq so chosen, at every site and for every colli-
sion step, each component gains an additional momentum
Fs due to external and interparticle forces. In the absence of
any additional forces, all the components are assumed to
have a common averaged velocityu8. It follows from the
requirement that the total momentum must be conserved at
each collision whenFs50 that

u85 (
s51

S Sms

ts
(
a51

b

na
seaD Y(

s51

S
rs

ts
. ~4!

In general, this averaged velocity is different, and should be
carefully distinguished, from the fluid velocity that repre-
sents the overall mass transfer.

In previous publications@13,14#, we incorporated an in-
terparticle force between the particles at sitesx andx8. This
interparticle force is proportional to the product of a function
of the particle number densities,

Fs„x…52cs~x!(
x8

(
s̄51

S

Gss̄~x,x8!cs̄~x8!~x82x!1rsgs,

~5!

where, Gss̄(x,x8) is the Green’s function that satisfies
Gss̄5Gs̄s , andcs(x)5cs(n(x)) is a function of the num-
ber density that plays the role of an interaction potential. The
form of this function directly determines the equation of
state, as will be seen later.gs is the external force acting on
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thesth component, and it can be different for each compo-
nent. If only nearest-neighbor interactions are included, the
above expression becomes

Fs52cs(
s̄51

S

Gss̄ (
a51

b

cs̄~x1ea!ea1rsgs

.2
c2b

D
cs(

s̄51

S

Gss̄¹cs̄1rsgs. ~6!

With the forcesFs included, the sum of the momenta of
all the components is not conserved at each site by the col-
lision operator, although the total momentum of the whole
system is still rigorously conserved. Since the macroscopic
fluid velocity of the mixture,u, represents the overall mass
transfer rate, it should be defined by the total momentum
averaged before and after each collision@15#. A Chapman-
Enskog expansion procedure can be carried out to obtain the
following momentum equation for the fluid mixture as a
single fluid:

]u

]t
1u•¹u52

¹p

r
1 (

s51

S

xsgs1n¹2u, ~7!

wherer5(s51
S rs is the total density of the fluid mixture,

and xs5rs /r is themass fractionof components. The
pressurep is given by the following nonideal gas equation of
state:

p5
c2

D F(
s

~12ds!msns1
b

2(ss̄
Gss̄cscs̄G . ~8!

Here, the first term on the right-hand side is the kinetic con-
tribution and the second term is the potential contribution
due to interparticle interaction. Notice that for a mixture of
ideal gases, the partial pressure does not depend on the mo-
lecular mass of each component. To make the equation of
state~8! approach that of a mixture of ideal gases in the limit
of very weak interactions, it is appropriate to choose
12ds5Dc0

2/msc
2, wherec0 is the sound speed in the mix-

ture in the absence of interactions. Equation~8! in this case
can then be written as

p5c0
2(

s
ns1

c2b

2D(
ss̄
Gss̄cscs̄ . ~9!

Without losing generality, we treat theds as arbitrary con-
stants.

With each component having a distinctds , and with the
additional terms due to the external forcersgs, the mass
conservation equation that we derived before for component
s has to be modified slightly:

]rs

]t
1¹•~rsu!52ts¹•Fs1S ts2

1

2D¹•Fc2~12ds!

D
¹rs2xsS ¹p2 (

s51

S

rsgsD G1¹•xsF(
s

S ts1
1

2DFs

1S ¹p2 (
s51

S

rsgsD(
s

tsxs2
c2

D(
s

ts~12ds!¹rsG . ~10!

It can be verified that, when summed over all the components, the right-hand side of Eq.~10!, which represents the diffusion
of the components, is zero, so that the continuity equation for the whole fluid is satisfied. Generally, in the presence of
large-scale fluid motion, the diffusion of the components through each other is coupled to the large-scale flow. The evolution
of each component is governed by the most general macroscopic fluid equations~10! and~7!. However, in many cases the fluid
is at rest except for the motion caused by the diffusion of the different components. We will discuss in detail the diffusion in
a fluid mixture in Sec. III.

III. DIFFUSION IN THE MULTICOMPONENT LBE MODEL

The components of a fluid mixture are said to be diffusing into each other if the mean velocities of the components differ.
The local velocity of the fluid mixture can be defined in several different ways: by averaging the velocities of the constituents
by mass, mole, or volume@19#. The diffusion velocities are then defined relative to this local velocity. Mathematically, all the
averaging methods are equally useful in describing the diffusion of the constituents. Following the treatment in Chapman and
Cowling @20#, we use themass fluxesof the components in our calculation. Here again, since the momentum of each
component changes at each collision, to obtain the overall mass flux we must average before and after collisions~cf. Ref.@15#!.
We have

rsus5
ms

2 F(
a

na
sea1S 12

1

ts
D(

a
na

sea1
1

ts
(
a

na
s~eq!eaG . ~11!

By applying the same Chapman-Enskog technique previously developed@15#, at the second order, namely,
na

s5na
s(0)1na

s(1) we obtain the relative mass flux of thesth component after tedious but straightforward manipulations:
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rs~us2u!5tsFs2S ts2
1

2D Fc2~12ds!

D
¹rs2xsS ¹p2 (

s51

S

rsgsD G2xsF(
s

S ts1
1

2DFs

1S ¹p2 (
s51

S

rsgsD(
s

tsxs2
c2

D(
s

ts~12ds!¹rsG . ~12!

The velocityus2u is the mass-averageddiffusion velocityof
components with respect tou, which indicates the motion
of components relative to the local motion of the fluid
mixture. Noticing that the right-hand side terms of Eqs.~12!
are exactly what the divergence operator acts on in the right-
hand side of Eq.~10!, we can simply rewrite Eq.~10! as the
continuity equation of thesth component:

]rs

]t
1¹•~rsus!50. ~13!

We have therefore demonstrated that each component satis-
fies its own continuity equation at second order.

Following the convention in the diffusion literature, we
define the mass flux of components as js5rs(us2u). Ob-
viously we have(sjs50. From Eqs.~12!, we can attribute
the generation of the mass fluxjs to three different driving
mechanisms: the concentration gradients, the pressure gradi-
ent, and the inequality of the external forces acting on dif-
ferent components. The diffusions driven by these driving
mechanisms are called theordinary diffusion, pressure diffu-
sion, and theforced diffusion, respectively. It is convenient
to separate the effects of the different diffusions from each
other by decomposing the mass flux into its corresponding
parts,

js5 js
~x!1 js

~p!1 js
~g! , ~14!

where js
(x) js

(p) , and js
(g) are, respectively, the mass fluxes

associated with ordinary, pressure, and forced diffusions.
The mass flux corresponding to the forced diffusion,js

(g) can
be separated most easily from the others by collecting in Eqs.
~12! the terms containinggs . The result is

js
~g!52rs(

i51

S

~xi2d is!t iS gi2 (
k51

S

xkgkD , ~15!

where d is is the usual Kronecker delta. The mass flux of
components depends on forces on all the components. It
can be shown that the sum ofjs

(g) over all the components
vanishes. If all thegi are the same as in the case where
gravity is the only external force, all thejs

(g) vanish. There-
fore, forced diffusion only occurs when the external forces
applied to all the components are not equal. An example of
such a system is a mixture of differently charged particles in
external electric field. In addition, when all thet i are equal,
the js

(g) can also be simplified:

js
~g!5rstS gs2 (

k51

S

xkgkD . ~16!

After the separation ofjs
(g) the terms remaining in Eq.

~12! can be written as a linear combination of the density
gradients with the help of Eqs.~6! and ~8!,

js
~x!1 js

~p!5
c2b

D (
i51

S

Ds i¹r i , ~17!

where the coefficientsDs i are

Ds i5
12di
b F S t i2

1

2D ~xs2ds i !1xsS ts2 (
k51

S

tkxkD G
1 (

k51

S F tk~xs2dsk!1xsS ts2 (
k51

S

tkxkD GGkickc i8 .

~18!

Here, the first term is the ideal-gas contribution. The second
term is the potential part due to interactions. Since variations
in both the mass fraction and the pressure will cause density
variations, to separate the effects of the mass fraction varia-
tion and the pressure variation, we must write the mass flux
in terms of the gradients of the mass fraction and the pres-
sure. Using the definitionr i5rxi , Eq.~17! can be written as

js
~x!1 js

~p!5
c2b

D S r(
i51

S

Ds i¹xi1¹r(
i51

S

Ds ixi D . ~19!

By taking the gradient of Eq.~8!, we have

¹p5
c2b

D (
j51

S

Aj¹r j

5
c2b

D S r(
j51

S

Aj¹xj1¹r(
j51

S

Ajxj D , ~20!

whereAj5(12dj )/b1c j8( i51
SGi jc i . Eliminating¹r from

the two equations above, we obtain

js
~x!1 js

~p!5
c2br

D (
i51

S SDs i2
Ai( j51

S Ds j xj
( j51
S Ajxj

D¹xi

1
( j51
S Ds j xj

( j51
S Ajxj

¹p. ~21!

The mass fluxes associated with concentration gradients and
the pressure gradient can be immediately identified as

js
~x!5

c2br

D (
i51

S F (
j51

S

~Ds iAj2Ds jAi !xj Y(
j51

S

Ajxj G¹xi ,

~22!

54 3617DIFFUSION IN A MULTICOMPONENT LATTICE . . .



js
~p!5¹p(

j51

S

Ds j xj Y(
j51

S

Ajxj . ~23!

The coefficients in front of the mass fraction gradients are
the multiple diffusion coefficients of our LBE model. Noting
that( ixi51, the mass flux of components can be written as
being dependent on the mass fraction gradients of all but the
sth component.

Using Eq.~15! and~22!–~23!, we computed the contribu-
tions to the mass flux from the three mechanical driving
forces. Except for thermal diffusion, this LBE model has the
correct types of diffusion behavior compared with the con-
tinuum theory of diffusion@19#. The reason for the lack of
thermal diffusion is that this current model assumes that the
temperature is a constant and independent of space.

Ordinary diffusion given by Eq.~22! has rather compli-
cated dependence on the gradients of all the concentrations.
We have analytically given the multiple diffusion coeffi-
cients in terms of the interaction potentialc i , the collision
intervalt i , the constants 12di , which defines the mole vol-
ume of each components in ideal gas limit, and the mass
fractionsxi . The multiple diffusion coefficients are concen-
tration dependent, and can be theoretically adjusted to simu-
late specific material properties.

This LBE model also exhibits a pressure diffusion phe-
nomenon. Depending upon the parameters, when a pressure
gradient is applied to the mixture, there could be net fluxes
of individual components in an originally homogeneous mix-
ture. We can therefore use this model to study problems such
as centrifuge separation. When different external forces are
applied to the individual components in the mixture, an
originally homogeneous mixture will separate so that con-
centration gradients will be generated to balance the effect of
the forced diffusion. While all these different types of diffu-
sion occur in the LBE system, the mixture satisfies the
Navier-Stokes equations as a single fluid.

The diffusion mass fluxes given by Eqs.~15! and ~22!–
~23! are for the most general case and are valid for systems
with an arbitrary number of components and for arbitrary
forms of interaction potentials, as long as the interaction is
not so strong that the components become immiscible and
segregate into different phases. Since the coefficients have a
complicated dependence on the parameters and the densities
themselves, analytical solutions of the densities are generally
difficult to obtain even in the ‘‘static’’ case. We will discuss
a few limiting cases in which the density distributions can be
analytically solved and compare the results with those from
numerical simulations.

A. Diffusivity in a binary mixture

We will derive the mutual diffusivity in a binary mixture
(S52) using the mass flux obtained above and compare it
with previous results. For a binary fluid mixture, Fick’s first
law of diffusion can be stated in our notation:

j152rD¹x1 , ~24!

which gives the definition of the mutual diffusivityD. Since
x11x251, and¹x152¹x2, after some tedious algebra, Eq.
~22! can be written in the form of Fick’s law, with the dif-
fusivity

D5
c2b~D12A12D11A2!

D~A1x11A2x2!
. ~25!

If we setds5d0, this can be easily verified to be identical to
the mutual diffusivity we obtained previously@15# by com-
puting the decay rate of an infinitesimal concentration per-
turbation. This result has been confirmed by measurement of
the actual decay rate of a concentration wave in numerical
simulations with the LBE code@15#. The derivation here is
more general in the sense that no linearization of equations is
required.

B. Mixture of ideal gases

A mixture of ideal gases can be simulated by setting
Gss̄50, and choosing the constantsdi so that 12di
5Dc0

2/mic
2. In this case the pressure is proportional to the

total number density of the mixture. The second term in Eq.
~18! vanishes, andAi5(12di)/b. If the di are all equal, we
can verify using Eq.~18! that( iDs ixi50, and therefore the
mass fluxesjs

(p) vanish identically. This implies that for an
ideal-gas mixture, pressure diffusion occurs if and only if the
components of the mixture have different molecular weights.

We consider the case in which a common conservative
external force, given byg52¹f, is applied to all the com-
ponents. Forced diffusion does not occur in this situation and
the condition for equilibrium isjs

(x)1 js
(p)50. By directly

substituting into Eq.~12!, we can confirm that the following
density profiles satisfy the equilibrium condition:

rs5rs
0expF 2Df

c2~12ds!G , ~26!

wherers
0 are constants determined by the initial conditions.

Figure 1 shows the steady-state density profiles in a two-
component numerical simulation performed on a two-
dimensional hexagonal lattice with 16 sites in thex direction
and 256 sites in they direction. Due to the effect of the

FIG. 1. Equilibrium density profiles of the two components in a
binary mixture of ideal gases with a pressure gradient applied. The
theoretically predicted profiles are plotted as solid lines and the
numerical results are plotted as symbols.
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nonsquare lattice, the actual dimension in lattice units is
163128A3. A periodic boundary condition is used in thex
direction. In they direction, a solid wall is placed atx50,
and bounce-back boundary conditions are used at the wall.
The constantsd1 and d2 are chosen to be 0.4 and 0.6, re-
spectively. The external force potential is chosen to be
f52g(y/L)2 without losing generality, whereg50.1 is a
constant andL is they dimension of the lattice. Plotted are
the typical measured density profiles at equilibrium, together
with their theoretical solutions given by Eq.~26!. The agree-
ment is always excellent independent of the parameters such
ast i and the mean densities.

C. Forced diffusion

The effects of forced diffusion are also examined for a
binary mixture of ideal gases. The constantsdi are chosen to
be equal for the two components (di5d0) to eliminate the
effects of pressure diffusion. The mass fluxes of the two
components in this case consist of the contributions of ordi-
nary diffusion and forced diffusion. The steady-state density
profiles of the two components are now given by the equa-
tions js

(x)1 js
(g)50. This equation can be simplified if we as-

sumet15t25t. We have

2D¹x11x1x2t~g12g2!50, ~27!

where D is the mutual diffusivity, in this case,
@c2(12d0)/D#(t21/2).gi52¹f i is the external force act-
ing on componenti . Clearly wheng15g2, no forced diffu-
sion can occur and the steady-state mass fraction profiles are
homogeneous. Withg1Þg2, we can solve Eq.~27! to obtain

x1
x2

5c1expFt~f22f1!

D G , ~28!

wherec1 is an integration constant determined by the overall
mass ratio of the two components. In Fig. 2, we confirmed
this solution by numerical simulation with the same geom-
etry and boundary conditions as before, except that now we
have two different force potentials, which are chosen to be
f15g1(y/L) and f25g2(y/L)

2, with g1520.1 and
g250.1.

IV. CONCLUSION
In this paper, we discussed in detail the diffusion behavior

in a previously proposed multiple component LBE model.
The effects of particle interaction and external forces are
included in the analysis. We calculated, using the Chapman-
Enskog expansion, the mass fluxes in the mixture due to
different driving mechanisms and we obtained the multiple

diffusion coefficients. The LBE model is found to exhibit all
types of diffusion except the thermal diffusion. All types of
diffusion are Galilean invariant. The analytic calculation is
consistent with numerical simulations in several solvable
limiting cases.

With the diffusion coefficients analytically calculated and
the effects of external forces identified, we are now able to
quantitatively simulate a wide class of practical problems
involving diffusion, separation, and fluid flow simulta-
neously. After the transport phenomena are satisfactorily
treated, chemical reactions among components can also be
added easily in this model to simulate chemical reaction pro-
cesses.

Since diffusion in a multicomponent fluid is itself a very
complicated phenomenon, the calculation of the transport co-
efficients from the parameters of the model is tedious but
straightforward. For practical engineering applications, this
process can be automated.

Finally, we point out again that since this model only
simulates isothermal fluids, the possibility of directly simu-
lating an interesting thermal diffusion phenomenon, known
as the Soret and Dufour effects is ruled out. We consider this
as an important area for improvement in this LBE model.
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