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Diffusion in a multicomponent lattice Boltzmann equation model
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Diffusion phenomena in a multiple component lattice Boltzmann equdti&f) model are discussed in
detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-
Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients
are obtained analytically. The analytical results are further confirmed by numerical simulations in a few
solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass
transfer in fluid systems with external forcé$1063-651X96)04708-3

PACS numbsgs): 47.55.Kf, 02.70--c, 05.70.Ln, 51.206+d

I. INTRODUCTION model for multiple component systems that includes interac-
tions between particles of the same and different compo-

The lattice Boltzmann equatiofLBE) method is an in- nents. An interaction potential is defined for each of the com-
creasingly popular method of computational fluid dynamicsponents, and an additional momentum exchange is
As an extension of the lattice gas cellular automdtby2], introduced as the consequence. By considering nearest-
this method simulates fluid motion by following the evolu- neighbor interactions only, we were able to alter the equation
tion of a prescribed Boltzmann equation instead of solvingof state of the fluid to a general class of functional form,
the Navier-Stoke equations. At the macroscopic level, it hasllowing the simulation of nonideal gases and their mixtures.
been proved that the Navier-Stokes equations can be recoWith this model, we can simulate the motion of the inter-
ered from the Boltzmann equation. There have been manfaces and mass transfer between different phases. The com-
publications on this subject, and interested readers are r@onents in the system can be completely miscible or partially
ferred to these publication8,4] and the references therein immiscible depending on the temperature and the relative
for the history, background, and details of this method. Restrengths of the interactions. Given the interaction potentials,
cently, convincing numerical simulations have shown thatwve have also analytically obtained the coexistence curve, the
the LBE method can simulate fluid flow at high Reynoldsdensity profile across a liquid-vapor interface, and the sur-
number with very good accura¢$,6|. face tensiorj14].

An important advantage of the LBE method is that, since In many real-world multiphase problems, mass transfer in
it deals with the distribution functions, microscopic physicalthe presence of external forces is involved. An example is
interactions of the constituent fluid particles can be convethe centrifugal separation of components of a fluid mixture.
niently incorporated. For complex fluid flows with interfaces In centrifugal separation, a large acceleration is applied to
between multiple phases and phase transitions, the compleixe fluid mixture and the particles of different components
macroscopic behavior is the consequence of the interactiordiffuse through the mixture at different rates. Moreover,
between the fluid particles. Since the early stage of the dewhen dealing with problems involving phase transitions such
velopment of the lattice gas and lattice Boltzmann methodas dissolution and evaporation, the boundaries of the flow
considerable effort has been invested in incorporating parfield usually move. Because the lattice Boltzmann method
ticle interactions into the lattice models so that complex fluidtreats the multiphase problem using a single equation, many
behavior including multiphase flows can be simulated. Rotheomplicated effects can be naturally integrated into the algo-
man and Kelle[7] developed the first lattice gas model for rithm.
two immiscible fluids. A Boltzmann version was formulated Before the LBE model can be used to quantitatively simu-
later[8]. In this scheme, the particle distributions of the two late complex fluid flow problems, we must have a thorough
species are rearranged in the interfacial region in a way dainderstanding of the behavior of the model itself. It is essen-
pendent upon concentration gradients. The same idea waal that the physical parameters of real systems can be
also used to reduce the diffusivity in a miscible two- matched. In a previous publicatiph5], we derived the mac-
component systeni9]. Flekkéy introduced another two- roscopic equations for the multiple component lattice Boltz-
component LBE model of two miscible componeft§,11, = mann model and obtained the mutual diffusivity in a binary
in which the sum of the distribution functions of the two mixture by calculating the decay rate of an infinitesimal con-
components and the difference between them are made t®ntration perturbation. We found that the diffusivity de-
relax at difference rates to the specified distribution functiongpends on the collision times, the concentrations of the com-
so that the diffusivity is independent of the viscosity of the ponents, and the interaction potentials in a complicated way.
fluid mixture. In another lattice gas model of liquid-vapor The diffusivity can be tuned to be arbitrarily close to zero
phase transitioff12], the long-range interaction was intro- and even negative.
duced by exchanging momentum over several lattice spac- In this paper, we provide a detailed study of diffusion in
ings. the multiple component LBE model including interparticle

In a previous publicationf13], we presented an LBE interactions and external forces. Compared with other LBE
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miscible model, the current scheme has the following featice site to itsb nearest neighbors and colliding with each
tures. First of all, the diffusion in this model is Galilean other at lattice sites at each time step. The particles of the
invariant. The diffusivity is independent of the flow velocity. oth component have the molecular mass. The distribu-
Second, multiple diffusion in a system with an arbitrary tion function of the particles of theth component is as-
number of components can be simulated. Third, since theumed to evolve according to the following Boltzmann equa-
constituent components can be either miscible or immisciblgion:

to each other depending on the interaction force, this model

can be used to simulate diffusion in a multiphase system

with mass transfer between different phases. In Sec. Il, we nJ(x+e,,t+1)—nJ(x,t)=— i[na(x t)—nJ ®9(x,1)],
briefly review the multiple component nonideal gas Iattlce

Boltzmann model and give the macroscopic fluid equations @)
satisfied. In Sec. lll, mass fluxes are calculated using the

same Chapman-Enskog technique that we previously deveWwhere {e,;a=1, ... b} is the set of vectors of length

oped. The effects of different mechanisms that drive the diffpointing fromx to its b neighborsnZ(x,t) is the population
fusion are identified and the multiple diffusion coefficients of the particles of componemnt having velocitye, at lattice
are obtained. The results are further confirmed by numericaite x and timet. The collision term on the right-hand side
simulation of a few analytically solvable limiting cases. In takes the form of single-relaxation-time for each component.
Sec. IV, we give the conclusion and offer some more discusThis collision term has the BGK form, named after Bhatna-
sion on simulation of multiple component systems with thisgar Gross and Krookl6]. It can be efficiently implemented
model. on computers. It has been shown that with a properly chosen
distribution function,ng(eq)(x,t), the correct Navier-Stokes
Il. THE MULTICOMPONENT LBE MODEL equation can be recovered from E¢®). at the macroscopic
For completeness, we briefly review the LBE model for alevel [15,17,18.
multiple component fluid mixture with interparticle forces ~ For the multiple component LBE model, we chose
[13—-15. Consider a lattice gas system -dimensional ng(eq)= Na(n,,ush, wheren,==,nJ is the number density
space with particles o components moving from one lat- of the oth component. The functional form

1_d”+ D +D(D+2) _ Du a1 b
N7 T U Tac%p %S5z B
Na(n,u)= U2 2
- a=0
n(dg 07 )
|

is the same one that yields the correct Navier-Stokes equa- S p
tions for a single component LBE model. For simplicity, we = E alea z T—U (4)
chosed,=d, in previous publications. This choice is not 7=1\ Toa ’1 o=1 7o

required to obtain the Navier-Stokes equations. We will al-
low d, to be different for each component. The parameterdn general, this averaged velocity is different, and should be
u®%in the above distribution function are chosen to be carefully distinguished, from the fluid velocity that repre-
sents the overall mass transfer.
In previous publication$13,14], we incorporated an in-
pUS=p U’ +7,F,, (3 terparticle force between the particles at sieandx’. This
interparticle force is proportional to the product of a function
of the particle number densities,

where p,=m,n,, is the density of therth component and

F, is the total_external force acting on particle; of thth' F(0)=— %(X)E_z Gt X ) It XY (X = X) + poGo
componentF . includes both external forces and interparticle x| o=1

forces. Withu® so chosen, at every site and for every colli- ©)
sion step, each component gains an additional momentum

F, due to external and interparticle forces. In the absence Qf\/here G,-(x,x') is the Green’s function that satisfies
any additional forces, all the components are assumed tg, =G, andy,(x)=#,(n(x)) is a function of the num-
have a common averaged velocity. It follows from the  ber density that plays the role of an interaction potential. The
requirement that the total momentum must be conserved drm of this function directly determines the equation of
each collision wher,= 0 that state, as will be seen latag,,. is the external force acting on
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the oth component, and it can be different for each compo- c? b
nent. If only nearest-neighbor interactions are included, the P=o > (1-d,)m,n,+ 52— Goototls|-  (8)
above expression becomes 7 77

S b

Fo=— o2 Goo Ustx+e)entp,gy Here, the first term on the right-hand side is the kinetic con-
=1 ast tribution and the second term is the potential contribution
c2b S due to interparticle interaction. Notice that for a mixture of
=——— 1, > GooV st poUe- (6) ideal gases, the partial pressure does not depend on the mo-
D "% lecular mass of each component. To make the equation of
state(8) approach that of a mixture of ideal gases in the limit

all the components is not conserved at each site by the c:oP—f very erak |;1teract|onsz It is approprlate_ o cho_ose
lision operator, although the total momentum of the wholel ~do=DC€o/m,C”, wherec, is the sound speed in the mix-
system is still rigorously conserved. Since the macroscopiéire in the absence of interactions. Equatipin this case
fluid velocity of the mixtureu, represents the overall mass ¢an then be written as

transfer rate, it should be defined by the total momentum

averaged before and after each collis[d®]. A Chapman-

With the forcesF, included, the sum of the momenta of

Enskog expansion procedure can be carried out to obtain the —a2S n o+ Cz_bz G 9)
following momentum equation for the fluid mixture as a P=Co > No" 2D ey ool
single fluid:
au \% S )
EH’I' Vu=— 74- 2—:1 Xs9s T ¥V7u, (7)  without losing generality, we treat thi, as arbitrary con-
. stants.
wherep=3%_,p, is the total density of the fluid mixture, With each component having a distirgtf, and with the

and x,=p,/p is the mass fractionof components. The additional terms due to the external forpgg,, the mass

pressure is given by the following nonideal gas equation of conservation equation that we derived before for component
state: o has to be modified slightly:

1) [c21-d S
To™ _)V'{uvpo_xa( Vp_ E Pc9s
2 D o=1

P, 1
—+V-(p,u)=—71,V-F_+ TU-G-E

g +V-X, ;

Fo

2

S
C
V-2 pgg,f)E ToXs~ 2 To(170d0)Vp, . (10

It can be verified that, when summed over all the components, the right-hand side (@DEqvhich represents the diffusion

of the componentr, is zero, so that the continuity equation for the whole fluid is satisfied. Generally, in the presence of
large-scale fluid motion, the diffusion of the components through each other is coupled to the large-scale flow. The evolution
of each component is governed by the most general macroscopic fluid eqafpasd(7). However, in many cases the fluid

is at rest except for the motion caused by the diffusion of the different components. We will discuss in detail the diffusion in
a fluid mixture in Sec. Ill.

lll. DIFFUSION IN THE MULTICOMPONENT LBE MODEL

The components of a fluid mixture are said to be diffusing into each other if the mean velocities of the components differ.
The local velocity of the fluid mixture can be defined in several different ways: by averaging the velocities of the constituents
by mass, mole, or volume 9]. The diffusion velocities are then defined relative to this local velocity. Mathematically, all the
averaging methods are equally useful in describing the diffusion of the constituents. Following the treatment in Chapman and
Cowling [20], we use themass fluxef the components in our calculation. Here again, since the momentum of each
component changes at each collision, to obtain the overall mass flux we must average before and after @@llRensl5]).

We have

m(r
pols="" ; Na€t

1 1
1- —) 2 nge,t —> ng%%,|. (12)
TO' a TO' a

By applying the same Chapman-Enskog technique previously devel¢ft&f at the second order, namely,
nZ=nZ©+n?™ we obtain the relative mass flux of theth component after tedious but straightforward manipulations:
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1\[c2(1—-d, ° 1
po’(u(r_u):T(rF()'_ To™ 5 (—)VPU'_X(J' Vp_ E Pe9s | |~ Xo E TeT 5 Frr
2 D o=1 o 2
S C2
| V-2 pagg)E T Xy~ G2 To(1=00)Vp, . (12)
|
The velocityu,—u is the mass-averagetiffusion velocityof After the separation of'? the terms remaining in Eq.

components with respect tou, which indicates the motion (12) can be written as a linear combination of the density
of componento relative to the local motion of the fluid gradients with the help of Eq$6) and(8),

mixture. Noticing that the right-hand side terms of E(<)

are exactly what the divergence operator acts on in the right- (%) L+ (p) c’b
hand side of Eq(10), we can simply rewrite Eq10) as the lo Tlo :Fizl D,iVpi, 17)
continuity equation of therth component:

S

where the coefficient® ,; are
Ipe
W—i_v'(p(ru(r)_o' (13) :I__di
Dyi=—p—
We have therefore demonstrated that each component satis-

s
Toe™ 2 Tkxk)
k=1

1
( Ti— E) (XU'_ 5(ri) +X4

fies its own continuity equation at second order. S S .
Following the convention in the diffusion literature, we +k21 k(X ™ Ogk) T X To—kZl Xk | |Gkt -

define the mass flux of componemtasj,=p,(u,—u). Ob- - -

viously we haveZ,j,=0. From Eqgs.(12), we can attribute (18

the generation of the mass flyx to three different driving ' . . —_—
mechanisms: the concentration gradients, the pressure gra&f—ere’_ the first term Is the |deal-gas con_trlbutlo_n. The s_ec_ond
term is the potential part due to interactions. Since variations

ent, and the inequality of the external forces acting on dif-

ferent components. The diffusions driven by these drivingﬂ] b_o;c_h thetmass frait'ot?] am:fth(te pr]?tsr?ure will ;:au?e den§|ty
mechanisms are called tloedinary diffusion pressure diffu- t.ana 'O(';‘:'h 0 separate the (ta' ects o etma_?s t;]ac lon va;lna-
sion, and theforced diffusion respectively. It is convenient lon and the pressure variation, we must writé th€ mass flux

to separate the effects of the different diffusions from eact{" terms of the gradients of the mass fraction and the pres-

other by decomposing the mass flux into its correspondingt"e: USing the definitiop;=pXx; , Eq.(17) can be written as

parts, 2/ S s
CONII( ) V. X

wherej® j® andj@ are, respectively, the mass fluxes BY f@king the gradient of Eq8), we have
associated with ordinary, pressure, and forced diffusions. 2p S
The mass flux corresponding to the forced diffusijcﬁ,??, can Vp= _2 AVp;
be separated most easily from the others by collecting in Egs. D=
(12) the terms containing,,. The result is b s s

i(g) =t =t

j9=—p, 2 (X—8,)7 G~ > X/ (19

=1 k=1 whereA;=(1—d;)/b+ ] Z;_15G;; ;. EliminatingVp from

. the two equations above, we obtain
where 6;,, is the usual Kronecker delta. The mass flux of :

componento depends on forces on all the components. It c2bp S ASS D x
i i) i (p) = _ TiEj=1"a)7)
can be shown that the sum ﬁj’) over all the components lo Tle = D 2 (Dgi W) VX
vanishes. If all theg, are the same as in the case where =1 =17
gravity is the only external force, all thjé” vanish. There- S5 DX,
fore, forced diffusion only occurs when the external forces + EJW p. (22)
=177

applied to all the components are not equal. An example of

such a system is a mixture of differently charged particles ifrpe mass fluxes associated with concentration gradients and
external electric field. In addition, when all theare equal, he pressure gradient can be immediately identified as

thej(9 can also be simplified:
bp S [ s
= J'z]_ (DUiAj_ DUJA|)X] /JZ]_ AJX]

S Ji;() 5
.irg):p(r'r< 0o~ I(Zl ngk> . (16) =1

VX,
(22)
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.(p) S S 0-35 T T T T T T T T T
i :ijzl D(,.J-Xj 121 Aij . (23) 0.3

0.25
0.2

The coefficients in front of the mass fraction gradients are
the multiple diffusion coefficients of our LBE model. Noting

that=;x; =1, the mass flux of componeatcan be written as 0.15
being dependent on the mass fraction gradients of all but the 0.1

oth component. E" 0.05
Using Eq.(15) and(22)—(23), we computed the contribu- '

tions to the mass flux from the three mechanical driving 0

forces. Except for thermal diffusion, this LBE model has the -0.05

correct types of diffusion behavior compared with the con- 0.1

tinuum theory of diffusion19]. The reason for the lack of 015

thermal diffusion is that this current model assumes that the ;)2

temperature is a constant and independent of space. -0. o
Ordinary diffusion given by Eq(22) has rather compli- 0 01020304 S)E 0.6 070805 1

cated dependence on the gradients of all the concentrations.
We have analytically given the multiple diffusion coeffi-
cients in terms of the interaction potentigl, the collision FIG. 1. Equilibrium density profiles of the two components in a
interval 7;, the constants 4 d; , which defines the mole vol- binary mixture of i_deal gases with a pressure grad_ient_ applied. The
ume of each components in ideal gas limit, and the mas@eore_tlcally predicted profiles are plotted as solid lines and the
fractionsx; . The multiple diffusion coefficients are concen- NUmerical results are plotted as symbols.
tration dependent, and can be theoretically adjusted to simu-
late specific material properties. _ ¢?b(DpA;—DyiAy)
This LBE model also exhibits a pressure diffusion phe-  D(AXg+AXy)
nomenon. Depending upon the parameters, when a pressure
gradient is applied to the mixture, there could be net fluxedf we setd,,=dy, this can be easily verified to be identical to
of individual components in an originally homogeneous mix-the mutual diffusivity we obtained previousfit5] by com-
ture. We can therefore use this model to study problems sudputing the decay rate of an infinitesimal concentration per-
as centrifuge separation. When different external forces arturbation. This result has been confirmed by measurement of
applied to the individual components in the mixture, anthe actual decay rate of a concentration wave in numerical
originally homogeneous mixture will separate so that consimulations with the LBE codgl5]. The derivation here is
centration gradients will be generated to balance the effect ohore general in the sense that no linearization of equations is
the forced diffusion. While all these different types of diffu- required.
sion occur in the LBE system, the mixture satisfies the
Navier-Stokes equations as a single fluid. B. Mixture of ideal gases
The diffusion mass fluxes given by Eq4d5) and (22)— . . . .
(23) are for the most general gase anyd acr(e valid for system A mixture of |dea}l gases can be simulated by setting
=0, and choosing the constanty so that 1-d;

with an arbitrary number of components and for arbitrary_”S 2/ c2. In thi h ) ional h
forms of interaction potentials, as long as the interaction is~ Co/mic®. Int IS case the pressure 1S proportiona t'o the
tal number density of the mixture. The second term in Eq.

not so strong that the components become immiscible an
g P 18) vanishes, and;=(1—d;)/b. If the d; are all equal, we

segregate into different phases. Since the coefficients have X > =
complicated dependence on the parameters and the densitk& Verify using Eq(18) that¥;D,;x;=0, and therefore the

themselves, analytical solutions of the densities are generalf)ass fluxeg P vanish identically. This implies that for an

difficult to obtain even in the “static” case. We will discuss ideal-gas mixture, pressure diffusion occurs if and only if the
a few limiting cases in which the density distributions can becomponents of the mixture have different molecular weights.
analytically solved and compare the results with those from We consider the case in which a common conservative

(25

numerical simulations. external force, given bg=—V¢, is applied to all the com-
ponents. Forced diffusion does not occur in this situation and
A. Diffusivity in a binary mixture the condition for equilibrium ig®+jP=0. By directly

. . e . . substituting into Eq(12), we can confirm that the following
We will derive the mutual diffusivity in a binary mixture : : : S P

. ) density profiles satisfy the equilibrium condition:

(S=2) using the mass flux obtained above and compare it 'ty profi Isfy quittbriu "

with previous results. For a binary fluid mixture, Fick’s first o ;{ -Dé¢ }
Po=PsEX ,

law of diffusion can be stated in our notation: 21=d) (26)

j1=—pDVXy, (29 0 . N "
wherep . are constants determined by the initial conditions.

which gives the definition of the mutual diffusivi®. Since Figure 1 shows the steady-state density profiles in a two-
X1+ X,=1, andVx; = — Vx,, after some tedious algebra, Eq. component numerical simulation performed on a two-
(22) can be written in the form of Fick's law, with the dif- dimensional hexagonal lattice with 16 sites in thdirection
fusivity and 256 sites in thg direction. Due to the effect of the
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nonsquare lattice, the actual dimension in lattice units is > R
16X 128y3. A periodic boundary condition is used in tke
direction. In they direction, a solid wall is placed a¢=0, 18 1
and bounce-back boundary conditions are used at the wall. 16 b _
The constantsl; andd, are chosen to be 0.4 and 0.6, re-
spectively. The external force potential is chosen to be 14 T
¢=—g(y/L)? yV|th0ut Iqsmg generallty, Wh_erg=0.1 is a 12 L i
constant and. is they dimension of the lattice. Plotted are 8_'
the typical measured density profiles at equilibrium, together x 1r 1
with their theoretical solutions given by E(6). The agree- 08 | |
ment is always excellent independent of the parameters such )
as; and the mean densities. 0.6 .
04
C. Forced diffusion

The effects of forced diffusion are also examined for a 0.2 0 010203040506 070809 1

binary mixture of ideal gases. The constastsire chosen to ylL

be equal for the two componentd; &dy) to eliminate the
effects of pr(_assu_re dlffu5|on._The mass qu_xes_ of the tW(_) FIG. 2. Density ratio of the two components in a binary mixture
components in this case consist of the contributions of ordi-

g h - > ~'of ideal gases at equilibrium. Two different external forces are ap-
nary diffusion and forced diffusion. The steady-state denSIt3f)|ied to the two components separately. The solid line is the ana-

profiles of the two components are now given by the equayyical solution and the symbols are numerical results.
tionsj®+j@=0. This equation can be simplified if we as-

sumer; = 7,= 7. We have diffusion coefficients. The LBE model is found to exhibit all
types of diffusion except the thermal diffusion. All types of
diffusion are Galilean invariant. The analytic calculation is
consistent with numerical simulations in several solvable
limiting cases.

—DVX1+X1X7(01—G2) =0, (27)

where D is the mutual diffusivity, in this case,

) . .
[c*(1—do)/D](7—1/2).g;=—V¢; is the external force act- i, the diffusion coefficients analytically calculated and
ing on component. Clearly wheng, =g, no forced diffu- o effects of external forces identified, we are now able to

sion can occur and the steady-state mass fraction profiles aggianitatively simulate a wide class of practical problems
homogeneous. Witlg, #g,, we can solve Eq27) to obtain  iyolving diffusion, separation, and fluid flow simulta-

neously. After the transport phenomena are satisfactorily

ézc exp{ (2~ ¢1) (28) treated, chemical reactions among components can also be

! D added easily in this model to simulate chemical reaction pro-
cesses.
wherec, is an integration constant determined by the overall Since diffusion in a multicomponent fluid is itself a very
mass ratio of the two components. In Fig. 2, we confirmeccomplicated phenomenon, the calculation of the transport co-
this solution by numerical simulation with the same geom-efficients from the parameters of the model is tedious but
etry and boundary conditions as before, except that now wstraightforward. For practical engineering applications, this
have two different force potentials, which are chosen to berocess can be automated.

X2

$1=0g.(y/L) and ¢,=g,(y/L)?, with g;=—0.1 and Finally, we point out again that since this model only
0,=0.1. simulates isothermal fluids, the possibility of directly simu-
lating an interesting thermal diffusion phenomenon, known
IV. CONCLUSION as the Soret and Dufour effects is ruled out. We consider this

In this paper, we discussed in detail the diffusion behavio@S @n important area for improvement in this LBE model.
in a previously proposed multiple component LBE model.
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