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Critical dimensions for random walks on random-walk chains
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The probability distribution of random walks on linear structures generated by random walks in
d-dimensional space®4(r,t), is analytically studied for the cage=r/t**<1. It is shown to obey the scaling
form Pgy(r,t)=p(r)t~ Y272t 4(£), wherep(r)~r2~9 is the density of the chain. Expandirig(£) in powers
of ¢, we find that there exists an infinite hierarchy of critical dimensials; 2,6,10,. . ., each one charac-
terized by a logarithmic correction irfig(¢). Namely, for d=2, f,(&)=a,£%né+h,é% for 3<d<5,
f4(&)=ag&2+byed; for d=6, fs(&)=agt?+betfing for 7<d<9, f4(&)=ay&?+by&8+cye®; for d=10,
f1o( &) =ay082+ b1of8+ c1¢19NE, etc. In particular, fod= 2, this implies that the temporal dependence of the
probability density of being close to the orig@u(r,t)=P.(r,t)/p(r)=t"*Int. [S1063-651%96)13410-3

PACS numbg(s): 05.40:+], 05.60+w, 66.30—h

I. INTRODUCTION an extremely rich behavior as a function of batrand di-
mensionalityd. We show, among other results, that E2).

Random fractals represent useful models for a variety otan only be valid for 3xd<5, and
disordered systems found in nature. In addition to their struc-
tural properties, fractals ha\_/e _attractgd much attention in re- Py(r,)~p(Ht Y4 1—constk &%) for d=7. (3
cent years because of their interesting transport properties
[1-4]. : : .

Of particular interest is the question of how the probabil-Moreover, we find that the smafl-expansion ofPy(r,t) is
ity density of random walksP4(r,t), is changed on fractal characterized by a hlerarchy of critical ' dimensions,
structures with respect to its Gaussian form valid on regulapczz'g'%g'l“’- .., where logarithmic corrections of the
d-dimensional systems, P4(r,t)~t~ %2exp(—consix 72), form &% In(1/,;5_)1/(:2>cc:uli.1 In particular, fod=2 we obtain
where 7=r/tY2 The form of Py(r,t) on fractals has been P2(rt)=2p(r)t"=An(t™r).
extensively studied in the asymptotic limét=r/tYdws 1
[2,5—12, where d,, is the anomalous diffusion exponent 1I. RANDOM WALKS ON RANDOM-WALK CHAINS

characterizing the time behavior of the random walks, _ .
(r?(t))~t?4w, As a result of these investigations, it is now We consider linear structures generated by random walks

genera”y accepted thmd(r,t) disp|ays a stretched Gaussian in d-dimensional SyStemS. Such structures are fractals with
form fractal dimensiord;= 2, independently ofl. To study diffu-
sion of particles along such linear chains, we assume that the
Py(r,t)~p(r)t~9%2exp(—consix &), &1, (1)  diffusing particles(random walkerscan move only along
the structurg(path which has been created sequentially by
wherep(r)~r% 9 is the density of the fractal structure the generating walks. Thus, although the structure can inter-
is the fractal dimensiond=2d;/d,, is the spectral dimen- sect itself in space, the walkers see just a linear path. We
sion [1], u=d,,/(d,—1), and is normalized according to denote such paths as random-walk chains.

fdrrd_lpd(r’t):]__ However' much less is known about Along the linear path, the pI’Obablllty denSity of random
the behavior ofP4(r,t) in the opposite limit wheng ap-  Walkers, at chemical distancé along the RWC from their

proaches zero. starting point after time, p(/,t), subject to the initial con-
In this paper we concentrate on diffusion in linear randomdition p(~/,0)= 6(~), approaches the well-known Gaussian

fractal structures generated by random wdliedom-walk  distribution

chains(RWC)] in d-dimensional systems, wheRg(r,t) can

be obtained exactly. Recently, using numerical simulations,

2
it has been suggested that for such linear fradtb®s, p(/t)= WEXF{ —

) , 4

2t
Qq(r,t)/Qq(0t)~(1—constx &972),  £-0, (2
normalized according td,d/p(/,t)=1. Thus, diffusion

for all dimensionsd, whereQq(r,t)=p(r) P4(r,t) is nor-  along the chairi.e.,/ spacgis normal and /2)=t. On the
malized on the fractal chain, i.efdrr%~1Qq(r,t)=1, with  contrary, in Euclidean space diffusion is anomalous with
di=2, d,=4 for RWC, £=r/t** and Q4(0}) is the prob- d,=2d;=4 (see, e.g.[2)).
ability density to return to the origin. To obtain the behavior of the probability density in

In the following, we derive an exact expansion for space, averaged over all RWC configuratioRg(r,t), we
Py(r,t) in the limit of £—0. Surprisingly,P4(r,t) displays note that it is related tp(/,t) by
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% TABLE I. The leading and correction terms for the series ex-
Pqy(r,t)= f d/®y(r,/)p(/,t) (5  pansion off 4(&), with £=r/tY whené—0, Eq.(10), as a function
0 of dimensiond.

and is normalized according tfd°rP4(r,t)=1. Another d
possibility is a normalization on the RWC fractal, i.e.,
fodrrdi=1Qq(r,t)=1. Both distributions are simply related 1
to each other byPy(r,t) =p(r)Qq(r,t). 2 2£4n(1/¢) 0.173g2 O(£9)

In Eq. (5), y(r,”) represents the probability for a site 3 2.506€2 —0.060%° O(&8)
r to belong to a RWC at distaneéfrom the origin along the 4 2¢2 —1.253%* 0o(£°)
5
6
7

Leading term First correction Second correction

2.155 —2.50662 0o(&)

chain. The chemical distancé plays the role of the time 2.50667 —1.4372° 0o(£°)
variable in Eq.(4), and one can immediately write 482 — £8In(1/¢) —0.336%°
7.519%2 —1.253%® 0.82447

dr2 r2
(Dd(r,/)ZAd(m 6X4_2—/), (6)
) o are available in analytic form, but we include their numerical
where Ay is a normalization factor such that \;ues to make the table uniform
d A — ; ; ; :
Jd%r®y(r,/)=1. Therefore, by inserting4) and (6) in (5) However, besides the coefficients, the main properties of
we infer[4,14] these expansions can be obtained readily as follows. The key
1192 op 2 parameter is= 1/2 (d/2—1). The corresponding values of
pd(r,t):<_) _dmf d//~ dIZeX[{ ) d=2(2s+1) for integers should be referred to asitical
t) 2/ dimensions, ¢=2,6,10, ... . Each order in the expansion
/2 has its own critical dimension. The leading term llas-2,
Xex;{—; ) (7)  the first correction term had =6, the second correction
2t term hasd.= 10, etc. This has to do with the functional form
. , ) of f4(¢) in the corresponding order which fdx<d. depends
Now, the elementary transformation=//r? brings (7) to ‘é at d=d, it has a logarithmic correction and for

the form d>d. becomes independent df In particular, the leading

®) term of f4(£) behaves as for d=1 and £2In(1/¢) for
d=d.=2 and asé&? for all d>d.=2, the first correction
where the scaling functiohy(¢) is defined by term behaves ag® for 2<d<6, and ford=d,=6 as
£%In(1/¢) and ast®, for all d>d,=6, and so on.
Mathematically, this behavior can be explained by the
(9 intrinsic properties of the Bessel functidfg(£?). By its
definition, Kg(&2)=(m/2)cscms)[1(£%)—1_4(£2)] for
for the scaling variablg=r/t"*, If the RWC normalization "onintegers and, in turn,zlu.z.(gz)=§252k:0°°bk(s) ¢ and
is chosen, the distribution Qq(r,t)=p L(r)P4(r,t) & !-s(£)=2k=0"bx(—8)¢™. As one can see this expan-
Etfl"‘?‘d(g), where’fd(g)zgfzfd(g). sion hass-independenpowers of¢ that form theinvariant

To deal now with the evaluation 6f(£) wheng—0, itis Pt Of fa(€). The first terms 0&**K(¢%) expansion are
convenient to rewrite the integrand exponent as

1 1
— | #Ay24 T
ex;{ 2(§x +X

Py(r,t)=2Ay(27m) @+ D2 —df (&),

o 1 1
_ g2 —di2 el RPN
fq(é§)=¢ fo dxx exp{ 2(5 X<+ -

E2K(£2) ~bo() %+ by (5)E8 4+ - —by(—5)
- bl(_5)§4_

1 1
_ el N
exp{ 2<§ X+ 2
1 1
Xex o 1- X Thus, for 0<s<1 (i.e., 2<d<®6) f4(&) has the form
fa(&)~ &7 ap(—d) —ag(d)£972]. We see that the first term
and expand the second exponential factor in Taylor serie®f this expansion is the invariant pattp to numerical coef-
The remaining integrals can be solved exadte, e.g., ficients of f4(£), which remains unchanged when varying

[15]), and one arrives at the following expression 8): d. The same argument shows that for4<2 (6<d<10)
fq(&) takes the form fy(&)~é&[ag(—d)—ay(—d)&*

* 1 1\ n +a,(d) £972] and nowtwo first terms of this expansion are
fa(&)=¢22 n_'( - z) > (—1)k< K gaz-tantk the invariant part of 4(£). A special case in our problem is
n=o0" k=0 d=1, i.e.,s=—1/4<0. Then the leading term df(¢) is
XKl/Z(d/271+n+k)(§2)r (10) £¢ 4‘5—5 which is easily seen by noting that
K_§(£9)=K4(&).
whereK, is the modified Bessel function of order For integer values ofs, the small§ expansion of

Let us consider Eq10) in some particular cases of inter- £¢2°K((¢2) has a logarithmic term  of  form
est. The results for spatial dimensioths:7 are summarized £*In(1/£) = ¢4 2In(1/¢) [15].
in Table I. All the coefficients were calculated numerically  In general, there args]+1 ([s] is the integer part o$)
by computing the double sums explicitly. In some cases theyerms in the invariant part dfy(¢).
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[l. CONCLUSIONS We have shown that logarithmic corrections occur at criti-

. . . cal dimensionsd=d.=4n+2, with n=0,1,2,..., ie,,
We have studied analytically the smdglexpansion of the d.=2,6,10,. . ., for theterms&%—2In(1/£). In particular for

mean probability densityP4(r,t), of random walks on d=2, Qy(r,t)=t~Yan(¥/r), for r<t¥4 and the probabil-
random-walk chains id-dimensional space. We have shown i gensity for the random walker to be close to the origin,

in the limit é&=r/t"*-0, as due to the fact that in two dimensions the RWC returns to its
—1 d—2 starting point with probability 1. In one dimension,
Pq(r,)=p(rt™*1-a46" %) when 3<d<5, Qy(r,t)=t"Yr, and ind=3, Q;(0t)=t "2 One can say
and as thatd=2 plays the role of a marginal dimensionality for the

probability density of being at the origin of random walks on
Py(r,t)xp(rt~ 41— cy4é*) when d=7, RWC, while for larger each order in the expansion has its
own critical dimension.
where p(r)~r%~9 and d;=2. This implies that the prob-
ability density Qq(r,t)=Pg4(r,t)/p(r) on the fractal chain ACKNOWLEDGMENTS
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