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Deconvolution of Rutherford backscattering spectra: An inverse problem
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We review the problems associated with resolution correction and discuss some of the most promising
procedures to solve them. We select four methods to deconvolute heavy particle backscattering(gpectra:
parametrization of the theoretical functidii) using histograms with variable bin widttiii) modified Land-
weber iterations, an€lv) using mollifiers. To judge the quality of the methods, we treat simulated backscatter-
ing spectra as obtained in Rutherford backscattering measurements with solid-state detectors. Our results are as
follows: Whena priori information on the shape of the spectra is available, parametrization of the problem is
superior to all other methods. When information on high-frequency components of the spezgyran sharp
edges is of primary interest, the use of histograms with variable-bin width might provide good results. In all
other cases, the choice of the best procedure depends on the specific problem and our ability to optimize the
adjustable parameter of the specific metH&L063-651X96)11010-3

PACS numbds): 02.50—r

[. INTRODUCTION calibration to be linear, which is not strictly true, due to the
energy dependence 6E,. With this calibration in mind, we
A basic problem in counting experiments is this: whenmay consider the distribution in pulse heigfar a particular
signals are processed, they are blurred by stochastic prd;_:o) a distribution in energ¥e. We call it the resolution func-
cesses inherent in the corresponding transfer elements, i.8i9n of the detector systenk(E—E,). For all methods dis-
the detection system. To get the undistorted information ofussed herek(E—E;) must be known; it can be obtained,
the original distribution of signals, one has to apply some€.g., from the spectra of projectiles backscattered from a very
sort of resolution correction. This is a typical inverse prob-thin layer. This function turns out to be approximately
lem [1], i.e., inverse in causality, if one is interested in the Gaussian, but asymmetric.
causes of an observed effect. Due to energy-loss straggling on the way into and out of
This review has been stimulated on the one hand by somi&e target, projectiles scattered from thin layers at a larger
recent papers in physi¢@—7] and in mathematics journals depth will show a broader distribution. It might be useful to
[8,9], on the other hand by our attempts to obtain the undisinclude this energy-loss straggling in the resolution function,
torted shape of the yield enhancement found in Rutherfordhus making the function depend explicitly on enetgy,
backscatteringRBS) spectra taken at exactly 180P0]. We  i-€., leading tok(E—Eg;Eo). In the following, we will re-
have tested a great number of methods that can be app“ed $(tj‘lct our considerations to measurements of ngar-surface
deconvolute light ion backscattering spectra, and we willayers where the shape kfcan be assumed to be indepen-
present the results of the four most promising procedures. T8ent ofEy. Nevertheless, all procedures discussed will work
judge the quality of the deconvolution procedures, we hav&dually well with an energy-dependent shape of the resolu-
to know the undistorted spectra. Therefore, all “measured"tion function, provided this dependence is known.
spectra in this contribution have been obtained by simula-

tion. Il. FORMULATION OF THE PROBLEM
When a projectile with well defined enerdy, enters a )
surface-barrier semiconductor detect8BD) or a particle- When the detector is exposed tdrae spectrum of ener-

implanted and passivated-silicéRIPS detector, it loses an 91€S Eo described by a density distributidi{E,), the ideal

energy 5E, by random processes in the entrance windowMmeasuredspectrumh(E) is given by

This part of the initial energy does not contribute to the

detector signal. The remaining energy— 6E4 will be par- h(E)=J

titioned in a stochastic way into electronic excitation or ion-

ization of the detector atoms$E, and into nonelectronic pro-

cessesE . (e.g., production of phonoinsThe energyE.is  wherek*f means a convolution. Although it is not neces-

then available for the creation of electron-hole pairs. Finally sary, we have here assumed tkaand f are independent.

the charge of these pairs is converted into pulse height bf¥he integral kernek is the resolution function discussed

standard electronics. Due to stochastic processes involved @bove. Normally, the spectra consist of a number of values at

this energy-to-pulse-height conversion, we measure a densitliscrete energie&', obtained by means of a multichannel

distribution in pulse height. analyzer(MCA), wherei is the channel number. So we can
Using many different energiés, and identifying the cen- replace the convolution integral by a sum. To take counting

ters of gravity of the corresponding distributions with the statistics in the individual channels into account, we add

primary energie€,, we obtain the energy calibration of the some noise 4(E') to the convoluted spectrum. We know that

detector system. Without loss of generality, we assume thiss(E') is governed by Poisson statistics dependent on the

KE-EQf(EgdEy=(ksf )(E), (D)
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number of counts per channel and that it may be charactesured and hence noisy resolution functionwith high Fou-
ized by a standard deviatiof Thus we obtain thactually  rier components rather than an analytical form with less high

measuredspectrumh 4(E'): frequencies.
_ These considerations show that the inverse of the problem
i _'max - j i formulated by Eq(2) is not well posed in Hadamard’s sense
hs(E )_JZO K(E'—Ep)f(Eg) +15(E) [14,15: (i) the solution does not exist in the strict sengg,
A _ the solutions might not be unique, afid) solutions might
=(kxf )(E")+r4E"). (2)  not depend continuously on the data, i.e., small changes in

the data might cause arbitrarily large changes in the result if
As in Eq. (1), the index O refers to the true energy. In this the ill-posedness of the problem is not carefully taken into
discrete formulation, the convolution redUC_eS tO the multipli'account_ Unfortunate|y' even if the prob|em is well posed it
cation of the matrixk with elementsk; =k(E'—E}), by the  still can be ill-conditioned, which will result in numerical
vector f with componentsf;=f(E¢) (i,j=1,2,3....N), instabilities. This will be discussed in more detail later on.
whereN is the number of data points, e.g., the number of\ve want to point out that our problem is much more un-
channels of the MCA. The noigeg, and the measured spec- stable than, e.g., the inversion of radon transform used in
trum h,;are als_o vectors with the same dimensiofi.&0 we  computerized tomography16]. This is due to the very
can simply write smooth kernel in the integral equation of the first kind, EQ.
(1). As shown by Eq.(8), it is that feature of the kernel
hs=Kkf+15. 3 which makes even small errors with high Fourier compo-

L . . . _nents give rise to large oscillations in the solution of the
Convolution in energy domain transforms into a product in.

! o . inverse probleni15].
Fourier domain; therefore, the Fourier transform of E2). Strictly speaking, Eq(3) is still incomplete: we should

reads have taken into account so-called “ghosts.” Ghosts are func-
Fhy) = F(K)F()+ F(ry), (4) tlorls g, which do not vanish |d_ent|caIIy but which fulfill
kg=0. So, Eq.(3) can also be written as

whereF and F ! are the operators of Fourier transform and _ _
of inverse Fourier transform, respectively, given by ho=Ki+rs=k(f+g)+1s. (33
These functiongy are invisible to the inversiorisee, e.g.,
1 * - [16]). As a matter of principle, they can not be reconstructed
Fa)(x)= 2 f_WQ(y)elxydy' 5 from the data. One can only find the best approximate solu-
tion to the problem by means of “normal equations”; see
1 . Eq. (13) below.
q(x)=F LA Q]X) = — f F(q)(y)e ™dy. (6)  To furtherinvestigate the error resulting from deconvolution,
N2 J - we use the discrete presentation, E3). One formally get$
by multiplying Eq.(3) by k™ from the left-hand side:
Formally, one gets the true spectrdifE,) from Eq. (4) by N
fzkil(ha_ra)- 9
F(hs) _Fl(f(r,s))
F(k) Fk) )

f=F 1( (7) Unfortunately, we cannot subtract tfienknown noiser ;.
The obvious consequence would be to consider the noise of
the measured spectrum to be due to a scatter of the original

We focus on the first term of Eq7), which is available from pectrumt ; (which we will indicate by the index) and to

experiment. The asymmetric detector resolution functior®
k(E—Ey) may be well described by a sum of two Gaussian~°'V€

distributions shifted with respect to each otli¢f—13. Its hs=kf 5 (10)
Fourier transform is again a sum of two Gaussians, which -

decreases at high frequenciess proportional to by inversion of the matrix:

exp(—w?0%2), where o is the standard deviation of the —

smaller of the two Gaussian peaks. In contrast, for the trans- fs=k™"hs. 1D
form of the noisy spectrurh; at high frequencies we have
to assume a fairly uniform distribution at least up to value . :
corresponding to the channel width of the MCA. Hence thzﬁ??:fé V:Se%tertur?f.dZzzz\r{r?ilrl:;e?hZ?HEAEthﬁiﬂI?IjIﬁ}I?nt/vfr:g:g
argument of the first term in E¢7) might become arbitrarily K|A| is_the norm of Ak [see Eq.(13)], the to'EaI error

Due to errors in matrix inversion, both_numerical and sys-

large for high Fourier components: Af=f—f, can be estimated using EQ.2) [17]:
F(hy) 2, 0T 1Af] Acond K) (HAkIl IIh—hgl)
~e?’ ——— o, 8 = — + .12
7K * ® ] [
1_Acono(k) Hk”

A forced cutoff or dampindfiltering) at high frequencies
will result in loss of information about and will destroy We see thatAf depends on the relative data error
structures formed by high Fourier components, e.g., edgeg|h—h|/|h[), as expected. But it also depends on the quality
We want to emphasize that E() suggests using a mea- of the numeric algorithm used to invekt specified by the
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condition ofk, A.ndk), and by the relative errdfAk|/|K|.
[|AK]| includes all errors due to the experimental determina-
tion of k, deviation of the calculated inverse from the true
one, etc. In Eq(13) we give one practicable set of defini-
tions of the norm oflf| and of |k||:

n
Iil=\Z, 7 l=mad k)|
- I

Acond ) =KIIk | (always =1). (13)

Counts

The matrixk ! is the approximate inverse &fobtained by
some inversion method. To stress how inaccurate a matrix
inversion may be, we mention that for a Cholesky algorithm
[17], i.e., straightforward triangularization of the matrix, the
condition ofk can be as large asx2L0°. Fortunately, there
are other algorithms that provide a more stable inversion,
e.g., the Householder algorithid8], with A.,,{k)=1. But
even so||Ak|/|[k|| could still be much larger than the relative
error of the data.

We arrive at a slightly more stable problem if instead we

look for a vector f 5 which—under certain constraints—
minimizes the norm of the differences:

Counts

[lhs—Kf 5| —min. (14)
This will lead to the so-called normal equation:

Eka(S:KHhé" (15)

Counts

The superscript marks the adjoinf{or Hermitian conju-
gate. The best approximate solution of E{l4) is then
given by

5= (k"k) " 1kHh,. (16)

300‘3'0‘320 330 3A0.350‘360 370 380
Notice the difference between E(ll) and Eq.(16). The Energy [keV]
guantity (KHK)*EH represents the so-called pseudoinverse
(Moore-Penrose invers¢l7] of k, which always exists and FIG. 1. Theoretical spectrum of 400 keV helium projectiles
which is unique. But this does not yet take into account thedackscattereda) from a one-component targefy) from a three-
ill-posedness of the problem explicitly. component target, arf@d) from a one-component target showing the
So we still need a method that can treat noisy data. If thé-80° yield enhancemersee text (thin solid ling. Also shown are
theoretical form off is known as a function of a small num- the simulated spectra that result from measurements with a detector
ber of parameters, we can fit a parameterized functidmgto ©f 9-1 keV energy resolutiotthick solid line.
using any optimization technique, such as lifdescent- o i .
direction-searching algorithms guided, e.g., by a steepest‘:"”c’ther regularization methoi_Sec. Il O—or using mollifi-
descent criteriofi19,20] (Sec. Il A), least-squares fit, New- €S to construct an approximate inverse lof(8,9] (Sec.
ton techniqueg 19,20, Newton techniques combined with o).
Tikhonov regularization[7,21], or a maximum-entropy
method[6,22]. If one is interested in characteristics of the lll. DECONVOLUTION TECHNIQUES
spectrum characterized by high-frequency Fourier compo-
nents(e.g., sharp edggsthe representation of the theoretical
spectrum by a histogram with adjustable bin width might To obtain measured spectra, we take theoretical spectra,
give good resultgSec. Il B). convolute them with the resolution function and add stochas-
If no information about the true spectrum is available, wetic variables to represent counting statistisee Fig. 1 The
have to use regularizatiofstabilization techniques. Regu- theoretical spectra are given as a function of energy, and they
larization, e.g., Tikhonov regularization, is the approxima-depend on a small number of parameters.
tion of an ill-posed problem by a family of neighboring well-  In the deconvolution process, these parameters are deter-
posed problems. This family is characterized by amined from the measured spectra by minimizing the norm
stabilization parameter that has to be chosen judiciously. Algiven by Eg. (14). When we apply the parametrization
ternative procedures are Landweber iteratid@8,24—  method, we know the exact functional dependence of our

A. Parametrization of the spectrum
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theoretical spectra on the parameters, and this is indeed a 1 E—E.)?2
! _ , and tt . p( (E-Ep) )

crucial requirement. Hence our quantitative interpretations k(E—Eg)=——|——exp ——%5——
are correct provided we have found a function that describes 149 | 270 20
the spectrum properly. — 2

To test the method, we consider three cases shown in L exo — [E-(Eo—0)]
Figs. Xa), 1(b), and 1c). Case 1 represents an RBS spectrum V271.30 2(1.30)°
that might have been obtained by backscattering 400 keV
He' ions from a thick one-component target. The corre- (20
sponding trial functionf, depends on four parameters: the Here, we have choseq=0.3 for the ratio of areas and
position of the high-energy edgg and three parametess, 0=3.57 keV for the standard deviation of the principal
az, and a, giving the shape of the spectrum; in all these Gaussian. This gives a full width at half maximum of 9.1
considerations we neglect a possible high-energy backkeV, in agreement with experimental data of our cooled 300

ground due to, e.g., pulse pileup. mn? PIPS detector for 400 keV He projectiles. By introduc-
ing the energyE,, we take into account the difference be-
ay tween the mean of the principal Gaussian péal and the
f,(Eq)= A~ agEo+ E,’ Eo<ay (177  mean of the total resolution functidg,) to avoid having the
0 Ep>ay spectrum shift through convolution:
Case 2 corresponds to a three-component tdfgjgt 1(b)]. 1+q

We assume the partial spectra to have the same functionqcl0
dependence, but with different parameters. So the theoretical
spectrumf,=f, ,+f, ,+ f, 3 depends on 12 parameters:

get the deconvoluted spectrm_n we optimize the pa-
metersa; with a line-searching algorithm with steepest-
descent criterion to minimize the norm of differendéx.

(14)].

a, . o .
fou(Eo)=a,~asEo+ -, Eo=a, B. Histogram with adjustable binning

We again start with Eq(14). The spectrumh(E") (i
=1,...N) is displayed on a MCA with channels of constant
width A, N being typically 1024 or 2048. To prevent loss of

Eo<as, (18)  information,A should be small compared to the width of the
detector resolution functiofEq. (20)]. A very simple, but
numerically expensive way would now be the variation of
the content of each channkj(E}) until |h;—kf J reaches a

, Eg=<ay. minimum. However, in backscattering spectra there might be

Eo regions where the spectrum heightE) stays constant

within the spread given by counting statistics; there we might
choose the widtlA™ of the mth bin to be a multiple ofj,

Fhus reducing the number of bins frofhto M. By lumping

together the content of adjacent channels, some information

) . Urﬁhy be lost. But this may be outweighed by the reduction of

sians, all cut off at the high-energy edggof the spectrum e rejative uncertainty of the bin_content and by the reduc-

[Fig. 1(c)]. This function[Eq. (19)] has been found to repro- ton of the numbemM of contentsFE™), m=1,... M; in

duce measured spectra fairly well. It depends on eight pamgst cased can be chosen to be more than one order of

ag
foAEg)=as—azEq+ E
0

12

fodEg)=ajp—apEo+

Case 3 represents backscattering at 180° showing a ne
surface yield enhancemefit0,25. As a trial function, we

rameters: magnitude smaller thaN. As the bin width of the measured
and of the theoretical spectrum do not coincide, we have to
a a (Eg—ay)? calculatef 5(EL) in Eqg. (14) by means of characteristic func-
f4(Eg) = ay— asEo+ — + —— exr{ _ 10 26 ) tions @(E,—Eg',A™) representing themth bin. They are
Eo  27a, 2a7 defined as
a [Eo—(as—a7)]? " A"
g 0 6 7 m m
+—exg —— |, 1, Ef'——=<E;<Egj+—=
N p( 2(1.3a;)? O(Eq—Ef,A™= 0~ 3 SE<Eot 5 (22)
0, elsewhere.
Eo<a;. (19 The spectrunﬂ(Eo) now follows as
_ m _em m
We have found11] that asymmetric peaks such as that typi- fo(Bo)= mE:o Fi(Eg)O(Eo—Eq.A™), (23)
cal of 180° enhancement may be described by two Gaussians . .
with one of them smaller in height, broader by a factor ofSo that we finally get the discrete spectrum
1.3, and shifted by one standard deviation towards lower M—1
energies. We use a similar function to describe the asymmet- F (Ely= EEMO(EL—EM™ AM 24
ric detector resolutiortin all three cases oEo) mE:O o Eo)O(Eo—Ep AT, 249
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By iteration, we optimize the following parameters by mini-  Instead of solving Eq(26), it appears better to solve Eq.
mizing the norm of the differenchh;—kf J: the number of (15 in a stable manner by Landweber iterations. Again, we
bins M, their widthsA™, and their contentE s(E ). We use ~ present the result without proof; for further details see Refs.
the same kind of optimization algorithm as in Sec. Ill A to [23, 24). Following the Banach fixpoint theorefi29], one
find a set of best parameters. We start with a small number dias to determiné; from

bins, e.g., four; then we iteratively determine those two ad- — —

jacent bins where a decrease in the width of one at the ex- fs=(U— Bk K)fs+ Bk hs (28)
pense of the other will make the norijh;— kf§| decrease

most, withA as the lower bound tA™. When this procedure DY successive approximatiofisote thatUf ;= T,):

has made the norm converge to a relative minimum, we

double the number of bins and repeat the procedure. This fg: EEHhé'

will, in general, give a smaller relative minimum for the (29
norm. We terminate the iteration when this reduction of the =151+ B(kHh,—K"kf§ ™).

norm becomes insignificant. In general, 16—32 bins lead to a

sufficiently accurate result. The limits for the parameted to make this procedure con-

verge are &8<2/[k|. In our casek is given by the resolu-
tion function, which is normalized to 1, so thi=1 [see
Eg. (13)]. Convergence is achieved when H44) is ap-
We want to describe two regularization methods in a venyroximately fulfilled, i.e., wher|hy—kf%j|<e, with & being
simplified way and to apply one of them to our problem. Forsufficiently small. Instead of minimizing the difference, we
detailed information, see, e.g., Ref$, 14, 21, 23, 24 We  make the ratio converge to 1. So we try to modify Landwe-
try to damp the influence of the noisggiven by Eq.(2) by  ber iterations described above in the following way:
replacing the ill-posed problefiEq. (14)] with a neighboring L
well-posed problem depending on an adjustable parameter fA(Ep) = (k"hy)(EL),

C. Tikhonov regularization, Landweber iterations

skt + alfy|—min. 29 et e 7 )(Ei) s
In this way, the solution will be stabilized by soraepriori Eo

information_on the result. In our case this information is that

the norm off , should be as small as possible; this means thal NS modification gives a steeper edge of the spectrum and

we are looking for a solution as smooth as possible. Wéavmds undershooting at the bottom of this edge. Contrary to

could also have looked for a solution that minimizes curva£9- (29), E. (30) does not tolerate local negative values of

n—1
ture or, more exactly, that minimizes the norm of the secon% Kf5 g - The (I:onverﬁence rate and thhe erroar '(;‘ the r:esult
derivative (|hs—kf 4+ «||fy]—min)._It can be showiri21], bepekn ffstning y ofn ttﬁ ap;protprlatev& 0|ce€otn on; €
that Eq.(25) has a unique minimizei? - reakoff criterion for the iteration. We want to emphasize

that the solutions of Eq$26), (29), and(30) are—in a math-
— ematical sense—as smooth as possible. This means that they
f§=(aU+k"k) k" h;. (26)  have to be superpositions of sinusoidal functions leading to
the well known oscillations in the resuylee Sec. IVY. In the
Here, U is the unit matrix. Note that for=0 we get Eq.  present case, their amplitudes depend on both the regulariza-
(16), which characterizes the best approximate solution ofion parameter and the breakoff criterion. Hence, both have
our original problem. Hence, E26) is a stabilized version to be dealt with carefully. We found that too many iterations
of Eq. (16). The regularization parametarhas to be chosen may give a result as poor as too few. A breakoff criterion
according to the scatter of the data, quantifieddbyf one ~ might be to keep the oscillations smaller than the ndisé
simply takes a power ob for «, i.e., axd", one finds[14]  the data.
that the best choice would k&)« 5”2, However, the choice An alternative exists if one has soragriori information
of parameter becomes very difficult if one wants to obtain on the theoretical spectrum, e.g., that far from the edge, the
the optimum convergence rate, must then be determined shape of the theoretical spectrum is hardly changed by con-
from the following nonlinear equatiofMorozov’s principle  Vvolution. So one can this take as the breakoff criterion, if the
of discrepancy; for further discussion the reader is referred t#orm of the difference of the calculated spectrifirand the
[26-29): measured spectrurhg,||h;—f1,is sufficiently small. This
breakoff criterion for a selected low-energy interval, together
27) with 8=0.5, has been applied in our calculations. We found
that this criterion seems to be superior to others commonly

used.
This is the so-called Tikhonov regularization, the most

prominent regularization method for ill-posed problems. It

has been successfully used, e.g., for the deconvolution of
spectra in fluorescence spectroscd@y But it requires an We want to compute the inverse of the kernel in E).

exceedingly large numerical effort to determine the appropriby means of mollifier$8,9] u.(E ;— E}), which may depend
ate regularization parameterand to invert the matrix in Eq. on a parameter or on a set of parametrdollifiers are

(26). approximate solutions of the following equation:

k5 —hgil= 5.

D. Mollifier method
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a0 80 a0 80 0 850 460 470 860 It follows from Egs. (31)—(33) that the matrix v,
' ) j T [vc(ij)zvc(E'o—E')] has to be an approximate solution of

or (a)
| ] > ve(By—EDKH(EI-E)) =u(E-Ef). (34
I |
@ 60f . The mollifier u; allows us to construct an approximate in-
3 | : versev, of k that maps the data, to a regularized solution
C w} . fs [EQ. (32)]. It should fulfill two criteria: (i) f has to be

: approximated as well as possible, didthe influence of the

] noiser ; has to be reduced. These two criteria contradict each

other, so one has to find a compromise between reproducing

f and smoothing the data.

(b)] Of course, the exact r_econstructiqn kernel \_Nould be the
. deconvoluteds function, i.e., a function that yields thé

1 function when convoluted with the detector resolution func-

] tion; unfortunately, such a function does not exist. Instead of

the & function, one might use a narrow Lorentz distribution

as a mollifier:

Counts

1
1+[(Ey—EL)/c]?

] Uc(Eq—Eb)= (35)

As usual in this field, the parametergives the width of the
e e w0 =0 a0 =m0  Mollifier. From Fourier and inverse Fourier transform, we
Energy[keV] get from Eq.(34) the kernel by

[ F o)
FIG. 2. The theoretical backscattering spectrum from a one- U™ W : (36)
component targetthin solid line, symbolf ) of Fig. 1(a) is shown
together with the deconvoluted spect@ using parametrization If we look at the real part of the reconstruction kerfigd.
(broken line, PAR or using histograms with adjustable binning (36)] we learn that a feasible ansatz might be a product of a
(thiCk solid line, B|N) and (b) using Landweber iteration(sbroken cosine and a Gaussian function. To obtain a more appropri_

line, LAN) or using moliifiers(thick solid line, MOL). ate result, we replace the parametewith two adjustable
parameters andb:
f(Ep)=2 ug(Ex—Eb)T(ED). (31) o (EL—E)) (El—El)2
] vap(Ey—E)=cog ——|exp ——"=—|. (37)

Obviously, u(Eg—EL)=68(Ey,—E}) would be the exact
solution. Here, thes function is defined byp=1 fori=j and
6=0fori#j. The goal of this procedure is to find a so-called
reconstruction kernel .(E ;—E') so that an approximate so-
lution of our problem can be determined from

The parameters were determined by an optimization algo-
rithm for the special case of a rectangular function: we have
calculated the convolution of a rectangular function with our
resolution function[Eq. (20)] and tried to reproduce the
original function by using Eq(32), with the kernel taken
o from Eq.(37). The best results were obtained with-0.0997
fs(EB):E vC(E{)—EJ)h,s(Ei). (32) keV andb=2.42 keV. By choosing parametby emphasis
i can be put on either one of the two criteria given above.
Choosingb=2.72 keV witha=0.0997 keV results in a bet-
We can here apply Eq10), since these general consider- ter deconvolution of the rectangular spectrum but gives a
ations are not restricted to noisy data. So we replagby  standard deviation five times as large. With negligible noise
kf 5. Using the definition of the adjoint matrik™, we can rs, a much better deconvolution would be possilgke

write =0.0595 keV ,b=2.31 keVj, but thisv, completely fails for
noisy data.
i _ . Using Eq.(37), the shape of the reconstruction kernel can
; ve(Eg—ENh,(EY) be varied only within a limited range. We found that by

modifying the kernel locally, we can reproduce the rectangu-

lar function in a better way. To do this, we start with the

:2 Uc(Eio_Ej)E k(El - ES)f_a( ED) optimum parametera and_b fand_ change the reconstruction
] n kernel bin by bin. Our optimization process does not change
the symmetry of the function, although it would be evident in

:Z E UC(EiO_Ej)kH(Ej_ES) f_(s(ES)- (33 view of the asymmetry qf_ the resolution function; _but this
no|] does not lead to a significantly better deconvolution. The
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300 310 320 330 340 350 360 370 380 300 30 320 830 340 350 360 370 380
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Counts
Counts
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FIG. 3. Same as Fig. 2 but for a backscattering spectrum from a_ |G- 4. Same as Fig. 2 but for a backscattering spectrum show-
three-component target as in FigblL ing the 180° yield enhancemefftig. 1(c)].

result is a function with less regular oscillations than thosdn Fig. 2@ we show the theoretical spectruitogether with

produced by Eq(37). We call this method “mollifier with ~ the results when methods using parametrizatAR) and
postoptimization.” variable width binning(BIN) are applied to the measured

spectrum. The results using modified Landweber iterations
(LAN) and mollifiers with post-optimizatiofMOL) are
shown in Fig. 2b). Clearly, PAR yields the best agreement;
In Fig. 1 we show both the theoretical spectra and thehe original and the deconvoluted spectra are almost indistin-
corresponding measured spectra obtained by convolutioguishable. For BIN, the rather coarse binning results in an
with the resolution function and by adding some noise. Inincorrect height of the edge, but the position is well repro-
mathematical language, the convolution operator maps duced. Using more bins would have made agreement in ob-
theoretical spectrum from its domain of definition into its ject space better, but without any discernible improvement in
image space or range. Instead of “domain of definition,” weimage space. Both LAN and MOL give spectra with steeper
use here the term “object space,” which is more familiar to edges than the measured spectrum, but with an overshoot on
physicists. The crucial point is that in actual practice, thetop or at bottom, respectively. The essential difference is that
quality of deconvolution has to be assessed in image spacthe intersection of the deconvoluted spectrum with half of its
So any disagreement in object space between theoretical aedtrapolated plateau should now give an unbiased estimate
deconvoluted spectra, which becomes apparent in Figs. 2, 8f the position of the edge, irrespective of the asymmetry of
and 4, does not appear in image space. Due to the smoothitige resolution function. However, we do not believe that de-
properties of the resolution function, it is lost when bothconvolution of simple backscattering spectra based upon
spectra are convoluted. This fact also reflects the ill-LAN or MOL will essentially improve evaluation.
posedness of this inverse problésee Sec. )l In Fig. 3 we show the corresponding spectra from a three-
First we discuss the results for a simple one-componentomponent target. We want to point out that although the
spectrum. One usually is interested in the spectrum heigtghape of the high-energy edge of the measured spectrum
and in the position of the high-energy edge. With only the[Fig. 1(b)] is completely smeared, all methods detect its
measured spectrum at hand, as in Fig),lone would ex- triple structure. Only PAR benefits from the information that
trapolate the plateau of the spectrum towards the edge aride spectrum is composed of three partial spedm (18)].
one would define the position of the edge where the meaFrom this point of view, the quality of the result using PAR
sured spectrum has half the height of the extrapolated plds rather poor. The best quantitative agreement is obtained
teau. In the case of asymmetric resolution functions, this inwith BIN [Fig. 3[@]. The oscillations in the result of LAN
troduces a systematic shift due to the difference between tHdig. 3(b)] fit snugly into the steps of the theoretical spec-
median and the center of gravity of the resolution function.trum, but this could also be fortuitous. MOLFig. 3(b)]

IV. RESULTS
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yields a spectrum that does not allow any quantitative evaluspace where the high-frequency components are damped by

ation. convolution with the Gaussian-shaped resolution function. In
The goal of deconvolution of 180° backscattering spectraaddition, (i) the morea priori information on the theoretical

is to determine both height and position of maximum en-spectrum is available, the better deconvolution will work;

hancement as accurately as possible. These quantities preence, parametrization of the theoretical spectrum, if pos-

vide insight into small-angle scattering cross sections in solsible, is mostly superior to all other methods) the simple

ids. Here it is most evident that the knowledge of the exactnethod of using histograms with variable bin width works

function used to generate the theoretical spectrum favorsnexpectedly well in the case of backscattering spectra from

PAR [Fig. 4(@)] and, in fact, the height of the maximum is fairly homogeneous target§ii) all other methods that need

perfectly reproduced and its position is only slightly shiftedno a priori information will work better when the spectrum

towards smaller energies. BIN-ig. 4(a)] gives excellent does not contain high-frequency elements such as sharp

data for the height, but there is no way to determine accuedges.

rately the position of the maximum. Both LAN and MOL

[Fig. 4(b)] result in a maximum at too low energies. In view ACKNOWLEDGMENT
of this fact, it is of no significance that LAN reproduces the
height of the peak. We thank Professor H. Engl and Professor H. Paul for

From these calculations we draw the following conclu-valuable discussions during this work. This work was sup-
sions. The essential drawback of all deconvolution methodported by the Jubilamsfonds der Oesterreichischen Nation-
is that the quality assessment has to be performed in imagdbank under Contract No. 4680.
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