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I. INTRODUCTION

Noise-induced phase transitions, which are akin to those
considered below, were studied by Van den Broeck and co-
workers in @1,2# for the systems described by finite differ-
ence approximations of the partial differential equations of a
certain type. In@3# two-dimensional structures induced by
noise are obtained numerically. These structures can be con-
sidered peculiar turbulence. This fact favors, even if indi-
rectly, the view of one of the authors@4# that turbulence in
nonclosed flows is not self-oscillations but is induced by
noise.

The transitions in question are of a radically different kind
from those which were studied by a number of other re-
searchers~see, for example,@5,6#!. In their works the appear-
ance of additional peaks in the probability density under the
influence of multiplicative noise, mainly in the systems with
multistability, is spoken of as the noise-induced phase tran-
sitions. In the case under consideration additional peaks in
the probability density do not appear.

We note that we use the term ‘‘nonequilibrium phase
transition’’ in the same sense as it was used by Haken@7#.
Haken called attention to the parallels between phase transi-
tions occurring in systems close to thermodynamic equilib-
rium state and order-disorder transitions in nonequilibrium
systems. In the same sense this term was used in Ref.@8#.

As an example of the system in which the noise-induced
phase transitions are possible we take a pendulum with a
randomly vibrating suspension axis because it is, on the one
hand, a very simple system making possible approximate
theoretical study, and on the other hand, it is a real physical
object.

II. THEORETICAL STUDY OF THE PENDULUM
OSCILLATIONS CAUSED BY RANDOM VIBRATION

OF ITS SUSPENSION AXIS

The problem of excitations of an oscillator under a para-
metric random action was first analytically studied by Stra-

tonovich and Romanovsky as early as 1958@9,10# and later
by Dimentberg in 1980@11#. To obtain the limitation of os-
cillation amplitude the authors of these works took into ac-
count nonlinear friction. In fact, the inclusion of nonlinear
friction is not necessary since the limitation of amplitude can
occur owing to nonlinearity of the restoring force. However,
the inclusion of nonlinear friction makes it possible to obvi-
ate random rotations of the pendulum through an angle di-
visible by 2p. These rotations make the analysis of the ob-
tained results more difficult.

The motion equation for a pendulum with a randomly
vibrating suspension axis with regard to nonlinear friction
can be written as

ẅ12b~11aẇ2!ẇ1v0
2@11j~ t !#sinw50, ~1!

wherew is the pendulum angular deviation from the equilib-
rium position,v05Ambg/J is the natural frequency of small
free pendulum’s oscillations,J andm are the moment of
inertia and the mass of the pendulum,b is the distance be-
tween the center of mass and the suspension axis,g is the
acceleration of gravity,b5H/2J is the damping factor,Hẇ
is the moment of the friction force in the linear approxima-
tion, a is the coefficient of nonlinear friction, andj(t) is the
acceleration of the suspension axis that is a comparatively
wideband random process with nonzero power spectrum
density at the frequency 2v0. We assume that the intensity
of the suspension axis’ vibrations is moderately small, so
that the pendulum’s oscillations can be considered small to
an extent that sinw can be presented as

sinw'S 12
1

6
w2Dw. ~2!

For generality below we consider the nonlinearity of the
form (12gw2)w, which coincides with~2! for g51/6.

An approximate analytical solution of the problem can be
obtained on the assumptions thatb/v0;e, gw2;e,
j(t);Ae, wheree is a certain small parameter which should
be put equal to unity in the final results. With these assump-
tions Eq.~1! in view of ~2! is conveniently written as
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ẅ1v0
2w5e@22b~11aẇ2!ẇ1v0

2gw3#

2Aej~ t !~12egw2!w. ~3!

Equation~3! can be solved by the Krylov-Bogolubov method
with a precision to the second approximation with respect to
the small parameter e; to do this we set
w5Acosc1eu11e2u21•••, wherec5v0t1f,

Ȧ5e f 11e2f 21•••,
~4!

ḟ5eF11e2F21•••,

u1 ,u2 ,•••, f 1 , f 2 ,•••,F1 ,F2 ,•••, are unknown functions. By
using the Krylov-Bogolubov technique for stochastic equa-
tions ~see@10,12#! we find the expressions for the unknown
functions f 1 , f 2, andF1 ~the functionF2 gives only small
additions to the functionF1 and so is of no interest!. Retain-
ing only the nonlinear term in the functionf 2 and substitut-
ing the expressions found into Eqs.~4! we obtain

Ȧ5F2bS 11
3

4
~av0

21g!A2D1
v0

2
jsin2c GA, ~5!

ḟ52
3

8
v0gA

21v0jcos
2c, ~6!

where the bars over the expressions signify time averaging.
As indicated in@10#, in Eq. ~5! we have

jsin2c5^jsin2c&1z1~ t !, ~7!

where the angular brackets signify averaging over statistical
ensemble,z1(t) is a random process that can be considered
as white noise with zero mean value, and the intensity

K15
1

2
k~2v0!, ~8!

where

k~2v0!5E
2`

`

^j~ t !j~ t1t!&cos2v0t dt

is the power spectrum density of the processj(t) at the
frequency 2v0. In the expression~7! the value^jsin2c& is
different from zero owing to the correlation betweenj and
f; it is equal to

^jsin2c&5
v0

4
k~2v0!5

v0

2
K1 . ~9!

In a similar manner, in Eq.~6! we have

jcos2c5^jcos2c&1z2~ t !, ~10!

where

^jcos2c&5
v0

4 E
2`

0

^j~ t !j~ t1t!&sin2v0t dt[M .

~11!

z2(t), much likez1(t), can be considered as white noise with
zero mean value and the intensity

K25
1

4 S k~0!1
1

2
k~2v0! D . ~12!

The value ofM depends on the characteristics of the random
processj(t): if j(t) is white noise thenM50, but if j(t)
has a finite correlation time, for example, as its power spec-
trum density is

k~v!5
a2k~2v0!

~v22v0!
21a2 ,

then

M52
av0

2k~2v0!

4~16v0
21a2!

.

In view of ~7!–~12! we rewrite Eqs.~5! and ~6! as

Ȧ5S v0
2

4
K12b2

3

4
bg̃A2DA1

v0

2
Az1~ t !,

~13!

ḟ5v0M2
3

8
v0gA

21v0z2~ t !,

whereg̃5g1av0
2.

The Fokker-Planck equation associated with Eqs.~13! is

]w~A,f!

]t
52

]

]AF S v0
2K1

4
h2

3

4
bg̃A2DAw~A,f!G

2v0S 38 gA22M D ]w~A,f!

]f

1
K1v0

2

8

]2

]A2 @A2w~A,f!#1
K2v0

2

2

]2w~A,f!

]f2 ,

~14!

where

h512
4b

v0
2K1

.

As will be seen from the following, the parameterh charac-
terizes the extent to which the noise intensity is in excess of
its critical value.

The steady-state solution of Eq.~14!, satisfying the con-
dition for the probability flux to be equal to zero, is indepen-
dent off. It is conveniently written as

w~A,f!5
C

2pA2 expH E
0

AS 2h

A
2

6bg̃

v0
2K1

AD dA2E
0

12h

A
dAJ .

~15!

The constantC is determined from the normalization condi-
tion

E
0

2pE
0

`

w~A,f!A dA df51.
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Upon integrating~15! with respect tof and calculating the
integral under the exponential symbol, we find the expres-
sion for the probability density of the amplitude of oscilla-
tions:

w~A!5CA2h21expH 2
3bg̃

v0
2K1

A2J . ~16!

From the normalization condition we obtain

C52H S v0
2K1

3bg̃
D 2h

1

G~h!
for h>0

0 for h<0.

Hence,

w~A!52H S v0
2K1

3bg̃
D 2h

1

G~h!
A2h21expH 2

3bg̃

v0
2K1

A2J for h>0

d~A! for h<0.

~17!

We note that with the increase of the noise intensity the
parameterh changes the sign and one has the transition from
d function to the normalizable probability distribution. The
fact that forh<0 the probability density of the amplitude
turns out to be ad function is associated with neglect of
additive noise.~Consideration of the effect of additive noise
is conducted by Dimentberg@11#.!

Using ~17! we can find^A& and ^A2&. They are

^A&5HAv0
2K1

3bg̃

G~h11/2!

G~h11!
h for h>0

0 for h<0,
~18!

^A2&5H v0
2K1

3bg̃
h for h>0

0 for h<0.

It is seen from this that forh.0 the parametric excitation of
the pendulum’s oscillations occur under the effect of noise.
This manifests itself in the fact that the mean values of the
amplitude and the amplitude squared become different from
zero. If an observer detects such oscillations and does not
know the causes for their occurrence then he can draw the
conclusion that he views chaotic self-oscillations. The ques-
tion naturally arises whether or not one can distinguish be-
tween the process observed and chaotic self-oscillations.
This problem will be discussed below.

III. RESULTS OF NUMERICAL SIMULATION
OF THE OSCILLATIONS OF A PENDULUM

WITH A RANDOMLY VIBRATING SUSPENSION AXIS

Because the theoretical results obtained are approximate
and give no way of determining the pendulum’s oscillation
shape, we have studied numerically solutions of the equation

ẅ10.2~11aẇ2!ẇ1@11j~ t !#sinw50, ~19!

wherej(t) is sufficiently wideband noise whose power spec-
trum is presented in Fig 1. The term describing nonlinear
friction is included in Eq.~19! to avoid the pendulum’s ro-
tations as the noise intensity is essentially in excess of its

critical value. The study has shown that, as the noise inten-
sity increases, the mean values of the instantaneous ampli-
tude and the instantaneous amplitude squared of the pendu-
lum’s oscillations increase from zero atk(2) equal to
kcr(2)50.8 onwards.@The instantaneous amplitude can be
calculated by using the Hilbert transform~see, for example,
@13,14#!.# The corresponding dependencies are shown in Fig.
2. We see that at initial parts these dependencies agree
closely with the theoretical dependencies determined by the
formulas~18! that are calculated by us in the assumption that
the noise intensity is near its critical value.

If the noise intensity differs little from its critical value
then the oscillations excited~see Fig. 3! closely resemble
chaotic self-oscillations coming into existence as a result of
the stability’s loss of an equilibrium position through merg-
ing with an unstable limit cycle and, therefore, possessing
the property of intermittency@8#. We emphasize that turbu-
lence for transient Reynolds numbers also exhibits this prop-
erty @15–17#. It is no chance that the first theoretical works
concerning the intermittency phenomenon were made by the
specialists in the field of turbulence@18#.

As the noise intensity increases the duration of the regions
where the pendulum oscillates in the immediate vicinity of
the equilibrium position is progressively reduced, and even-
tually the regions die out. This is illustrated in Fig. 4.

Inasmuch as the pendulum’s oscillations under consider-
ation are caused by nothing but the noise, their dimension

FIG. 1. The power spectrum of the noisej(t).
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would be expected to be sufficiently large. However, the cal-
culations of correlation dimension, performed by us both in
ordinary Takens’ space and with using the Karhunen-Loeve
and well-adapted bases@19#, have shown that the dimension
is not large. The saturation of the correlation dimension with
increasing embedding space dimension points to this.~It
should be noted that the corresponding correlation integrals
have no clearly defined linear part, making the exact evalu-
ation of the dimension difficult.!

An example of the dependence of the correlation dimen-
sion on the embedding space dimension is shown in Fig. 5.
As the noise intensity increases the dimension increases only
slightly, but it remains finite. The dependence of the corre-
lation dimension n on the relative spectrum density
k(2)/kcr(2) is depicted in Fig. 6. So, the dimension gives
no way of distinguishing between noise-induced oscillations
and chaotic oscillations of dynamical origin. An example of
such oscillations will be considered below. It should be par-
ticularly emphasized that the result obtained is in contradic-
tion with popular opinion that the dimension is precisely the
characteristic which allows the chaotic oscillations in dy-
namical systems and random oscillations caused by noise to
be distinguishable. True, in the past few years there have
appeared several papers@20,21# in which it is shown that a
time series with a 1/f a power spectrum can exhibit a finite
correlation dimension~at least, for 1<a<3). However, as
we shall see subsequently, the power spectrum of the noise-
induced oscillations observed by us is not always 1/f a; nev-
ertheless, the dimension is finite.

In view of the fact that the dimension corresponding to
noise-induced pendulum oscillations is finite we can assert

FIG. 3. The dependenciesw(t) and ẇ(t) for
a50, ~a! k(2)/kcr(2)51.01 and ~b!
k(2)/kcr(2)51.06; ~c! the projections of the
corresponding phase portraits on the plane
w(t),ẇ(t).

FIG. 2. The dependencies of^A& ~a! and ^A2& ~b! on the noise
spectral constituentk(2). Thecorresponding theoretical dependen-
cies calculated by the formulas~18! are shown by dashed lines.
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that an attractor is induced in a certain phase space associ-
ated with the pendulum motion, e.g., in Takens’ space.

For comparison, let us consider chaotic pendulum oscilla-
tions caused by sufficiently large periodic vibration of its
suspension axis. Taking into account nonlinear friction we
write the equations of these oscillations as

ẅ12b~11aẇ2!ẇ1~11Bcos2t !sinw50, ~20!

whereB is the relative amplitude of the suspension axis ac-
celeration. The behavior of the solution of Eq.~20! under
changes of the parameterB for a50 was studied in detail in
@22# by means of computer simulation. We have repeated the

calculations performed by McLaughlin for a number of val-
ues ofB for which the pendulum oscillations are chaotic. An
example of such oscillations is represented in Fig. 7~a!. It is
seen from this figure that the pendulum rotates irregularly in
one or another direction. This causes a considerable slow
drift of the anglew. The nonlinear friction, if it is of a suf-
ficient value, results in cessation of rotation and oscillations
of the pendulum about its equilibrium position@see Fig.
7~b!#. The correlation dimension of the attractor associated
with these chaotic pendulum oscillations is equal to
2.5160.05 for B53, a50 and 2.0960.03 for B53.5,

FIG. 4. The dependenciesw(t), ẇ(t) for
a5100, ~a! k(2)/kcr(2)51.25 and ~b!
k(2)/kcr(2)514; the projections of the corre-
sponding phase portraits on the planew(t),ẇ(t)
~c!.

FIG. 5. The dependence of the correlation dimensionn on the
embedding space dimensionn for k(2)/kcr(2)514, a5100.

FIG. 6. The dependence of the correlation dimensionn on the
relative spectrum densityk(2)/kcr(2). We seethat the points cal-
culated are located in the vicinity of a straight line which is drawn
in the figure by minimizing the mean square error~solid line!.
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a52. We see that the presence of nonlinear friction results
in significant decrease of the dimension.

Of considerable interest are the power spectra of the os-
cillations excited. In the case where the pendulum is excited
by a harmonic vibration of the suspension axis and nonlinear
friction is negligible, its power spectrum contains low-
frequency part caused by the slow drift ofw; the power
spectrum density decreases with increasing frequency but not
monotonically @see Fig. 8~a!#. With nonlinear friction the
low-frequency part of the power spectrum substantially de-
creases and distinct peaks at the frequencies multiple to natu-
ral come into existence@Fig. 8~b!#.

In the case where the pendulum is excited by noise and
nonlinear friction is negligible, its power spectrum has a

peak close to the natural frequency if the noise intensity dif-
fers little from its critical value@Fig. 9~a!#. As the noise
intensity increases this peak decreases and disappears even-
tually; the spectrum becomes monotonically descending
@Fig. 9~b!# and reminiscent of the flicker noise spectrum. For
large noise intensities the spectrum can be approximated by
an exponential dependence of the form 1/f n, wheren512 for
k(2)/kcr(2)522 @Fig. 9~c!#. With nonlinear friction the
qualitative behavior of the power spectrum is the same@see
Figs. 9~d!–9~f!#. It differs only in the form of the approxi-
mation for sufficiently large noise intensities@Fig. 9~g!#. The
correlation functions for the parameters corresponding to
Figs. 9~d! and 9~f! are shown in Fig. 10. We see that the
correlation time is not too large, and therefore, the contention
that the dimension of 1/f a noise is finite owing to a large
correlation time@20,21# is not appropriate for our case.

IV. RYTOV-DIMENTBERG CRITERION

Let us revert to the question of whether or not one can
distinguish between noise-induced oscillations and chaotic
oscillations of dynamical origin. A similar question was first
formulated by Rytov@13# and later by Dimentberg@11#, as
applied to the problem of distinguishing between noise
passed through a linear narrow-band filter and periodic but
noisy self-oscillations. It was shown that in the case of noisy
self-oscillations the probability density for instantaneous am-
plitude squared has to peak at a certain finite value of the
amplitude, whereas for noise passed through a filter it has to
be monotonically decreasing. In the case of chaotic oscilla-

FIG. 7. The solution of Eq.~20! and the projections of phase
portraits on the planew,ẇ for B53, a50 ~a!, B53.5,a52 ~b!.

FIG. 8. The power spectra for the solutions of Eq.~20! for
B53, a50 ~a! andB53.5,a52 ~b!.
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tions of dynamical origin the probability density for instan-
taneous amplitude squared would be also expected to peak at
one or several values of the amplitude. We have verified this
statement by an example of chaotic pendulum oscillations
caused by periodic vibration of the suspension axis. The cor-
responding histogram for the probability density of instanta-
neous amplitude is shown in Fig. 11. We see that the prob-
ability density is not monotonically decreasing with
increasing amplitude but has several peaks only slightly de-
fined.

It follows from the results presented in the first section
that in the case of the parametric excitation of the pendu-
lum’s oscillations under the effect of random vibration of the
suspension axis, the probability density for the value
x5g̃A2 is w̃(x)5w(Ax/g̃)/2Ag̃x, wherew(Ax/g̃) is deter-
mined by the expression~17!. The dependencew̃(x) for
h50.2 is shown in Fig. 12~a!. We see that the probability

density for amplitude squared, calculated analytically, is
monotonically decreasing with increasing amplitude. The
similar results are also obtained from data of numerical
simulation. The histograms of the probability density for
A2 calculated from the numerical solution of Eq.~19! for
k(2)/kcr(2)51.25 andk(2)/kcr(2)514 are represented in
Figs. 12~b! and 12~c!. Dimentberg suggested also another
version of this criterion. In place of instantaneous amplitude,
the probability density for the processx(t) in itself is ana-
lyzed. It is shown that if the probability density forx.0 is
not monotonically decreasing then the processx(t) is self-
oscillatory. But if the probability density forx.0 is mono-
tonically decreasing then the processx(t) can be both self-
oscillatory and noise passed through a filter. Although the
author passes over in silence this fact it is evident that for
using this criterion the probability density forx should be an
even function.

FIG. 9. The power spectra for
the solutions of Eq. ~19! for
a50, ~a! k(2)/kcr(2)51.06 and
~b! k(2)/kcr(2)522; a5100,
~d! k(2)/kcr(2)51.25, ~e!
k(2)/kcr(2)54.6 and ~f!
k(2)/kcr(2)514. The approxi-
mations of the power spectrum
logarithm by 90212lnf for
a50, k(2)/kcr(2)522 ~c! and
by the intercepts of two straight
lines (1082170f for f<0.06 and
101260f for f>0.06) for
a5100,k(2)/kcr(2)514 ~g!.
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We have verified the second version of the Dimentberg
criterion for both noise-induced pendulum’s oscillations and
chaotic oscillations caused by harmonic action. We have de-
tected that this version is also usable. Thus, in spite of the
essentially nonlinear transformation of noise, in the case un-
der consideration the Rytov-Dimentberg criterion is true. It is
undeniable that the question of the verity of this criterion in
the general case is still an open question.

V. EXCITATION OF OSCILLATIONS OF A PENDULUM
WITH RANDOMLY VIBRATING SUSPENSION

AXIS AS A NOISE-INDUCED PHASE TRANSITION.
THE KLIMONTOVICH CRITERION

The excitation of pendulum oscillations at the sacrifice of
noise parametric action can be treated as the occurrence at
h50 of a nonequilibrium phase transition of the second
kind. One of the valueŝA& and ^A2& can be taken as a
parameter of order characterizing this transition. It follows

from ~18! and Fig. 2 that in deciding on such a parameter of
order, the critical index is equal to unity.

In order to make certain that the motion in the system
becomes more ordered after the transition considered we use
a criterion suggested by Klimontovich@23–25#. This crite-
rion consists of the following. Two states are chosen for the
system under study which correspond to two different values
of a certain controlling parametera. One of these states cor-
responding toa5a0 is arbitrarily taken by us as the state of
physical chaos. Let the probability density for the set of vari-
ables X describing the system’s state be symbolized by
w(X,a). We representw(X,a0)[w0(X) as Gibbs’ canonical
distribution

w0~X!5expH F0~D0!2H~X,a0!

D0
J , ~21!

whereF0 is the free energy,H(X,a0) is the Hamilton func-
tion,D0 is the temperature in appropriate units. Let us denote

F0~D0!2H~X,a0!

D0
52Hef

and takeHef as the effective Hamilton function which is
independent of the parametera. It is evident that the mean
value of the effective Hamilton function, which is equal to
the effective energy, depends generally ona. Klimontovich
proposes to renormalize the initial probability distribution so
that the effective energy in the initial~for a5a0) and the
final ~for a5a01Da) states are coincident. For this purpose
the renormalized probability densityw̃0(X,a,Da) is entered
which satisfies the condition

E Hefw̃0~X,a,Da!dX5E Hefw~X,a01Da!dX.

~22!

FIG. 10. The correlation functions for the solutions of Eq.~19!
for a5100, ~a! k(2)/kcr(2)51.25 and~b! k(2)/kcr(2)514.

FIG. 11. The histogram for the probability density of instanta-
neous amplitude squared forB53.5,a52.

FIG. 12. The theoretical dependencew̃(x)5(2g̃h/C)w(x) for
h50.2 ~a! and the histograms of the probability density forA2

calculated from the numerical solution of Eq.~19! for
k(2)/kcr(2)51.25 ~b! andk(2)/kcr(2)514 ~c!.

3542 54POLINA S. LANDA AND ALEXEY A. ZAIKIN



In Eq. ~22! the probability densityw̃0(X,a,Da), as well as
w0(X), can be represented in terms of Gibbs’ canonical dis-
tribution

w̃0~X,a,Da!5expH F~D !2Hef

D J , ~23!

whereF(D) is the effective free energy andD is the effec-
tive temperature depending onDa. The unknown function
F(D) is determined from the normalization condition

E w̃0~X,a,Da!dX51, ~24!

whereas the dependence ofD onDa is found from Eq.~22!.
Comparing ~21! with ~23! we see thatD(0)51 and
F(1)50.

According to Klimontovich’s criterion, if the value of
D(Da) found is more than unity then the state of the system
corresponding toa5a01Da is more ordered than the state
corresponding toa5a0; i.e., in this case the initial state is
properly taken by us as the state of physical chaos.@The
aforesaid is valid if in passing froma to a2Da the value of
D is found to be less than unity; otherwise the procedure
is more complicated~see @23–25#!. We shall assume
that this simplest situation takes place.# Klimontovich
proposes to use the difference in the entropies
S̃052*w̃0(X,a,Da)lnw̃0(X,a,Da)dX and S52*w(X,a0
1Da)lnw(X,a01Da)dX as a quantitative estimate of the ex-
tent to which the state of the system becomes more ordered
as a changes froma0 to a01Da. It follows from the nor-
malization condition and Eq.~22! that

DS5S̃02S5E wln
w

w̃0
dX. ~25!

We note that the value ofDS, which is determined by the
expression~25!, cannot be negative, even though we would
choose the state of physical chaos improperly, i.e., the value
of D would be found to be less than unity. The reason is that
lnx>121/x; the latter follows from the integral representa-
tion of logarithm.

Let us revert to our problem and take the state corre-
sponding toh5h0 as the state of physical chaos, and we
take the state corresponding toh.h0 as the state for which
we want to determine the extent to which it is ordered. Set-
ting h0!1 and performing the calculations indicated above,
we find thatD5112(h2h0)(112h13h21•••); i.e., the
state of physical chaos was taken by us properly. The calcu-
lation of the difference in the entropiesdS is too cumber-
some, but it can be shown thatdS;h2(h2h0). We empha-
size that the expressions found are true forh050 as well.
So, we have obtained that in the transition considered above
the state of the system becomes more ordered from the Kli-
montovich criterion standpoint.

VI. STABILIZATION OF THE UPPER EQUILIBRIUM
POSITION OF A PENDULUM WITH A RANDOMLY

VIBRATING SUSPENSION AXIS

It is well known that the upper equilibrium position of a
pendulum with a harmonically vibrating suspension axis can
become stable if the frequency of the vibration is sufficiently
high ~see, for example,@26–28#!. This phenomenon was ob-
served experimentally by Kapitsa@29,30#. Below it is shown
that the similar phenomenon can also be observed in the case
of random, but sufficiently high-frequency, vibration of pen-
dulum’s suspension axis. To do this we consider the equation

ẅ12bẇ1@11j~ t !#sinw50. ~26!

If the power spectrum of the random processj(t) peaks at
a sufficiently high frequency, then the deviations of the vari-
ablew caused by the random vibration of the suspension axis
are small. Settingw5^w&1dw, wheredw!^w& in ~26!, we
obtain

^ẅ&12b^ẇ&1sin̂ w&1coŝ w&^j~ t !dw&50, ~27!

dẅ12bdẇ1coŝ w&dw1j~ t !sin̂ w&50. ~28!

Let us find an approximate solution of Eqs.~27! and~28!
in the vicinity of the pendulum’s upper equilibrium position
when coŝw& is close to21. A steady solution of Eq.~28! for
b!1 and coŝw&'21 is

dw~ t !52
1

2E2`

t

~et2t82e2~ t2t8!!j~ t8!sin̂ w~ t8!&dt8.

~29!

We find herefrom that

^j~ t !dw&52
1

2E2`

t

~et2t82e2~ t2t8!!

3^j~ t8!j~ t !&sin̂ w~ t8!&dt8. ~30!

Substitutingt82t5t in this expression and taking into ac-
count that the valuêw& does not considerably change during
a correlation time of the random processj(t), we rewrite
~30! in the following form:

^j~ t !dw&5
1

2
sin̂ w~ t !&E

0

`

~e2t2et!^j~ t !j~ t1t!&dt8.

~31!

To calculate the integral in this expression we set the
correlation function ofj(t) as

^j~ t !j~ t1t!&5s2e2atcosvt,

wheres25ak(v)/2 is the variance of the random process
j(t), k(v) is the power spectrum density of this process at
the central frequency, anda is the half-width of the power
spectrum ofj(t). When 1!a!v we find from ~31! that

^j~ t !dw&5
s2

v2sin̂ w~ t !&. ~32!
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Substituting~32! into ~27! we obtain for^w(t)& the fol-
lowing equation:

^ẅ&12b^ẇ&1sin̂ w&1
s2

2v2sin2̂ w&50. ~33!

It follows herefrom that the deviation of the pendulum
from its upper equilibrium position is damped out on the
average; i.e., the equilibrium position is stable if

s2>v2. ~34!

The transition to the regime when the pendulum’s upper
equilibrium position becomes stable because of both periodic
and chaotic high-frequency vibration of the suspension axis
can be considered as birth in the corresponding phase space
of a certain attractor induced by this high-frequency vibra-
tion. In a sense we can forget this vibration and consider a
new dynamical system having two stable equilibrium posi-
tions. This is precisely the approach which is developed by
Blekhman in his book@28#. The technique for the derivation
of the equations describing this new system is also given in
this book. On the other hand, the stabilization of the pendu-
lum’s upper equilibrium position owing to random high-
frequency vibration of the suspension axis, such as the exci-
tation of the pendulum’s oscillations considered above, can
be treated as a certain noise-induced phase transition of the
second kind, for which the parameters2 plays the role of
‘‘temperature’’ and the mean frequency of the oscillations

relative to the upper equilibrium position plays the role of
the parameter of order. It is seen from Eq.~33! that the
corresponding critical index is equal to 1/2.

VII. CONCLUSIONS

We have shown that nonequilibrium phase transitions of
the second kind resulting in the appearance of an induced
attractor having a certain finite dimension are possible under
the influence of multiplicative noise even in such simple sys-
tems as a pendulum. Using the Rytov-Dimentberg criterion
allows us to distinguish low-dimensional deterministic chaos
from noise-induced oscillations, which turns out to be impos-
sible based on correlation dimensions of the corresponding
attractor. The employment of the Klimontovich criterion
makes it possible to prove that, as a result of such a phase
transition, the system’s state becomes more ordered. There is
no question that the study of noise-induced phase transitions
in more complicated systems is of great physical interest.
Particularly such, the study can be expected to be very useful
for the elucidation of the origin of turbulence. We plan to
discuss this problem in subsequent papers.
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