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Noise-induced phase transitions in a pendulum with a randomly vibrating suspension axis
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The theory of noise-induced phase transitions in a pendulum with a randomly vibrating suspension axis is
outlined. It is shown that such transitions are associated with ordering of the system state. The results of
numerical simulation of the transitions under consideration are given. The problem of distinguishing noise-
induced oscillations and chaotic oscillations of dynamical origin is discu$S4@63-651X96)09410-X]

PACS numbd(ps): 05.45+b

I. INTRODUCTION tonovich and Romanovsky as early as 1998.0] and later

by Dimentberg in 198(011]. To obtain the limitation of os-

Noise-induced phase transitions, which are akin to thos%illation amplitude the authors of these works took into ac-
considered below, were studied by Van den Broeck and co:

workers in[1,2] for the systems described by finite differ- count nonlinear friction. In fact, the inclusion of nonlinear

ence approximations of the partial differential equations of Jnctlon is not necessary since the limitation of amplitude can

certain type. In[3] two-dimensional structures induced by occur owing to nonlinearity of the restoring force. However,

. . ; the inclusion of nonlinear friction makes it possible to obvi-
noise are obtained numerically. These structures can be con:

) . . . . ate random rotations of the pendulum through an angle di-
sidered peculiar turbulence. This fact favors, even if |nd|—visible by 2. These rotations make the analvsis of the ob-
rectly, the view of one of the authofd] that turbulence in y em. y

nonclosed flows is not self-oscillations but is induced b tained results more difficult.
noise Y The motion equation for a pendulum with a randomly

The transitions in question are of a radically different kindVibrating §uspension axis with regard to nonlinear friction
. . can be written as

from those which were studied by a number of other re-
searchergsee, for exampld5,6]). In their works the appear- . oy 5 .
ance of additional peaks in the probability density under the ¢+2B(1+ ag®) ¢+ wol 1+ £(1)]sing=0, @
influence of multiplicative noise, mainly in the systems with
multistability, is spoken of as the noise-induced phase tranwhereg is the pendulum angular deviation from the equilib-
sitions. In the case under consideration additional peaks irium position,wy=+mbgJ is the natural frequency of small
the probability density do not appear. free pendulum’s oscillations] and m are the moment of

We note that we use the term “nonequilibrium phaseinertia and the mass of the penduluimjs the distance be-
transition” in the same sense as it was used by Hgkén tween the center of mass and the suspension gxis,the
Haken called attention to the parallels between phase transicceleration of gravity=H/2J is the damping factord ¢
tions occurring in systems close to thermodynamic equilibis the moment of the friction force in the linear approxima-
rium state and order-disorder transitions in nonequilibriumtion, « is the coefficient of nonlinear friction, ang(t) is the
systems. In the same sense this term was used in[&ef.  acceleration of the suspension axis that is a comparatively

As an example of the system in which the noise-inducedvideband random process with nonzero power spectrum
phase transitions are possible we take a pendulum with density at the frequencyd?,. We assume that the intensity
randomly vibrating suspension axis because it is, on the onef the suspension axis’ vibrations is moderately small, so
hand, a very simple system making possible approximat¢hat the pendulum’s oscillations can be considered small to
theoretical study, and on the other hand, it is a real physicadn extent that sip can be presented as
object.

. 1
Il. THEORETICAL STUDY OF THE PENDULUM 5'”@”( 1- 6<P2> p. (2
OSCILLATIONS CAUSED BY RANDOM VIBRATION

OF ITS SUSPENSION AXIS . . . .
For generality below we consider the nonlinearity of the

The problem of excitations of an oscillator under a paraform (1— y¢?) ¢, which coincides with(2) for y=1/6.
metric random action was first analytically studied by Stra- An approximate analytical solution of the problem can be
obtained on the assumptions tha@/wo~e, ye3~e,
£(t)~ /e, wheree is a certain small parameter which should
“Permanent address: Department of Physics, Moscow State Unbe put equal to unity in the final results. With these assump-
versity, 119899 Moscow, Russia. tions Eq.(1) in view of (2) is conveniently written as
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o+ wio=€[—2B(1+ ag?) o+ wiye®] £,(t), much likeZ,(t), can be considered as white noise with
) zero mean value and the intensity
—Jec(t)(1-eve?)e. 3 ) .
Equation(3) can be solved by the Krylov-Bogolubov method KzZz( k(0)+ EK(Zwo)) : 12

with a precision to the second approximation with respect to
the small parameter ; to do this we set The value oM depends on the characteristics of the random

®=Acos)+ eu; + €Uyt -+, where = wgt+ ¢, processé(t): if £(t) is white noise therM =0, but if £(t)
) has a finite correlation time, for example, as its power spec-
A=ef+ e+, trum density is
. (4) 2
¢=EF1+62F2+"‘, K(w)— o K(Zwo)

 (w0—2wg)+a?’
Uq,Up, -, fq,f5, - F1,F5, -+, are unknown functions. By

using the Krylov-Bogolubov technique for stochastic equa-then
tions (see[10,17)) we find the expressions for the unknown

functionsf,, f,, andF, (the functionF, gives only small __ awir(2wo)
additions to the functiofr; and so is of no interestRetain- 4(16w(2)+ a®)’
ing only the nonlinear term in the functidp and substitut- _ _
ing the expressions found into Eqd) we obtain In view of (7)—(12) we rewrite Eqs(5) and(6) as
- 3 2 2 Wog—— . wg 3 ~ 2 o
A=|=B| 1+ Z(awg+ y)A?| + —£sin2y | A, (5) A=| 7 KimB= 7 BYA" | A+ 5 ALY,
(13
. 3 - . 3 )
§=— 5 woyA2+ wecoSy, (6) = woM = g woYA™H wola(1),
where the bars over the expressions signify time averagingvhere7= v+ awg-
As indicated in[10], in Eq. (5) we have The Fokker-Planck equation associated with Eg8) is
2
Esin2y=(£sin2y) + (1), (7 wAP) _ dlfwKy 3,
ot~ Al | Tz 17 BYAT|AW(A,9)

where the angular brackets signify averaging over statistical
ensemble/;(t) is a random process that can be considered 3 IW(A, P)
as white noise with zero mean value, and the intensity ~@o §7A —-M EY

2 2 2 42
K= k(20), ® R R e e
where (14)
- where
K(2w0)=f7x<§(t)§(t+ 7))c0S2wqTdT a8
(e wc2>K1'

is the power spectrum density of the procegs) at the

frequency 2v,. In the expressiori7) the value(¢sin2y) is  As will be seen from the following, the parametgrcharac-
different from zero owing to the correlation betwegérand  terizes the extent to which the noise intensity is in excess of

¢; itis equal to its critical value.
The steady-state solution of E(lL4), satisfying the con-
Zarom - 20 _ %o dition for the probability flux to be equal to zero, is indepen-
(gsin2y) 7 K(200)= 5Ky ©®  gent of . It is conveniently written as
In a simil in Eq h C Al27 6By 12
n a similar manner, in Eq6) we have WA, )= ox f cn B?’A dA—f —ndA .
27A 0 A wOKl 0 A
écos = (écos ) + L5(1), (10) (15)
where The constanC is determined from the normalization condi-
tion

(gcos’-@:%fo (E() E(t+ 7))sin2wgrdT=M.

27 [
an fo fo W(A, $)A dA dp=1.
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Upon integrating(15) with respect tog and calculating the From the normalization condition we obtain
integral under the exponential symbol, we find the expres- 5 —
sion for the probability density of the amplitude of oscilla- woKy for =0
tions: c=2¢ \38y) TI(m
38y 0 for »=<0.
W(A)= CA2’7_1exp[ - —2'8—7A2] : (16)
woKy Hence,
|
2 -n ~
— —— A2 lexp — ——A2; for =0
W(A)=2 ( 3y T(n) p{ woKy (17
S(A) for »=<0.

We note that with the increase of the noise intensity thecritical value. The study has shown that, as the noise inten-
parameter; changes the sign and one has the transition fronsity increases, the mean values of the instantaneous ampli-
¢ function to the normalizable probability distribution. The tude and the instantaneous amplitude squared of the pendu-
fact that for =<0 the probability density of the amplitude |um’s oscillations increase from zero ai(2) equal to
turns out to be a function is associated with neglect of ke (2)=0.8 onwards[The instantaneous amplitude can be
additive noise(Consideration of the effect of additive noise calculated by using the Hilbert transforfsee, for example,

is coqducted by Dimentber[g.l].) [13,14)).] The corresponding dependencies are shown in Fig.
Using (17) we can find(A) and(A?). They are 2. We see that at initial parts these dependencies agree
5 closely with the theoretical dependencies determined by the
[woK1 T (n+1/2) for =0 formulas(18) that are calculated by us in the assumption that
(A= 357 I(n+1) n the noise intensity is near its critical value.

If the noise intensity differs little from its critical value
0 for n<0, then the oscillations excite(bee Fig. 3 closely resemble
(18 chaotic self-oscillations coming into existence as a result of
the stability’s loss of an equilibrium position through merg-
(AZ)= E ing with an uns_table !imit cycle and, theref_ore, possessing
the property of intermittency8]. We emphasize that turbu-
0 for n<0. lence for transient Reynolds numbers also exhibits this prop-
erty [15—17. It is no chance that the first theoretical works

Itis seen from this that for>0 the parametric excitation of concerning the intermittency phenomenon were made by the
the pendulum’s oscillations occur under the effect of NOIS€gpacialists in the field of turbulengas).

This manifests itself in the fact that the mean values of the * 5 the noise intensity increases the duration of the regions
amplitude and the amplitude squared become different froMyhere the pendulum oscillates in the immediate vicinity of

zero. If an observer dett_ects such oscillations and does NQte equilibrium position is progressively reduced, and even-
know the causes for their occurrence then he can draw th@'a"y the regions die out. This is illustrated in Fig. 4.

conclusion that he views chaotic self-oscillations. The ques- |nasmuch as the pendulum’s oscillations under consider-
tion naturally arises whether or not one can d'St'”g“_'Sh_beation are caused by nothing but the noise, their dimension
tween the process observed and chaotic self-oscillations.

This problem will be discussed below.

22
Ill. RESULTS OF NUMERICAL SIMULATION 2 .
OF THE OSCILLATIONS OF A PENDULUM 1.8 .
WITH A RANDOMLY VIBRATING SUSPENSION AXIS 1.6 .
14 .
Because the theoretical results obtained are approximate € 4, ]
and give no way of determining the pendulum’s oscillation ¢ 1 ]
shape, we have studied numerically solutions of the equation 0.8 i
GH0AL+ af?)p+[1+E(D)]sing=0, (19 ool ]
. . . . . 0‘2 1 1 L 1 1 Il 1 1 1
whergg(t) is suff|C|¢ntIy.W|deband noise whose_power spec- 0 0204 0608 1 12 1.4 16 1.8 2
trum is presented in Fig 1. The term describing nonlinear Frequency f (Hz)

friction is included in Eq.(19) to avoid the pendulum’s ro-
tations as the noise intensity is essentially in excess of its FIG. 1. The power spectrum of the noig&).
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FIG. 2. The dependencies ¢A) (a) and(A?) (b) on the noise
spectral constituent(2). Thecorresponding theoretical dependen-
cies calculated by the formul448) are shown by dashed lines.
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would be expected to be sufficiently large. However, the cal-
culations of correlation dimension, performed by us both in
ordinary Takens’ space and with using the Karhunen-Loeve
and well-adapted bas¢$9], have shown that the dimension

is not large. The saturation of the correlation dimension with
increasing embedding space dimension points to tfits.
should be noted that the corresponding correlation integrals
have no clearly defined linear part, making the exact evalu-
ation of the dimension difficulf.

An example of the dependence of the correlation dimen-
sion on the embedding space dimension is shown in Fig. 5.
As the noise intensity increases the dimension increases only
slightly, but it remains finite. The dependence of the corre-
lation dimension » on the relative spectrum density
k(2)/k.(2) is depicted in Fig. 6. So, the dimension gives
no way of distinguishing between noise-induced oscillations
and chaotic oscillations of dynamical origin. An example of
such oscillations will be considered below. It should be par-
ticularly emphasized that the result obtained is in contradic-
tion with popular opinion that the dimension is precisely the
characteristic which allows the chaotic oscillations in dy-
namical systems and random oscillations caused by noise to
be distinguishable. True, in the past few years there have
appeared several papd20,21] in which it is shown that a
time series with a IFf power spectrum can exhibit a finite
correlation dimensiorfat least, for k= a<3). However, as
we shall see subsequently, the power spectrum of the noise-
induced oscillations observed by us is not always*1hev-
ertheless, the dimension is finite.

In view of the fact that the dimension corresponding to
noise-induced pendulum oscillations is finite we can assert

15 . L . L s N "
0 200 400 600 8?0 1000 1200 1400 1600

FIG. 3. The dependencigs(t) and ¢(t) for
a=0, @ «(2)/ks(2)=1.01 and (b
k(2)/ke(2)=1.06; (c) the projections of the
corresponding phase portraits on the plane
e(t),e(t).
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that an attractor is induced in a certain phase space associalculations performed by McLaughlin for a number of val-
ated with the pendulum motion, e.g., in Takens’ space. ues ofB for which the pendulum oscillations are chaotic. An
For comparison, let us consider chaotic pendulum oscillaexample of such oscillations is represented in Fi@).7t is

tions caused by sufficiently large periodic vibration of its seen from this figure that the pendulum rotates irregularly in
suspension axis. Taking into account nonlinear friction weone or another direction. This causes a considerable slow
write the equations of these oscillations as drift of the anglee. The nonlinear friction, if it is of a suf-
ficient value, results in cessation of rotation and oscillations
of the pendulum about its equilibrium positidsee Fig.

. . . . . 7(b)]. Th rrelation dimension of the attractor iat
whereB is the relative amplitude of the suspension axis ac- ()] e correlation dimension of the attractor associated

: . . with these chaotic pendulum oscillations is equal to
celeration. The behavior of the solution of EQO) under 5 ;. 405 for B=3, =0 and 2.08-0.03 for B=3.5,
changes of the paramet8rfor «=0 was studied in detail in
[22] by means of computer simulation. We have repeated the

¢+2B(1+ a@?) @+ (1+Bcos2)sing=0, (20

4.5 T T T T T T T T

35 ° h

25 1

N

1.5 .

10 15 25
1 S S S S k(2)/kef2)

FIG. 6. The dependence of the correlation dimensioon the
relative spectrum density(2)/«.,(2). We seehat the points cal-
FIG. 5. The dependence of the correlation dimensioon the  culated are located in the vicinity of a straight line which is drawn
embedding space dimensionfor «(2)/«(2)=14, a=100. in the figure by minimizing the mean square er¢solid line).
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.o o DN AL e A i _‘,U,W ‘\“ ‘i‘ il peak close to the natural frequency if the noise intensity dif-
y i et i (U i H}H fers little from its critical value[Fig. Ya]. As the noise
I i intensity increases this peak decreases and disappears even-
'20 100 200 300 400 500 600 700 800 900 1000 tuglly; the spectrum becomes r_nonoton.|cally descending
t [Fig. 9b)] and reminiscent of the flicker noise spectrum. For
large noise intensities the spectrum can be approximated by
an exponential dependence of the forfi’Livheren= 12 for
. k(2)/ke(2)=22 [Fig. Ac)]. With nonlinear friction the
qualitative behavior of the power spectrum is the sqsee
Y | Figs. 9d)—9(f)]. It differs only in the form of the approxi-
s 2 15 7 05 0 05 1 15 5 25 mation for sufficiently large noise intensitifiSig. 9(g)]. The
(0) ¢ correlation functions for the parameters corresponding to

Figs. 9d) and 4f) are shown in Fig. 10. We see that the
correlation time is not too large, and therefore, the contention
that the dimension of 1 noise is finite owing to a large

) o correlation timef20,21] is not appropriate for our case.
a=2. We see that the presence of nonlinear friction results

in significant decrease of the dimension.

Of considerable interest are the power spectra of the os-
cillations excited. In the case where the pendulum is excited Let us revert to the question of whether or not one can
by a harmonic vibration of the suspension axis and nonlineadistinguish between noise-induced oscillations and chaotic
friction is negligible, its power spectrum contains low- oscillations of dynamical origin. A similar question was first
frequency part caused by the slow drift f the power formulated by Ryto{13] and later by Dimentberfl1], as
spectrum density decreases with increasing frequency but napplied to the problem of distinguishing between noise
monotonically [see Fig. 8)]. With nonlinear friction the passed through a linear narrow-band filter and periodic but
low-frequency part of the power spectrum substantially denoisy self-oscillations. It was shown that in the case of noisy
creases and distinct peaks at the frequencies multiple to natself-oscillations the probability density for instantaneous am-
ral come into existencgig. 8b)]. plitude squared has to peak at a certain finite value of the

In the case where the pendulum is excited by noise andmplitude, whereas for noise passed through a filter it has to
nonlinear friction is negligible, its power spectrum has abe monotonically decreasing. In the case of chaotic oscilla-

FIG. 7. The solution of Eq(20) and the projections of phase
portraits on the plane,¢ for B=3, =0 (a), B=3.5, =2 (b).

IV. RYTOV-DIMENTBERG CRITERION
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tions of dynamical origin the probability density for instan- density for amplitude squared, calculated analytically, is
taneous amplitude squared would be also expected to peakmonotonically decreasing with increasing amplitude. The
one or several values of the amplitude. We have verified thisimilar results are also obtained from data of numerical
statement by an example of chaotic pendulum oscillationsimulation. The histograms of the probability density for
caused by periodic vibration of the suspension axis. The corA? calculated from the numerical solution of E(L9) for
responding histogram for the probability density of instanta-«x(2)/x.,(2)=1.25 andx(2)/«.(2)=14 are represented in
neous amplitude is shown in Fig. 11. We see that the probFigs. 12b) and 1Zc). Dimentberg suggested also another
ability density is not monotonically decreasing with version of this criterion. In place of instantaneous amplitude,
increasing amplitude but has several peaks only slightly dethe probability density for the processt) in itself is ana-
fined. lyzed. It is shown that if the probability density far>0 is

It follows from the results presented in the first sectionnot monotonically decreasing then the proceéy is self-
that in the case of the parametric excitation of the penduescillatory. But if the probability density fox>0 is mono-
lum’s oscillations under the effect of random vibration of thetonically decreasing then the proceqs) can be both self-
suspension axis, the probability density for the valueoscillatory and noise passed through a filter. Although the
x="7A? is W(x) =w(/x/7)/2\/yx, wherew(\/x/y) is deter-  author passes over in silence this fact it is evident that for
mined by the expressionl?7). The dependenc&(x) for  using this criterion the probability density farshould be an
7=0.2 is shown in Fig. 1@). We see that the probability even function.



3542 POLINA S. LANDA AND ALEXEY A. ZAIKIN 54

18

1 : . 16 @
08} b 14
a
0.6 1 ( ) 12 |
. 04 1 < 10 1
© iz H B
= 0.2 {\/\ = 8
0 v 6 r ' 1
-0.2 1 4r b
0.4 4 2r 1
. ) ) 0 e
-0.6
o 50 100 150 200 0 02 04 08 )(().8 1 12 14
T
, . 800 —r—r—r——r— m 16 (©)
700 : 14
0.8 (b) 600 E 12
0.6 | - — 500 — 10
T oal i 3 400 1 5 =
Mo % 300 { % =
02F T 200 1 4
0 100 : 2
0.2 y : . oo}h-hrmdo 01 % 20 40 o 80 100
0 50 120 150 200 oA oA

FIG. 12. The theoretical dependenax) =(277/C)w(x) for
7=0.2 (a) and the histograms of the probability density taf
calculated from the numerical solution of Eql9 for
k(2)/ ke (2)=1.25(b) and k(2)/k¢,(2)= 14 (c).

We have verified the second version of the Dimentberg
criterion for both noise-induced pendulum’s oscillations andfrom (18) and Fig. 2 that in deciding on such a parameter of
chaotic oscillations caused by harmonic action. We have deosrder, the critical index is equal to unity.
tected that this version is also usable. Thus, in spite of the In order to make certain that the motion in the system
essentially nonlinear transformation of noise, in the case unbecomes more ordered after the transition considered we use
der consideration the Rytov-Dimentberg criterion is true. Itisa criterion suggested by Klimontovidi23—25. This crite-
undeniable that the question of the verity of this criterion inrion consists of the following. Two states are chosen for the
the general case is still an open question. system under study which correspond to two different values
of a certain controlling parametear One of these states cor-
responding ta=a, is arbitrarily taken by us as the state of

FIG. 10. The correlation functions for the solutions of EtP)
for «=100, (8) x(2)/k(2)=1.25 and(b) «(2)/x.(2)=14.

V. EXCITATION OF OSCILLATIONS OF A PENDULUM physical chaosLet the probability density for the set of vari-
WITH RANDOMLY VIBRATING SUSPENSION ables X describing the system’s state be symbolized by
AXIS AS A NOISE-INDUCED PHASE TRANSITION. w(X,a). We representv(X,aq) =wy(X) as Gibbs’ canonical
THE KLIMONTOVICH CRITERION distribution
The excitation of pendulum oscillations at the sacrifice of
noise parametric action can be treated as the occurrence at WO(X)ZGXD{ Fo(Do) —H(X,9) , (22)
7=0 of a nonequilibrium phase transition of the second Do

kind. One of the valuegA) and (A%) can be taken as a _ _ _
parameter of order characterizing this transition. It followswhereF is the free energyt (X,a) is the Hamilton func-
tion, Dy is the temperature in appropriate units. Let us denote

Fo(Dg) —H(X,ap)
D0 = ef

and takeH.; as the effective Hamilton function which is
independent of the parametar It is evident that the mean
value of the effective Hamilton function, which is equal to
the effective energy, depends generallyarKlimontovich
proposes to renormalize the initial probability distribution so
that the effective energy in the initigfor a=ag) and the
final (for a=ay+ Aa) states are coincident. For this purpose
2 the renormalized probability density,(X,a,Aa) is entered
o 1 2 3 ,4 &5 6 7 which satisfies the condition

FIG. 11. The histogram for the probability density of instanta- f HefWO(X’a’Aa)dXZJ HeW(X,a0+ Aa)dX.
neous amplitude squared fBr=3.5, a=2. (22
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In Eq. (22) the probability densityw,(X,a,Aa), as well as VI. STABILIZATION OF THE UPPER EQUILIBRIUM

wg(X), can be represented in terms of Gibbs’ canonical dis- POSITION OF A PENDULUM WITH A RANDOMLY
tribution VIBRATING SUSPENSION AXIS

It is well known that the upper equilibrium position of a
F(D)—Hes pendulum with a harmonically vibrating suspension axis can
] , (23)  become stable if the frequency of the vibration is sufficiently
D high (see, for exampld26—28). This phenomenon was ob-
served experimentally by Kapit$29,30. Below it is shown
that the similar phenomenon can also be observed in the case
of random, but sufficiently high-frequency, vibration of pen-
dulum’s suspension axis. To do this we consider the equation

v~v0(X,a,Aa)=exp{

whereF (D) is the effective free energy arldl is the effec-
tive temperature depending aka. The unknown function
F(D) is determined from the normalization condition

©+2B@+[1+ &(t)]sing=0. (26)

f Wo(X,a,Aa)dX=1, (24) If the power spectrum of the random procége) peaks at
a sufficiently high frequency, then the deviations of the vari-
able ¢ caused by the random vibration of the suspension axis

. . ingp={p)+ S, < i ,
whereas the dependencedfon Aa is found from Eq.(22). are small. Settings =(¢) + d¢, where s <(¢) in (26), we

Comparing (21) with (23) we see thatD(0)=1 and obtain

F(1)=0. N 2B 4 reo =0 ,
According to Klimontovich’s criterion, if the value of (@) +2B(¢) +sin(p)+cog @) (£(1) dp)=0,  (27)

D(Aa) found is more than unity then the state of the system 8o+ 2B8p+cog @) S+ £(t)sin @) =0. (28)

corresponding t@=ay+ Aa is more ordered than the state
corresponding t@=a,; i.e., in this case the.initial state is Let us find an approximate solution of Eq&7) and (28)
properly taken by us as the state of physical chadbe in the vicinity of the pendulum’s upper equilibrium position

aforesaid is valid if in passing from to a—Aa the value of  when coée) is close to—1. A steady solution of Eq28) for
D is found to be less than unity; otherwise the procedureg<1 and coép)~—1 is

is more complicated(see [23-25). We shall assume
that this simplest situation takes plakeKlimontovich 1t , , _

proposes to use the difference in the entropies d¢()=—73 _Oc(eH —e (T g(t)sin{o(t"))dt’.
So= —fv~v0(X,a,Aa)IanO(X,a,Aa)d>_( and S=-—Jw(X,ap (29)
+Aa)Inw(X,ap+Aa)dX as a quantitative estimate of the ex-

tent to which the state of the system becomes more ordered We find herefrom that

asa changes fromag to ag+Aa. It follows from the nor-
malization condition and Eq22) that

(E0op) =5 (@-ett)

X(&(t)E(D))si(e(t'))dt". (30)

Substitutingt’ —t= 7 in this expression and taking into ac-
count that the valuée) does not considerably change during
We note that the value akS, which is determined by the a correlation time of the random proceéd), we rewrite
expression25), cannot be negative, even though we would(30) in the following form:
choose the state of physical chaos improperly, i.e., the value L
of D would be found to be less than unity. The reason is that ot e ,
Inx=1-1/x; the latter follows from the integral representa- <§(t)5"0>_§sm<(’o(t)>fo (e77=en(E(n)é(t+)dt.
tion of logarithm. (31)
Let us revert to our problem and take the state corre-
sponding ton= 7, as the state of physical chaos, and we To calculate the integral in this expression we set the
take the state corresponding 40> 7, as the state for which correlation function of(t) as
we want to determine the extent to which it is ordered. Set-
ting mo<<1 and performing the calculations indicated above, (£ é(t+7))=0"e “"coswr,
we find thatD=1+2(p— 7o) (1+27+37%+---); i.e., the ) . .
state of physical chaos was taken by us properly. The calcivhereo=ax(w)/2 is the variance of the random process
lation of the difference in the entropiesS is too cumber- (1), x(w) is the power spectrum density of this process at
some, but it can be shown thaS~ 7%(7— 7,). We empha- the central frequency, and is the half-width of the power

~ w
AS=S,—S= f wlnv..v—OdX. (25)

size that the expressions found are true fge=0 as well. ~ SPectrum of(t). When I<a<w we find from(31) that
So, we have obtained that in the transition considered above )

the state of the system becomes more ordered from the Kili- _9

montovich criterion standpoint. (6D o9) wZS'n<¢(t)>' (32
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Substituting(32) into (27) we obtain for{¢(t)) the fol-  relative to the upper equilibrium position plays the role of
lowing equation: the parameter of order. It is seen from H&3) that the

) corresponding critical index is equal to 1/2.

(6)+2B(p)+sin(@)+ 57sin%¢)=0. (33
VII. CONCLUSIONS

It follows herefrom that the deviation of the pendulum  \ye haye shown that nonequilibrium phase transitions of
from its upper equilibrium position is damped out on thehe second kind resulting in the appearance of an induced
average; i.e., the equilibrium position is stable if attractor having a certain finite dimension are possible under

2- 2 the influence of multiplicative noise even in such simple sys-
o= we. (39 ) ) N
tems as a pendulum. Using the Rytov-Dimentberg criterion

The transition to the regime when the pendulum’s uppegllows us to distinguish low-dimensional deterministic chaos
equilibrium position becomes stable because of both periodiffom noise-induced oscillations, which turns out to be impos-
and chaotic high-frequency vibration of the suspension axi§ible based on correlation dimensions of the corresponding
can be considered as birth in the corresponding phase spagiractor. The employment of the Klimontovich criterion
of a certain attractor induced by this high-frequency vibra-makes it possible to prove that, as a result of such a phase
tion. In a sense we can forget this vibration and consider &ansition, the system’s state becomes more ordered. There is
new dynamical system having two stable equilibrium posi-n0 question that the study of noise-induced phase transitions
tions. This is precisely the approach which is developed byn more complicated systems is of great physical interest.
Blekhman in his book28]. The technique for the derivation Particularly such, the study can be expected to be very useful
of the equations describing this new system is also given ifior the elucidation of the origin of turbulence. We plan to
this book. On the other hand, the stabilization of the pendudiscuss this problem in subsequent papers.
lum’s upper equilibrium position owing to random high-
frequency vibration of the su;pepsion axis., such as the exci- ACKNOWLEDGMENTS
tation of the pendulum’s oscillations considered above, can
be treated as a certain noise-induced phase transition of the The authors are indebted to Dr. M. Rosenblum, Dr. A.
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