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The influence of the vessel shape, the initial conditions, and the vertical temperature gradient on dynamics
and amount of disorder in convective patterns evolving indd-Marangoni instability have been analyzed by
using statistical tools, namely the density of defects, a disorder function, the order-digorderdiagram
introduced from the minimal spanning tree approach by Dusset, [Phys. Rev. B34, 3528(1986] and the
entropy function recently defined by Loefflempublishedl Pattern disorder is studied for transient and steady
states. Experimental results show that the disorder in the hexagonal patterneast-Béarangoni convec-
tion (i) is minimized in a hexagonal vessel afid can be described as a Gaussian noise superimposed on a
perfect array of hexagonal cells. Starting from imposed arrays, both hexagonal and nonhexagonal, with a
wavelength different from the one that is naturally selected, the final state is independent of initial conditions.
Disorder increases with the distance from the threshold. Depending on the Prandtl number, different behaviors
of the patterns are observd&1063-651X96)08210-4

PACS numbgs): 02.50-r, 05.45+b, 47.54:+r, 64.60.Cn

I. INTRODUCTION work, Occelli etal. [15] have proposed a quantitative
description of spatial disorder using a radial correlation func-
The spatiotemporal behavior of spatially extended, dissition and an orientation correlation function, theoretical tools
pative systems with significant fluctuations in both space anthat are used to describe melting in two-dimensional 2D hex-
time has been intensively studied in recent yddrds An  agonal lattices, i.e., structures at the atomic level. Although
important problem in the study of these complex systems isimilarities between 2D structures and BM patterns exist, it
that of finding suitable methods for their analysis. Statisticaimust be noted that the differences are very stringent. The
rather than deterministic methods have often been used fanain ones are that 2D layered structures are static, whereas
experimental studie2—5]. convective patterns are a purely dynamical creation and
A prototype of these complex systems is given by theformed by convective cells whose number is not conserved;
Rayleigh-B@ard problem. In this instability, a pattern of i.e., cells can be created or annihilat¢de total number of
rolls develops, as seen in experiments and in weakly nonlineells in the pattern suffers small fluctuations even in
ear analyses. Irregularities are generally present in these patsteady” states.
terns, including dislocationlike defects and orientational dis- The question of disorder in cellular patterns, which plays
order[6]. These complicated patterns may be characterizedn essential role in the apparition of turbulence and in the
by a two-dimensional horizontal wave-vector field that, fromtransition to chaogl6], is linked to the fundamental problem
the theoretical point of view, can be obtained from an am-of wavelength selectiofiL7,18. Is selection weak or sharp?
plitude equation7]. Do preferred patterns exist or not? These are central issues in
In the Benard-MarangoniBM) case, a pattern of hexa- pattern-forming instabilitieg1]. There are several ways to
gons is the most stable structure in usual situatj@sSuch  quantify disorder in patterns, which all depend on the defi-
patterns often exhibit some topological defects that areition of disorder itself. The easy and obvious way is to
mainly pentagon-heptagon pairs and aggregates of irreguladentify, classify, and count the defects, which are simply
polygons[9]. It is noteworthy that these defects are alsodefined as the cells whose number of sides differs from six. It
observed in different natural hexagonal structures; for exfollows that the density of defects, i.e., the ratio of the num-
ample, in honeycombs, crystals, liquid crystals, or interfaciaber of defects to the total number of cells, is one major
patterns during solidificatiof10]. It is widely recognized measure of disorder. Nevertheless, it is a global parameter
that simple, regular, and symmetric patterns are exceptiondhat does not take into account the pattern distortion. Indeed,
in convection experimentsl1]. in particular, in small vessels, an irregular pattern can be
To our knowledge, in the scarce theoretical analysis comebserved only due to the presence of irregular hexagons; in
pleted up to now in BM convection, the dynamics of thesethat case the density of defects is zero and yet the pattern is
irregular patterns have not been analyzed. Until now, onlynot regular. To take into account the whole pattern distortion,
experimental studies exi$l1-13 in which the formation a disorder functior4 has been introduced 1].
and evolution of defectsmutual transformation, annihila- We have proposefi19] to use an alternative and more
tion) in hexagonal patterns are described. As a completeaformative method to study the disorder in a BM pattern,
theory of defect dynamics is still lacking, it has proven use-namely the minimal spanning tree MST approach. This ap-
ful to use the analogy between these patterns and monolaproach was introduced by Dusseat al. [20] to study the
ered materials in two dimensiorig¢4]. Within this frame-  organization in a thin film of aggregated lithium deposited on
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FIG. 1. Schema of the experimental setup. 1, fluid layer; 2, air;
3, container; 4, vessel; 5, cooling container.

a dielectric substance. It was then used by Bélial.[21] to
carry out the statistical analysis of the topological defects
and disorder that occur in directional solidification of cellular
and dendritic arrays resulting from the morphological insta-
bility of the planar solid-liquid interface.

The aim of this work is to use statistical tools to analyze
the effects of external parametdrgessel shape, initial con-
ditions, vertical temperature gradient, Prandtl numi&y,
etc) on the amount and on the dynamics of disorder in BM
patterns. The experimental procedure is described in Sec. Il.
Section Il is devoted to the description of the statistical
tools; results are given and discussed in Sec. IV; and, finally, FIG. 2. Superposition of the skeletonized cellular array on the
major conclusions are gathered in Sec. V. picture of a cellular array in Beard-Marangoni convection.

Il. EXPERIMENTAL FROCEDURE The external parameter that controls the instability is the

The experimental setup consists of a thin3-mm hori- vertical temperature differenceT across the layer. Usually,
zontal layer of silicon oil, Rhodorsil 47V50 or 47V1@6or- it is more useful to take a normalized parameter, the distance
responding respectively to Pr440 and Py=880 at 25 °Q,  to the threshold:
contained in a vessel with a flat copper bottGmwhich an
electric resistance is embedded to provide a uniform tem-
peraturg¢ and lateral walls made of Plexiglass, which has R-R. M-—-M,.
about the same thermal conductivity as the silicon oil. The €= R. M, ' @
vessel, which limits laterally the part of the layer under
study, is surrounded by an outer guard ring of the same oil.

The presence of this ring guarantees a quasiadiabaticity %here R and M are, respectively, the Rayleigh and Ma-

the sidewalls. The fluid was cooled from above through an_ - o\ imbers and the subscripstands for the corre-
air layer. The air was bounded on top by a glass plate, Whic'%po?]ding threshoid value

is the bottom of a container in which water, coming from a Three series of experiments were carried out
bath with regulated temperature, circulates in order to fix the . i P . "
(i) Experiments are performed in hexagond}), circular

temperature of the glass plate and thereby the temperaturee?_n ; .
top of the fluid. The essential features of the apparatus d Vo), orin square ;) vessels, for the same physpal param-
ers(distance to the threshole=0.05, aspect ratid’'=85,

scribed above are shown in Fig. 1. The temperatures at tHe ) wmMUY, o
upper and lower surfaces are measured by means of thermgrandtl number By. First, the liquid is stirred up. Then, the
couples; the precision of the measurements is about 0.1 °@attern self-organizes progressively until the final steady
The liquid depth @) is measured by means of micrometer State is reached. The characteristics of the structures obtained
comparators with a precision of 0.01 mm. Flow visualizationin the various vessels will be compared in Sec. IV A. The
is achieved by aluminum flakes suspended in the fluid. Phoexperimental results of serigs) convinced us to perform
tographs of the convective structure are taken at regular timgvo other series of experiments in a hexagonal vessel with
intervals during a long period. Then each photograph is digii’=65 corresponding to medium confinement.
tized. Appropriate filterings and scalings provide a binary (ii) Thanks to the thermal marking technique described in
image, which is skeletonized latéffig. 2). Then, a suitable detail in[23], regular arrays of cells can now be imposed as
software is written that allows us to obtain the values of theinitial conditions. In practice, hexagonal arrays with a cell
relevant functions used in the statistical analysis. size equal to or larger than the “natural” ofiiee., the mean
The confinement is taken into account by means of a nonsize selected in the steady reginas well as triangular or
dimensional parameter, the aspect rdtie \JA/d, which is  square patterns are also initially forced. The self-organization
the ratio of a characteristic horizontal length of the fluid of the pattern from the initial almost perfect state up to the
layer JA, with A the surface area of the pattern, to the liquid final one(regular or disordered hexagonal strucjusestud-
depth d). Experiments have been performed in vessels witlied. Experiments are performed in a hexagonal vessel with
I" between 65 and 85, the first value corresponds to mediurh=65 and for Ps=880 at 25 °C.
final confinemen{22]; Under these conditions, wall effects (i) Various experiments corresponding to various values
exist but do not induce large extrinsic disorder, and mobilityof ¢ and to Py and Py are performed. Initially, there is no
of the structure is allowed as well as the existence of intrinsigmposed structure, but a complete mixing of the fluid by
disorder. stirring it up. Transient and steady regimes are studied.
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Ill. TOOLS USED FOR THE ANALYSIS
OF THE DISORDER

A. Density of defects

The density of defectd, is defined as the ratio of number
of defectsny (cells whose number of sides differs from )six
to the total number of cellsN). As already underlined, de-
fects are chiefly pentagoitBs) and heptagonéP-) in steady
states, so that the density of defects is, in that condition, well
approximated by

:n(P5)+n(P7)

d N (2

B. Disorder function

The density of defectgl1] and the orientation and trans-
lation correlation functiong15] are only useful when pat- FIG. 3. The minimal spanning tr¢&IST) superimposed on the
terns have a number of cells that are sufficient to make ste2D Benard-Maragoni array in a hexagonal vessel.
tistics reliable. In small vessels, with only a few cells, the
structure can display no defect and almost regular hexagons Graph theory is well developed and applied in a large
(Fig. 1 in Ref.[11]), whereas some distortion is still present variety of fields, so that the basic definitions can be easily
in the pattern. Therefore, in this situation, a quantitative meafound elsewher§25—27. Therefore, the following presenta-
sure of distortion is necessary to estimate the amount of pation is reduced to a minimum. Let us recall that an edge-
tern disorder. For this, the following function has been pro-weighted linear graph is composed of a set of nathes cell
posed[11]: centers for the case of cellular arraysd a set of edges, an

edge being defined by a pair of cell centers, with a weight

| I assigned to each eddghe corresponding center-to-center
n |_ ' ) distance. A MST is a connected graph without any closed
loop, which contains all the cell centers and for which the
sum of the edge weights is minimum. One starts from any
o . . . cell center and adds at each step the cell center that is closest
dination number of theth cell, l; is the distance between the to the current tredFig. 3. A MSﬂ' can be constructed for

center of theth cell, and the center of itgh neighbor, and o 4
| stands for the length between the centers of nearesf Y distribution of points on a surface. It should be empha-

neighbor cells averaged over the whole pattgan this av- Zléff:négit thte al\iil-gc?ggssL?l;)stec;\%r;?gl;rlrze}ztes first-neighbor
erage, only hexagonal cells are taken into acdouy is an There are a few specific cases in which thére exist some
average of the deviations of the distance between the ceIId e lenaths that arepe ual. so that. for a aiven distribution of
centers with respect to a completely regular pattern. In anaf IQIJ 9 h S qual, b .lorag d locall

ogy with the entropy in regular honeycomb lattidesl], a cell centers, the MST may not be unique and locally vary,

logarithmic function has been chosen. The absolute value ﬁgﬁelr\]ldel\?grt?nglgii ﬁ?llé]tir:]ha(;r:ﬁsa:teIergteecj’ttoi;i?lgtltasl|CthSII:S(i-
taken in order to have contributions that do not cancel eac ) ’ P property P

other when the length between two centers is smaller oS'.ble MST's are equivalent in the sense that the edge-length

larger than the mean value. These contributions are averag &stogram Is unique. This fact legitimates the utilization of

over the nearest neighbors and, finally, all these contripuParameters that are deduced from the statistical analysis of

tions are added over the whole pattern. Note that with thi§hat histogram to c_haracter.ize the arrangemenF of the cell
function one can also account for distortions in patterns Withcenters. The most informative parameters are linked to the

. moments of the distribution, the two major ones being the
very few convective cells. average edge lengtin* and the standard deviatios*. It
was shown by Dussest al. [20,27] that it is most conve-

C. Minimal spanning tree (MST) approach nient to normalizen* and ¢* as
and entropy function

whereN is the number of cells in the pattem, is the coor-

Some years ago, Dusseet al. [20] proposed a new m= m_* E @)
method based on principles of graph theory, the minimal \/@ A\
spanning tre€MST) approach, to analyze order and disorder
in a distribution of points. Data in the form of a set of points,
spread within a region of space, arise in many fields such as o* N-1
astronomy, crystallography, solid-state physics, biology, etc. o= ﬁ N )

It is often possible to consider the objects to be studied

(stars, elementary particles, aggregates, proteins) atc.

points and thus to treat such a data set as a distribution ofhereN is the total number of cells angh) the averaged
points on a surface. cell area.
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IV. RESULTS AND DISCUSSION

. s . A Without peripheral celts
Gradients of concentration

c O With peripheral cells A. Influence of vessel shape on the patterns
0.08
fe2

RD (Random distribution) The influence of vessel shape on the structure of BM con-

vection was pointed out by Beard himself as early as 1901.

The sidewalls act on the structure, especially for small ves-
sels, by the existence of a meniscus that locally modifies the
y 104 m depth layer and by boundary conditions on the velocity and
/ on the temperaturéor the heat flux The most striking con-

0.31

0.2

1
Cluster
structures

sequence of the wall presence is that the cell edges in contact
with the walls are perpendicular to them in the steady re-
gime. It is obvious that the smaller the vessel the larger the
ﬁ\l EE‘\ S H influence of sidewalls on the whole structure.

- - - From a general point of view, in Rayleigh-Bard con-
vection, the wave-number selection depends on boundary

FIG. 4. The(m,o) diagram. m, normalized averaged lengtt; conditions [30]. One should be reminded of papers by

normalized standard deviation of the edge-length histogram. Thgomee_lu, and CwaorkefS7’31'32 and by Da\{is[_33’34] in
three major area, 11, and I1l) and three typical perfect mosaics, which it is specified that when the aspect ratio increases, the

triangular; S, square; and H, hexagdrae shown. RD corresponds number of permitted modes also increases due to the weak-
to the computed random distribution. Computed curves joining RDENING of the strength of the finite-size effect. Also, in BM
to S and to H are also visible. Inset shows the representativlatterns, the condition of orthogonality to the sidewalls of
points of whole patterns and patterns without peripheral cells foconvective-cell sides in contact can be satisfied only in hex-
various arrays in various vesselg,, hexagonal vessel/, circular ~ agonal and equilateral triangular vessels. Indeed, in a com-
vesselV,, square vessel’=85, =0.05. patible vessel, this condition of orthogonality can be satisfied
_ ) o ) from a geometrical point of view. The pattern is composed of

By doing this, any distribution can be plotted in f!e,0)  yegular hexagons in the central part and of rows of pentagons
plane (Fig. 4), where it can be compared to any other two-on the periphery. Experiments show that these outer cells are
dimensional(2D) arrangement. Three latticésiangularT,  staple; they do not induce any disorder in the pattern. All
squareS, and hexagonaH) among the 11 possible regular gther containers, such as square, rectangular, pentagonal, cir-
mosaics(c=0) and the random distributiofRD) are shown  cylar, ring or crescent-shaped vessels, are geometrically in-
in the (m,cr) plane. Dusseret al.[2_0221 have progressively compatible with a perfect convective patteihl—13. In
randomized regular lattices by giving each point a new pothese vessels, some distortion of the pattern with the con-
sition deduced from its previous one using a Gaussian distrigomitant presence of topological defects is necessary to con-
bution of displacements of increasing standard deviationgijiate the various directions imposed by the walls. For in-

The computed trajectories joining andH to RD are also  stance, relying on the space-filling argument, Riviral.
shown in Fig. 4. The areas marked I, I, and Ill on the dia-

gram of Fig. 4 respectively correspond to cluster structures
(small m, o#0) [26], gradients of concentratioflarge o), 70 70
and 2D quasiperiodic tilingdargem, o#0) [28]. It follows ) 0
that by construction of the MST, normalizing and plotting in 50 50
the (m,o) plane, one is able to determine the underlying ar- 40 4
rangement of the 2D cellular arrays, i.e., to elucidate order 3o 30
behind disorder, and measure disorder, particularly when 20 20
representative points fall on computed lines. 10 10
The edge-length histogram contains somewhat more sta- 0 s —ER s T 0 o 030 0 30 60 %
tistical information than thém,o) couple, so that it is tempt- 0 (deg) 6 (deg)
ing to directly use it. One might think it useful to also take @ ®
into account the complementary information that can be ex-
tracted from the MST by considering the histogram of 7
angles, the angles being those made by the MST edges with 60
respect to an arbitrary directidi27]. Yet the histogram of 50
angles is not unique when there are several possible MST's, 40
so that it has to be discarded when seeking some thermody- 30
namic function enabling a sound hierarchy in the patterns. 20
Based on the edge-length histogram, an entropy function 10
S(1) has been recently introducga9:

0.1

0.0 T T
0.60 0.70 0.80 0.90 1.00 110 m

<90 -60-30 0 30 60 90
6 (deg)
(c)
S(1==2 p(yinCp(i)], ®)
FIG. 5. Histograms of angles of the minimal spanning tre@)
wherep(l;) is the proportion of edges with a length in the hexagonal(b) circular, and(c) square vesseléwithout peripheral
class(l;=A1l). cells).



3512 P. CERISIER, S. RAHAL, AND B. BILLIA 54

TABLE |. Values ofdy, F4 andS(1) for various vesseld'=85, ¢=0.05.

All cells considered Peripheral cells excluded
Vessel dy (%) Fq S(1) dg (%) Fq S(1)
Hexagon 0.15 0.052 3.23 0.033 0.052 2.97
Cylinder 0.16 0.051 3.33 0.086 0.051 3.25
Square 0.18 0.066 3.26 0.092 0.067 2.98

[35] showed theoretically that a hexagonal arrangement in are not taken into account, the three representative points fall

circular vessel must contain at least six positive disclination®n the line H-RD, so that the tot@opologicah-stretching

[36] or pentagonal cells in the midst of the array. disorder can be described as a Gaussian noise perturbing an
In Fig. 5, the histograms of angles of the MST corre-ideal hexagonal planform. When peripheral cells are taken

sponding to the various vessels are displayed. The referen@eto account, representative points are above the line H-RD,

direction is horizontal, i.e., parallel to two vessel wallsip  which means that these cells, truncated by wall constraints,

or in V. It can be seen that the characteristic directions obelong to another category. Actually, the outer cells intro-

the hexagonal pattern oriented to each other by 60° arduce shorter edge lengths that are preferred in the construc-

clearly exhibited. The angles are obviously 6°60°, and tion of the MST. The detrimental consequence is that the

—60° in V,,, in conformity with the orthogonality condition statistical analysis is then biased when the aim is to discover

for marginal cells. On the other hand, the orientation of thecharacteristics representative of planforms in an extended

pattern inV_ is random. This is a direct consequence of thesystem.

extension of the Curie principle to dynamical systems

[37]: one realization breaks circular symmetry but the av- B, Influence of initial conditions on pattern dynamics

erage over many experiments, or time averaging, should re- and order-disorder transition

store it, which was verified in other symmetry-breaking in- Experiments of seriei) and(iii) have been performed in

stabilities[38,39. In V¢, angles at=90° are visible. This is h | b ipsh d that this sh
due to the fact that iV short distances between cell centers, @ €xagonal vessel because seneshowed that this shape
duced a minimum extrinsic disorder. The aspect ratio

hich i in th i f the MST h ;
which are retained in the construction of the MST, are rathe =65 has been chosen to induce moderate wall effects on

icul he ref irection for th h : S
perpendicular to the reference direction for the case show he pattern22]. Indeed, if the aspect ratio is small, the pat-

although the two directions imposed by the square wall
have the same probability. Indeed, we performed other ex~ has no structural defects, even for modesat®n the

periments and we remarked that short edges can be para"%?ntrary, if it |sllarge, th? layer can pe considered as infi-
or perpendicular to the reference direction nitely extended in the horizontal directions and the vessel has

Experimental results fod, Fy, andS(1) in steady states no Iarge.r inﬂuence. The vallde=65 provides stabilized wall
for series(i) are listed in Table I; the total number of cells is effects limited to a few cell rowtl to 3 near the walls and

about 570 when cells in contact with the vessel walls area”oWS the structure to evolve freely in its central part.
taken into account and about 490 when they are excluded
(vessels have the same aspect ratio but the total numbers of
cells are not strictly equallt can be seen that the variation

of the density of defectsly, minimum for the hexagonal
vessel ¥/,), and maximum for the square vess¥/) is in
conformity with the topological considerations in the preced-
ing paragraph. In natural convective patterns, some defects
that have a dynamic origin, are always present in large hex-
agonal vessels, although they are, in principle, compatible.
Even if the density, is greater inV, than inV,,, the strains
induced by cylindrical symmetry seem to be uniformly dis-

Y2
AT,
JAVAV/AY

JOVAY
JAVAV/
S

W/

s

E
3

"

tributed over the pattern as the distortion in the lattice, mea- JE8E5S8Sao0RE
sured byF,, is small. Indeed, taking these two effects to- SEEBOECA0BGCE
gether(more defects but fewer strains from walls; there are SHEoEeoanEa

QR =
Al

no angley could explain whyF, is about the same fov
and forVy,. For Vg, F is significantly higher, in agreement
with higher incompatible symmetry. The entropy function
S(1) inverts the above classification betweépandV. In-
deed, Table | again shows thédy is the most adapted vessel ©
but the shortest edge lengths are found to be more disordered
in V. than inVg, the effect being clearer when outer cells are  FIG. 6. Initial and final patterns of seriesP=65, e=4.5. (a)
excluded. Initial pattern of case 2.1(b) initial pattern of case 2.3(c) initial
Figure 4 shows that in thém,o) plane disorder increases pattern of case 2.4; an@l) final pattern of case 2.4, statistically
according to the sequendg, ,V.,V,. When peripheral cells equivalent to final patterns of cases 2.2 and 2.3.
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It is interesting to investigate the influence of initial con-  Case 2.2: regular hexagonal pattern with wavelength
ditions on the characteristics of the final cellular arrays in\;>N\¢,
order to go deeper into an understanding of the mechanisms Case 2.3: triangular pattern,
of wavelength selection that may arise from the dynamics of Case 2.4: square pattern.
the pattern itself. This point is emphasized by Cross and ) i
Hohenberg in their review of pattern formation outside of FOr €xperiments 2.3 and 2.4, imposed cells have areas very
equilibrium [1]. In particular, they discuss the meaning of l0se to that of hexagonal cells imposed in case 2.1.
selection, which leads them to introduce the notion of “pre-  Figure 6 shows structures very close to the prepared pat-
ferred” state for systems for which there is no evidence of afé'ns imposed as initial conditions and a final one. It can be
ordering principle. Namely, one state is “preferred” if it has noticed that hexagonal arrglyig. 6@)] is regular because the
a larger basin of attraction fdypical initial conditions, or if ~Noneycomb is the natural structure and the imposed wave-
it evolves from an initial condition where different states l€ngth is very close to the naturally selected mean value. The
coexist side by side. These authors conclude that such coffiangular[Fig. 6b)] and the squargFig. 6(c)] patterns al-
siderations naturally direct the attention to the specific way€@dy show some defectwith a different meaning than be-
in which the control parameters reach their final values andOre i-e., cells with a number of sides different respectively
to the dynamics leading to the final steady state. In that godf®™M 3 and 4 because the imposed structures are not at all

we performed serieéii) experiments with various imposed natural and the employed thermal technique displays some
initial structures(I=65 ands=4.5). small imperfections due to misalignment of some cold

needleg23]. We remark that many peripheral cells rapidly
Case 2.1: regular hexagonal pattern with wavelength become perpendicular to walls for triangular and square im-

Ni=N\; (i, initial; f, final), posed patterns. The final array corresponding to the steady
P, P,
\\\
300+ e 000 —0—0 OR Y 300+ A\
A
2004 200 N
a P3 \\
m A
+ Ps .
o P6 /
1004 o Py 1004 fu]
a Ps ./
/
./. ’
/D /,'—
o7 R
0 B— B 9 8—R-2-0e0Ea 0-—¢@’—v—@/——4€%ﬁ?ﬂ—v—ﬁﬁ——-—@ —
-3 -2 -1 0 1 2 -3 2 -1 0 1 2 3
Togjolt (hours)] logyolt (hours)]
(a) (©)
P, P,
300 . 300
° < <
o 2o
o ° 0 %00
a P3
200 O Py
+ Py
° P6
o P,
a PS

logyglt (hours)] logylt (hours)]

(b) ()

FIG. 7. Evolution of the number of polygort®, as a function of timgseries(ii)]. '=65, £=4.5: (a) initial regular hexagonal pattern
with wavelength\;=~\; (i, initial; f final), (case 2.}; (b) initial regular hexagonal pattern with wavelength>\; (case 2.2 (c) initial
triangular patterricase 2.3 and(d) initial square pattericase 2.4 When several symbols are superimposed some of them are hidden; the
lines serve as guides to the eye.
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0.15

Curve RD-H
Curve RD-S
case 2.1
case 2.2
case 2.3

0.10- case 2.4

0.05

0.8 0.9 10 m L1

FIG. 8. Evolution of cellular arrays with time in then,o) dia-
gram for serieqii). I'=65, e=4.5. When several symbols are su-
perimposed some of them are hidden; the lines serve as guides to
the eye.

regime of experiment 2.1, which resembles Fi¢p)6is al-
most a regular hexagonal array, whereas the final arrays of
experiments 2.2 and 2.3 are disordered structures statistically
equivalent to that of experiment 2[#ig. 6(d)], as will be
shown in the following.

Carried out by initially imposing a honeycomb with a
wavelengthadapted(very close to the natural opdo the
level of instability, experiment 2.1 is critical. Apart from the
cells close to the container wall§ig. 6(a)], it showed no
array dynamics during a long perigdbout 15 days It fol-
lowed that the cellular array remained quasiregular with very
few topological defects and disorder that could not even be
sustained when appearing in the core of the pattern. Such an
experiment indicates that, in BM convection, “limited
dynamics=limited disorder,” which leads one to conjecture
that “no dynamics=no disorder” would be found if stretch-
ing effects were suppressed by using a hexagonal container
commensurable with the imposed honeycomb spacing. We
plan to ascertain this point in a forthcoming study.
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FIG. 9. The minimal spanning tré&ST):
angles.I'=65, £=4.5. Initial patterns: (a) case 2.1(b) case 2.2,
(c) case 2.3, andd) case 2.4. Final patterns:(e) case 2.1 andf)
case 2.4 statistically equivalent to cases 2.2 and 2.3.
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2x10* times the viscous diffusion time,.. (=0.043 sec for

Cells on the periphery being excluded, the evolution ofPr,=880 at 25 °¢ and 24 times the thermal diffusion time

the number of polygonP, (n=3, ... ,8 for experiment 2.1
is shown in Fig. 7a). The numberP4 of six-sided cells is

7in (=37.9 sec for By.
In Fig. 8, we give the evolution with time of the represen-

almost constant, or in other words, the number of topologicatative points in thém,o) plane for the various cases of series
defects remains nearly zero, so that it can be considered thét). The representative points of initial arrays of cases 2.1
the dynamics of pattern formation has been reduced enoudjpoint 1), 2.2 (point 1) are, as expected, very closeHoas

to make “no disorder” achievable in thd, case. Figure

they correspond to almost perfect hexagonal patterns. For

7(b), devoted to the evolution of an initially hexagonal pat- case 2.3, the arragpoint 1') is initially nearby T, which

tern with \;>\; (case 2.2, confirms the general trend:

a locates the regular triangular structure. Similarly, for case 2.4

disordered pattern contains orf¢ and P, as defects in the (point I*) the pattern starts close to the square moSaion
steady regime. During the partial destruction of the regulathe computed line S-RD. It is worth noticing that, in all
pattern, transitory?, and P4 cells can appear. This is due to cases, there is a transient incursion into the adjacent region

the large size of the imposed cells; there are divisionB gf

above the line H-RD. Although it is made up of six-sided

cells and resulting unstable cells coalesce. When a triangulaells (d4~0), the final stage for experiment 2(foint 8 is

pattern is imposed as in case 2Bg. 7(c)], triangular cells

not a perfect honeycomin=1.01 ando=0.051 instead of

disappear rapidly. After about 12 min there does not remairm=21.075 ando=0) but rather a distorted hexagonal pattern.

any P; cell visible to the naked eye. At the same time Ehe

For an imposed hexagonal array larger than the natural one,

are created, th®;, P4, and P, are also created. The rear- case 2.2, the transient regime presents a tendency to the re-

rangement of the intermediate pattern, mad®pf Ps, Pg,
and P,, leads to the usual pattern withg, Ps, and P5.

gion of square cellgpoints 2 and 3) that may reflect the
fact that, initially, the imposed sizgoint 1') is too large and

Figure 7d) exhibits the same behavior when square cells are division phase occurs. During this phase, there is a signifi-
imposed. For the last three cases, the imposed patterns hawant number ofP, defects[see Fig. )], which is accom-
totally disappeared 15 min after starting the experiment, i.e panied by a decrease ofi and an increase ofr. A first
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P The entropy functiorS(1), Fig. 10, shows that the final
SO state is reached after about 0.2:h1.8X10%7,. and 1%,
for cases 2.2, 2.3, and 2.4, whereas it needs several hours for
o the evolution of polygon®,, (Fig. 7). This difference can be
eres explained by noting tha$(1) nears its asymptotic value at
°/\,°DE\.;A;E;%FA'—%A%%Q°Q§:P— the time the three structures 2.2, 2.3, and 2.4 adopt a similar
K.’..A'" g o aspect, with a majority of hexagons and essentially penta-
¥ ‘,..A‘.‘-'-A/ . x5 mx gons and heptagons as defects. Indeed, the appearance or
o/ x * disappearance of a few pentagon-heptagon pairs modifies
-x strongly the density of defects but does not significantly af-
] J x case 2.1 .
2 ‘ o case22 fect the entropy because these pairs have nearly the same
A case23 size and the same orientation as the two hexagons in a dis-
O _case24 ordered lattice. Although the pattern in experiment 2.1 only
1 . . : : : undergoes minor modifications, the final state is eventually
3 2 1 0 1 2 3 realized after 12 h, i.e., after about®4f). and 187,. On
logyolt (hours)]

general grounds, there exist several contributions to entropy,
which possess different characteristic times. For case 2.1,
because all the outer cells make perpendicular contacts, the
wall contribution is zero, as is the case for the topological
defects(dy4~0). Therefore, only the stretching, which is dif-
ferent from zero as the initial hexagonal pattern is adapted
for wavelength but is not commensurable with the size of the
lowering of the number of very small cells, which naturally hexagona! container, deterr_nines Fhe characterist?c time of
. o ; .97 the evolution of the array. Finally, it should be noticed that
provide short edges. Moreover, during the first dlV'S'Onthe common entropy value of the final states of experiments

stage, the system probably creates more cells than NECESSaY 53, and 2.4 is significantly higher than that of case 2.1.
so that small cell elimination occurs during the next period.” "~

Then, the process of cell division is repeated, giving rise to
an oscillatory drift, in the sense of disorder, towards a qua-
siasymptotic patterfpoint 8). After about 275 h, the pattern We noted in Sec. IV B that a “statistical” final state is
has self-reorganized into a hexagonal array more disorderegached after about 12 (at maximum. But from a general
than in the experiment 2.1 with initial adapted spacing, as th@oint of view we must stress that the pattern is not stationary
final point 8 (M=0.96 ando=0.08) has moved towards and its characteristics fluctuate around mean values. These
RD with respect to point 8. Experiments 2.3 and 2.4 evolvdluctuations are a consequence of the cell dynamics; cells can
rapidly towards statistically equivalent final statpsints 9  grow, evolve, and sometimes annihilate. These changes may
and 6), comparable to that in experiment 2.2. be responsible for strong fluctuations in the measures of dis-

When, in Fig. 8, representative points fall on the sameorder, such agy, F4, m, o, andS(1). These fluctuations do
computed trajectory to RD, e.g., H-RD, the absence of methot behave monotonically; the variation of the amplitude is
rics in the(m,o) diagram can be overcome. Then, the globallarge for dy(+21%), F4(+=10%), and 0(8%) and small for
distortion of the patterns can be measured by the amount @f(0.8% and S(1)(+1.3%.

Gaussian disorder introduced in the randomization process In this section, the disorder characteristics in a hexagonal
(see Fig. 4 in Ref[20]). The standard deviation of the dis- container (I'=65) are studied for the stationary states of
tribution of the shifts from the ideal positions equals 0.045seriestiii) experiments. Figure 11 shows typical evolutions
for the asymptotic state of experiment 2.1 and 0.078 for thevith & for the two values of Pr. For all the statistical diag-
final state of experiment 2.2, which respectively correspondiostics used, the variation with is linear for the low-

to 9.6% and 16.6% of the value for a completely randomviscosity silicon oil, in the considered range of instability
structure. Yet topological disorder is striking in Figdp [Figs. 11a), 11(c), and 11d)]. Only the variation ofdy is
(dg=31%), whereas it is not discernible in experiment 2.1. Itlinear at higher viscosityFig. 11(a)], topological disorder at
thus follows that the large effects, seen in the figures andiigh Pr being larger than that at low Pr. It follows from the
measured byd,, are produced by a small cause, which statistical analysis of array organization by the MST method
means that disorder is a highly nonlinear function of thethat the representative points eagbout 10 fall in thelm,o)
cellular shifts that might explain why, by the MST method, it plane near the trajectory H-RD joining the perfect hexagonal
remains possible to bring forward the underlying honeycomlarray to the random distributidiFig. 11(b)]. Yet, the influ-
even at large distances from the onset of instability. ence of Pr is noticeable at lower values. For,Rhe evolu-

The histograms of angles for the initial states of sefigs- tion of the representative point stays along the H-RD line
experiments are shown in Figs(a®-9(d). For all cases, the with a continuous enhancement of Gaussian disofitiede-
imposed angles are very close to the theoretical values. Thereases and- increasel For Py, there is, in the beginning,
final pattern keeps good orientational order for casgdRig. = some oscillatory behavior around the H-RD line. The dis-
9(e)], whereas the other three initial arrays end in a similarsimilarity between the two fluids is furthermore stressed by
pattern with a weakly nonuniform distribution of angles; the different aspects dfy and S(1), which, for Pg, both
only small and large peaks can be distinguisfieid. Af)]. reach an asymptotic value at highgFigs. 11c) and 11d)].

FIG. 10. EntropyS(l) versus time for arrays of serigd).
I'=65, e=4.5. Peripheral cells are excluded from calculations.

period of array rearrangement follows during which disper
sion, characterized by, decreasefpoint 4'). As usual with
the MST construction, the increase wf follows from the

C. Influence of € and Pr on patterns in steady regimes
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FIG. 11. Variation with the distance from the thresheldf disorder characteristics of seriés) experiments. Peripheral cells are
excluded from calculationga) Density of defectsly ; (b) evolution in the(m,o) diagram, the values ofare 2.1, 3.4, 5.5, 7.4, 8.4, and 10.8
in order of increasing numbers for,Pand 1.5, 2.5, 3.6, 4.5, 5.1, 7.1, 8, and 10.3 fos; Pe) disorder functiorF 4 ; and(d) entropyS(l). In
(b) the lines serve as guides to the eye.

Wheread4 continuously goes to saturation, the variation of cal) minimize disorder. The imposed regular hexagonal pat-
edge-length entrop$(1) first goes through a maximum con- tern can survive only in a hexagonal vessel and only if the
comitant to the oscillation in thém,o) diagram. imposed wavelength is equal to the natural one correspond-
The origin of the differences between;Rand Py has ing to the Rayleigh number. In all other cases, the forced
probably to be sought in the larger viscous drag that occurglanform does not remain stable and, from the various initial
at higher viscosity, which makes more nonlocal the adjuststates we have imposed, evolves to the same final disordered
ments in the pattern. Such long-range effects are likely t&tructure. The superposition “cellular arrajoneycomb
impede global ordering, as an improvement in some place-Gaussian noise” is recovered. The result of the present
might destroy some farther area already organized. Such gudy, “limited dynamics:limited disorder,” which led us

process would be a permanent source of disorder. It woulgo conjecture that “no dynamiesno disorder,” suggests
explain why, at lowe, the histograms of angles reveal a

marked difference between Pand P, the disorientation

being already complete in the latter cd$gg. 12b)]. This 70 7
observation is also true for the center-to-center distance his-" 6 )
tograms whose standard deviationseat1.8 are 0.052 and 50 50
0.146 for Py and Py, respectively. 40 40
30 30
V. CONCLUSION 20 2

10 10 '
We have carried out a quantitative statistical analysis of o 0

. . -90 -60-30 0 30 60 90 <90 -00 <30 0 30 60 90
the influence of two critical external parameters, namely, 0 (deg) 9 (deg)

vessel geometry and initial conditions, on the array dynamics @ (b

and amount of disorder of Berd-Marangoni convective

patterns. Experimental results confirm that vessels with a FIG. 12. Histograms of MST angles for serié). Peripheral
shape that favors hexagonal symmdingxagonal, cylindri-  cells are excluded from calculatior(g) Pr;, e=2.1;(b) Pr,, e=1.5.
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that this superposition actually is a generic feature, the physintroducing an appropriate entropy function. To our knowl-
cal origin of noise being the dynamics of pattern formationedge, it is the first time that the edge-length entr§@i) has
and selection itself. The MST approach thus appears to belaeen checked in experiments. Results are in conformity with
sound method for the study of disorder in 2D convectivethermodynamics and experience gotten from direct observa-
patterns, providing qualitative and quantitative informationtion, so thatS(l) looks very promising for establishing a
on array disorder, in particular to check if order is hiddenhierarchy of the BM patterns and others.
behind disorder. The main result from the investigation of the evolution of
Yet, conclusions remain limited by the fact that, exceptthe patterns with the distance from the threshold and the Pr
when the experimental point coincides with some referencaumber of the fluid seems to be the role of viscous drag
arrangement or trajectory, a measure of the distances in treffects, which, by long-range influence, feed disorder back
(m,o) plane is up to now lacking. This gap might be filled by into the array.
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