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The analog simulation of an overdamped Brownian particle in a quartic double-well potential driven by an
external~either Gaussian or dichotomic! multiplicative noise is performed with special focus on the phenom-
enon of resonant activation. Such an effect is shown to occur on increasing the correlation time of the
multiplicative noise, while keeping the noise variance constant. The asymptotic behavior of the relevant escape
times for large noise correlation time and large variance is also investigated. Simple qualitative arguments are
produced to justify the results thus obtained. Furthermore, the traversal barrier, that is the effective barrier at
the time the system switches state, is shown to have a minimum for a certain value of the noise correlation
time, though not always in coincidence with the relevant resonant activation value.@S1063-651X~96!05610-3#

PACS number~s!: 05.40.1j, 82.20.Mj

I. INTRODUCTION

The problem of thermally activated escape over randomly
fluctuating barriers has been very popular among chemical
physicists for at least fifty years now@1#. A surge of fresh
interest in this topic was triggered recently by Doering and
Gadoua @2#, who studied how the interwell mean-first-
passage time~MFPT! of a Brownian particle in a bistable
potential depends on the correlation timet of the barrier
fluctuations. The observation that such a MFPT decreases for
sufficiently smallt values and increases for asymptotically
large t values, led these authors to suggest that a resonant
activation~RA! phenomenon occurs, quite independently of
the details of the model considered. The basic ingredients of
such a phenomenon are@3–12#: bistability, a weak additive
noise~responsible for thermal activation!, and a multiplica-
tive noise with finite correlation timet ~modeling the barrier
fluctuations!. The earlier literature, which followed the
Doering-Gadoua seminal paper, focused mostly on the solu-
tion of particularly simple models@3–6#; subsequently, a
number of approximate schemes were envisaged to deter-
mine the MFPT as a function oft for any choice of the
bistable potential and barrier fluctuations@7–11#. The gener-
ality of the RA phenomenon was thus confirmed for a wide
class of bistable systems.

In this article we conclude our analog simulation study of
RA in the overdamped quartic double-well potential@12#

ẋ52V8~x!1j~ t !1xh~ t !, ~1.1!

with V(x)5bx4/42ax2/2 and a,b.0. Here, the additive
Gaussian noisej(t) represents the heat bath acting upon the
Brownian particle with coordinatex(t) and the force term
corresponding to the fluctuating barrier is factorized into the
product of a coupling functionx, times a multiplicative noise
h(t). Both noise sources are assumed to be zero mean val-
ued. The correlation time ofj(t) is kept negligibly short
~namely, of the order of 1022 a21!, whence ^j(t)j(0)&
52Dd(t). Throughout the present report the strength of the

additive noiseD was kept much smaller than the unperturbed
potential barrier heightE05a2/4b. The correlation time of
h(t) is the control parameter of the system under investiga-
tion. The simplest correlation function forh(t) one can
simulate,

^h~ t !h~ t8!&5~Q/t!exp~2ut2t8u/t! ~1.2!

suffices to provide a clear picture of the RA phenomenon.
Two differenth(t) statistics were considered for the sake of
comparison:~a! Gaussian@13#. The noiseh(t) is then a sta-
tionary Ornstein-Uhlenbeck noise with variances25Q/t; ~b!
dichotomic @14#. The noiseh(t) flips between the constant
values6s with waiting times distributed according to a
Poisson law with time constant 2t.

The direct measurement of the MFPT in our analog simu-
lator turned out to be a rather cumbersome matter@12,13#. In
fact, fors!a two ~sometimes, more! exponential decay time
constants are clearly distinguishable in^x(t)x(0)&, whereas
for extremely larget values the very existence of an expo-
nential tail becomes questionable@7#. For this reason we re-
sorted to define the escape timeT~t,s! as

T~t,s!5E
0

`

dt^x~ t !x~0!&/^x2&, ~1.3!

where ^x(t)x(0)& is the stationary autocorrelation function
of the processx(t). The connection betweenT~t,s! and the
relevant MFPT is not straightforward fort.0 @19#: for
weak colorat!1 and low noise intensitiesQ!a, the MFPT
for x to diffuse from one potential minimum up to the barrier
top is well reproduced by Eq.~1.3!. In fact, larget and/orQ
values may modify the bimodal dynamics of the unperturbed
@h(t)50# thermal processx(t) ~see Fig. 8 of Sec. III!; the
notion of MFPT is, then, ill defined, whereasT~t,s! keeps
defining consistently the process relaxation time, no matter
what theh(t) parameters. In the present report we try to
adapt the MFPT formalism in order to approximateT~t,s!
under different color and noise intensity regimes.
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The outline of the present paper is as follows. In Sec. II
we summarize the theoretical background required to ana-
lyze the results of our simulation work. In Sec. III the onset
of RA is illustrated by plottingT~t,s! versust with eithers
or Q constant and versuss with t constant. A number of
intriguing features are thus revealed both for the Gaussian
and the dichotomic statistics of the multiplicative noise,
which elude any theoretical scheme proposed so far@2–11#.
In Sec. IV most of the asymptotic behaviors are interpreted
by means of simple intuitive arguments. In Sec. V the RA
phenomenon is investigated by introducing the notion of tra-
versal barrierĒ, defined as the effective barrier the Brownian
particle overcomes at the time it crosses the separatrixx50;
here, a minimum ofĒ is not always a direct signature of RA.
The generality of the RA phenomenon is discussed further in
Sec. VI.

II. THEORETICAL BACKGROUND

Before presenting the results of our simulation work we
summarize a few well-known predictions of the theory of
activated processes. The main purpose is to draw the reader’s
attention to the best understood limits of system~1.1!.

A. The multiplicative case „Refs. †15–18‡…

The Fokker-Planck equation corresponding to the Lange-
vin equation~1.1! with d correlated Gaussian noise sources
j(t) andh(t) reads@18#

]

]t
P~x,t !5

]

]x
@2ax1bx3#P~x,t !1D

]2

]x2
P~x,t !

1Q
]

]x
x

]

]x
xP~x,t !, ~2.1!

whereP(x,t) is the probability distribution function of the
stochastic processx(t). For D50 ~purely multiplicative
case! Eq. ~2.1! can be solved analytically@16#. Its stationary
solution P(x)5P(x,t→`) undergoes an abrupt transition
from a bimodal to a monomodal distribution by increasing
the noise intensityQ past the critical valueQ5a ~noise in-
duced transition!. Examples of the distributionP(x) for dif-
ferent values of the circuital parameters are reported in Sec.
IV. In the absence of additive noiseD50, the Brownian
particle is confined in one semiaxis~x>0 or x<0 according
to the initial condition!. A weak additive noise allows the
particle to diffuse over the barrier atx50. The relevant es-
cape time, then, depends on bothD andQ. However, since
our simulations were performed atD constant, we agree to
denote such an escape time byT0(Q). The dependence ofT0
on Q is well illustrated in Fig. 2 of Ref.@15#: T0

21~0! co-
incides with the Kramers ratemK introduced for the purely
additive case~see Sect. II B!; T 0

21(Q) increases almost lin-
early withQ for 0<Q,a and, finally, diverges faster than
exponentially forQ.a. An analytical treatment ofT0(Q)
has been reported recently in Ref.@10#.

B. The additive case„Refs. †1, 18, 19‡…

A quantity which plays a crucial role in the present article
is the escape~or Kramers! rate in a double-well potential

driven by a purely additive noisej(t). The archetypal
Fokker-Planck equation~2.1! with Q50 has been studied in
great detail@1#. An approximate expression for the Kramers
rate at low additive noiseD/E0!1 reads@18#

mK5m0exp~2E0 /D !, ~2.2!

where the prefactorm0 is a weak function of the noise inten-
sity. For the potential under investigation~1.1!,
m05(a&/p)(123D/8E01•••). In terms of the MFPT for-
malism, the reciprocal ofmK coincides with the activation
time TK from one potential minimum6xm5Aa/b up to the
barrier top. On the other hand,mK closely approximates the
first nonzero eigenvalue of the Fokker-Planck equation~2.1!
with Q50 @1#. ForaTK@1 our experimental definition of the
escape time~1.3! is consistent with the standard definition of
the Kramers timeTK5m K

21 @18#. For the sake of a compari-
son, we recall that the MFPT between the two stable poten-
tial minima at6xm , introduced for instance in Ref.@2#, is
just twice the Kramers time employed here.

C. The kinetic rate model

The kinetic rate model of activated processes allows us to
address two opposite limits of fast and slow barrier fluctua-
tions, respectively. Far from pretending to be exhaustive, we
summarize here the basic results following the approach in
Ref. @4#. Let us consider the simple case of a subthreshold
dichotomic noiseh(t) ~i.e., withs,a!. The effective poten-
tial V(x)2x2h(t)/2 flips between two bistable configura-
tions with barriersE65(a6s)2/4b. Here, it is assumed that
the adjustment into either state takes place instantaneously
after each switching event. This requires that the noise time
constant is sufficiently large, that isat.1. Correspondingly,
two Kramers ratesm6~s!5T6

21~s! over E6 may be intro-
duced according to Eq.~2.2!. At time t, a Brownian particle
has probabilityn6(t) to be in the state with barrierE6 prior
to activation~of course, equally distributed into the left and
the right well!. The transition between the two states6 oc-
curs through two alternative paths: either the particle is
thermally activated to the absorbing state at the barrier tops
E6 , whence the Kramers escape mechanism with ratesm6 ,
or the particle sits in one state as long as the dichotomic
noise flips by changing sign with rate 1/2t—see Eq.~1.2!.
Such a description leads to a linear system of two coupled
ordinary differential equations forn6(t), that is,

ṅ65~1/2t!@2~112tm6!n61n7#, ~2.3!

with initial conditionsn6~0!51/2 in the stationary regime.
The quantityn1(t)1n2(t) denotes the probability that the
Brownian particle, being with a 50-50 probability in either
state6, has not yet reached the barrier top at timet. From
the definition of the MFPT asT5* 0

`(n11n2)dt, Bier and
Astumian, after solving Eq.~2.3!, eventually obtained

T5~m11m212/t!/2@m1m21~m11m2!/2t#. ~2.4!

Two limits of Eq. ~2.4! are remarkable: in the intermediate
color regimeat.1 andt!m1

211m2
21

T21~0,s!5@m1~s!1m2~s!#/2 ~2.5!
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and in the strong color regimeat→`

T~`,s!5@T1~s!1T2~s!#/2. ~2.6!

In the former limit the Kramers’ notion of rate is tenable and
the relevant MFPT coincides with the reciprocal of the aver-
age rate over the fluctuating barrier. In the latter limit, the
effective potentialV(x)2x2h(t)/2 is almost static, so that a
MFPT can be defined for any potential configuration. The
rate notion is, then, lost and the stationary process MFPT is
defined as the average MFPT over all individual barrier re-
alizations. This important conclusion can be easily proved in
the Fokker-Planck formalism, too, for any noise statistics
@7,9#.

The occurrence of RA is commonly associated with the
crossover between the two limiting regimes~2.5! and ~2.6!.
A simple estimate of the crossover noise correlation time
follows from the interpretation of the Kramers prefactorm0
in Eq. ~2.2! as an attack frequency, namely, as the number of
unsuccessful escape attempts per unit of time the fluctuating
particle makes in the average prior to a successful attempt.
For m0t,1 the Brownian particle during its escape attempts
sees a rapidly fluctuating barrier, whereas form0t.1 it ther-
mally fluctuates in an almost static potential.

III. RESONANT ACTIVATION

In Sec. II C we pointed out that for finite correlation times
t of the barrier fluctuation source~1.2!, the escape timeT
depends ont and s, separately. Our simulation work was
aimed at determining such a dependence over the broadest
range oft ands values we could simulate. Our results are
summarized in Figs. 1–7, where the curvesTs~t!, Tt~s!, and

TQ~t! are displayed both for theG case~Figs. 1–3, 7! and
the D case~Figs. 4–7!. Here, the subscript of the threeT
functions denotes the quantity we kept constant, while vary-
ing the parameter that appears explicitly in their argument.
Moreover, in our notationG case andD case stay for the
system ~1.1! with Gaussian and dichotomic noise source
h(t), respectively. For the reader’s convenience, we remind
him that the error magnitude on our measurements ofT, at,
ands/a was estimated to be smaller than 5%@12,13#. The

FIG. 1. G case: Ts(t)/TK vs at for different values ofs/a.
Other parameter values areE0/D52.75, a54.73103 s21, and
TK58.531023 s. FIG. 2. G case: Tt(s)/TK vs s/a for at50.05 ~curve 1!,

50.24 ~curve 2!, 50.48 ~curve 3!, 52.4 ~curve 4!, 54.8 ~curve 5!,
59.5 ~curve 6!, 519 ~curve 7!, 529 ~curve 8!, 543 ~curve 9!, 595
~curve 10!, 5240~curve 11!, and5360~curve 12!. Other parameter
values are as in Fig. 1.

FIG. 3. G case: TQ(t)/TK vs at for different values ofQ.
Other parameter values are as in Fig. 1.
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main features of RA may be summarized as follows@12#.
~i! Figure 1 for theG case and Fig. 4 for theD case

display the RA phenomenon predicted by Doering and Gad-
oua@2#: The escape timeTs~t! hits a minimum for a certain

value of the correlation timet ~denoted here bytRA!, which
proves to be a function of boths andD. On increasings the
RA minima shift towards smallertRA values. Such an effect
is more apparent in theD case. Note that in both cases
Ts~tRA! may be much larger thantRA , especially for sub-
threshold noises, contrary to predictions extrapolated from
the simplified models of Refs.@3, 4#. Figure 7 shows that, on
increasing the activation ratioE0/D, the RA phenomenon is
enhanced. The dip of the curveTs~t! at tRA becomes deeper
and shifts towards highertRA values~almost inversely pro-
portional toD!. Such an enhancement, however, could not
be clearly detected by plotting the ratioTs(t)/TK(D).

FIG. 4. D case: Ts(t)/TK vs at for different values ofs/a.
Other parameter values are as in Fig. 1.

FIG. 5. D case: Tt(s)/TK vs s/a for at50.1 ~curve 1!,
50.24 ~curve 2!, 50.48 ~curve 3!, 52.4 ~curve 4!, 54.8 ~curve 5!,
59.5 ~curve 6!, 519 ~curve 7!, 528 ~curve 8!, 586 ~curve 9!, and
5240 ~curve 10!. Other parameter values are as in Fig. 1.

FIG. 6. D case: TQ(t)/TK vs at for different values ofQ.
Other parameter values are as in Fig. 1.

FIG. 7. Ts~t! vs at for s/a50.57 and different values ofD.
Other parameter values are as in Fig. 1.
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~ii ! In Figs. 1 and 4 several curvesTs~t! are drawn for
differents values. In the white noise limitat→0, the mul-
tiplicative noise strengthQ5s2t tends to vanish so that all
Ts~0! are expected to approachTK , independently of thes
values. Our simulations seem to confirm this trend, even if
we could not lowerat below 0.05. In the opposite limit
at→`, our data hint at infinitely large escape times with
Ts~t! proportional tot. Theoretical arguments@7,9# which
apply to our model, too, would predict large but finite values
for Ts~`!. Unfortunately, we could not settle this point ex-
perimentally, due to the exceedingly large integration times
required. Finally, all curves in Figs. 1 and 4 intersect one
another for one value of the correlation timet, at.20, in-
dependently of thes value and of the statistics ofh(t) ~at
least, within our experimental accuracy!. At the intersection
point Ts equalsTK .

~iii ! Figures 3 and 6 make it apparent that for a given
barrier fluctuation strengthQ, no RA occurs@12#. The curves
TQ~t! all approach horizontal asymptotes for bothat→0 and
at→` @7,11#. In fact, for at→0 we are in the white noise
case studied in Ref.@15# andTQ(t)5T0(Q) ~see Sec. II A!.
In the strong color limitat→`, TQ clearly converges to the
finite valueTK . Note that forQ*a the curvesTQ~t! develop
a clear-cut maximum at larget values. Moreover, they all
intersect one another for the same value of the noise corre-
lation timeat520, where also curvesTs~t! do.

~iv! Figures 2 and 5 show the dependence ofTt~s! on s.
In the regime of weakat!1 to intermediate color
a21,t,TK/2, the curvesTt~s! fall off monotonically from
the Kramers escape timeTt(0)5TK , down to what looks
like an asymptotic valueTt~`!. The modulus of the negative
slope ofTt~s! at s501, increases witht, goes through a
maximum and, then, decreases again. Consistently with the
RA phenomenon item~i! for each value ofs there exists one
value of the correlation timetRA that sets a lower bound to
the bundle of curvesTt~s!. For values oft of the order of
TK/2 and larger, theG and theD case exhibit differences
which cannot be accommodated within the inaccuracies of
the experimental setup. In both cases, the slope ofTt~s! is
positive ats501 andTt~`! defines an horizontal asymptote.
However, while in theD caseTt~`! approaches the limiting
value 2t over anat interval of at least two orders of mag-
nitude, i.e., for 2,at,23102, the behavior ofTt~`! in the
G case is more complicated. For extremely larget values,
say t.2TK , the existence of the asymptoteTt~`!;t is ex-
perimentally well assessed. Fort;TK the approach ofTt~s!
to an asymptotic valueTt~`! is much slower, though our
data suggest that for this range of the correlation times, too,
Tt~s! ought to converge to values not much larger thant.
Finally, a remarkable similarity between theG and theD
case in the weak noise limit: we verified that forat,1,
namely, for the interval 0.1,at,0.5 reported in Figs. 2 and
5, Tt~`! becomes independent oft and the multiplicative
noise statistics. This result would imply thatT0(Q) defined
in Sec. II A tends to a finite limit for increasingly largeQ
values.

~v! In the ranget;TK the curvesTt~s! in Fig. 2 reveal a
further property of theG case, which is totally absent in the
D case. These curves exhibit a maximum for a certain value
of s, which in turn increases witht. Such an effect tends to
disappear in the strong color limit. e.g., fort.2TK .

Most of the above results have been tested also for differ-
ent noise correlation function. For instance, on replacing the
RC filter simulating the correlation function~1.2! for theG
case by either a forth-orderRC or an n-pole Butterworth
filter with n52, 4, and 8, we reproduced properties~i!–~iv!,
whereas the effect described in item~v! is wiped out@12#.

IV. A QUALITATIVE INTERPRETATION

In this section we propose a simple interpretation of the
results detailed in Sec. III, mostly based on qualitative or
heuristic arguments. The approximate schemes of Refs.
@7–11# would be, indeed, a viable tool to describe the RA
phenomenon systematically. Unfortunately, the range of the
t ands values explored in our simulation work is often too
limited for a comparison with the theoretical predictions to
be conclusive. For instance, the asymptotic predictions for
Ts~`! andTt~`! in Ref. @7# and@9# are expected to become
true for exceedingly large values oft ands, respectively. As
a general rule, we present our interpretation of the simulation
data following the same itemization as in Sec. III. Agreement
~or disagreement! with the predictions of more refined ana-
lytical treatments will be mentioned explicitly.

~i! The occurrence of RA in system~1.1! is commonly
justified as follows. In the weak color regimeat!1, the
small-t expansion applies@18,19#: on increasingt, the po-
tential function V(x)2x2h(t)/2 must be corrected into
*xV8(y)/(11Qy2/D)dy, whence to first order inat @9#

T~t,s!5TKexpF2~Q/D2!E
2xm

0

V8~x!x2dxG
5TKexp@2~4at/3!~s/a!2~E0 /D !2#. ~4.1!

Equation~4.1! holds good for both theG and theD case
provided thatat!(D/E0)(a/s)

2, corrections to the prefac-
tor m0 have been neglected@10#. Hence, for smallat the
escape time decreases with increasingat. In the opposite
limit t@TK , the strong color regime of Sec. II C predicts that
the escape timeT~t,s! be the average of the times required
by the Brownian particle to diffuse over each barrier con-
figuration@2#. SinceTK is proportional to the Arrhenius fac-
tor exp(E0/D), the longest escape times dominate in the av-
eraging procedure, whenceT(t,s).TK for t.TK . More
precisely, to leading order in 1/at and (E0/D)(s/a)

2

Ts~`!5TKexp@2~s/a!2~E0 /D !2# ~G case! ~4.2!

and

Ts~`!5TKcosh@2~s/a!~E0 /D !# ~D case!. ~4.3!

Expressions forTs~`! at largers values are proven below to
verify the inequality Ts(`).TK . The RA minimum of
Ts~t! is thus expected to occur at the crossover between the
two color limits, namely, for values of the noise correlation
time t of the order of the inverse attack frequency of the
escaping Brownian particle out of a fluctuating well@9#—see
Sec. II C. The rough estimateatRA;p/& obtained from Eq.
~2.2!, fails to reproduce theD ands dependence oftRA . As
a matter of fact, Figs. 1 and 4 prove beyond any doubt that
1/atRA increases almost linearly withs/a over one order of
magnitude, at least. Furthermore, Fig. 7 shows thatatRA is
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proportional toE0/D in the small but significant interval
~2.0–8.0!. Anyway, the minimum ofTs~t! occurs in the
broad interval 1,at,aTK/2, where the intermediate color
regime of Sec. II C applies andTs~t! approximates the re-
ciprocal of the escape rate averaged over all barrier realiza-
tions. For small noise strengths (s/a)2,D/2E0

Ts~a21!t!TK!5TKexp@22~E0 /D !2~s/a!2#

~G case! ~4.4!

and

Ts~a21!t!TK!5TK /cosh@~2E0 /D !~s/a!# ~D case!.
~4.5!

Equations~4.4! and~4.5! provide a lower bound toTs~tRA!.
The present analysis seems to rule out RA as the signature of
a well-defined resonance mechanism.

~ii ! From Eq.~4.1! the white noise limitat→0 for Ts~t!
in Figs. 1 and 4 readsTs(0)5TK , as expected. Moreover,
the condition for the validity of Eq.~4.1! at!(D/E0)(a/s)

2

tells us why the approach ofTs~t! to TK for at→0 is in-
creasingly slower for larges/a values. In the opposite limit
at→`, the kinetic rate model predicts thatTs~`! is well
approximated by Eqs.~4.2! and ~4.3! for small noise inten-
sities and by similar, more general expression for largers
values. Our data, instead, show a linear dependence ofTs~t!
on t in the range of 30,at,300 ~Figs. 1 and 4!, which
appear to be consistent with the asymptotic behavior of
Tt~`! at larget ~Figs. 2 and 5!. However, the reader should
be aware that the two limiting procedures do not commute,
i.e., in principle,Ts(`)ÞTt(`). The coincidence of the two
limits, here, is possibly due to the fact that theat values
obtainable in our simulator are not large enough for a con-
clusive statement about the asymptotic behavior ofTs~t! to
be issued. In fact, digital simulations@9# suggest thatTs~`!
is attained only forat.104, that is well beyond the capabili-
ties of our circuitry@13#. Finally, a peculiar feature of the
family of curves plotted in Figs. 1 and 4 is the existence of
the intersection point at aboutat520. On taking notice that
aTK540 ~both in theG andD case!, this is equivalent to
state thatTs~t! is independent ofs for TK52t. Correspond-
ingly, in both Fig. 2 and 5 there should exists a horizontal
curve Tt(s)5TK for t5TK/2. In theD case~Fig. 5! this
effect is apparent, whereas in theG case~Fig. 2! a finer
tuning of the control parametert would be needed to select
an ~almost! constantTt~s!—see item~iv! below.

~iii ! The curvesTQ~t! of Figs. 3 and 6 prove that no RA
occurs forQ5s2t constant, as predicted theoretically in
Refs.@8# and @10#. Moreover, the two limiting valuesTQ~0!
andTQ~`! are well explained in terms of the results of Sec.
II. For at→`, the variance of the multiplicative noise
s25Q/t vanishes, whence the barrier fluctuations do not af-
fect the escape process any longer andTQ(`)5TK . For
at→0, the white noise limitT0(Q) is recovered. Our data
for TQ~0! are in qualitatively good agreement with predic-
tions ~2.7!–~2.9! of Ref. @10# and obey the same trend ob-
served first in Ref.@15#. The occurrence of theTQ~t! maxima
at larget values can be easily explained on the ground of the
arguments of items~i! and ~ii !; the asymptotic escape times
~4.2! and ~4.3! clearly indicate thatTQ~t! is an increasing

function of eitherQ/t in theG case orAQ/t in theD case.
Moreover, all curvesTQ~t! intersect one another at one point
for the same reason why the curvesTs~t! do, so that their
intersection point is located byTQ(TK/2)5TK . Such a fea-
ture, not predicted by the approximate schemes@7–11#, was
recently reported in Ref.@20#.

~iv! The behavior ofTt~s! at smalls/a values can be
easily understood in terms of kinetic rate model of the escape
process. In the weak color regimeat→0 @more precisely, for
at!1 andat!(D/E0)(a/s)

2# Tt~0! is approximated by Eq.
~4.1!. Its negative slope increases in modulus witht as ob-
served experimentally. For very larget values ands/a→0,
instead, we observe that the curvesTt~s! in Figs. 2 and 5
become independent of the noise correlation time. According
to the limiting regimes of the kinetic rate model

Tt~s!5Ts~a21!t!TK! ~4.6!

for 1,at,aTK/2 and

Tt~s!5Ts~`! ~4.7!

for t.2TK with Ts(a
21!t!TK) and Ts~`! for

(s/a)2!D/E0 given in Eqs.~4.4! and ~4.5! and Eqs.~4.2!
and ~4.3!, respectively. We note that for relatively larget
values~at.1! Tt~s! approachesTK either linearly~D case!
or quadratically~G case! in s/a. Such a difference becomes
apparent by comparing Figs. 2 and 5.

The asymptotic behavior ofTt~s! for s/a→` looks rather
complicated. Standard calculations@10# based on the notion
of rate make no sense at larges/a values, since fors.a ~D
case! and (s/a)2.D/2E0 ~G case! the full bistability of the
system is lost. Indeed, if we take the limits/a→` at large
but finite t values, the kinetic rate model should be applied
with some caution. Our argument runs particularly simple in
the D case. When h(t)51s, the effective barrier
E15(a1s)2/4b may be so high that the relevant escape
time T1 is by far too long, for the Brownian particle to
escape from one well into the other within the time 2t the
dichotomic noise takes to flip from1s to 2s. Whenh(t)5
2s, no effective barrier exists fors.a and relaxation of the
Brownian particle in the corresponding monostable well at
x50 occurs on a time scale of the order of 1/s for s@a with
1/s!t ~barrier-no-barrier regime!. It follows immediately
that under these circumstances the escape timeTt~`! is de-
termined by the flipping time of the driving multiplicative
noise, whence our predictionTt~`!52t ~D case! in both the
intermediate and strong color regimes. In terms of the kinetic
equations~2.3!, this regime corresponds to settingn2[0 at
any time, whenceT52t/~112m1t! with m1t!1.

The generalization of the barrier-no-barrier picture to the
G case is not straightforward. The noise correlation time is
still expected to set the time constant of the process correla-
tion function~related above to our escape time!. It might be
argued@21#, though, that for 1,at,aTK/2 the two-state
mechanism outlined for theD case is a viable approximation
to theG case, as well. The escape rate would be negligible
for h(t).0, due to the presence of the confining unperturbed
barrierE0, whereas relaxation would occur on a time scale
much shorter thant for h(t),0. This remark would justify
the approximate asymptoteTt~`!52t reported in Ref.@12#
for theG case and the common intersection point of all the
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Tt~s! curves att5TK/2—see item~iii !. Whent grows much
larger thanTK , the escape process takes place also for a
substantial fraction of the barrier configurations withh.0.
The two states6 cannot be identified uniquely~see Fig. 8!;
the Fokker-Planck equation for continuous processes be-
comes a more appropriate formalism. The global relaxation
time would be, then, controlled directly by the correlation
time of the driving noise, whenceTt~`!5t ~G case!. The
authors of Ref.@7# question the exponential nature of the
^x(t)x(0)& decay itself. The accuracy of our simulation de-
vice does not allow to clarify this point any further.

Finally, we study the limitTt~`! in the weak color regime
at!1. In such a regimeh(t) boils down to a white noise
source with diverging strength, that isQ@D. As a conse-
quence the action of the additive noisej(t) is completely
superseded by the effect of the multiplicative noiseh(t), so
that the analysis in Ref.@17# for a purely multiplicative
bistable system applies. It was proved there that the relax-
ation time~1.3! in a system like ours,~1.1!, with no additive
noiseD50, approaches a constant forQ/a→`, namely,

aTt~`!5p/2. ~4.8!

This prediction is closely verified for the first time by our
simulations. Equation~4.8! applies both to theD andG case,
since in theat→0 limit with s constant the effects of the
noise statistics become indistinguishable@14#. Note that in
this regime, too, the limitsat→0 and s/a→` are not
interchangeable—see item~ii !.

(v) The bumps in theTt~s! curves fort;TK are a pecu-
liarity of the Ornstein-Uhlenbeck processh(t) ~1.2!, and

tend to disappear whenn-pole filtering techniques are em-
ployed with n>2. Such bumps are located at around
(s/a)25D/2E0 , thus marking the transition from strong
color to the barrier-no-barrier regimes of the kinetic rate
model. Analogously, in theD caseTt~s! reaches its asymp-
totic value 2t for s*a, that is when full bistability is lost.

For reader’s convenience, we display in Fig. 8 the prob-
ability distribution functionsP(x) of the stationary process
x(t) for a few significant choices of the parameterst ands.
The difference between theD and theG case becomes ap-
parent for larges and t values. In theD case the curves
P(x) for at@1 are clearly reproduced by the superposition
of the probability distributions of two quasistationary pro-
cesses with barrier configurationsE6 , respectively. As a
consequence, fors.a the curvesP(x) develop three sharp
peaks corresponding to a probability 1/2 for the central peak
and 1/4 for each side peak. In theG case curvesP(x) with
three maxima are observable, too, but the relevant peaks,
especially the side peaks, become very broad. Such a differ-
ence is related to the different asymptotic behavior ofTt~s!
in Figs. 2 and 5 and ofās~t! in Figs. 9 and 10—see Sec. V.

V. THE TRAVERSAL BARRIER

To conclude we discuss now a new characterization of
RA, which was suggested to us by a remark in Doering and
Gadoua article@2#: ‘‘In the neighborhood of the resonant
activation,@...# the crossing occurs almost exclusively when
the barrier is in the lower state.’’ In order to give this state-
ment a more quantitative footing we introduce here the no-
tion of traversal barrier: any time the Brownian particle
crosses the barrier levelxb50 after having crossed it at time
t50, the relevant traversal timetb and the instantaneous lin-

FIG. 8. P(x) in theG andD case for different values ofat.
Other parameter values are as in Fig. 1.

FIG. 9. G case: ^a&5ās(t) vs at for different values ofs/a.
Other parameter values are as in Fig. 1.
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ear drift coefficienta1h(tb) are recorded. Averages over as
many as 104 level crossing events are taken to determine the
distribution of tb , and the traversal linear drift coefficient
ā5a1h̄(tb). Hence, forā positive definite, the correspond-
ing traversal barrier readsĒ5ā2/4b. Note that our definition
of traversal barrier corresponds to a snapshot of
V(x)2x2h(t)/2 at time tb , whereas the traversal process
would require a finite time, possibly much larger thant.

In Figs. 9 and 10 we plotā/a versusat for different
values ofs/a in the D andG case, respectively. In both
cases, on sweepingat through the entire range of simulated
values, the functionās~t! goes through a minimumām . The
value of ām is reasonably well approximated by the naive
fitting law

ām /a512s/a ~5.1!

for any value ofs/a. A significant difference between the
two cases rises when we try to locate the minima ofās~t!. In
the G case, the relevant RA correlation timetRA seems to
locateām , as well ~even whenām is negative!!, whereas in
theD case the minima ofās~t! are much shallower, shifted
towards much highert values and tend to disappear ass
approachesa.

The dependence ofās~t! on at can be represented as
follows. In the weak color regimeat→0 ands constant, the
effect of the multiplicative noise becomes negligible, be-
cause its strengthQ5s2t tends to vanish. Hence,ās~t! ap-
proachesa independently of the value ofs. To study the

finite correlation time regimes, we limit ourselves to the con-
dition that full bistability is preserved, that is
(s/a)2,D/2E0 ~G case! ands,a ~D case!. As for RA, we
expect that the minimum ofās~t! occurs when the noise
correlation timet is of the order of the escape attempt time
in the potential wells and, therefore, much shorter than the
escape times over theE6 barriers. As a consequence, the
average traversal linear drift coefficient seen by the escaping
particle in the intermediate color regime is

ās5a2^hm~h!&/^m~h!&. ~5.2!

In theD case, the averagê•••& is taken with respect to the
two state distribution of the noiseh(t), that is,~1/2!d~h2s!
andm~h! is the escape rate over the barrier of the effective
potentialV(x)2x2h/2. The average escape rates^m~h!& have
been computed explicitly in Sec. IV for both noise statistics.
Hence, our estimate forām in theD case reads

ām /a512~s/a!tanh@~2E0 /D !~s/a!#. ~5.3!

Notice that our fitting law~5.1! follows Eq. ~5.3! immedi-
ately for D!E0 and s/a constant~but, curiously enough,
also fors@a!. In theG case, the averagê•••& is taken with
respect to a Gaussian distribution with variances2. A
straightforward calculation yields

ām /a51/~11z! ~5.4!

with z5(2E0/D)(s/a)
2 and z!1. Predictions~5.3! and

~5.4! turn out to reproduce closely our experimental data for
ām , at least for not too large as/a value, as assumed in our
averaging procedures.

In the strong color regimet@TK , the escape process
takes place over any barrier, no matter what its height. This
implies that in theG caseās~t! increases substantially from
its minimum valueām up to close the unperturbed valuea.
This is not the case for a dichotomic noiseh(t) that switches
between two values6s, only.

One final remark: In the foregoing sections, we have con-
sidered the thermally activated process that occurs in a sym-
metric bistable potential coupled to an external noise source,
the coupling being multiplicative~that is, even in potential
notation!. The symmetry of the ensuing stochastic process is
thus preserved at any time. In fact, one might have consid-
ered the case of odd couplings, as well, where the external
noise alters the symmetry of the effective potential randomly
in time; for instance,

ẋ52V8~x!1j~ t !1h~ t !, ~5.5!

with V(x), j(t), and h(t) defined by Eq.~1.1!. It can be
easily proven that even for such a processTs~t! goes through
a minimum. Thus, the phenomenon of RA occurs in a variety
of circumstances where a thermally activated process is
coupled to an external source of colored noise with correla-
tion time of the order of the~unperturbed! system escape
time.

FIG. 10.D case: ^a&5ās(t) vsat for different values ofs/a.
Other parameter values are as in Fig. 1.
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