PHYSICAL REVIEW E VOLUME 54, NUMBER 4 OCTOBER 1996

Resonant activation in a bistable system
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The analog simulation of an overdamped Brownian particle in a quartic double-well potential driven by an
external(either Gaussian or dichotomimultiplicative noise is performed with special focus on the phenom-
enon of resonant activation. Such an effect is shown to occur on increasing the correlation time of the
multiplicative noise, while keeping the noise variance constant. The asymptotic behavior of the relevant escape
times for large noise correlation time and large variance is also investigated. Simple qualitative arguments are
produced to justify the results thus obtained. Furthermore, the traversal barrier, that is the effective barrier at
the time the system switches state, is shown to have a minimum for a certain value of the noise correlation
time, though not always in coincidence with the relevant resonant activation yalL@63-651X96)05610-3

PACS numbes): 05.40:+], 82.20.Mj

[. INTRODUCTION additive noiseD was kept much smaller than the unperturbed
potential barrier heighEy,=a?%/4b. The correlation time of
The problem of thermally activated escape over randomlyy(t) is the control parameter of the system under investiga-
fluctuating barriers has been very popular among chemicdlon. The simplest correlation function fop(t) one can
physicists for at least fifty years nojit]. A surge of fresh simulate,
interest in this topic was triggered recently by Doering and
Gadoua[2], who studied how the interwell mean-first- (n(O)n(t"))=(Qlr)exp(—[t—t'|/7) 1.2
passage timéMFPT) of a Brownian particle in a bistable
potential depends on the correlation timeof the barrier ~suffices to provide a clear picture of the RA phenomenon.
fluctuations. The observation that such a MFPT decreases fdiwo different 7(t) statistics were considered for the sake of
sufficiently small~ values and increases for asymptotically comparisonia) Gaussiar{13]. The noiser(t) is then a sta-
large 7 values, led these authors to suggest that a resonafienary Omstein-Uhlenbeck noise with variange=Q/7; (b)
activation(RA) phenomenon occurs, quite independently ofdichotomic[14]. The noise(t) flips between the constant
the details of the model considered. The basic ingredients ofalues *o with waiting times distributed according to a
such a phenomenon af8—12: bistability, a weak additive Poisson law with time constantr2
noise (responsible for thermal activatipnand a multiplica- The direct measurement of the MFPT in our analog simu-
tive noise with finite correlation time (modeling the barrier lator turned out to be a rather cumbersome mgftr13. In
fluctuations. The earlier literature, which followed the fact, foro<a two (sometimes, mojeexponential decay time
Doering-Gadoua seminal paper, focused mostly on the solifonstants are clearly distinguishable(i(t)x(0)), whereas
tion of particularly simple model§3—6]; subsequently, a for extremely larger values the very existence of an expo-
number of approximate schemes were envisaged to detefential tail becomes questionalji#l. For this reason we re-
mine the MFPT as a function of for any choice of the sorted to define the escape timér,o) as
bistable potential and barrier fluctuatiofs-11]. The gener-
ality of the RA phenomenon was thus confirmed for a wide
class of bistable systems.
In this article we conclude our analog simulation study of
RA in the overdamped quartic double-well potenfit®] where (x(t)x(0)) is the stationary autocorrelation function
of the procesx(t). The connection betwe€eR(r,0) and the
x=—V'(X)+ &(t) +xn(t), (1.9 relevant MFPT is not straightforward for>0 [19]: for
weak colorar<1 and low noise intensitie®<a, the MFPT
with V(x)=bx*/4—ax?/2 and a,b>0. Here, the additive for x to diffuse from one potential minimum up to the barrier
Gaussian noisé(t) represents the heat bath acting upon thetop is well reproduced by E@1.3). In fact, larger and/orQ
Brownian particle with coordinat&(t) and the force term values may modify the bimodal dynamics of the unperturbed
corresponding to the fluctuating barrier is factorized into the 7(t) =0] thermal procesx(t) (see Fig. 8 of Sec. ] the
product of a coupling functior, times a multiplicative noise notion of MFPT is, then, ill defined, wheredgr,o) keeps
7(t). Both noise sources are assumed to be zero mean valefining consistently the process relaxation time, no matter
ued. The correlation time of(t) is kept negligibly short what the 7(t) parameters. In the present report we try to
(namely, of the order of IG a!), whence(&(t)£(0))  adapt the MFPT formalism in order to approximatér,o)
=2D §(t). Throughout the present report the strength of theunder different color and noise intensity regimes.

T(7,0)= f:dt<x(t)x(0)>/<x2>, (1.3
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The outline of the present paper is as follows. In Sec. lidriven by a purely additive noisé&(t). The archetypal
we summarize the theoretical background required to and-okker-Planck equatiof®.1) with Q=0 has been studied in
lyze the results of our simulation work. In Sec. Il the onsetgreat detail[1]. An approximate expression for the Kramers
of RA is illustrated by plottingl' (7,0) versusr with eitherc  rate at low additive nois®/E,<1 readg18]
or Q constant and versus with 7 constant. A number of
intriguing features are thus revealed both for the Gaussian M= moeXP(—Eq/D), 2.2
and the dichotomic statistics of the multiplicative noise, ) ] o
which elude any theoretical scheme proposed s¢Zad 1. V\{here the prefactop, is a_weak functlon of th_e noise inten-
In Sec. IV most of the asymptotic behaviors are interpretedity- For the potential under investigation(1.1),
by means of simple intuitive arguments. In Sec. V the RAo=(av2/m)(1—3D/8Ey+--). In terms of the MFPT for-
phenomenon is investigated by introducing the notion of trafmalism, the reciprocal ofy coincides with the activation
versal barrieE, defined as the effective barrier the Brownian time Tyc from one potential minimun x,= \a/b up to the
particle overcomes at the time it crosses the separatria;  Parrier top. On the other hangy closely approximates the
here, a minimum oF is not always a direct signature of RA. first nonzero eigenvalue of the Fokker-Planck equatib)

The generality of the RA phenomenon is discussed further ifvith Q=0[1]. ForaTy>1 our experimental definition of the
Sec. VI. escape timél.3) is consistent with the standard definition of

the Kramers timél = u  * [18]. For the sake of a compari-

son, we recall that the MFPT between the two stable poten-

tial minima at =x,,, introduced for instance in Ref2], is
Before presenting the results of our simulation work wejust twice the Kramers time employed here.

summarize a few well-known predictions of the theory of

activated processes. The main purpose is to draw the reader’s C. The kinetic rate model

attention to the best understood limits of systéint).

Il. THEORETICAL BACKGROUND

The kinetic rate model of activated processes allows us to

S address two opposite limits of fast and slow barrier fluctua-
A. The multiplicative case (Refs.[15-18]) tions, respectively. Far from pretending to be exhaustive, we

The Fokker-Planck equation corresponding to the Langesummarize here the basic results following the approach in
vin equation(1.1) with & correlated Gaussian noise sourcesRef. [4]. Let us consider the simple case of a subthreshold
&t) and (t) reads[18] dichotomic noiser(t) (i.e., with o<a). The effective poten-
tial V(x)—x27(t)/2 flips between two bistable configura-
tions with barrier€E . = (a* o)%/4b. Here, it is assumed that
the adjustment into either state takes place instantaneously
after each switching event. This requires that the noise time
constant is sufficiently large, thatésr>1. Correspondingly,
two Kramers ratesu. (0)=T (o) over E. may be intro-
duced according to Eq2.2). At time t, a Brownian particle
where P(x,t) is the probability distribution function of the has probabilityn. (t) to be in the state with barrieg_. prior
stochastic procesx(t). For D=0 (purely multiplicative to activation(of course, equally distributed into the left and
cas¢ Eq. (2.1 can be solved analyticalj16]. Its stationary the right wel). The transition between the two statesoc-
solution P(x) =P(x,t—») undergoes an abrupt transition curs through two alternative paths: either the particle is
from a bimodal to a monomodal distribution by increasingthermally activated to the absorbing state at the barrier tops
the noise intensity) past the critical valu®=a (noise in- E., whence the Kramers escape mechanism with rates
duced transition Examples of the distributio®(x) for dif-  or the particle sits in one state as long as the dichotomic
ferent values of the circuital parameters are reported in Sedise flips by changing sign with rate W2see Eq.(1.2).
IV. In the absence of additive nois®@ =0, the Brownian Such a description leads to a linear system of two coupled
particle is confined in one semiaxis=0 or x<0 according ordinary differential equations far.(t), that is,
to the initial condition. A weak additive noise allows the
particle to diffuse over the barrier a=0. The relevant es-
cape time, then, depends on b@hand Q. However, since L . . _ )
our simulations were performed BX constant, we agree to with |n|t|al_cond|t|ons n.(0)=1/2 in the stationary regime.
denote such an escape timehy(Q). The dependence aF, The ql_Jant|tyn.+(t)+ n.,(t) dgnotes the probab!l!ty Fhat_the
on Q is well illustrated in Fig. 2 of Ref[15]: To(0) co- Brownian particle, being with a 50-5(_) probablht_y in either
incides with the Kramers ratgy introduced for the purely State=, has not yet reached the barrier top at timé&rom
additive casdsee Sect. Il & T, (Q) increases almost lin- the definition of the MFPT a3 = [ 4(n, +n_)dt, Bier and
early with Q for 0<Q<a and, finally, diverges faster than AStumian, after solving Eq2.3), eventually obtained
exponentially forQ>a. An analytical treatment off ((Q)
has been reported recently in REE0]. T=(prtp +2n)2pep +(pytp)i2r]. (2.4

d d 9?
R = — — 3
5 P(x,t) I [—ax+bx*]P(x,t)+D v P(x,t)

0 0
+Q 0—Xx5xP(x,t), (2.1

N.=(1/27)[—(1+27p.)n.+n], 2.3

N Two limits of Eq. (2.4) are remarkable: in the intermediate
B. The additive case(Refs.[1, 18, 19) color regimear>1 and%ﬂ;l_i_,u:l
A quantity which plays a crucial role in the present article

is the escapdor Kramer$ rate in a double-well potential T Y0,0)=[us(o)+u_(o)]2 (2.5
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FIG. 1. G case: T,(7)/Tx vs ar for different values ofo/a. cla
Other parameter values arfgy/D=2.75, a=4.7x10° s, and
Tc=8.5x103s. FIG. 2. G case: T (0)/Tk vs ola for ar=0.05 (curve J,
=0.24(curve 2, =0.48(curve 3, =2.4 (curve 4, =4.8(curve 5,
and in the strong color regimer—so =9.5(curve 6, =19 (curve 9, =29 (curve 8§, =43 (curve 9, =95
(curve 10, =240(curve 11, and=360(curve 12. Other parameter
T(,0)=[T.(a)+T_(0)]/2. (2.6) values are as in Fig. 1.

In the former limit the Kramers’ notion of rate is tenable and To(7) are displayed both for th& case(Figs. 1-3, 7 and

the relevant MFPT coincides with the reciprocal of the averthe D case(Figs. 4-7. Here, the subscript of the thrée
age rate over the fluctuating barrier. In the latter limit, thefunctions denotes the quantity we kept constant, while vary-
effective potentiaV(x) —x?7(t)/2 is almost static, so that a ing the parameter that appears explicitly in their argument.
MFPT can be defined for any potential configuration. TheMoreover, in our notatiorG case and case stay for the
rate notion is, then, lost and the stationary process MFPT isystem (1.1) with Gaussian and dichotomic noise source
defined as the average MFPT over all individual barrier re-7(t), respectively. For the reader’s convenience, we remind
alizations. This important conclusion can be easily proved irhim that the error magnitude on our measurements, @fr,

the Fokker-Planck formalism, too, for any noise statisticsand o/a was estimated to be smaller than §%2,13. The
[7,9].

The occurrence of RA is commonly associated with the
crossover between the two limiting regimegs5) and (2.6). S
A simple estimate of the crossover noise correlation time 1.0- RN
follows from the interpretation of the Kramers prefacjgy ’
in Eq. (2.2) as an attack frequency, namely, as the number of
unsuccessful escape attempts per unit of time the fluctuating v
particle makes in the average prior to a successful attempt. ':d

H o5 /

For uy7<1 the Brownian particle during its escape attempts
sees a rapidly fluctuating barrier, whereas fgr>1 it ther-

mally fluctuates in an almost static potential. // /
] - A/‘
IIl. RESONANT ACTIVATION 1 S ——Q=024a
— A ——Q=0.8a
In Sec. Il C we pointed out that for finite correlation times 0.0 a—" ——Q=24a
7 of the barrier fluctuation sourcél.2), the escape tim& AL A N
. . 0.1 1 10 100
depends onr and o, separately. Our simulation work was at

aimed at determining such a dependence over the broadest
range ofr and o values we could simulate. Our results are  FIG. 3. G case: Tq(7)/Tg vs ar for different values ofQ.
summarized in Figs. 1-7, where the curiie$r), T.(0), and  Other parameter values are as in Fig. 1.
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Other parameter values are as in Fig. 1.

main features of RA may be summarized as folldda2].
(i) Figure 1 for theG case and Fig. 4 for th® case
display the RA phenomenon predicted by Doering and Gad
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FIG. 6. D case: Tqo(7)/Tk vs ar for different values ofQ.
Other parameter values are as in Fig. 1.

value of the correlation time (denoted here byga), which
proves to be a function of botthandD. On increasingr the

RA minima shift towards smallerz, values. Such an effect

is more apparent in th® case. Note that in both cases
T,(mra) May be much larger tham,, especially for sub-
threshold noises, contrary to predictions extrapolated from
the simplified models of Ref$3, 4]. Figure 7 shows that, on
increasing the activation rati&,/D, the RA phenomenon is
enhanced. The dip of the curiig(7) at 7ry becomes deeper

oua[2]: The escape tim& ,(7) hits a minimum for a certain and shifts towards higherz, values(almost inversely pro-

portional toD). Such an enhancement, however, could not

be clearly detected by plotting the rafig.(7)/T(D).
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FIG. 7. T (7) vs ar for o/a=0.57 and different values db.
Other parameter values are as in Fig. 1.
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(i) In Figs. 1 and 4 several curvdg(7) are drawn for Most of the above results have been tested also for differ-
different o values. In the white noise limi&r—0, the mul-  ent noise correlation function. For instance, on replacing the
tiplicative noise strengtl®=c?r tends to vanish so that all RC filter simulating the correlation functiofl.2) for the G
T,(0) are expected to approadl , independently of ther ~ case by either a forth-ordéRC or an n-pole Butterworth
values. Our simulations seem to confirm this trend, even ifilter with n=2, 4, and 8, we reproduced properties-(iv),
we could not lowerar below 0.05. In the opposite limit Whereas the effect described in itew) is wiped out[12].
ar—o, our data hint at infinitely large escape times with
T,(7) proportional tor. Theoretical arguments,9] which IV. A QUALITATIVE INTERPRETATION

apply to our model, too, would predict large but_finite_values In this section we propose a simple interpretation of the
for T,(>). Unfortunately, we could not settle this point ex- resits detailed in Sec. Ill, mostly based on qualitative or
perimentally, due to the exceedingly large integration times,gristic arguments. The approximate schemes of Refs.
required. Finally, all curves in Figs. 1 ar]d 4 interse_ct oner7_11] would be, indeed, a viable tool to describe the RA
another for one value of the correlation timear=20, in-  phenomenon systematically. Unfortunately, the range of the
dependently of ther value and of the statistics of(t) (@t - and o values explored in our simulation work is often too
least, within our experimental accuracit the intersection  |imjted for a comparison with the theoretical predictions to
point T, equalsTy . be conclusive. For instance, the asymptotic predictions for

(iij) Figures. 3 and 6 make it apparent that for a given—l—g(oo) andT (=) in Ref.[7] and[9] are expected to become
barrier fluctuation strengt@, no RA occur412]. The curves e for exceedingly large values ofinda, respectively. As
Tq(7) all approach horizontal asymptotes for bath—~0and 5 general rule, we present our interpretation of the simulation
ar— [7,11]. In fact, forar—0 we are in the white noise 13 following the same itemization as in Sec. ll. Agreement
case studied in Ref15] andTqo(r)=To(Q) (see Sec. 1A (or disagreemepwith the predictions of more refined ana-
In the strong color limitar—, Ty, clearly converges to the lytical treatments will be mentioned explicitly.
finite valueTy . Note that forQ=a the curvesT 4(7) develop (i) The occurrence of RA in systeil.1) is commonly
a clear-cut maximum at large values. Moreover, they all justified as follows. In the weak color regimer<1, the
intersect one another for the same value of the noise cor&sy a1 expansion appliegl8,19: on increasingr, the po-
lation timear=20, where also curves, () do. tential function V(x) —x?7(t)/2 must be corrected into

(iv) Figures 2 and 5 show the dependencd gir) on o. V' (y)/(1+Qy?/D)dy, whence to first order im7 [9]
In the regime of weakar<l to intermediate color

a~1<r<Ty/2, the curves (o) fall off monotonically from (0,

the Kramers escape tinmg,(0)=Ty, down to what looks T(T’U):TKeXF{_(Q/D )ﬁ V' (x)x°dx

like an asymptotic valu& («). The modulus of the negative m

slope of T (o) at o=0+, increases withr, goes through a =Trexd — (4ar/3)(o/a)’(Ex/D)?]. (4.1

maximum and, then, decreases again. Consistently with the
RA phenomenon iterti) for each value ofr there exists one Equation(4.1) holds good for both thés and theD case
value of the correlation timeg, that sets a lower bound to provided thatar<(D/E,)(a/0)?, corrections to the prefac-
the bundle of curved (o). For values ofr of the order of  tor uy have been neglecteld0]. Hence, for smallar the
Tx/2 and larger, theG and theD case exhibit differences €scape time decreases with increastng In the opposite
which cannot be accommodated within the inaccuracies dimit 7Ty, the strong color regime of Sec. Il C predicts that
the experimental setup. In both cases, the slop&.of) is  the escape tim&(r,0) be the average of the times required
positive ato=0+ andT () defines an horizontal asymptote. by the Brownian particle to diffuse over each barrier con-
However, while in theD caseT (=) approaches the limiting figuration[2]. SinceTy is proportional to the Arrhenius fac-
value 2 over anar interval of at least two orders of mag- tor expEy/D), the longest escape times dominate in the av-
nitude, i.e., for Zar<2x10? the behavior ofl () in the  eraging procedure, whenc®(r,0)>Ty for 7>Ty. More
G case is more complicated. For extremely largealues, — Precisely, to leading order in d+ and Ey/D)(o/a)?
say 7>2T, the existence of the asymptcig(ec)~7 is ex-
perimentally well assessed. For Ty the apperoach of (o) To()=Tyexi2(a/a)%(Ey/D)?] (G case (4.2
to an asymptotic valud (») is much slower, though our
data suggest that for this range of the correlation times, too,
T (o) ought to converge to values not much larger than T,()=Tkcost2(o/a)(Eq/D)] (D case. (4.3
Finally, a remarkable similarity between ti&@ and theD
case in the weak noise limit: we verified that far<1, Expressions foll () at largero values are proven below to
namely, for the interval 0&ar<0.5 reported in Figs. 2 and verify the inequality T, ()>Tx. The RA minimum of
5, T () becomes independent of and the multiplicative T,(7) is thus expected to occur at the crossover between the
noise statistics. This result would imply th&g(Q) defined two color limits, namely, for values of the noise correlation
in Sec. Il A tends to a finite limit for increasingly larg@¢  time 7 of the order of the inverse attack frequency of the
values. escaping Brownian particle out of a fluctuating wWéll—see

(v) In the ranger~T the curvesT (o) in Fig. 2 reveal a  Sec. Il C. The rough estimagerg,~7/v2 obtained from Eq.
further property of thes case, which is totally absent in the (2.2), fails to reproduce th® and o dependence ofz, . As
D case. These curves exhibit a maximum for a certain valua matter of fact, Figs. 1 and 4 prove beyond any doubt that
of o, which in turn increases with. Such an effect tends to 1/arg, increases almost linearly wittva over one order of
disappear in the strong color limit. e.g., fer2T . magnitude, at least. Furthermore, Fig. 7 shows #wat, is
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proportional toEy/D in the small but significant interval function of eitherQ/r in the G case or/Q/ in the D case.
(2.0-8.0. Anyway, the minimum ofT,(7) occurs in the Moreover, all curved () intersect one another at one point
broad interval Xar<aTy/2, where the intermediate color for the same reason why the curvEs(r) do, so that their
regime of Sec. Il C applies an@i,(7) approximates the re- intersection point is located byo(T«/2)=Ty . Such a fea-
ciprocal of the escape rate averaged over all barrier realizaure, not predicted by the approximate schefvesl1], was

tions. For small noise strengths/a)?< D/2E, recently reported in Ref20].
. 5 5 (iv) The behavior ofT (o) at small o/a values can be
To(a "<7<Ty)=Tyexd —2(Eq/D)“(o/a)7] easily understood in terms of kinetic rate model of the escape

process. In the weak color regimme—0 [more precisely, for
(G case (44  ar<landar<(D/Ey)(a/o)?] T,0)is approximated by Eq.
(4.1. Its negative slope increases in modulus withs ob-
served experimentally. For very largevalues ands/a—0,
instead, we observe that the curvEgo) in Figs. 2 and 5
become independent of the noise correlation time. According
to the limiting regimes of the kinetic rate model

and

T (a l<r<Ty)=Tg/coshH(2E,/D)(o/a)] (D case.
(4.

Equations(4.4) and(4.5) provide a lower bound td@ ,(7ga).

— -1
The present analysis seems to rule out RA as the signature of THo)=T(a " <r<Tx) (4.6
a well-defined resonance mechanism. for 1<ar<aTy/2 and
(i) From Eq.(4.2) the white noise limitar—0 for T (7)
in Figs. 1 and 4 read$_,(0)=Ty, as expected. Moreover, T(0)=T,(*) 4.7

the condition for the validity of Eqi4.1) ar<(D/Eg)(a/o)?
tells us why the approach & (7) to T for ar—0 is in- for 7>2Ty with T (a l<r<Ty) and T, (») for
creasingly slower for large/a values. In the opposite limit (o/a)><D/E, given in Egs.(4.4) and (4.5 and Egs.(4.2)
ar—oo, the kinetic rate model predicts that () is well  and (4.3), respectively. We note that for relatively large
approximated by Eqg4.2) and (4.3 for small noise inten- values(ar>1) T (o) approached either linearly(D case
sities and by similar, more general expression for larger or quadraticallyG case in o/a. Such a difference becomes
values. Our data, instead, show a linear dependen@g(ef  apparent by comparing Figs. 2 and 5.
on 7 in the range of 3&ar<300 (Figs. 1 and % which The asymptotic behavior df (o) for a/a— looks rather
appear to be consistent with the asymptotic behavior ofomplicated. Standard calculatiofid)] based on the notion
T,(0) at larger (Figs. 2 and h However, the reader should of rate make no sense at largé values, since for>a (D
be aware that the two limiting procedures do not commutegase and (o/a)?>D/2E, (G case the full bistability of the
i.e., in principle,T () # T (). The coincidence of the two system is lost. Indeed, if we take the limifa—x at large
limits, here, is possibly due to the fact that the values but finite 7 values, the kinetic rate model should be applied
obtainable in our simulator are not large enough for a conwith some caution. Our argument runs particularly simple in
clusive statement about the asymptotic behaviof gifr) to  the D case. When 5(t)=+o0, the effective barrier
be issued. In fact, digital simulatiofi8] suggest thaf () E,=(a+o)?%4b may be so high that the relevant escape
is attained only fomr>10", that is well beyond the capabili- time T. is by far too long, for the Brownian particle to
ties of our circuitry[13]. Finally, a peculiar feature of the escape from one well into the other within the time tRe
family of curves plotted in Figs. 1 and 4 is the existence ofdichotomic noise takes to flip front o to —a. Whenz(t) =
the intersection point at aboat-=20. On taking notice that —a, no effective barrier exists far>a and relaxation of the
aT,=40 (both in theG and D case, this is equivalent to Brownian particle in the corresponding monostable well at
state thafl ,(7) is independent of for Ty=27. Correspond- Xx=0 occurs on a time scale of the order ofTo6r o>a with
ingly, in both Fig. 2 and 5 there should exists a horizontall/oc<7 (barrier-no-barrier regime It follows immediately
curve T (o) =Ty for 7=Ty/2. In the D case(Fig. 5 this  that under these circumstances the escape Tirtre) is de-
effect is apparent, whereas in tl@& case(Fig. 2) a finer termined by the flipping time of the driving multiplicative
tuning of the control parameterwould be needed to select noise, whence our prediction.(«)=27 (D case in both the
an (almos} constantT (o)—see item(iv) below. intermediate and strong color regimes. In terms of the kinetic
(iii ) The curvesT(7) of Figs. 3 and 6 prove that no RA equations(2.3), this regime corresponds to setting=0 at
occurs for Q=c?r constant, as predicted theoretically in any time, whencd =27/(1+2u., 7) with u, 7<1.
Refs.[8] and[10]. Moreover, the two limiting value$ 4(0) The generalization of the barrier-no-barrier picture to the
andTq() are well explained in terms of the results of Sec.G case is not straightforward. The noise correlation time is
Il. For ar—~, the variance of the multiplicative noise still expected to set the time constant of the process correla-
a?=QI/r vanishes, whence the barrier fluctuations do not aftion function(related above to our escape timé might be
fect the escape process any longer ang{)=Ty. For  argued[21], though, that for Xar<aTy/2 the two-state
a0, the white noise limifT,(Q) is recovered. Our data mechanism outlined for thB case is a viable approximation
for To(0) are in qualitatively good agreement with predic- to the G case, as well. The escape rate would be negligible
tions (2.7—(2.9 of Ref.[10] and obey the same trend ob- for 7(t)>0, due to the presence of the confining unperturbed
served first in Refl15]. The occurrence of théy(7) maxima  barrier E;, whereas relaxation would occur on a time scale
at larger values can be easily explained on the ground of thenuch shorter tharr for 7(t)<0. This remark would justify
arguments of itemsi) and (ii); the asymptotic escape times the approximate asymptofE,(«)=27 reported in Ref[12]
(4.2) and (4.3 clearly indicate thafTo(7) is an increasing for the G case and the common intersection point of all the
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FIG. 8. P(x) in the G andD case for different values air.  tend to disappear when-pole filtering techniques are em-

Other parameter values are as in Fig. 1. ployed with n=2. Such bumps are located at around
o (o/a)®=D/2E,, thus marking the transition from strong

T (o) curves atr=T/2—see itentiii). Whenrgrows much  color to the barrier-no-barrier regimes of the kinetic rate
larger thanT,, the escape process takes place also for @nodel. Analogously, in th® caseT (o) reaches its asymp-
substantial fraction of the barrier configurations wig?0.  totic value 2 for o=a, that is when full bistability is lost.
The two statest cannot be identified uniquelisee Fig. & For reader’s convenience, we display in Fig. 8 the prob-
the Fokker-Planck equation for continuous processes begpjlity distribution functionsP(x) of the stationary process
comes a more appropriate formalism. The global relaxatior(t) for a few significant choices of the parameterand .
time would be, then, controlled directly by the correlation The difference between the and theG case becomes ap-
time of the driving noise, whencg ()= (G case. The  parent for larges and 7 values. In theD case the curves
authors of Ref[?] quest|0n the eXponen“al naturelof the P(X) for a1 are C|ear|y reproduced by the Superposition
(x(t)x(0)) decay itself. The accuracy of our simulation de- of the probability distributions of two quasistationary pro-
vice does not allow to clarify this point any further. cesses with barrier configuratiors. , respectively. As a

Finally, we study the limif (<) in the weak color regime  consequence, for>a the curvesP(x) develop three sharp
ar<l. In such a regimey(t) boils down to a white noise peaks corresponding to a probability 1/2 for the central peak
source with diverging strength, that @>D. As a conse-  and 1/4 for each side peak. In ti& case curve®(x) with
quence the action of the additive noigt) is completely  three maxima are observable, too, but the relevant peaks,
superseded by the effect of the multiplicative noig€), S0 especially the side peaks, become very broad. Such a differ-
that the analysis in Refl17] for a purely multiplicative  ence is related to the different asymptotic behaviof )
bistable system applies. It was proved there that the relaxn Figs. 2 and 5 and o (7) in Figs. 9 and 10—see Sec. V.
ation time(1.3) in a system like ourg1.1), with no additive

noiseD =0, approaches a constant fQ¥a—o, namely,
V. THE TRAVERSAL BARRIER

aT (o)=m/2. (4.8 _
To conclude we discuss now a new characterization of

This prediction is closely verified for the first time by our RA, which was suggested to us by a remark in Doering and
simulations. Equatio4.8) applies both to th® andG case, Gadoua articld2]: “In the neighborhood of the resonant
since in thear—0 limit with o constant the effects of the activation,|...] the crossing occurs almost exclusively when
noise statistics become indistinguishabl&l]. Note that in  the barrier is in the lower state.” In order to give this state-
this regime, too, the limitsar—0 and o/a— are not ment a more quantitative footing we introduce here the no-
interchangeable—see itefi). tion of traversal barrier: any time the Brownian particle
(v) The bumps in thd (o) curves forr~Ty are a pecu- crosses the barrier leve,=0 after having crossed it at time
liarity of the Ornstein-Uhlenbeck procesgt) (1.2, and t=0, the relevant traversal timtg and the instantaneous lin-
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finite correlation time regimes, we limit ourselves to the con-
dition that full bistability is preserved, that is

-\_\ s (ola)’< D/2E, (G qqse} ando<a (D case. As for RA, we
A\ . expect that the minimum oé,(7) occurs when the noise
\\ correlation timer is of the order of the escape attempt time
., \.\.‘.‘—./

1.0

in the potential wells and, therefore, much shorter than the
escape times over thE. barriers. As a consequence, the
\ average traversal linear drift coefficient seen by the escaping

\ \ particle in the intermediate color regime is
N

. a,=a—(nu(n){p(n)). (5.2

In the D case, the average:-) is taken with respect to the
two state distribution of the noisg(t), that is,(1/2) 8 n—o)
and u(n) is the escape rate over the barrier of the effective
potentialV(x) —x?7/2. The average escape ra{g$z)) have
been computed explicitly in Sec. IV for both noise statistics.
Hence, our estimate fa,, in the D case reads

(a)la

\ \-\.\,__,/'/.

——o=03 ay/a=1—(ola)tant (2E,/D)(c/a)]. (5.3

0.04 ——ola=057 [ SN

—a—ogla=1

Notice that our fitting lawm5.1) follows Eq. (5.3) immedi-
041 1 10 100 ately for D<E, and o/a constant(but, curiously enough,
also foro>a). In the G case, the average--) is taken with
at respect to a Gaussian distribution with variane& A
straightforward calculation yields

FIG. 10.D case: (a)=a,(7) vsar for different values obr/a.
Other parameter values are as in Fig. 1. a_m/a: 1(1+2) (5.4

ear drift coefficienta+ #(t,) are recorded. Averages over as with z=(2E,/D)(o/a)? and z<1. Predictions(5.3) and
many as 18level crossing events are taken to determine the5.4) turn out to reproduce closely our experimental data for
distribution oft,, and the traversal linear drift coefficient a_, at least for not too large a/a value, as assumed in our
a=a+ 7(t,). Hence, fora positive definite, the correspond- averaging procedures.
ing traversal barrier reads=a?/4b. Note that our definition In the strong color regime>T,, the escape process
of traversal barrier corresponds to a snapshot otakes place over any barrier, no matter what its height. This
V(x)—x%n(t)/2 at timet,, whereas the traversal processimplies that in theG casea,(7) increases substantially from
would require a finite time, possibly much larger than its minimum valuea,, up to close the unperturbed valae
In Figs. 9 and 10 we plot/a versusar for different  This is not the case for a dichotomic noigét) that switches
values ofo/a in the D and G case, respectively. In both between two values o, only.
cases, on sweepirgyr through the entire range of simulated  One final remark: In the foregoing sections, we have con-
values, the functiom,(7) goes through a minimura,,. The  sidered the thermally activated process that occurs in a sym-
value of a,, is reasonably well approximated by the naive metric bistable potential coupled to an external noise source,
fitting law the coupling being multiplicativéthat is, even in potential
_ notation). The symmetry of the ensuing stochastic process is
am/a=1-ola GD  thus preserved at any time. In fact, one might have consid-
ered the case of odd couplings, as well, where the external
noise alters the symmetry of the effective potential randomly
in time; for instance,

for any value ofo/a. A significant difference between the
two cases rises when we try to locate the minimagf). In
the G case, the relevant RA correlation timg, seems to
locatea,, as well(even whera,, is negative), whereas in x=—V'(x)+ &(t) + (1), (5.5
the D case the minima o#,(7) are much shallower, shifted
towards much higher values and tend to disappear as with V(x), &t), and »(t) defined by Eq.(1.1). It can be
approaches. L easily proven that even for such a proc&sér) goes through
The dependence i (7) on ar can be represented as a minimum. Thus, the phenomenon of RA occurs in a variety
follows. In the weak color regimar—0 ando constant, the of circumstances where a thermally activated process is
effect of the multiplicative noise becomes negligible, be-coupled to an external source of colored noise with correla-
cause its strengt@=c?r tends to vanish. Hence, () ap-  tion time of the order of thgunperturbell system escape
proachesa independently of the value aof. To study the time.
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