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Random matrix approach to quantum dissipation
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The microscopic origin of dissipation in collective motion of a quantum many-body system is addressed in
the framework of a parametric random matrix approach to the intrinsic dynamics. There are noticeable viola-
tions of the fluctuation-dissipation theorem and the energy diffusion has a markedly non-Gaussian character.
Such features do not support the usual Fokker-Planck approach to dissipation in large amplitude motion of
many fermion system$S1063-651X96)05510-9

PACS numbgs): 05.40+j, 05.60+w, 24.10.Cn, 24.66:-k

I. INTRODUCTION has become clear that the fluctuation properties of the com-
plex many body system agree well with predictions from
While theory and experiment have gone a long way in thegandom matrix theory11]. This has been extensively tested
study of the collective nature of large amplitude nuclear mo4in recent years on the experimental side as well as in many
tion, the theoretical understanding of the coupling betweemuclear models. With this in mind, we will construct a
the collective and the intrinsic degrees of freedom, in parHamiltonian which is consistent with the observed fluctua-
ticular, the understanding of the character and mechanism difon properties in nuclei, using a parameter dependent ran-
the energy exchange between them, is still in its infancydom matrix description for the intrinsic nuclear states. This
Most of the approaches are more or less phenomenologicalill allow us to explore the problems of diffusion and dissi-
in nature. Hill and Wheele[1] suggested more than forty pation in collective motion.
years ago that Landau-Zener transitions are at the origin of The basis of our approach is explained in Sec. Il, where
nuclear dissipation. Implicit in this interpretation is the pre-we formulate the problem of collective motion using a path
sumption that “irreversibility” is of quantum origin. Other integral approach. An effective collective dynamics can be
quantum approaches have also been emplf®kduch as in  obtained by averaging over the fast degrees of freedom. The
the linear response modg3], the hopping modeJ4], path ~ main purpose of this section is to discuss the central element
integral method5,6], and others. On the other hand, many of the path integral formalism, the influence functional. We
formulations are basically classical in spirit as, for exampleJimit the discussion to the behavior of the coupling between
the so-called “wall formula’[7]. These include the more slow and fast modes and on how dissipation emerges. This is
pragmatic phenomenological models, such as the Langevidone in Sec. Ill for the case of a finite Hilbert space for the
and Fokker-Planck equatiofi8], Maxwell's model for fric-  fast dynamics. In Sec. IV, we extend the results to the case of
tion with memory effect§9], and to a certain extent kinetic an infinite number of levels for the intrinsic subsystem,
approaches, e.g., two-body dissipation mechani§ils  where analytical results are obtained and discussed in the
More recently, in an analysis of a generic problem ofadiabatic and diabatic limits. Finally, numerical results are
coupled slow and fast degrees of freedom, Berry and Robgiven, in particular, for the evolution of the diffusion con-
bins [10] obtained friction for the slow subsystem when stant from the adiabatic to the diabatic limits.
treating the entire system classically, the key requirement
being that both these subsystems had a continuous spectrum. II. INFLUENCE FUNCTIONAL APPROACH
It is clear that the present status of our understanding of TO COLLECTIVE MOTION
the quantum or classical nature of dissipation as well as its
microscopic origin in many-body quantum systems is far The physical systems we explore are many body systems
from complete. In this article, we would like to approach thewhich exhibit excitations on two distinct time scales, de-
problem of dissipation in many-body systems using parametscribed by collective(slow, which we shall denote with
ric random matrix theory techniques. This is based on thé,X) and intrinsic (fash degrees of freedontdenoted by
fact that, from the study of experimental nuclear propertie,x). We assume that the Hamiltonian of such a system can
from the low energy regime to compound nuclear states, ibe expressed in the following form:

H(X,P,x,p)=Hq(X,P)+H(X,X,p). (D)
“Electronic address: bulgac@phys.washington.edu
TElectronic address: dodang@psisun.u-psud.fr The dynamical couplings between the slow and fast modes,
*Electronic address: dimitri@nst4.physics.yale.edu characterized bid,, can be viewed as a heat bath coupled to
$pPermanent address. the collective Hamiltoniad . In order to derive an effective
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54 RANDOM MATRIX APPROACH TO QUANTUM DISSIPATION 3469
collective dynamics, we need to integrate out the effects dewhere the quantityZ;;(X,X’) is called the influence func-
scribed byH;. The path integral formalism introduced by tional andp(X;,Xj,t) is the density matrix of the slow sub-
Feynman and Verno}b,6] is particularly well suited for this system at timet. The pathX’(t) satisfies similar boundary
purpose. The transition amplitude between direct producgonditions as the patk(t), namely,Xy=X'(ty) att=ty and
states Wi(X,x) = ¢n(X) xi(x) and V(X,x)=¢n(X)x1(X)  ending atX;=X'(t;) att=t;. We will see in Sec. IV that
has the form(extension to more general wave functions isthe influence functional, under some rather general assump-
obvious tions, and after performing an appropriate statistical averag-
ing, has the form

i(ti—to)H ,
Amf,ni:<¢me|eX T h |¢nXi> — I [t ,
Litf(X,X")=exp — & : dtVis(X(1), X" (1) |, (4
0
— *
_J X1 0X0Pm(X1) én(Xo) whereV;; (X(t),X’(t)) is a function of the “right” X(t) and
i “left” X'(t) paths and the overline stands for ensemble sta-
XJ DX(t)exp = So(X (1) | (x| t|'st|ce}l'averag|ng, which we shall dls'cuss below. ThI.S can be
h simplified further by summing over final and averaging over
- initial states.
_ ! The dynamics of the density matrix of the slow sub-
XTe — | dtH(X(t i
XF{ ﬁfto 1X( ))) ) systemp(X,X’,t), can be found from inspection of Eq8),
4
= | dX;dXp¢5(X X jDXt .
J axaxssionsixa [ oxa 13p(X, X D=[HoX) ~ Ho(X') + Vi (X, X) Jp(X. X" 1)

i =H(X,X")p(X,X",1). 5
xexp[gso(xa»}mf(xa)). @ (XXOpXLY ©
The dynamical evolution of the slow subsystem, after having
) ) integrated out the fast subsystem, is described by an effective
In the amplitudeAny,;, X(t) represents a path starting at gepraiinger equation with twice as many degrees of free-
Xo=X(tp) at t=to and ending atX;=X(ty) at t=t;.  gom. The only thing that is left from the fast subsystem is an
So(X(t)) is the classical action corresponding to the sloWggfactive potentialV;;(X,X') acting in this double configu-
subsystem, described by the Hamiltonldp(X), andT isa  ation space.
time ordering operatokln most of' the formulas we shall not The description of the slow dynamics through the effec-
dlsplay the dependence_ of various quantltles. on the sloye Hamiltonian (X, X') has a number of advantages over
variablesx,p.) The quantityK;(X(t)) is the matrix element  ,iher traditional approaches. For instance, in contrast to the
of the time evolution operator of the fast subsystem for aytical model, unitarity is never violated, so that there is no
given slow pathX(t), and describes the dynamical interac- |oss of probability(see Ref[12]). This is because the optical

tions between the two subsystems. = _model is derived for the amplitudes, ,; (which are aver-
~ From the amplitude, one computes the transition probabilygeq over the internal motiprather than the transition prob-
ity abilities. Even though there is a constant energy exchange

between the slow and fast subsystems, which can be inter-
preted as dissipation, the total energy is nevertheless con-
|Amf,ni|2=f d X1 dXod X1dXg¢m(X1) dm(X1) dn(Xo) served. The same is also true in principle for any other inte-
grals of motion, such as total linear momentum, total angular
, , momentum, parity, and so forth.

X ¢:(X0)J DX(U)DX'(1) Feynman and Vernofb] have discussed several possible
cases, when the influence functional can be explicitly evalu-
ated. The case of an infinite ensemble of harmonic oscilla-
tors, which play the role of the fast subsystem, has been
extensively used in condensed matter physics to study the

xax;{;—l(so(X(t))—So(X’(t))}

XKir (X(D)KFX' (1) influence of dissipation on tunneling phenomé¢hd]. While
an infinite ensemble of harmonic oscillators is appropriate to
= f dX1dXod X1d X5 (X1) dm(X1) n(Xo) model phonons, it is not suited for the many fermion systems

we have in mind. In the situations studied in REf3] the
phonon energies extend down to zero and thus there is no
X ¢:(X6)f DX(t)DX'(t) formal separation of time scales, between fast and slow de-
grees of freedom. There is another more important reason

[ , ) why a Caldeira and Leggett approdd8] is not appropriate

xexr{%(SO(X(t))—So(X (t))}ﬁif(x’x ) for our purposes here. There, the character of the dissipation
is assumed to be in the ohmic regime. The dynamics of the
' x , , fast degrees of freedom is postulated in such a way as to
=f dXadX3 m(X1) (X)) p(X1, X1, 1), (3 jaad, within the adopted framework, to the expected dissipa-
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tive character. In our case, we know a great deal about the Removing the part of the total Hamiltonian corresponding

fast dynamics, but we do not know the character of the disto this constant motion, what remains is the Hamiltonian for

sipation mechanism, which is the problem we want to studythe fast subsystem. This can be defined through its matrix
The density matrix approach can also be formulated dielements in a fixed\-dimensional basis as

rectly from the Schrdinger equation
[H(X)]ij=[Holij +[H1(X) Jj; - (11)

Hy is taken to be diagonal and defines the average density of
where ' (X,x,t) is the wave function of the entire system. states, with(k|Hg|l)=[H]i= &xdk - AlthoughH, does not
By tracing over the fast variables one defines the density depend parametrically X, it will become evident from our

i W (X, x,t)=[Ho(X,P)+H(X,x,p) J¥(X,x,t), (6)

matrix for the slow subsystem in the usual manner results that the introduction of a coordinate dependence in
this part of the Hamiltonian is straightforward.
' ey — * , In the basis of the eigenstatestdf, we defineH(X) as
pIXXT0) f W (XX, OW (X%, 1), ™ a parameter dependemM X N real Gaussian random matrix,

. o which is completely specified by its first two moments
The resulting dynamics is now

i7ip(X, X' 1) =[Ho(X) ~Ho(X)]p(X,X",1) [H:(0 ) =0,

[H1(X) 1ii[H1(Y) T =[8ik6j1 + i1 6, 1Gij (X=Y).
+f dxW* (X', x,t) (12)

X[H (X, X)—H (X", )] (X,X,t). We assume thatl (X) has time reversal symmetry, so that
the averages are performed with respect the Gaussian or-
®) thogonal ensembléGOE). If we break time reversal invari-
ance,H(X) becomes a complex Hermitian matrix, and one
must consider the Gaussian unitary ensemi@&JE). As
noted in Ref[12], it is simple to extend our formalism re-
sults to the GUEG;;(X—Y) is a “bell shaped” correlation

The main difficulty with this approach lies in the evaluation
of the last term, which requires the knowledge of the full
wave function of the many body system. Within the frame-
work we develop in this article, we will show that the effec- . ; RO
tive potential V(X,X’) in the alternate formulation of Eq. fu.nctlon with a charactgn;ﬂc widtXo. The dependence on
(5), has a surprisingly simple form after performing the sta-'’J aII_ows for the description of banded matrices, where an
tistical average over different realizations of the fast Sub_effectlve numb_er of statebly<N are _coupled byHl(x) .
system. The path integral formulation of the problem allows[l.z]' The coordlna_lte dgpendence of this parameterization im-
us to devise relatively simple ways to evaluate the influencé’l'es”that corIeIatlons n the_ system C"_”?Spor‘}?'r.‘g o d|,f,fer-
functional as well as this effective potential. The statisticalE"t “Shapes” X are effective only within a "distance
averaging procedure is equivalent to averaging over the fa$f(Xo)- In a finite system such as an atomic nucleus, if the
motion or ergodicity of the fast motion, which is the formal SIOW coordinate is deformation, thef can be, for example,
basis of the applicability of the random matrix theory to the deformation necessary to change completely the charac-

many-body systems. ter of the wave function of the intrinsic degrees of freedom.
It should be noticed, from the definition a1, that In the case of the quadrupole deformatioty~AS~5/A
[14] (hereg is a dimensionless measure of the asphericity of
H(X,X")=—H*(X",X), (9)  anucleus and is the number of nucleonswhich is indeed

a very small change of the deformation. The average level
so that not all solutions of Eq5) have a direct physical density ofH for each fixed shapX is determined mainly by
interpretation as density matrices for the slow subsystenmt,, while its spectral fluctuation properties are determined
Only those solutions which satisfy the requirement that by H4(X).

Even though our formalism is not restricted by the form
p(X,X",t)=p* (X", X,t) (100 of G it is convenient to use an explicit parameterization,
which incorporates the density of states and the bandwidth of

describe an actual time evolution. the statistical fluctuations explicitlys]

I1l. DRIVEN SYSTEM WITH CONSTANT W0 (8i_8j)2 X
COLLECTIVE VELOCITY Gii (X) = —exp{ — —2} G(—) . (13)
! Vp(en)p(s)) 2k5 Xo

In order to derive an expression for the influence func-

tional and to assess how the energy is transferred from thé&/e will treat the functionG(x) as a phenomenological
slow (X) to the fast k) modes, we will first study the case quantity. HereG(x)=G(—x)=G*(x)<1, G(0)=1, and
where the slow modes evolve with a constant velodlty W, kg [No~ xop(e)] and X, are characteristic of the given
according toX(t) =Vgt. This corresponds to neglecting the system. In terms of these quantities, we will express the ve-
reaction of the fast system on the slow motion. With thislocity Vo as a dimensionless quantity, with the implicit di-
assumption, we can solve for the quantum dynamics of thenensions oXy /Ty, whereT,, the characteristic time scale,
fast subsystem, and obtain analytic results for situationgs taken to be unity. To use again a nuclear example, an
analogous to the conventional adiabatic and diabatic limits.appropriate value fok, is of the order of 10 Me\{6,15].
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ing the time dependent Schiioger equation

i [t
%\/ zp(t)=Tex;{—%Jods H(X(s))
\/%//\/ whereT is the time ordering operator, aiift) the propa-

gator.(We assume that the initial statg0) is uncorrelated
P AN T VA with the HamiltonianH 1 (X(t)) at later times; correlated ini-
tial conditions have been discussed elsewhé&.) Using
Egs. (12) and resumming all leading order diagrams in the

o perturbation expansion @f(t) in the limit Ng>1, one can
W\" show that the average propagatdft) =u/(t) is diagonal in
W the representation we have chosen and its diagonal matrix
WW elements satisfy the following system of coupled integral
5 AN 4/“f\~ww equationd12]:

0 2 6
X

$(0)=U(t)4(0),

E,(X)

1t sy
Ui (t)y=exp(—igt/h)— Jd f d
FIG. 1. Instantaneous eigenvalue spectfEniX) as a function 3 X i) n? 0 51 0 %2

of the “shape” (X), for a Hamiltonian of the ensemble defined by .
Egs. (11)—(13), with [Holx=kdy, using the correlator Xexp(—ie s, /h)U(t—sy)
G(x) =exp(—x%2) (top) and G(x) =exp(—|x|) (bottom.

N
xgl Gin(X(81) = X($))Un(s1—5,). (15

For any fixedX, the spreading widtli'! is essentially energy In order to compute averages of observables, we need to
independentmore exactly, there is no exponential energyintroduce the set of generalized occupation number prob-
dependence, in spite of the exponential increase of the aveabilities
age level density in agreement with experimental findings

[8]. Moreover, the distribution of the matrix elements of Nty ) = (Wt [k)(K g (o))

H.(X) has a shape very simil§f6] to that extracted from

either nuclear and atomic shell model Hamiltonians or other =2 (Ut [K)(Klu(tp)[1)n(0),  (16)
I

models for many-body systenp$5,17].

The distinction between various choices f&(x) is im- ) ) .
portant. If we consider the leading order behavior ofWhere m(t)=Ai(t,t) is the occupation probability of the
G(X)=1—c|x|*+---, then a=2 results in the instanta- Statell). Ni(ty,t,) satisfy the following set of integral equa-
neous eigenvalues dd(X) evolving smoothly inX, while ~ tONS:
0< a< 2 correspond to the instantaneous eigenvalues diffus- "
ing stochastically inX. Other values ofx are not possible Nilty,t2) = Ui (t) Ui(t2)ni(0)
within this type of random matrix theofd8]. This is illus-

1 [t t
trated in Fig. 1 where we taljgHy], =kdy,, resulting in a + Ff 1dslf 2d322 Ni(s1,S5)
constant average level density for the instantaneous spectra, 0 0 '
En(X), of H(X). In Fig. 1(top), we use a Gaussian correla- X Gi(S1—5) UL (t;— 5 U(ty—Sp). (17)

tor G(x) =exp(—x?/2), and in Fig. 1(bottom), an exponen-

tial G(x) =exp(~|x)). Notice that the conventional adiabatic These equations specify the time evolution of the system,
limit does not exist for the exponential, as the individual 3nq pelow we shall study the numerical solutions of Egs.
energy levels undergo Brownian motion on sho_rt dlstancq15) and (17) and the velocity dependence of the diffusion

scales(Such nonsmooth paths are encountered in the quannstant, and in the next section, the extension of the formal-

tum treatment of the slow dynamics in the path integral forgm to the regime &N,<N—, where we find analytic
mulation. In that case one has to perform a summation ovgjyits and a great simplification of the formalism.

nondifferentiable pathX(t), due to quantum fluctuations.
The spectra in Fig. 1 are intended only to give an intuitive
picture about the character of the Hamiltonian. In our ap-
proach we never diagonalize the instantaneous Hamiltonian Consider the situation of a constant average level density
H,(X), but solve the corresponding time dependent Schro([Hol=kdk, —N/2<k, I=<N/2), as in the case of a two-
dinger equation. The approximation we consider is the leaddimensional stadium billiard. Equatio$5)—(17) have been
ing order in 1Ny [12]. In this limit of largeN, our approach solved numerically forN=101, a bandwidthNy=21, a
can deal with any type of correlation functidg®(x) and a  Gaussian correlatiorG(x) = exp(—x%2) with X,=1, and
well defined adiabatic limit exists even in the case of expodnitial conditionsn,(0)= 6y . ( Hereafter, in all numerical
nential correlations. results we show we také=1 and expres¥/ in units of
The time evolution of the fast subsystem is found by solv-X,/T,.) The resulting occupation numbeng(t) are shown

Constant level density
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0.000 FIG. 3. Velocity dependence of the diffusion constaniV)
0 2 4 from the adiabatic to the diabatic limits. We usg=1 (which thus
t sets the unit of lengdhWypo=1 (po thus defines the energy units

po=>5 (the lowest four curvesand xypy= 15 (the highest four

K
FIG. 2. The time dependence of the occupation probabilitiescﬁrves_ The curves correspond upwardly 8p,=0.0, 0.05, 0.1
n(t), fork=0, ... ,50[in this casen,(t)=n_,(t)], wherek counts 54 0.2 respectively.

from top to bottom in the figure, for the case of fags=4 (top),
and slow, Vy=1/16 (bottom), driving velocities. The units of
lengths are defined a§;=1 and that of time follows fronk =1

andpy=1. where E(t) = (¢(t)|[H(t)| #(t)). It is important to note that

the energy variance is time dependent only for a time depen-

dent Hamiltonian. For example, if we were to consider the
in Fig. 2 for the cases of fastVp=4, top and slow caseV,=0 one would still have the initial transient time
(Vp=1/16, bottom driving velocities. As the results are evolution of the occupation number probabilities we have
symmetric with respect to the indéx n,(t)=n_,(t), only  mentioned above. However, there will be no time depen-
levels withk=0—50 are shown, counting from the top of the dence of the energy variance in such a case. This is a trivial
figure. One might expect that even a small driving veIocityStateme”_t for the time evolut.|0n of a given time independent
would result in a complicated time evolution, as the Hamil- #amiltonian. The fact that this feature is preserved after per-
tonian is time dependent and has many small gaps in thf rming the statistical average in theNtleading approxima-

. ... tion we use throughout this work, is one more consistency
instantaneous spectrum, where Landau-Zener transitio

) L O "Eheck, which can be proven rigorously.
might be expected to occur and thus “irreversibility” is in- In Fig. 3,D(V,) can be seen to exhibit a quadratic veloc-

duced[1]. Actually, as we have discussed at length in Ref.jty, Jependence in the adiabatic limit, in contradiction to nu-
[12], this mechanism, which has been advocated in Manyerous previous claim]. In the case we consider here of
previous treatmenfg], is valid only for isolated level cross- 3 symmetrical initial distributiom,(0) and constant level
ings and thus is unrealistic when there are many nonisolategensity, the average energt) is time independent, hence
ones as shown in Fig. 1. the reaction force on the slow system, in particular, the fric-
In Fig. 2, one can distinguish two time scales: a relativelytion force, exactly vanishes. This is consistent in a somewhat
rapid initial transient behavior, followed by a slower evolu- trivial way with a fluctuation-dissipation theorem in the fol-
tion. While the initial transient is almost identical in both lowing sense. Expressed as= 8D, where y is the “fric-
cases of fast and slow motion, governed by the same spreatlen” coefficient andg=1/T=d Inp(e)/de=0 is the inverse
ing width "', the long time behavior is strikingly different. thermodynamic temperature, we have the expected result
For small driving velocities, the time evolution apparently dE(t)/dt=y=0. (Note that the rate of energy loss for the
rapidly equilibrates, and can be understood in terms of thélow subsystem is-dE(t)/dt=—y.) WhenH is time inde-
Vo—0 limit, corresponding to constant random matrix pendent, botAg(t) andE(t) are also time independent. The
theory. For large velocities there is a steady evolution to @bsence of “friction” in this case is relatively easy to under-
different probability distribution. The initial transient behay- Stand. The initial occupied state was chosen in the middle of
ior arises only because our initial occupation probabilitiesth® Spectrum, in order to minimize the spectrum edge effects.
n(0) do not correspond to an instantaneous eigenstate gince the average level density is constant, there are an equal

; L ber of levels above and below the initially occupied
H(0). Thesubsequent long time behavior is due to the ex-"UMber of. . above ar -cupl
plicit time dependence of the Hamiltonia#(t) and would state. This in conjunction with the fact that the Hamiltonian

C is symmetric leads to this trivial behavior. As soon as we
be absent for a time independent one.

The diffusion process associated with these time eVolugzon&der realistic systems with increasing level densities, the

tions can be characterized by the energy variakgé) and fast subsystem will heat up.
the energy diffusion constait(V,), defined by IV. CHARACTERISTIC FUNCTIONAL APPROACH

AE(t)z(¢(t)|[H(t)—E(t)]2|z//(t)>t:wconstk 2D(Vy)t, While the coupled dynamics of the occupation number
(18  probabilities becomes an increasingly difficult computational
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problem for largeN, it is possible to take an additional limit The case3=0 corresponds to the situation we have analysed
N—co and obtain some major simplifications of the formal- in the preceding section, of constant average level density,
ism. For this purpose, let us introduce the characteristic funcwhile the case of finitg8 approximates a many fermion sys-
tional tem.

The great advantage of this form of the evolution equa-
tions is that one has to solve only one equation at a time for
lg(t2)) each value of the parameter instead ofN-coupled equa-
tions [compare Eq(23) with Egs.(17)], which is a signifi-
cant simplification. Moreover, various analytic solutions can
be obtained, as we exemplify below, by analyzing the adia-
batic and the diabatic evolutions of the occupation numbers.

iHo(T—t +t
N(tl,t2,7)2(¢(t1)|ex4¥

o (7—ty+t
zf dskp(Sk)/\/’k(tlatz)eXF{sk(TTIZ) '

(19
This is essentially the Fourier transform of the generalized A. Adiabatic limit
occupation numbergl6) and (17) with respect to the index It is useful to introduce two time scale@) the character-
k istic time scale for the slow motion,,= Xy /Vy and(ii) the
characteristic time scale for the fast degrees of freedom,
1 Tast= M/ ko. The adiabatic limit corresponds to
Ni(ty,t) = mf dr Mty,ta, 7) Teiow= Xo/ Vo> Tras= T/ k. If the conditionk,B<1 is also
Lok fulfilled (this condition is essentially equivalent to having
B=0), one can replac®(s) by an appropriately chosen
(20 Dirac é function in the equations for the propagatdt) and
the generalized occupation number probabilities

The equal time functionaNit,t,7) is correspondingly the M(t1:tz2,7). Then the equation for the propagaieft) can

Fourier transform of the occupation number probabilitiesP® Solved and the solution is
ne(t). The distribution of the occupation number probabili- Wit
o(t)= exr{ — )

ig (7—t,+t
xex;{— ()]

ties can be defined in terms of a cumulant expansion = (25)

N(t,t,r)=exp[; <<w<t)IH8lw(t>>>%

, (21 Even though this expression satisfies the initial condition
o(0)=1, itis not valid for very small times=O( r¢,s) [12].
During times of the order ofy,.; the functionP(s) cannot be

where((y(t)|Hg|(t))) are the cumulants. If we assume an gpproximated by a Dirad function, these time intervals

initial condition consisting of the occupation of a single statewithin this approximation being effectively compressed to

Ng(0)=1 andn;(0)=n_;(0)=0 for j#0, then we find that  zero. One can now establish that for >0

for a system with a realistic level density of the form

p(e)=poexp(Be) the propagator o(t)=explet/h)Uy(t)

[note o(t) is state independehand NV(t;,t,,7) satisfy the /\/’(t,t,r)zexp{ -

evolution equations

2’7TWOt " 2 7TWO
h h

Wy T Vo7
2mW, [t s; xXexp — 7 G -
cr(t)zl—Tf dslj ds,0(51—5y)0(Sy) 0
° ° thd p{ ZWWO(t—S)]
—s,)V sexp ——————
XP(Sl_Sz)G((S]-)(&), (22) T h
° XN(s,s—7,7), (26)
27TWO ty tr
N(tl,tz,T):O'*(tl)O'(tz)"f‘ A f dslf dSZ % 27TWot WWOT] 2’7TWO (VoT)
0 0 Nt t—7,7)=exp — + G| —
h f f Xo
XMsleZaT)P(Sl_SZ_T)G(m) t 2mWo(t—s)
Xo xf dsexp[——ﬁ )/\/’(S,S—T,T)-
Xo*(t1—81)o(t,—Sy), (23

(27)

with the correlatog;; (X) of the form of Eq.(13) andP(s) is
G (X) a(13 ) The second of these equations can be reduced to a linear

given by homogeneous equation of first degree fdft,t—7,7), by
2 2 taking the time derivative, and can be easily solved. The

P(s)=P*(—s)=Lex;{—K—02 S+ih_ﬁ) } generalized occupation number probabiliti&gt,t,7) can
J2mh 2h 2 then be directly computed by integration, after which one

(24)  obtains(for t=|7|)
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27W, V L(1)=N(X(1),X'(1),0), 31
/\/(t,t,r)=exp{— 7; 0[1_G(Txoﬂ(t_|7_|) (H)=NMX(1),X'(1),0) (32)
0 we see that it satisfies a relatively simple evolution equation
2Wo| 7]
[ (28 27Wot |  27W,
L(t)=exp — W + 5

In the adiabatic limitG(7Vy/Xy)—1 and the first term in

the exponential vanishes. The occupation numbgfk) af- % ftdsexpl’ _ 2mWo(t—Ss) ]G(X(S)_X,(S)>E(S)_

ter the initial transient time interval seen in Figs. 2 are then 0 h Xo

found to be 32)
Wo

N=———. (29 Note also that the “left”X(t) and “right” X'(t) trajectories
e+ mW5 are different. FoX(t)=X'(t), this influence functional sat-

) ) o ) . isfies the identityL(t)=1 as required. Solving the integral
This Lorentzian shape is identical with the constant randongquation leads to

matrix theory result, see Refl2], with the identification

I''=27W,. In the adiabatic limit, during a time= 7, the 27Wy [t X(s)—X'(s)
slow variables hardly change and thus the dynamics of the £()=eéxp —— Jo 1-G X, ds
fast system is almost identical to the dynamics governed by a 33

constant random Hamiltonian. Our initial state in the middle

of the spectrum, chosen ag(t=0)=1, is spread over an i should be clear that in this case one can use a correlator

energy interval~I"'=2mW, and the distribution has a ¢ (x,Y) of a general forntherefore relaxing the “transla-
Lorentzian shape. If the Hamiltonian is time independentyjonga| invariance” we have assumed to this paint

after this time there would be essentially no further evolution  Ngtice that, as the result of the symmetric initial distribu-
of the average occupati_on number probabilities. The subsgjyp, and8=0, there is no frictionimaginary componen}s
quent dynamical evolution of the fast system occurs onlyi the above influence functional. To get friction, consider
because the Hamiltoniaki(X(t)) is time dependent, and the next order corrections to the adiabatic limijg<1. In

only the subsequent time evolution of the system leads tgyjs jimit, we replace the functioR(s) in Egs.(22) and(23)
dissipation and entropy production in the long time limit. ity

One can now explicity evaluate the cumulants
() [HE|(t))). All odd moments oH vanish identically
[sinceG(x) = G(—x) and thus there are only even powers of P(s)—o
7 in the expansior{21)]. The reason for this is our assump-

tion that «x3—0, which we shall lift shortly below. In the The evolution equation for the propagator, and therefore its

limit t-—c, all even cumulants oH, increase linearly in  solution, remains unchanged up to first order corrections in
time. If G(x) = exp(—x72) (we shall use this form hereafter g The equation for the generalized occupation number prob-

s+ g) . (39

for illustrative purposeésthen in the limitt— o abilities, however, now reads
2mWot (A Vo) 2" (2n)!
2n _ 0 _0 7TW0(t1+t2)
<<ltb(t)|HO |lr//(t)>>_ 3 XO ) 2nn! ’ N(tl,tz,T):eX[{_T
ThWoV3  [AT ) AT ZWWOJH ftz
=— 20 1" _|\2=| —— + ds; | ds,Msy,s,,7)
A P M 2 R
(I''=27W,) resulting in a non-Gaussian distribution. A X 8 31—52_T+ﬁ G(M)
Gaussian process would have only the first two cumulants 2 Xo
nonvanishing. The diffusion constant is extracted from the AWo(t;—S;+t,—S,)
time dependence of the second cumulant according to Eq. xex;{— AR ﬁl 2 > (35)
(19).

These solutions for the propagator and the generalize
occupation number probabilities are remarkable in sever
respects. We have obtained them for an arbit@¢y) in an
analytical form. Since the dynamical evolution of the fas
system is much faster than the slow motion, the propagat
in this approximation in insensitive to the form @&(x).

y analytically continuingG[ (X(s1) — X'(s2))/ X1, and ex-
tending the integration contour into complex time plane, this
tequa’cion can be solved following the same steps outlined
d’;bove. WherX(t) =X’ (t) one thus obtains that

: - W, [t X%(s) nB\2
Hence, the propagator will have the same expression even Mtt.7)=ex 77 Of ds i 2 36
when the time dependence of the slow degrees of freedom is (tt.7) hoJo o X3 2 - (39

arbitrary, not necessarib{(t) =V,t, as we have assumed so
far. In particular, noting that the influence functional is given This solution is valid only ift>r and only in the first order
by in B and second order im. It follows then that:
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1 2 2\ /[ \n
() Hol (1)) =5 BUUDH3 w(1)) IO 07 = 2”Z§y°“°exp( p 8“0) (%)
0
AW, [t - .
:BWX 0 OdSX(S)2 (37) <H (_IKO,B) ¢ 42
5 T2z "

which is an integral from of the fluctuation-dissipation theo-, hare H (x) are Hermite polynomials, resulting in a non-
rem. However, since the higher cumulants are nonvanishinq;aussia?] diffusion of the occupatior; numbers. From Eq.
this dynamics is certainly non-Gaussian. Consider again thag) and the second cumulant we find in this limit a com-

case of constant velocity(t) = Vt. After similar manipu- pletely different velocity dependence
lations of E@s.(22) and (23) one obtains for3>0 and

t—o that TiXokd(B2Kka+4) [ B%k3\]1
D(V0)=[ 872 xp( 8 ”V— (43
N p[ 2W, ( Ny ih ﬁV0> 0
(t.t,m)=ex h Xo 2Xo It is worth noting that in Eq(18) we use the full Hamiltonian
i BV for the fast system, namely(t) =Hy+H,(t), in order to
_ G( — 0” ] ) (38) extract the diffusion constalt(V), while in this section we
2Xo only use moments dfl, for the same purpose. In the-o

limit these two ways of determininB (V) lead to identical
Once again, this formula is correct up to first ordegionly.  results. The fluctuation-dissipation theorem, obtained from
Since for >0 the average level density is increasingthe first and second cumulants is
with energy, there are on the average more transitions up-
ward in energy than downward and hence the fast sub- BzKé
system is heated. For this reason the odd cumulants BD=y 4 |’
((¢(t)|HG|w(t))) are nonvanishing, and “friction” is
present sincé(¢(t)|Ho| ¢(t)))>0. From Eq.(38) it follows  showing that3D = y is not generally satisfied.
that the odd cumulants are given by the following expres-
sions:

1+

(44)

C. Numerical results for arbitrary velocities

For arbitrary velocities we have to resort to a humerical
(POHE ()= §<<¢(t)|H§n|l/f(t)>>. (39)  solution of Eqs(22) and(23). As we have discussed above,
these equations correspond to a Hamiltonian with an infinite
number of levels and we have solved them for a variety of
The casen=1 corresponds to the Einstein fluctuation- parameter values and several typical results are presented
dissipation theorem. here. In Fig. 3 we show the behavior of the diffusion con-
stant,D(V,), from the adiabatidEq. (30)] to the diabatic
[Eq. (43)] limit for some values of the parametgr. In all
] i ) o ) casesP (V) evolves from quadratién the adiabatic limit
Another simple solution can be obtained in tti@batic  to inverse velocity dependendén the diabatic limij. At
limit, when7gjo,=Xo/Vo<Trast=1i/ ko. Then it is reasonable high velocities, the system becomes increasingly less
to replace the correlato(s) by an appropriately chosen opaque, as reflected in the decreasing diffusion constant. A
Dirac o function, namely, similar behavior is observed for the first cumulant, i.e., the
(81—8,)V Vo (= average rate of heating, which as a function of the velocity
G(#)_,g(sl_sz)_of dsGs). (40) Vo has a similar aspect with (Vo). This is reminiscent of
Xo XoJ —o the motional narrowing phenomenon in NMR. At low
enough velocities the fast system has almost sufficient time

One can proceed now in a similar fashion as in the adiabatit® “"accommodate” to the new environment, while the
limit and determine the propagat@'(t) and Subsequent|y Shape X Changes. In the OppOSIte limit of h|gh Ve|OCItIeS,
the generalized occupation probabilities. After some lengthyhe “shape”X evolves so rapidly that the system can barely

B. Diabatic limit

algebra, we find react to the changes. Consequently, the energy diffusion is
maximal only for some intermediate velocity regime, when
2.2 the “slow” motion is in “resonance” with the “fast” dy-
27TXOW0KO KoB H — i
Mt,t,r)=exp — > namics, namely, whenrg,=Xy/Vy is comparable to
Vo 8 Tras= Tt/ k. IN Fig. 4, we plot the ratio of3D/y, whereD

2 : 2
— ex;{ ﬂ(é +'_T) ) (42) lants as a function of velocityy. When the ratio is unity, the
2\2 h Einstein form of the fluctuation-dissipation theorem is found.
Noticeable differences occur at large velocities.
This is similar to the functional form found in the adiabatic = The behavior oD (V) and the crossover from the adia-
limit. Again, all the cumulants dfl, increase linearly in time batic to the diabatic velocity dependence can be seen in a

and y are computed from the first and second order cumu-
J
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2.0 ({(t)|Hglw(t))) as functions of time for several average
Vo= 10 level densitiep(e) = poexp(Be). The velocityV, and range
of time have been chosen such thgt>X, and thus the
=~ Vo= 5 asymptotic behavior already sets in. These values of the pa-
B 1.5 rameters are approximately midway between the adiabatic
Q. and diabatic limits. In spite of this, the relations between the
Vo= 1 cumulants, Eqs(39), are satisfied to good accuracy. In par-
1.0 ¥=1/10 ] ticular, as one can also see in Fig. 4, the expected relation
following from the Einstein fluctuation-dissipation theorem
0.00 0.25 0.50 between the friction and diffusion coefficients is satisfied

B reasonably well foB/py<0.1. As we have discussed above,
the large values of the cumulants beyond the second one are
FIG. 4. Deviation from the fluctuation-dissipation theorem as aindicative of long tails in the occupation number probability
function of 8=1/T. For low velocities, the theorem is largely sat- distributions. As in the adiabatic and diabatic cases, these
isfied. However, for large velocities it is violated even at moderatecymulants increase approximately linearly with time.
temperatures. Here we u¥g=1, Wypo=1, andkgpy=5.

V. CONCLUSION

simple parametrization of the results in Fig. 3. By combining We have presented numerical and analytical solutions of
the results for the constant level density situation, we findhe time dependent evolution equations of a driven complex

that

D(Vo)=

Tl kg (VolVe)?

20 1+(VolV,)®

where the critical velocity/, is defined as

guantum system, such as a nucleus, when the level density is
large. The parametric random matrix approach chosen here
incorporates the essential attributes of the intrinsic dynamics:
an exponentially increasing level density, GOE spectral fluc-
tuations and loss of correlations during large amplitude col-
lective motion. We have shown that the resulting energy dif-

fusion process is non-Gaussian in character, that the energy
V :XOKO_ (46) distribution has long tails and determined the nontrivial ve-
¢ h locity dependence of the energy diffusion constant, which
. ) . ) vanishes folVy—0 andVgy—oo.
A similar formula is easily obtained for the case of noncon- 1o present approach treats the fast subsystem quantum
stant level density 8+ 0), in which caseV. acquires 88 mechanically and the slow subsystem classically, as has been
dependence as well. From this form of the diffusion constantysne often in the pa$P]. As we have discussed above how-
one can see that the crossover occurs for velocities near th&er the inclusion of quantum effects into the slow motion is
critical velocity Vo~V as argued above. now possible. The energy diffusion process is described in

In Fig. 5 we show the first four cumulants terms of intrinsic characteristics of the many-body system
(thermodynamic temperatug®, spreading widtH™!, «x, and
3 Xp) andV,. It is notable that the average level spacing or
1 . .
of <<Ho (t)>> average level density are absent in these results, contrary to
what one might have expected. As it was noted in REZ]
1 also, the presence of the average level density or average
0 " level spacing in an expression for the diffusion constant is
o0} <<Ho (t)>> unreasonable, since this would lead to an exponential depen-
10 dence of the diffusion and friction coefficients with the size
of the system. The average level spacing decreases exponen-
0 ) tially with the number of particles, since its natural logarithm
150 <<Hp"(t)>> is proportional to the negative of the entropy of the system,
100 which is an extensive quantity.
50 It is not clear yet whether the intrinsic characteristics
0 . ', ko andX, have a meaningful classical limit separately or
1500} <<Hp“(t)>> only in a given combination, and this seemingly points to an
1000 apparent lack of a classical limit for the fast degrees of free-
500 dom (h—0) of the solutiong30), (43). In Ref.[10], friction
% 02 was obtained only in a classical treatment of both fast and

t

slow system, while in Ref(6], dissipation and friction ap-
pear only in an explicit quantum treatmepath integral of

the entire system and the presence of quantum fluctuations in
the slow subsystem was essential. The wall fornidldeads

to a diffusion constanD V3 as we have obtained here for
small V, [see Fig. 3 and Eq30)], but is essentially a clas-
sical result, which does not depend in any significant way on

FIG. 5. The first four cumulant§ ¢(t)|[Hg|#(t))) as a function
of time for Xo=1, Woppo=1, kgpo=5, andVy=10. The solid lines
are there as a guide. The curves correspon@/ie;,=0 (0), 0.1
(©), 0.2(X), and 0.3¢). For small values of3 one finds a very
good agreement with E¢39) as expected.
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i, and apparently reflects a different underlying mechanismand the intensity of these transitions depends on the rate of

It will be highly desirable to identify the classical limit of the change of the direction of the magnetic field.

present approach. One interesting aspect of our analysis is the form of the
The most salient feature of the solutiof®8) and (38) influence functional. From Eq@8) we do not expect the

becomes evident when one considers the asymptotic behagguation for the reduced density matrix to be local in time.

ior of the cumulants. Since cumulants of higher than secon®Rather we expect

order are nonvanishing, Gaussian processes are not obtained

in any of these limiting cases for the energy diffusion. As a

result the distribution of occupation numbers has very long

tails. In particular, folVy=0 the distribution corresponding

to Eqg. (28) has a Lorentzian shape, as might be expected

from constant random matrix theory. These features imply + Jt

that a Langevin or Fokker-Planck approach to energy dissi-

pation is at least questionable. As we have discussed in Ref. (47)

[12] these results apply equally to the GUE case. One might

be surprised by this result, Sif‘ce _the frequency of small IeveEven though memory effects are explicitly present in the
separations for a GOE Hamiltonian is larger than for GUEevolution equations for the fast subsystem, they vanish in the

one and thus one would expect that in the adiabatic Iimite : : C
o quation for the slow subsystem, as seen in the explicit so-
there should be more transitions for GOE than for GUE cas tions presented herge.g., Eq.(33)]. This is true in the

as would be the case if the energy level separation dlstnbu—diabatic limit, which is perhaps of most interest. In this

#:’CrlofgdF}g\?vebae':d?#e'zfgr?éarﬂ_ezcgﬁgsfrgr%ﬁ;e rfgg golirmir'::q' spect, our approach is qualitatively different from the ear-
S, ’ : ) - ier and more familiar approach in condensed matter physics
applicability as one can easily ascertain from the followmgOf Caldeira and Leggefti3], based on the form for the in-

S'”?p'e example_. Imagine a spin 172 In a magnetic f'?ld*ﬂuence functional for an infinite number of oscillat¢s.
which changes its direction in some arbitrary manner. Since

the magnitude of the magnetic field is constant the splitting We thank H.A. Weidenmiler for stimulating discussions
between the two instantaneous levels is time independenand correspondence, the Centre National de la Recherche
Now change the direction of the field very slowly and very Scientifique(C.N.R.S) and Universitede Paris-Sud for fi-
rapidly and consider that initially the spin was in the lower nancial support, and the computer facilities at IDRIS and
level. According to the Landau-Zener formula there will be NERSC. This work was also partially supported by NSF and
no transitions in either case. It should be obvious howeveDOE. The Laboratoire de Physique Tngue et Hautes En-
that there will be transitions from the lower to the upper levelergies is a Laboratoire asso@e CNRS, URA 0063.

idyp(X, X", 1) =[Ho(X) —Ho(X") ]p(X,X",1)

t
dt'V(X, X 1t p(X, X" t').
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