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The microscopic origin of dissipation in collective motion of a quantum many-body system is addressed in
the framework of a parametric random matrix approach to the intrinsic dynamics. There are noticeable viola-
tions of the fluctuation-dissipation theorem and the energy diffusion has a markedly non-Gaussian character.
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many fermion systems.@S1063-651X~96!05510-9#
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I. INTRODUCTION

While theory and experiment have gone a long way in the
study of the collective nature of large amplitude nuclear mo-
tion, the theoretical understanding of the coupling between
the collective and the intrinsic degrees of freedom, in par-
ticular, the understanding of the character and mechanism of
the energy exchange between them, is still in its infancy.
Most of the approaches are more or less phenomenological
in nature. Hill and Wheeler@1# suggested more than forty
years ago that Landau-Zener transitions are at the origin of
nuclear dissipation. Implicit in this interpretation is the pre-
sumption that ‘‘irreversibility’’ is of quantum origin. Other
quantum approaches have also been employed@2#, such as in
the linear response model@3#, the hopping model@4#, path
integral method@5,6#, and others. On the other hand, many
formulations are basically classical in spirit as, for example,
the so-called ‘‘wall formula’’ @7#. These include the more
pragmatic phenomenological models, such as the Langevin
and Fokker-Planck equations@8#, Maxwell’s model for fric-
tion with memory effects@9#, and to a certain extent kinetic
approaches, e.g., two-body dissipation mechanisms@7#.
More recently, in an analysis of a generic problem of
coupled slow and fast degrees of freedom, Berry and Rob-
bins @10# obtained friction for the slow subsystem when
treating the entire system classically, the key requirement
being that both these subsystems had a continuous spectrum.

It is clear that the present status of our understanding of
the quantum or classical nature of dissipation as well as its
microscopic origin in many-body quantum systems is far
from complete. In this article, we would like to approach the
problem of dissipation in many-body systems using paramet-
ric random matrix theory techniques. This is based on the
fact that, from the study of experimental nuclear properties
from the low energy regime to compound nuclear states, it

has become clear that the fluctuation properties of the com-
plex many body system agree well with predictions from
random matrix theory@11#. This has been extensively tested
in recent years on the experimental side as well as in many
nuclear models. With this in mind, we will construct a
Hamiltonian which is consistent with the observed fluctua-
tion properties in nuclei, using a parameter dependent ran-
dom matrix description for the intrinsic nuclear states. This
will allow us to explore the problems of diffusion and dissi-
pation in collective motion.

The basis of our approach is explained in Sec. II, where
we formulate the problem of collective motion using a path
integral approach. An effective collective dynamics can be
obtained by averaging over the fast degrees of freedom. The
main purpose of this section is to discuss the central element
of the path integral formalism, the influence functional. We
limit the discussion to the behavior of the coupling between
slow and fast modes and on how dissipation emerges. This is
done in Sec. III for the case of a finite Hilbert space for the
fast dynamics. In Sec. IV, we extend the results to the case of
an infinite number of levels for the intrinsic subsystem,
where analytical results are obtained and discussed in the
adiabatic and diabatic limits. Finally, numerical results are
given, in particular, for the evolution of the diffusion con-
stant from the adiabatic to the diabatic limits.

II. INFLUENCE FUNCTIONAL APPROACH
TO COLLECTIVE MOTION

The physical systems we explore are many body systems
which exhibit excitations on two distinct time scales, de-
scribed by collective~slow, which we shall denote with
P,X) and intrinsic ~fast! degrees of freedom~denoted by
p,x). We assume that the Hamiltonian of such a system can
be expressed in the following form:

H~X,P,x,p!5H0~X,P!1H1~X,x,p!. ~1!

The dynamical couplings between the slow and fast modes,
characterized byH1, can be viewed as a heat bath coupled to
the collective HamiltonianH0. In order to derive an effective
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collective dynamics, we need to integrate out the effects de-
scribed byH1. The path integral formalism introduced by
Feynman and Vernon@5,6# is particularly well suited for this
purpose. The transition amplitude between direct product
statesC i(X,x)5fn(X)x i(x) and C f(X,x)5fm(X)x f(x)
has the form~extension to more general wave functions is
obvious!

Amf,ni5^fmx f uexpF2
i ~ t12t0!H

\ G ufnx i&

5E dX1dX0fm* ~X1!fn~X0!

3E DX~ t !expF i\ S0„X~ t !…G ^x f u

3T expS 2
i

\Et0
t1
dtH1„X~ t !…D ux i&

5E dX1dX0fm* ~X1!fn~X0!E DX~ t !

3expF i\ S0„X~ t !…GKi f „X~ t !…. ~2!

In the amplitudeAmf,ni , X(t) represents a path starting at
X05X(t0) at t5t0 and ending atX15X(t1) at t5t1.
S0„X(t)… is the classical action corresponding to the slow
subsystem, described by the HamiltonianH0(X), andT is a
time ordering operator.~In most of the formulas we shall not
display the dependence of various quantities on the slow
variablesx,p.! The quantityKi f „X(t)… is the matrix element
of the time evolution operator of the fast subsystem for a
given slow pathX(t), and describes the dynamical interac-
tions between the two subsystems.

From the amplitude, one computes the transition probabil-
ity

uAmf,niu25E dX1dX0dX18dX08fm* ~X1!fm~X18!fn~X0!

3fn* ~X08!E DX~ t !DX8~ t !

3expF i\ (S0„X~ t !…2S0„X8~ t !…G
3Ki f „X~ t !…Ki f* „X8~ t !…

5E dX1dX0dX18dX08fm* ~X1!fm~X18!fn~X0!

3fn* ~X08!E DX~ t !DX8~ t !

3expF i\ (S0„X~ t !…2S0„X8~ t !…GLi f ~X,X8!

5E dX1dX18fm* ~X1!fm~X18!r~X1 ,X18 ,t !, ~3!

where the quantityLi f (X,X8) is called the influence func-
tional andr(X1 ,X18 ,t) is the density matrix of the slow sub-
system at timet. The pathX8(t) satisfies similar boundary
conditions as the pathX(t), namely,X085X8(t0) at t5t0 and
ending atX185X8(t1) at t5t1. We will see in Sec. IV that
the influence functional, under some rather general assump-
tions, and after performing an appropriate statistical averag-
ing, has the form

Li f ~X,X8!5expS 2
i

\Et0
t1
dt Vi f „X~ t !,X8~ t !…D , ~4!

whereVi f „X(t),X8(t)… is a function of the ‘‘right’’X(t) and
‘‘left’’ X8(t) paths and the overline stands for ensemble sta-
tistical averaging, which we shall discuss below. This can be
simplified further by summing over final and averaging over
initial states.

The dynamics of the density matrix of the slow sub-
system,r(X,X8,t), can be found from inspection of Eqs.~3!,
~4!

i\] tr~X,X8,t !5@H0~X!2H0~X8!1Vi f ~X,X8!#r~X,X8,t !

5H~X,X8!r~X,X8,t !. ~5!

The dynamical evolution of the slow subsystem, after having
integrated out the fast subsystem, is described by an effective
Schrödinger equation with twice as many degrees of free-
dom. The only thing that is left from the fast subsystem is an
effective potentialVi f (X,X8) acting in this double configu-
ration space.

The description of the slow dynamics through the effec-
tive HamiltonianH(X,X8) has a number of advantages over
other traditional approaches. For instance, in contrast to the
optical model, unitarity is never violated, so that there is no
loss of probability~see Ref.@12#!. This is because the optical
model is derived for the amplitudesAmf,ni ~which are aver-
aged over the internal motion! rather than the transition prob-
abilities. Even though there is a constant energy exchange
between the slow and fast subsystems, which can be inter-
preted as dissipation, the total energy is nevertheless con-
served. The same is also true in principle for any other inte-
grals of motion, such as total linear momentum, total angular
momentum, parity, and so forth.

Feynman and Vernon@5# have discussed several possible
cases, when the influence functional can be explicitly evalu-
ated. The case of an infinite ensemble of harmonic oscilla-
tors, which play the role of the fast subsystem, has been
extensively used in condensed matter physics to study the
influence of dissipation on tunneling phenomena@13#. While
an infinite ensemble of harmonic oscillators is appropriate to
model phonons, it is not suited for the many fermion systems
we have in mind. In the situations studied in Ref.@13# the
phonon energies extend down to zero and thus there is no
formal separation of time scales, between fast and slow de-
grees of freedom. There is another more important reason
why a Caldeira and Leggett approach@13# is not appropriate
for our purposes here. There, the character of the dissipation
is assumed to be in the ohmic regime. The dynamics of the
fast degrees of freedom is postulated in such a way as to
lead, within the adopted framework, to the expected dissipa-
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tive character. In our case, we know a great deal about the
fast dynamics, but we do not know the character of the dis-
sipation mechanism, which is the problem we want to study.

The density matrix approach can also be formulated di-
rectly from the Schro¨dinger equation

i\] tC~X,x,t !5@H0~X,P!1H1~X,x,p!#C~X,x,t !, ~6!

whereC(X,x,t) is the wave function of the entire system.
By tracing over the fast variablesx, one defines the density
matrix for the slow subsystem in the usual manner

r~X,X8,t !5E dxC* ~X,x,t !C~X8,x,t !. ~7!

The resulting dynamics is now

i\] tr~X,X8,t !5@H0~X!2H0~X8!#r~X,X8,t !

1E dxC* ~X8,x,t !

3@H1~X,x!2H1~X8,x!#C~X,x,t !.

~8!

The main difficulty with this approach lies in the evaluation
of the last term, which requires the knowledge of the full
wave function of the many body system. Within the frame-
work we develop in this article, we will show that the effec-
tive potentialV(X,X8) in the alternate formulation of Eq.
~5!, has a surprisingly simple form after performing the sta-
tistical average over different realizations of the fast sub-
system. The path integral formulation of the problem allows
us to devise relatively simple ways to evaluate the influence
functional as well as this effective potential. The statistical
averaging procedure is equivalent to averaging over the fast
motion or ergodicity of the fast motion, which is the formal
basis of the applicability of the random matrix theory to
many-body systems.

It should be noticed, from the definition ofH, that

H~X,X8!52H* ~X8,X!, ~9!

so that not all solutions of Eq.~5! have a direct physical
interpretation as density matrices for the slow subsystem.
Only those solutions which satisfy the requirement that

r~X,X8,t !5r* ~X8,X,t ! ~10!

describe an actual time evolution.

III. DRIVEN SYSTEM WITH CONSTANT
COLLECTIVE VELOCITY

In order to derive an expression for the influence func-
tional and to assess how the energy is transferred from the
slow (X) to the fast (x) modes, we will first study the case
where the slow modes evolve with a constant velocityV0
according toX(t)5V0t. This corresponds to neglecting the
reaction of the fast system on the slow motion. With this
assumption, we can solve for the quantum dynamics of the
fast subsystem, and obtain analytic results for situations
analogous to the conventional adiabatic and diabatic limits.

Removing the part of the total Hamiltonian corresponding
to this constant motion, what remains is the Hamiltonian for
the fast subsystem. This can be defined through its matrix
elements in a fixed,N-dimensional basis as

@H~X!# i j5@H0# i j1@H1~X!# i j . ~11!

H0 is taken to be diagonal and defines the average density of
states, witĥ kuH0u l &5@H0#kl5«kdkl . AlthoughH0 does not
depend parametrically onX, it will become evident from our
results that the introduction of a coordinate dependence in
this part of the Hamiltonian is straightforward.

In the basis of the eigenstates ofH0, we defineH1(X) as
a parameter dependent,N3N real Gaussian random matrix,
which is completely specified by its first two moments

@H1~X!#kl50,

@H1~X!# i j @H1~Y!#kl5@d ikd j l1d i ld jk#Gi j ~X2Y!.
~12!

We assume thatH(X) has time reversal symmetry, so that
the averages are performed with respect the Gaussian or-
thogonal ensemble~GOE!. If we break time reversal invari-
ance,H(X) becomes a complex Hermitian matrix, and one
must consider the Gaussian unitary ensemble~GUE!. As
noted in Ref.@12#, it is simple to extend our formalism re-
sults to the GUE.Gi j (X2Y) is a ‘‘bell shaped’’ correlation
function with a characteristic widthX0. The dependence on
i , j allows for the description of banded matrices, where an
effective number of statesN0<N are coupled byH1(X)
@12#. The coordinate dependence of this parameterization im-
plies that correlations in the system corresponding to differ-
ent ‘‘shapes’’ X are effective only within a ‘‘distance’’
O(X0). In a finite system such as an atomic nucleus, if the
slow coordinate is deformation, thenX0 can be, for example,
the deformation necessary to change completely the charac-
ter of the wave function of the intrinsic degrees of freedom.
In the case of the quadrupole deformation,X0'Db'5/A
@14# ~hereb is a dimensionless measure of the asphericity of
a nucleus andA is the number of nucleons!, which is indeed
a very small change of the deformation. The average level
density ofH for each fixed shapeX is determined mainly by
H0, while its spectral fluctuation properties are determined
by H1(X).

Even though our formalism is not restricted by the form
of G it is convenient to use an explicit parameterization,
which incorporates the density of states and the bandwidth of
the statistical fluctuations explicitly@6#

Gi j ~X!5
W0

Ar~« i !r~« j !
expF2

~« i2« j !
2

2k0
2 GGS XX0

D . ~13!

We will treat the functionG(x) as a phenomenological
quantity. HereG(x)5G(2x)5G* (x)<1, G(0)51, and
W0, k0 @N0'k0r(«)] andX0 are characteristic of the given
system. In terms of these quantities, we will express the ve-
locity V0 as a dimensionless quantity, with the implicit di-
mensions ofX0 /T0, whereT0, the characteristic time scale,
is taken to be unity. To use again a nuclear example, an
appropriate value fork0 is of the order of 10 MeV@6,15#.
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For any fixedX, the spreading widthG↓ is essentially energy
independent~more exactly, there is no exponential energy
dependence, in spite of the exponential increase of the aver-
age level density!, in agreement with experimental findings
@8#. Moreover, the distribution of the matrix elements of
H1(X) has a shape very similar@16# to that extracted from
either nuclear and atomic shell model Hamiltonians or other
models for many-body systems@15,17#.

The distinction between various choices forG(x) is im-
portant. If we consider the leading order behavior of
G(x).12cuxua1•••, then a52 results in the instanta-
neous eigenvalues ofH(X) evolving smoothly inX, while
0<a,2 correspond to the instantaneous eigenvalues diffus-
ing stochastically inX. Other values ofa are not possible
within this type of random matrix theory@18#. This is illus-
trated in Fig. 1 where we take@H0#kl5kdkl , resulting in a
constant average level density for the instantaneous spectra,
En(X), of H(X). In Fig. 1 ~top!, we use a Gaussian correla-
tor G(x)5exp(2x2/2), and in Fig. 1~bottom!, an exponen-
tial G(x)5exp(2uxu). Notice that the conventional adiabatic
limit does not exist for the exponential, as the individual
energy levels undergo Brownian motion on short distance
scales.~Such nonsmooth paths are encountered in the quan-
tum treatment of the slow dynamics in the path integral for-
mulation. In that case one has to perform a summation over
nondifferentiable pathsX(t), due to quantum fluctuations.!
The spectra in Fig. 1 are intended only to give an intuitive
picture about the character of the Hamiltonian. In our ap-
proach we never diagonalize the instantaneous Hamiltonian
H1(X), but solve the corresponding time dependent Schro¨-
dinger equation. The approximation we consider is the lead-
ing order in 1/N0 @12#. In this limit of largeN0, our approach
can deal with any type of correlation functionG(x) and a
well defined adiabatic limit exists even in the case of expo-
nential correlations.

The time evolution of the fast subsystem is found by solv-

ing the time dependent Schro¨dinger equation

c~ t !5T expF2
i

\E0
t

ds H„X~s!…Gc~0!5U~ t !c~0!,

~14!

whereT is the time ordering operator, andU(t) the propa-
gator.~We assume that the initial statec(0) is uncorrelated
with the HamiltonianH1„X(t)… at later times; correlated ini-
tial conditions have been discussed elsewhere@12#.! Using
Eqs. ~12! and resumming all leading order diagrams in the
perturbation expansion ofU(t) in the limit N0@1, one can
show that the average propagatorU(t)5Ū(t) is diagonal in
the representation we have chosen and its diagonal matrix
elements satisfy the following system of coupled integral
equations@12#:

Uk~ t !5exp~2 i«kt/\!2
1

\2E
0

t

ds1E
0

s1
ds2

3exp~2 i«ks2 /\!Uk~ t2s1!

3 (
n51

N

Gkn„X~s1!2X~s2!…Un~s12s2!. ~15!

In order to compute averages of observables, we need to
introduce the set of generalized occupation number prob-
abilities

Nk~ t1 ,t2!5^c~ t1!uk&^kuc~ t2!&

5(
l

^ l uU†~ t1!uk&^kuU~ t2!u l &nl~0!, ~16!

where nl(t)[Nl(t,t) is the occupation probability of the
stateu l &. Nk(t1 ,t2) satisfy the following set of integral equa-
tions:

Nk~ t1 ,t2!5Uk* ~ t1!Uk~ t2!nk~0!

1
1

\2E
0

t1
ds1E

0

t2
ds2(

l
Nl~s1 ,s2!

3Glk~s12s2!Uk* ~ t12s1!Uk~ t22s2!. ~17!

These equations specify the time evolution of the system,
and below we shall study the numerical solutions of Eqs.
~15! and ~17! and the velocity dependence of the diffusion
constant, and in the next section, the extension of the formal-
ism to the regime 1!N0,N→`, where we find analytic
limits and a great simplification of the formalism.

Constant level density

Consider the situation of a constant average level density
(@H0#kl5kdkl , 2N/2<k, l<N/2), as in the case of a two-
dimensional stadium billiard. Equations~15!–~17! have been
solved numerically forN5101, a bandwidthN0521, a
Gaussian correlationG(x)5exp(2x2/2) with X051, and
initial conditionsnk(0)5dk,0 . ~ Hereafter, in all numerical
results we show we take\51 and expressV0 in units of
X0 /T0.! The resulting occupation numbersnk(t) are shown

FIG. 1. Instantaneous eigenvalue spectrumEn(X) as a function
of the ‘‘shape’’ (X), for a Hamiltonian of the ensemble defined by
Eqs. ~11!–~13!, with @H0# jk5kd jk , using the correlator
G(x)5exp(2x2/2) ~top! andG(x)5exp(2uxu) ~bottom!.
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in Fig. 2 for the cases of fast (V054, top! and slow
(V051/16, bottom! driving velocities. As the results are
symmetric with respect to the indexk, nk(t)5n2k(t), only
levels withk50–50 are shown, counting from the top of the
figure. One might expect that even a small driving velocity
would result in a complicated time evolution, as the Hamil-
tonian is time dependent and has many small gaps in the
instantaneous spectrum, where Landau-Zener transitions
might be expected to occur and thus ‘‘irreversibility’’ is in-
duced@1#. Actually, as we have discussed at length in Ref.
@12#, this mechanism, which has been advocated in many
previous treatments@2#, is valid only for isolated level cross-
ings and thus is unrealistic when there are many nonisolated
ones as shown in Fig. 1.

In Fig. 2, one can distinguish two time scales: a relatively
rapid initial transient behavior, followed by a slower evolu-
tion. While the initial transient is almost identical in both
cases of fast and slow motion, governed by the same spread-
ing width G↓, the long time behavior is strikingly different.
For small driving velocities, the time evolution apparently
rapidly equilibrates, and can be understood in terms of the
V0→0 limit, corresponding to constant random matrix
theory. For large velocities there is a steady evolution to a
different probability distribution. The initial transient behav-
ior arises only because our initial occupation probabilities
nk(0) do not correspond to an instantaneous eigenstate of
H(0). Thesubsequent long time behavior is due to the ex-
plicit time dependence of the HamiltonianH(t) and would
be absent for a time independent one.

The diffusion process associated with these time evolu-
tions can be characterized by the energy varianceDE(t) and
the energy diffusion constantD(V0), defined by

DE
2~ t !5^c~ t !u@H~ t !2E~ t !#2uc~ t !& ;

t→`
const12D~V0!t,

~18!

whereE(t)5^c(t)uH(t)uc(t)&. It is important to note that
the energy variance is time dependent only for a time depen-
dent Hamiltonian. For example, if we were to consider the
caseV0[0 one would still have the initial transient time
evolution of the occupation number probabilities we have
mentioned above. However, there will be no time depen-
dence of the energy variance in such a case. This is a trivial
statement for the time evolution of a given time independent
Hamiltonian. The fact that this feature is preserved after per-
forming the statistical average in the 1/N-leading approxima-
tion we use throughout this work, is one more consistency
check, which can be proven rigorously.

In Fig. 3,D(V0) can be seen to exhibit a quadratic veloc-
ity dependence in the adiabatic limit, in contradiction to nu-
merous previous claims@2#. In the case we consider here of
a symmetrical initial distributionnk(0) and constant level
density, the average energyE(t) is time independent, hence
the reaction force on the slow system, in particular, the fric-
tion force, exactly vanishes. This is consistent in a somewhat
trivial way with a fluctuation-dissipation theorem in the fol-
lowing sense. Expressed asg5bD, whereg is the ‘‘fric-
tion’’ coefficient andb51/T5d lnr(«)/d«[0 is the inverse
thermodynamic temperature, we have the expected result
dE(t)/dt5g[0. ~Note that the rate of energy loss for the
slow subsystem is2dE(t)/dt52g.! WhenH is time inde-
pendent, bothDE(t) andE(t) are also time independent. The
absence of ‘‘friction’’ in this case is relatively easy to under-
stand. The initial occupied state was chosen in the middle of
the spectrum, in order to minimize the spectrum edge effects.
Since the average level density is constant, there are an equal
number of levels above and below the initially occupied
state. This in conjunction with the fact that the Hamiltonian
is symmetric leads to this trivial behavior. As soon as we
consider realistic systems with increasing level densities, the
fast subsystem will heat up.

IV. CHARACTERISTIC FUNCTIONAL APPROACH

While the coupled dynamics of the occupation number
probabilities becomes an increasingly difficult computational

FIG. 2. The time dependence of the occupation probabilities
nk(t), for k50, . . . ,50@in this casenk(t)5n2k(t)#, wherek counts
from top to bottom in the figure, for the case of fast,V054 ~top!,
and slow, V051/16 ~bottom!, driving velocities. The units of
lengths are defined asX051 and that of time follows from\51
andr051.

FIG. 3. Velocity dependence of the diffusion constantD(V0)
from the adiabatic to the diabatic limits. We useX051 ~which thus
sets the unit of length!,W0r051 (r0 thus defines the energy units!,
k0r055 ~the lowest four curves! and k0r0515 ~the highest four
curves!. The curves correspond upwardly tob/r050.0, 0.05, 0.1,
and 0.2, respectively.
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problem for largeN, it is possible to take an additional limit
N→` and obtain some major simplifications of the formal-
ism. For this purpose, let us introduce the characteristic func-
tional

N~ t1 ,t2 ,t!5^c~ t1!uexpF iH 0~t2t11t2!

\ G uc~ t2!&

5E d«kr~«k!Nk~ t1 ,t2!expF i«k~t2t11t2!

\ G .
~19!

This is essentially the Fourier transform of the generalized
occupation numbers~16! and ~17! with respect to the index
k

Nk~ t1 ,t2!5
1

2p\r~«k!
E dtN~ t1 ,t2 ,t!

3expF2
i«k~t2t11t2!

\ G . ~20!

The equal time functionalN(t,t,t) is correspondingly the
Fourier transform of the occupation number probabilities
nk(t). The distribution of the occupation number probabili-
ties can be defined in terms of a cumulant expansion

N~ t,t,t!5expF(
n

^^c~ t !uH0
nuc~ t !&&

~ i t!n

\nn! G , ~21!

where^^c(t)uH0
nuc(t)&& are the cumulants. If we assume an

initial condition consisting of the occupation of a single state
n0(0)51 andnj (0)5n2 j (0)50 for jÞ0, then we find that
for a system with a realistic level density of the form
r(«)5r0exp(b«) the propagator s(t)5exp(i«kt/\)Uk(t)
@notes(t) is state independent# andN(t1 ,t2 ,t) satisfy the
evolution equations

s~ t !512
2pW0

\ E
0

t

ds1E
0

s1
ds2s~s12s2!s~s2!

3P~s12s2!GS ~s12s2!V0

X0
D , ~22!

N~ t1 ,t2 ,t!5s* ~ t1!s~ t2!1
2pW0

\ E
0

t1
ds1E

0

t2
ds2

3N~s1 ,s2 ,t!P~s12s22t!GS ~s12s2!V0

X0
D

3s* ~ t12s1!s~ t22s2!, ~23!

with the correlatorGi j (X) of the form of Eq.~13! andP(s) is
given by

P~s!5P* ~2s!5
k0

A2p\
expF2

k0
2

2\2 S s1 i
\b

2 D 2G .
~24!

The caseb50 corresponds to the situation we have analysed
in the preceding section, of constant average level density,
while the case of finiteb approximates a many fermion sys-
tem.

The great advantage of this form of the evolution equa-
tions is that one has to solve only one equation at a time for
each value of the parametert, instead ofN-coupled equa-
tions @compare Eq.~23! with Eqs. ~17!#, which is a signifi-
cant simplification. Moreover, various analytic solutions can
be obtained, as we exemplify below, by analyzing the adia-
batic and the diabatic evolutions of the occupation numbers.

A. Adiabatic limit

It is useful to introduce two time scales:~i! the character-
istic time scale for the slow motiontslow5X0 /V0 and~ii ! the
characteristic time scale for the fast degrees of freedom,
t fast5\/k0. The adiabatic limit corresponds to
tslow5X0 /V0@t fast5\/k0. If the conditionk0b!1 is also
fulfilled ~this condition is essentially equivalent to having
b50), one can replaceP(s) by an appropriately chosen
Dirac d function in the equations for the propagators(t) and
the generalized occupation number probabilities
N(t1 ,t2 ,t). Then the equation for the propagators(t) can
be solved and the solution is

s~ t !5expS 2
pW0t

\ D . ~25!

Even though this expression satisfies the initial condition
s(0)51, it is not valid for very small timest.O(t fast) @12#.
During times of the order oft fast the functionP(s) cannot be
approximated by a Diracd function, these time intervals
within this approximation being effectively compressed to
zero. One can now establish that fort.t.0

N~ t,t,t!5expH 2
2pW0t

\ J 1
2pW0

\

3expH 2
pW0t

\ JGSV0t

X0
D

3E
t

t

dsexpH 2
2pW0~ t2s!

\ J
3N~s,s2t,t!, ~26!

N~ t,t2t,t!5expH 2
2pW0t

\
1

pW0t

\ J 1
2pW0

\
GSV0t

X0
D

3E
t

t

dsexpH 2
2pW0~ t2s!

\ JN~s,s2t,t!.

~27!

The second of these equations can be reduced to a linear
homogeneous equation of first degree forN(t,t2t,t), by
taking the time derivative, and can be easily solved. The
generalized occupation number probabilitiesN(t,t,t) can
then be directly computed by integration, after which one
obtains~for t>utu)
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N~ t,t,t!5expH 2
2pW0

\ F12GS tV0

X0
D G~ t2utu!

2
2pW0utu

\ J . ~28!

In the adiabatic limitG(tV0 /X0)→1 and the first term in
the exponential vanishes. The occupation numbersnk(t) af-
ter the initial transient time interval seen in Figs. 2 are then
found to be

nk5
W0

«k
21p2W0

2 . ~29!

This Lorentzian shape is identical with the constant random
matrix theory result, see Ref.@12#, with the identification
G↓52pW0. In the adiabatic limit, during a timet't fast the
slow variables hardly change and thus the dynamics of the
fast system is almost identical to the dynamics governed by a
constant random Hamiltonian. Our initial state in the middle
of the spectrum, chosen asn0(t50)51, is spread over an
energy interval'G↓52pW0 and the distribution has a
Lorentzian shape. If the Hamiltonian is time independent,
after this time there would be essentially no further evolution
of the average occupation number probabilities. The subse-
quent dynamical evolution of the fast system occurs only
because the HamiltonianH„X(t)… is time dependent, and
only the subsequent time evolution of the system leads to
dissipation and entropy production in the long time limit.

One can now explicitly evaluate the cumulants
^^c(t)uH0

nuc(t)&&. All odd moments ofH0 vanish identically
@sinceG(x)5G(2x) and thus there are only even powers of
t in the expansion~21!#. The reason for this is our assump-
tion that kb→0, which we shall lift shortly below. In the
limit t→`, all even cumulants ofH0 increase linearly in
time. If G(x)5exp(2x2/2) ~we shall use this form hereafter
for illustrative purposes! then in the limitt→`

^^c~ t !uH0
2nuc~ t !&&5

2pW0t

\ S \V0

X0
D 2n ~2n!!

2nn!
,

D~V0!5
p\W0V0

2

X0
2 5F\G↓

2X0
2GV0

25F \G↓

2tslow
2 G ~30!

(G↓52pW0) resulting in a non-Gaussian distribution. A
Gaussian process would have only the first two cumulants
nonvanishing. The diffusion constant is extracted from the
time dependence of the second cumulant according to Eq.
~18!.

These solutions for the propagator and the generalized
occupation number probabilities are remarkable in several
respects. We have obtained them for an arbitraryG(x) in an
analytical form. Since the dynamical evolution of the fast
system is much faster than the slow motion, the propagator
in this approximation in insensitive to the form ofG(x).
Hence, the propagator will have the same expression even
when the time dependence of the slow degrees of freedom is
arbitrary, not necessarilyX(t)5V0t, as we have assumed so
far. In particular, noting that the influence functional is given
by

L~ t ![N„X~ t !,X8~ t !,0…, ~31!

we see that it satisfies a relatively simple evolution equation

L~ t !5expH 2
2pW0t

\ J 1
2pW0

\

3E
0

t

dsexpH 2
2pW0~ t2s!

\ JGSX~s!2X8~s!

X0
DL~s!.

~32!

Note also that the ‘‘left’’X(t) and ‘‘right’’ X8(t) trajectories
are different. ForX(t)[X8(t), this influence functional sat-
isfies the identityL(t)[1 as required. Solving the integral
equation leads to

L~ t !5expH 2
2pW0

\ E
0

tF12GSX~s!2X8~s!

X0
D GdsJ .

~33!

It should be clear that in this case one can use a correlator
Gi j (X,Y) of a general form~therefore relaxing the ‘‘transla-
tional invariance’’ we have assumed to this point!.

Notice that, as the result of the symmetric initial distribu-
tion andb50, there is no friction~imaginary components!
in the above influence functional. To get friction, consider
the next order corrections to the adiabatic limitkb!1. In
this limit, we replace the functionP(s) in Eqs.~22! and~23!
with

P~s!→dS s1
ib\

2 D . ~34!

The evolution equation for the propagator, and therefore its
solution, remains unchanged up to first order corrections in
b. The equation for the generalized occupation number prob-
abilities, however, now reads

N~ t1 ,t2 ,t!5expF2
pW0~ t11t2!

\ G
1
2pW0

\ E
0

t1
ds1E

0

t2
ds2N~s1 ,s2 ,t!

3dS s12s22t1
ib\

2 DGSX~s1!2X8~s2!

X0
D

3expF2
pW0~ t12s11t22s2!

\ G . ~35!

By analytically continuingG@„X(s1)2X8(s2)…/X0#, and ex-
tending the integration contour into complex time plane, this
equation can be solved following the same steps outlined
above. WhenX(t)5X8(t) one thus obtains that

N~ t,t,t!5expH pW0

\ E
0

t

ds
Ẋ2~s!

X0
2 S i t1

\b

2 D 2J . ~36!

This solution is valid only ift@t and only in the first order
in b and second order int. It follows then that:
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^^c~ t !uH0uc~ t !&&5
1

2
b^^c~ t !uH0

2uc~ t !&&

5
bp\W0

X0
2 E

0

t

dsẊ~s!2 ~37!

which is an integral from of the fluctuation-dissipation theo-
rem. However, since the higher cumulants are nonvanishing,
this dynamics is certainly non-Gaussian. Consider again the
case of constant velocity,X(t)5V0t. After similar manipu-
lations of Eqs.~22! and ~23! one obtains forb.0 and
t→` that

N~ t,t,t!5expH 2pW0

\ FGS tV0

X0
2
i\bV0

2X0
D

2GS 2
i\bV0

2X0
D G tJ . ~38!

Once again, this formula is correct up to first order inb only.
Since for b.0 the average level density is increasing
with energy, there are on the average more transitions up-
ward in energy than downward and hence the fast sub-
system is heated. For this reason the odd cumulants
^^c(t)uH0

nuc(t)&& are nonvanishing, and ‘‘friction’’ is
present sincê^c(t)uH0uc(t)&&.0. From Eq.~38! it follows
that the odd cumulants are given by the following expres-
sions:

^^c~ t !uH0
2n21uc~ t !&&5

b

2
^^c~ t !uH0

2nuc~ t !&&. ~39!

The casen51 corresponds to the Einstein fluctuation-
dissipation theorem.

B. Diabatic limit

Another simple solution can be obtained in thediabatic
limit, whentslow5X0 /V0!t fast5\/k0. Then it is reasonable
to replace the correlatorG(s) by an appropriately chosen
Dirac d function, namely,

GS ~s12s2!V0

X0
D→d~s12s2!

V0

X0
E

2`

`

ds G~s!. ~40!

One can proceed now in a similar fashion as in the adiabatic
limit and determine the propagators(t) and subsequently
the generalized occupation probabilities. After some lengthy
algebra, we find

N~ t,t,t!5expH 2
2pX0W0k0

\2V0
FexpS k0

2b2

8 D
2expS k0

2

2 S b

2
1
i t

\ D 2D G tJ . ~41!

This is similar to the functional form found in the adiabatic
limit. Again, all the cumulants ofH0 increase linearly in time

^^c~ t !uH0
nuc~ t !&&5F2pX0W0k0

\2V0
expS b2k0

2

8 D S ik0

A2 D
n

3HnS 2
ik0b

2A2 D G t, ~42!

whereHn(x) are Hermite polynomials, resulting in a non-
Gaussian diffusion of the occupation numbers. From Eq.
~18! and the second cumulant we find in this limit a com-
pletely different velocity dependence

D~V0!5FG↓X0k0
3~b2k0

214!

8\2 expS b2k0
2

8 D G 1V0
. ~43!

It is worth noting that in Eq.~18! we use the full Hamiltonian
for the fast system, namely,H(t)5H01H1(t), in order to
extract the diffusion constantD(V0), while in this section we
only use moments ofH0 for the same purpose. In thet→`
limit these two ways of determiningD(V0) lead to identical
results. The fluctuation-dissipation theorem, obtained from
the first and second cumulants is

bD5gS 11
b2k0

2

4 D , ~44!

showing thatbD5g is not generally satisfied.

C. Numerical results for arbitrary velocities

For arbitrary velocities we have to resort to a numerical
solution of Eqs.~22! and~23!. As we have discussed above,
these equations correspond to a Hamiltonian with an infinite
number of levels and we have solved them for a variety of
parameter values and several typical results are presented
here. In Fig. 3 we show the behavior of the diffusion con-
stant,D(V0), from the adiabatic@Eq. ~30!# to the diabatic
@Eq. ~43!# limit for some values of the parameterb. In all
cases,D(V0) evolves from quadratic~in the adiabatic limit!
to inverse velocity dependence~in the diabatic limit!. At
high velocities, the system becomes increasingly less
opaque, as reflected in the decreasing diffusion constant. A
similar behavior is observed for the first cumulant, i.e., the
average rate of heating, which as a function of the velocity
V0 has a similar aspect withD(V0). This is reminiscent of
the motional narrowing phenomenon in NMR. At low
enough velocities the fast system has almost sufficient time
to ‘‘accommodate’’ to the new environment, while the
‘‘shape’’ X changes. In the opposite limit of high velocities,
the ‘‘shape’’X evolves so rapidly that the system can barely
react to the changes. Consequently, the energy diffusion is
maximal only for some intermediate velocity regime, when
the ‘‘slow’’ motion is in ‘‘resonance’’ with the ‘‘fast’’ dy-
namics, namely, whentslow5X0 /V0 is comparable to
t fast5\/k0. In Fig. 4, we plot the ratio ofbD/g, whereD
andg are computed from the first and second order cumu-
lants as a function of velocityV0. When the ratio is unity, the
Einstein form of the fluctuation-dissipation theorem is found.
Noticeable differences occur at large velocities.

The behavior ofD(V0) and the crossover from the adia-
batic to the diabatic velocity dependence can be seen in a

54 3475RANDOM MATRIX APPROACH TO QUANTUM DISSIPATION



simple parametrization of the results in Fig. 3. By combining
the results for the constant level density situation, we find
that

D~V0!5
G↓k0

2

2\

~V0 /Vc!
2

11~V0 /Vc!
3 ~45!

where the critical velocityVc is defined as

Vc5
X0k0

\
. ~46!

A similar formula is easily obtained for the case of noncon-
stant level density (bÞ0), in which caseVc acquires ab
dependence as well. From this form of the diffusion constant,
one can see that the crossover occurs for velocities near the
critical velocityV0;Vc as argued above.

In Fig. 5 we show the first four cumulants

^^c(t)uH0
nuc(t)&& as functions of time for several average

level densitiesr(«)5r0exp(b«). The velocityV0 and range
of time have been chosen such thatV0t.X0 and thus the
asymptotic behavior already sets in. These values of the pa-
rameters are approximately midway between the adiabatic
and diabatic limits. In spite of this, the relations between the
cumulants, Eqs.~39!, are satisfied to good accuracy. In par-
ticular, as one can also see in Fig. 4, the expected relation
following from the Einstein fluctuation-dissipation theorem
between the friction and diffusion coefficients is satisfied
reasonably well forb/r0<0.1. As we have discussed above,
the large values of the cumulants beyond the second one are
indicative of long tails in the occupation number probability
distributions. As in the adiabatic and diabatic cases, these
cumulants increase approximately linearly with time.

V. CONCLUSION

We have presented numerical and analytical solutions of
the time dependent evolution equations of a driven complex
quantum system, such as a nucleus, when the level density is
large. The parametric random matrix approach chosen here
incorporates the essential attributes of the intrinsic dynamics:
an exponentially increasing level density, GOE spectral fluc-
tuations and loss of correlations during large amplitude col-
lective motion. We have shown that the resulting energy dif-
fusion process is non-Gaussian in character, that the energy
distribution has long tails and determined the nontrivial ve-
locity dependence of the energy diffusion constant, which
vanishes forV0→0 andV0→`.

The present approach treats the fast subsystem quantum
mechanically and the slow subsystem classically, as has been
done often in the past@2#. As we have discussed above how-
ever, the inclusion of quantum effects into the slow motion is
now possible. The energy diffusion process is described in
terms of intrinsic characteristics of the many-body system
~thermodynamic temperatureb, spreading widthG↓, k0 and
X0) andV0. It is notable that the average level spacing or
average level density are absent in these results, contrary to
what one might have expected. As it was noted in Ref.@12#
also, the presence of the average level density or average
level spacing in an expression for the diffusion constant is
unreasonable, since this would lead to an exponential depen-
dence of the diffusion and friction coefficients with the size
of the system. The average level spacing decreases exponen-
tially with the number of particles, since its natural logarithm
is proportional to the negative of the entropy of the system,
which is an extensive quantity.

It is not clear yet whether the intrinsic characteristics
G↓, k0 andX0 have a meaningful classical limit separately or
only in a given combination, and this seemingly points to an
apparent lack of a classical limit for the fast degrees of free-
dom (\→0) of the solutions~30!, ~43!. In Ref. @10#, friction
was obtained only in a classical treatment of both fast and
slow system, while in Ref.@6#, dissipation and friction ap-
pear only in an explicit quantum treatment~path integral! of
the entire system and the presence of quantum fluctuations in
the slow subsystem was essential. The wall formula@7# leads
to a diffusion constantD}V0

2 as we have obtained here for
smallV0 @see Fig. 3 and Eq.~30!#, but is essentially a clas-
sical result, which does not depend in any significant way on

FIG. 4. Deviation from the fluctuation-dissipation theorem as a
function of b51/T. For low velocities, the theorem is largely sat-
isfied. However, for large velocities it is violated even at moderate
temperatures. Here we useX051,W0r051, andk0r055.

FIG. 5. The first four cumulantŝ̂ c(t)uH0
nuc(t)&& as a function

of time forX051,W0r051, k0r055, andV0510. The solid lines
are there as a guide. The curves correspond tob/r050 ~o!, 0.1
(L), 0.2(3), and 0.3(1). For small values ofb one finds a very
good agreement with Eq.~39! as expected.
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\, and apparently reflects a different underlying mechanism.
It will be highly desirable to identify the classical limit of the
present approach.

The most salient feature of the solutions~28! and ~38!
becomes evident when one considers the asymptotic behav-
ior of the cumulants. Since cumulants of higher than second
order are nonvanishing, Gaussian processes are not obtained
in any of these limiting cases for the energy diffusion. As a
result the distribution of occupation numbers has very long
tails. In particular, forV0[0 the distribution corresponding
to Eq. ~28! has a Lorentzian shape, as might be expected
from constant random matrix theory. These features imply
that a Langevin or Fokker-Planck approach to energy dissi-
pation is at least questionable. As we have discussed in Ref.
@12# these results apply equally to the GUE case. One might
be surprised by this result, since the frequency of small level
separations for a GOE Hamiltonian is larger than for GUE
one and thus one would expect that in the adiabatic limit
there should be more transitions for GOE than for GUE case
as would be the case if the energy level separation distribu-
tion and the Landau-Zener mechanism were the dominant
factors. However, the Landau-Zener formula has a limited
applicability as one can easily ascertain from the following
simple example. Imagine a spin 1/2 in a magnetic field,
which changes its direction in some arbitrary manner. Since
the magnitude of the magnetic field is constant the splitting
between the two instantaneous levels is time independent.
Now change the direction of the field very slowly and very
rapidly and consider that initially the spin was in the lower
level. According to the Landau-Zener formula there will be
no transitions in either case. It should be obvious however
that there will be transitions from the lower to the upper level

and the intensity of these transitions depends on the rate of
change of the direction of the magnetic field.

One interesting aspect of our analysis is the form of the
influence functional. From Eq.~8! we do not expect the
equation for the reduced density matrix to be local in time.
Rather we expect

i\] tr~X,X8,t !5@H0~X!2H0~X8!#r~X,X8,t !

1E
t0

t

dt8V~X,X8,t,t8!r~X,X8,t8!.

~47!

Even though memory effects are explicitly present in the
evolution equations for the fast subsystem, they vanish in the
equation for the slow subsystem, as seen in the explicit so-
lutions presented here@e.g., Eq.~33!#. This is true in the
adiabatic limit, which is perhaps of most interest. In this
respect, our approach is qualitatively different from the ear-
lier and more familiar approach in condensed matter physics
of Caldeira and Leggett@13#, based on the form for the in-
fluence functional for an infinite number of oscillators@5#.
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