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This paper describes a formalism designed to answer questions about Hamiltonian systems in contact with
a heat bath. The formalism is applied to a simple model of fracture to find, first, the rate at which a crack creeps
through a brittle body as a result of thermal fluctuations and, second, the rate at which the crack jumps from
creeping to rapid motion. The dominant exponential behavior of these processes is calculated exactly, but the
prefactors are only estimated. Some of the solutions cannot be viewed in the traditional manner as correspond-
ing to passage over a saddle point. Viewed as an isolated Hamiltonian system, the crack shows that irreversible
behavior can arise because, although the probability of traveling from past to present equals the probability of
traveling backwards from present to past, the probabilty of traveling still further into the future is exponentially
greater.@S1063-651X~96!06410-0#

PACS number~s!: 05.70.Ln, 82.20.Db, 62.20.Mk, 46.30.Nz

I. INTRODUCTION

A. Motivation

One of the intriguing paradoxes in physics is the conflict
between the symmetry of mechanics with respect to reversal
of the sign of time and the obvious absence of this symmetry
in the everyday world. For this reason, it is interesting to
study irreversible phenomena at the atomic level.

Fracture provides a natural context in which to explore
this general problem, since it connects the spontaneous fail-
ure of atomic bonds to macroscopic failure of a body. This
paper will focus upon two statistical problems in fracture.
The first is that of creep, which occurs, for example, during
the long slow progress of a crack across a car windshield.
Creep fracture is widely studied@1#, has been examined ex-
perimentally with great care, and is described by good phe-
nomenological expressions which accord well with the data.
The second problem is that of rapid fracture initiation, in
which an object suddenly shatters without apparent cause.
Although related to something called static fatigue in the
engineering community, this phenomenon is not widely
known. The calculations I will describe are much more de-
tailed than any previous descriptions, first showing how the
familiar phenomenological rules arise from microscopic laws
and then generalizing and improving upon them.

To make more specific the setting of these problems,
imagine placing a single crystal strip of silicon in a con-
trolled environment at temperatureT @2#. The strip contains a
long crack down the center, as shown in Fig. 1, and is
gripped by clamps that rigidly displace the upper and lower

boundaries. For a range of displacements, the crack creeps
forward at a rate that depends exponentially on the tempera-
ture and might be of ordermm/sec. If the displacement is
high enough, the crack may begin suddenly to move at over
1000 m/sec and its velocity is largely independent of tem-
perature. This onset of rapid motion arises in a statistical
fashion as a result of thermal fluctuations and is not guaran-
teed to occur immediately at a critical tension.

In order to address these problems, it is necessary to de-
vise a formalism capable of starting with an arbitrary classi-
cal mechanical system, coupling it with a heat bath, finding
the probability of starting with some initial configuration in
phase space, and ending with some other specified configu-
ration in phase space. This task is accomplished using func-
tional integrals and results eventually in expressions for
creep and rapid fracture initiation rates for a simple model
system. For several different reasons, however, realistic com-
parison with experiment will demand additional layers of
complexity, which I have not yet begun to incorporate.

B. Organization of the paper

Because this paper is fairly long and contains results of
many different types, I summarize the main points.

II A. This section recalls a formalism, due to Kramers,
that casts all of classical mechanics into a statistical form.

II B and Appendix A. These sections derive a complete
formal solution of Kramers’s equation using a functional in-
tegral.

II C. This section extracts from the functional integral a
variational principle useful for accurate calculations at low
temperatures, and finds three special solutions. The first cor-
responds to a system evolving deterministically forward in
time. The second corresponds to a system evolving determin-
istically backward in time.

II D. This section shows that the third special solution
results from gluing together the first two types of solutions
sequentially. An activated process is described by transition-
state theory~passes over a saddle point! if and only if it is a
solution of this third type.

FIG. 1. A crack lies in the center of a strip whose upper and
lower boundaries have rigidly been displaced from their equilibrium
locations by an amountD.
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III A. The nature of static and dynamic cracks is funda-
mentally affected by the atomic structure of matter.

III B. This section reviews a simple one-dimensional
model of fracture.

III C. This section displays an explicit solution of the
variational problem for creep rates. The answer is identical to
transition-state theory.

III D. This section finds a numerical solution of the varia-
tional problem for cases which cannot be described by
transition-state theory~no saddle point! and obtains the low-
temperature phase diagram for the model system.

III E. this section extracts the creep rate from the prob-
ability of breaking one bond.

IV A. This section discusses the significance of systems
traveling backward in time.

IV B. This section contains reflections upon time-reversal
invariance. Asymmetry in time results from the basic asym-
metry involved in preparing an irreversible event.

V A and Appendix B. These sections generalize the path
decomposition expansion of Auerbach and Kivelson.

V B. This section applies the decomposition to estimate
Gaussian prefactors.

VI. The paper concludes with reflections upon the further
work needed before comparison with experiment becomes
possible.

II. FUNCTIONAL INTEGRAL
FOR HAMILTONIAN SYSTEMS

A. Fokker-Planck equation

Suppose one has a Hamiltonian system consisting ofM
particles of massm, obeying

ṗi52
]H
]xi

5Fi~xW ! ~1a!

ẋi5
]H
]pi

5
pi
m
. ~1b!

Consider the probability distribution

g0→n
t 5g~xWpW ;t!, ~2!

which gives the probability that the system will begin in an
initial configuration where the positions and momenta of the
particles are. . . ,x21

0 ,p21
0 ,x0

0 ,p0
0 ,x1

0 ,p1
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t later with positions and momenta of the particles at new
valuesxWpW 5xWnpW n.

Particle locations and momenta obey the convention that
subscripts label the particle number, while superscripts are
used to indicate values of positions and momenta at different
times.xWpW andxWnpW n will be used interchangeably to indicate
the positions and momenta at timet.

When placed in contact with a heat bath,g obeys the
equation
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If the damping constantb is set to zero, Eq.~3! simply ex-
presses Hamilton’s equations~1! for the distribution function
g. If the damping constantb is nonzero, the presence of a
heat bath causes the momentum of each particle to diffuse.
The terms proportional tob have been chosen so that

g;e2H/kT ~4!

is a static solution of Eq.~3!, with k Boltzmann’s constant
and T the temperature; in accord with the fluctuation-
dissipation theorem, the first term proportional tob describes
linear damping of particles, while the second term propor-
tional tob describes the effect of a fluctuating thermal bath.

The Fokker-Planck equation~3!, due to Kramers@3#, is
discussed in detail by van Kampen@4# and Hänggi, Talkner,
and Borkovec@5# and is conventionally felt to provide a
trustworthy representation of any classical mechanical sys-
tem under the influence of the heat bath. Nevertheless, it has
two worrisome features. First, one might wonder about the
legitimacy of phenomenological damping at the atomic level.
This worry is relieved by the facts that the limitb→0 is
perfectly well defined in all final expressions and that one is
free to allowb to vary in space; in particular, one can take
b to be nonzero only on the boundaries of the system. Sec-
ond, Eq.~3! neglects quantum mechanics. This objection is
legitimate, since calculations by Gilman and Tong@6# show
that quantum-mechanical tunneling is considerable at low
temperatures. Thus the calculations in this paper apply only
to temperatures high enough that quantum-mechanical co-
herence is unimportant.

B. Functional integral formulation

The technique of functional integration allows one to find
an exact formal solution of Eq.~3!. Casting the Fokker-
Planck equation into the form of a functional integral re-
quires a brief calculation that closely mirrors familiar proce-
dures@7,8# and is recorded in Appendix A. The result of this
appendix is an expression for the time evolution ofg in the
form

g0→n
t 5E Dxn21g0→n21

t2dt Gn21→n , ~5!

where

Dxl5)
i

H dxilA m

4pkTbdt3J , ~6!

Gn21→n5expH 2dt

(
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Fpin2pi
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2~Fi2bpi

n21!G2
4mbkT
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and

pi
l[m

xi
l112xi

l

dt
for 1< l<n21. ~8!

This notation leads to compact expressions, but risks being
misleading, sincepi

n5pi and pi
0 are independent variables
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specifying momenta of particles at initial and final times, but
for all other superscriptsl , pi

l is defined completely in terms
of xi

l andxi
l11 by Eq. ~8!.

Taking t5(n21)dt and using Eq.~5! repeatedly, one
then finds that

g0→n
t 5E S )

l51

n21

DxlGl→ l11D d~xW12xW0!d~pW 12pW 0! ~9!

or

g~xWpW ;t!5E Dx expS 2E
0

t

dt(
i

@ ẍi2Fi1bẋi #
2/4mkTbD .

~10!

The functional integral*Dx is over all pathsxW (t) that begin
with the desired initial values of

xW~0!5xW0, mxẆ~0!5pW 0 ~11a!

and end with the desired final values of

xW~t!5xW , mxẆ~t!5pW . ~11b!

Equation~10! is an exact formal solution of Eq.~3!, but its
main practical value is as a starting point for approximate
expressions at low temperatures.

C. Variational principle at low temperatures

At low temperatures, the functional integral is dominated
by a single classical pathxW (t) that maximizes the integrand.
This path is the one that minimizes the functional

S@xW~ t !#5E
0

t dt

4mb(i @mẍi2~Fi2mbẋi !#
2, ~12!

so the probability of going from initial state 0 to final state
n is

e2U/kT, ~13!

where

U5min
xW ~ t !

S@xW~ t !#, ~14!

subject to the boundary conditions~11!. Thus one arrives at
the physically satisfying result that the most likely way to
move from one configuration to another is to minimize the
deviation from Newton’s laws of motion, in the presence of
a small amount of damping.

DefineDi(t) to be the deviation from Newton’s laws

Di~ t ![mẍi2Fi1mbẋi . ~15!

Then the Euler-Lagrange equations that locate extrema of
Eq. ~12! are

05mD̈i2(
j

]Fi

]xj
D j2mbḊi . ~16!

One can guess two exact solutions of Eq.~16!. Clearly, no
path could give a lower value ofS than anyxW (t) that satisfies

mxẄ5FW ~xW !2mbxẆ , ~17a!

with

xW~0!5xW0, mxẆ~0!5pW 0. ~17b!

Such a path leads to

Di50 and henceS@xW #50. ~18!

Unfortunately, paths of this type do not provide all the nec-
essary minima ofS because they can be chosen to satisfy one
but not both sets of boundary conditions Eqs.~11!.

One can also find a second class of exact solutions of Eq.
~16!. These are paths that satisfy

mx̃Ẅ5FW ~ x̃W !1mbx̃Ẇ , ~19a!

with

x̃W~t!5xW , x̃Ẇ~t!5pW /m, ~19b!

which is identical to Eq.~17a!, except that the sign of time
has been reversed. To see that any function solving Eq.~19a!
also solves the Euler-Lagrange equation~16!, simply differ-
entiate~19a! with respect to time. Then

05
d

dt
@mẍ̃i2Fi2mbẋ̃i # ~20!

⇒05mv̈̃ i2(
j

]Fi

] x̃ j
ṽ j2mbv̇̃ i , ~21!

where

ṽ i5 ẋ̃i . ~22!

However, one sees immediately that Eq.~19a! implies

D̃ i5mẍ̃i2Fi1mbẋ̃i52mbṽ i . ~23!

Therefore, Eqs.~16! and~21! are the same and a solution of
~19a! also solves the Euler-Lagrange equations. The action
S corresponding to this solution is

S@ x̃~ t !#5bE
0

t

dt(
i
mẋ̃ i

2 ~24!

5E
0

t
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i
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2
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whereV( x̃W) is the potential energy andE(t) is the total en-
ergy of the system at timet.

D. Gluing solutions together

One can create additional solutions by ‘‘gluing together’’
solutions of these two types. Fromt50 until t5t1 a system
can evolve ‘‘backward’’ in time, according to Eq.~19a!, and
at t5t1, with all positions and momenta continuous, it can
begin to evolve ‘‘forward’’ in time, according to Eq.~17a!.
While solutions of the four-point boundary-value problem
described by Eq.~11! cannot generally be obtained in this
way, many physically interesting solutions are of this char-
acter. All the contributions to their action come from the
initial segments where the system goes backward in time, so
the probability of such a path is determined by the energy
barrierUc defined in Eq.~28!. To find a minimum action
path of this type, it is sufficient to find some saddle-point
configuration@xW s,pW s#, such that

@xW0,pW 0# evolves via x̃~ t ! to @xW s,pW s#,

which evolves viax~ t2t1! to @xW ,pW #. ~29!

So the minimum action path is proposed to be

u~t12t !x̃W~ t !1u~ t2t1!xW~ t2t1!, ~30!

assuming thatx̃ and x can be found to obey the boundary
conditions indicated in~29!.

A function of the form~30! provides an exact solution of
Eq. ~16! under the condition that

x̃Ẅ~t1!5xẄ~0!50W , p̃W~t1!5pW ~0!50W , ~31!

which means that the saddle point atx̃(t1) is an equilibrium
point. Demonstrating that Eq.~30! is then an exact solution
is quite simple; use Eqs.~18! and ~23! for D and D̃ and
substitute~30! into ~16!. However, there is a slight subtlety.
A path that satisfied Eq.~31! exactly att1 would remain
trapped there for all time; one must actually consider a se-
quence of paths, which converges to one obeying Eq.~31!,
passing over the saddle point with increasingly negligible
velocities.

In studying physical processes that require fluctuations to
take the system over an energy barrier, transition-state theory
@3,5# asserts that the probability of an activated process
crossing an energy barrier of heightUc must be proportional
to

e2Uc /kT. ~32!

We have recovered precisely this result for paths of the form
~30!. The long and complicated passage of the physical sys-
tem through phase space is unimportant and only the rise in
energy needed to reach the saddle point matters in the end.
However, suppose that one chooses initial and final configu-
rations in phase space for which it is impossible to find a
path of the form~30! also obeying Eq.~31! at some interme-
diate time. The simplifications leading to transition-state
theory are lost and I have found no compact alternative to
Eq. ~12!. The familiar mental picture of a system escaping

over a barrier no longer applies quantitatively. The slow
creep of cracks provides an example of a process that obeys
Eq. ~31!, while the jump of cracks from stationary to moving
configurations provides an example that sometimes cannot.

III. APPLICATION TO FRACTURE

A. Background

The classic theory of fracture@9#, going back to Griffith
@10#, holds that as the load on a body increases, rapid frac-
ture should reproducibly occur at a definite critical value, the
Griffith point. However, work by Thomson and collaborators
@11–13# showed that this picture is not really correct. The tip
of a crack in a crystal can become trapped at a lattice site for
a range of externally imposed stresses. The phenomenon is
referred to as ‘‘lattice trapping’’ and is very similar to pin-
ning phenomena in other cases, such as charge-density
waves.

The study of lattice trapping concerns only stationary
cracks. The analytical study of moving cracks in lattices was
initiated by Slepyan and co-workers@14,15#, who found that
crack motion inevitably involves the emission of high-
frequency phonons. Although the complete story of how
cracks move in crystals is a complicated one and has not yet
fully been deciphered, some additional points now seem
clear @16,17#.

The zero-temperature phase diagram for cracks in brittle
crystals is indicated on the top in Fig. 2. The diagram de-
scribes steady-state cracks in a strip, controlled by a dimen-
sionless parameterD, which measures how far apart one has
pulled the top and bottom of the strip, and which is normal-
ized to equal 1 at the Griffith point. This parameter will be
defined for a particular model in Eq.~33!; in fracture me-
chanics terminology@12# D5KI /KIc . The subject of this
paper is the lower portion of Fig. 2. At nonzero temperature,
lattice-trapped cracks are not stationary, but creep forward at
a rate that grows exponentially with temperature. In addition,
they can jump at some rate up to the branch of rapidly mov-
ing cracks. The goal is to calculate these two rates. This
problem is somewhat similar to that of Brownian motion in
biased periodic potentials~see Ref.@5#, p. 303!, but acquires
some new features due to the inclusion of a very large num-
ber of degrees of freedom.

B. Simple one-dimensional model

In order to use Eq.~3! for this physical problem, one must
find an appropriate collection of forcesFi . A particularly
simple case is illustrated in Fig. 3 and defined by the equa-
tions

Fi5H xi1122xi1xi21 ~coupled to neighbors!,

1
1

N
~DA2N112xi ! ~driving term!,

22xiu~12xi ! ~bonds that snap!.
~33!

Placing Eq.~33! into Eq. ~3!, one models a thin strip of
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cracked material under stress, suffering bombardments on all
sides from molecules that maintain it at temperatureT.

Many features of Eq.~33! have been worked out previ-
ously@16–18#. The main results correspond to the qualitative
picture in Fig. 2, except that the nonlinear instability atvc is
not present in this one-dimensional case. Some of the math-
ematical conclusions are the following.

~i! For fixed driving termD, most behavior becomes in-
dependent ofN in the limit where the model mimics a mi-

croscopic crack in a macroscopic strip, the limit of largeN.
~ii ! There are linearly stable, stationary crack solutions for

a wide range ofD. In the limit of largeN, the range is from
D5(A321)/A250.51 . . . toD5(A311)/A251.93 . . . .

~iii ! A branch of stable steadily moving solutions begins
at aroundD'1.2 andv5vmin'0.3, with v increasing asD
increases. There are no steady-state solutions at all for
0,v,vmin .

C. Creep processes

As a first application of the formalism of Sec. II B, con-
sider the process of thermally activated creep of a crack. A
crack originally trapped at some lattice site snaps an atomic
bond, jumps ahead by one lattice spacing, and ends station-
ary one site further to the right. To calculate the probability
of such an event, use the formalism of Sec. II B with the
initial condition of a stationary crack and the final condition,
a long time later, of the same stationary crack displaced by
one site to the right.

It is easy to guess the saddle point the crack must cross in
moving from initial to final configurations. Imagine grabbing
the two masses labeledx0 in Fig. 3 and slowly and sym-
metrically pulling them apart until the distance between them
is just shy of 1. If the external force is now released, the
crack will relapse back into its original configuration. How-

FIG. 2. Schematic phase diagram for cracks in brittle lattices, as
deduced from analytical solutions of lattice models.D is a dimen-
sionless measure of the external driving force on the system. On the
top is the situation at zero temperature. Cracks at zero velocity are
stable for a range ofD; this is the phenomenon of lattice trapping.
However, for some of the same values ofD, rapidly moving cracks
are also possible. The minimum velocity at which they can move is
vmin , and they become unstable atvc to a nonlinear instability that
I will not consider at all in this paper. On the bottom is the situation
at nonzero temperature. The main change occurs in the lattice-
trapped branch of solutions. These move at nonzero rate for any
D.1. In addition, they make transitions at some rate to the upper
branch of solutions. Calculating these two rates is the subject of this
paper.

FIG. 3. This one-dimensional model mimics the motion of a
crack in a strip, incorporating effects of discreteness. One can view
it as a model for the atoms lying just along the surface of a crack.
The mass points are only allowed to move vertically and are tied to
their neighbors with springs that break when they exceed a certain
extension. The lower portion of the figure shows an actual steadily
moving solution of the model with velocityv50.5. Only cases
where the mass points move symmetrically about the crack line will
be considered.
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ever, the slightest additional pull will snap the vertical bond
and even upon releasing the external force the crack will
certainly move forward. Whether the crack will move for-
ward by only one bond at this point or take off running
forever can be settled only by detailed calculations. There is
a range ofD for which the crack moves ahead by only one
bond and then stops and we will focus on this possibility for
the moment.

The definition of the model given in Eq.~33! does not
really describe the saddle point over which the system passes
during creep. The saddle point occurs whenx051 and the
Heavisideu function is ambiguous there. The proper way to
think about this technical point is to replace theu function by
one that passes continuously from 1 to 0 asx0 rises from
below to above 1, over a very small range ofx0. I have made
this replacement in all numerical work. Somewhere in the
midst of this tiny range is an unstable equilibrium, which is
the true saddle point. Physical results seem to be independent
of the way the width of this region is taken to go to zero.

Therefore the configuration@xW s,ẋWs# described in Sec. III B
corresponds here to the case in which an external force ap-
plied tox0 brings it to height 1, all masses points except the
one at i50 are stationary, andẋ0

s is extremely small and
positive. An explicit description of this state is

xi
s5H D

A2N11
~12zi !1zi for i>0,

DA2N11~12yi !1yi for i,0,

~34a!

wherey and z are constants being raised to thei th power,
which solve the quadratic equations

y2211/y21/N50 ~34b!

and

z2211/z2221/N50. ~34c!

The total energy required to raise a stable static crack to
this state is given by the integral of the force on mass 0 over
the distance it has to move and is

Uc5
~A2B!2

2B
, ~35!

with

A5DS A2N112
1

yA2N11
1

1

zA2N11
D ~36!

and

B51/z21/y. ~37!

In the limit N→`, one finds

Uc5~11A3!S D

~11A3!/A2
21D 2. ~38!

In the particular case ofN59 andb50.1, where many nu-
merical runs have been performed,~38! becomes

Uc50.556~D21.663!2. ~39!

D. Numerical investigations and jump events

In order to verify Eq.~35!, produce pictures of the solu-
tions, and study rapid fracture initiation, I have written nu-
merical routines that directly minimize the functional in Eq.
~12! for the model equation~33!. The routine requires one to
choose a number of particles to study~characteristically 80!
and to describe their locations at a number of points in time
~characteristically 1500!. The complete time history of all
particles~characteristically 120 000 variables! is placed into
the functional~12!, which then is minimized~I used a routine
of Presset al. @19#! subject to the boundary conditions~11!.

Some difficulties came about in attempting to carry out
the numerics in such a way that the program would be guar-
anteed to give a true upper bound toS@x(t)#. The finite
element method gives such upper bounds, but did not work
well in this problem. The reason is that once systems are
descending from energy barriers, particles obey Newton’s
laws ~17! and contribute nothing to the functional, as in Eq.
~18!. Since particles may be moving quite rapidly, there must
be very large cancellations in Eq.~12!. Finite-element imple-
mentations are so insistent upon obtaining a true upper
bound that the cancellations cannot be perfect and the nu-
merical answers are so large as to be useless. With a simple
finite difference scheme, there exist values for the discretized
equations where the cancellation occurs completely and the
numerics find these values as part of the solution. The results
in Fig. 6 are all from finite-difference and not finite-element
calculations.

A numerical solution corresponding to creep appears in
Fig. 4. The action of this solution is precisely what is pre-
dicted by Eq.~35! and its character is just what is predicted
by Eq. ~30!. The crack begins stationary. Waves enter the
system far from the tip and head towards one another, slowly

FIG. 4. A creep event obtained from numerical minimization of
Eq. ~ 12!, for model Eq.~ 33! with N59,D51.2, andb50.1. Time
t50 is chosen as the instant that the bond at the crack tip snaps. At
large negative times the crack is stationary. Traveling waves spon-
taneously appear far from the tip and travel towards it, growing as
they move. They strike the tip in perfect synchrony, snapping the
bond at the tip so that its velocity has dropped to zero as it snaps.
The crack sheds waves as it relaxes to its new stationary configu-
ration, one site to the right.
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growing in amplitude. They strike the tip in perfect syn-
chrony, snapping one bond. The crack tip jumps ahead by
one lattice spacing, sending off waves somewhat larger than
those that just triggered it, and settles down to a stationary
configuration one lattice site to the right of its starting point.

For exactly the same parameter values, a sufficiently large
thermal fluctuation can cause a crack to jump to a dynamic
configuration. One finds the most likely way for this to occur
by solving exactly the same equations used for the creep
problem, but by imposing boundary conditions att5t that
correspond to a rapidly running crack. Guessing a solution of
the form~30! is a reasonable starting point. As initial condi-
tions, I used Eq.~34a!, but with the mass at 0 given some
large velocity, on the order of 1, and all other mass points
motionless. Such states seem to be suitable starting points for
numerical hunts for the minimum action, but initially over-
estimate the minimum action by a factor of more than 2. A
solution found in this way appears in Fig. 5. Again, all par-
ticles begin at rest, then waves develop far from the crack
tip, larger than before, come in towards the center, and drive
the crack into action. The kinetic energy of the system in-
creases constantly during the process. Since vanishing of all
velocities is a necessary condition for a system to be at a
saddle point of the energy, the system cannot be traveling
through a traditional saddle point in phase space as it makes
the jump to rapid motion.

A plot of the energyU for various values of the driving
forceD appears in Fig. 6. There is a range ofD for which
creep and jump events coexist. OnceD reaches approxi-
mately 1.3, deterministic evolution of the configuration~34a!
produces rapidly running, rather than lattice-trapped, cracks.
Therefore, forD larger than this value, Eq.~35! gives the
probability of rapid fracture initiation rather than the rate of
creep.

E. Creep rate

Over time periodst which are long compared to 1/b,
configurations which lead to a single creep event are virtu-

ally motionless, except for the brief period when the bond at
the origin snaps. The action cannot much depend upon the
intermediate timet1 at which this happens and therefore the
probability of a single creep event occurring in timet is

P15Vte2U/kT. ~40!

HereV is a constant with dimensions of frequency that will
be evaluated explicitly in a later section. Similarly, the prob-
ability of l creep events occurring is

Pl;
~Vt! l

l !
e2 lU /kT. ~41!

The most likely number of creep events to have occurred in
this time is given by the maximum ofP, which is

l5Vte2U/kT ~42!

or

l̇5Ve2U/kT. ~43!

Equation~43! accords well with the basic facts on creep rates
@1#, which show that creep does in fact increase exponen-
tially with temperature; Eqs.~43! and ~38! are essentially
identical to results of Fuller and Thomson@20#.

IV. TIME REVERSAL

A. Antikinetic paths

By considering the limit in which the damping constant
b tends to zero, one can make a number of observations
concerning the time-reversal invariance of the equations of
mechanics. In this limit the spatial scale over which phonons
travel without decaying tends to infinity. Therefore, it is pos-
sible without noticeable change in any of the solutions of Eq.
~3! to setb to zero in a large neighborhood of the crack tip
and to mimic a truly Hamiltonian system in contact with an
external heat bath. All physical results such as creep rate are
perfectly well defined asb→0, although the formalism be-
comes indeterminate ifb is set to zero at the outset.

FIG. 5. A jump event obtained from numerical minimization of
Eq. ~12!, for model Eq.~33! with N59, D51.2, andb50.1, pre-
cisely the same values as in Fig. 4. However, one now imposes final

boundary conditionsxW andpW corresponding to a running crack and
the fluctuationsDi arriving at the crack tip must be larger than in
the previous case to achieve them.

FIG. 6. Results of a numerical search for minimum-energy paths
U as a function ofD. The circles show the activation energy of
creep events, the squares show the activation energy of jump
events, and the thick line shows a plot of Eq.~39!. All the calcula-
tions are carried out forN59 andb50.1. At low strainsD, only
creep events are possible. ForD51.198 jump events first become
possible, although their activation energy is initially very high. By
the timeD'1.3, jump events occur immediately if even a single
bond snaps, and creep is no longer possible.
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In the limit of vanishing damping, one still can speak of a
dominant pathxW (t) leading to creep. Focusing upon regions
in the neighborhood of the crack tip where the damping has
been set to zero, one can watch atoms near the tip evolve in
a completely conservative manner. This Hamiltonian trajec-
tory is the path in phase space that has the smallest possible
energy leading to creep. Prior to snapping the bond at 0,
spatial concentrations of energy become more and more lo-
calized in space, until they converge simultaneously upon the
crack tip, snapping the bond. After this time, energy dis-
perses throughout the system. Thus even this single Hamil-
tonian trajectory has characteristics that appear to involve
going backward in time initially and then forward in time
after the snapping event.

While talk of trajectories moving backward in time ap-
pears frivolous, it is an old idea in statistical mechanics.
Ehrenfest and Ehrenfest@21# explain Boltzmann’s cryptic
remark that theH function is everywhere a maximum by
considering a system in equilibrium whoseH function is
found at some times to be at valuesHb above the minimum
average value and point out that ‘‘in an overwhelming num-
ber of cases they form maxima, schematically represented by

Hb

Ha Ha . ’’ ~44!

The rise inH is symmetrically related to the fall inH with
overwhelming probability. Reflection upon how mechanics
might actually implement this symmetry leads to images
such as those in Fig. 5. The ‘‘dynamical key’’ of Wargitsch
and Hubler@22# also provides a case in which time-reversed
paths play a crucial role; Wargitsch and Hubler find that the
most efficient way to pump energy into a nonlinear system is
to force it with the time reverse of the waves it would emit if
it were ringing down. Creep fractures progress when thermal
fluctuations happen onto the dynamical key for exciting
them. Lengthy periods of time-reversed behavior on large
scales are impossible, but the underlying symmetry reveals
itself during the unlikely progress of activated processes.

B. Time-reversal paradoxes

The apparent conflict between motion-reversal invariance
of Newtonian mechanics and the irreversibility of the natural
world is a subject that developed with statistical mechanics.
It is unlikely that anything could be added now that has not
already thoroughly been understood by Boltzmann@23#,
Ehrenfest and Ehrenfest@21#, and Kac@24#, or in the books
devoted to the topic@25–28#. Nevertheless, the model of
fracture studied in this paper provides a revealing case in
which to pose again some of the old questions.

Return to the model equation~33!, adopt a closed system
of finite size, set all dissipative termsb to zero, choose an
initial condition in which a crack is present up to some par-
ticular point, and ask how this mechanical system will
evolve. First, let us consider Loschmidt’s objection to Bolt-
zmann; take any Hamiltonian system at any point in time and
reverse the sign of the velocities of all particles. Then the
system travels backward in time. One can make the paradox
worse. According to Liouville’s theorem, the volume of
phase space associated with any collection of trajectories is

unchanged as it undergoes evolution in time. Statistical me-
chanics promises that the probability of any event depends
only upon the phase-space volume of initial conditions that
produce it. Since the phase-space volume associated with
going backward in time is the same as the volume associated
with going forward in time, the two should be equally likely
and we should see broken glasses hop off the floor and reas-
semble themselves on a regular basis.

Boltzmann’s answer to Loschmidt is reputed to have been
@24# ‘‘go ahead, reverse them!’’ The computer seems to
make this task possible after all, until one realizes that the
task of recording velocities with sufficient precision to re-
verse them perfectly is computationally intractable except
under very limited circumstances@29#. Trying to beat this
conjecture, one can put Eq.~33! onto a computer, run it
forward in time, and then reverse the velocities. The com-
puter has inevitably lost the exponentially delicate correla-
tions between distant particles needed to make this state ef-
fective. The crack runs backward briefly, turns around, and
behaves normally. This answer may seem almost as trou-
bling as the original objection because it suggests that when
humans are unable to produce or describe a certain initial
condition, then nature will be unable to create it. However,
one should recognize that systems undergoing irreversible
change through fracture are classic branch systems@28#,
which do not arrive at their initial conditions spontaneously.
In laboratory experiments, the initial condition is a result of
human action: for example, one takes a notched piece of
material and places it under tension. The class of initial con-
ditions that would lead an isolated subsystem to evolve back-
ward in time is inaccessible, both computationally and ex-
perimentally.

In addition, consider Eq.~33! with, say,D51.2 and with
a small amount of kinetic energy dispersed throughout the
system, so that one feels comfortable guessing that the sys-
tem behaves as if it is at some low temperature and the crack
should creep forward. Suppose that at timet1 the bond at
i50 snaps and the crack moves ahead. It is true that the
space of initial conditions that could lead the crack to move
backward and heal is just the same size as the space of initial
conditions that just made it move forward. However, that is
the wrong comparison. The space of initial conditions that
could lead the crack to jump over the next bond and progress
further is incomparably larger, for the simple reason that the

FIG. 7. The progress of a Hamiltonian system through an irre-
versible process resembles passage through rooms with doors
whose sizes increase exponentially. Symmetry of the equations af-
ter reversing the sign of time is reflected in the fact that the size of
a door is the same whether one passes forwards or backwards
through it. Irreversibility comes from the huge new doors that be-
come available.
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potential energy of the broken bond is now converted to
kinetic energy available to aid further snapping events.

Thus we arrive at a schematic description of an irrevers-
ible experiment~Fig. 7!. A system is prepared in a state far
from equilibrium. The preparation process is inevitably
asymmetrical in time and cannot incorporate the delicate cor-
relations needed for time-reversed behavior. Following
preparation, the system is isolated and begins independent
evolution through a sequence of irreversible events. The
probability of each of these events happening equals the
probability of the event going in reverse. However, each
event opens the door to a new event that is vastly more
probable.

V. SUBEXPONENTIAL TERMS

A. Path decomposition formula

In order to compute the rate of creep, one must calculate
the coefficientV that appeared in Eq.~40!. There is consid-
erable formal experience with this problem@30,31,8,32#,
which shows that one needs to look at quadratic fluctuations
about the dominant path and compute the determinant of its
quadratic form. This task is made difficult by the disconti-
nuities in the force law of Eq.~33!. The Taylor expansion of
the action is singular at all the critical times where a bond is
on the verge of snapping. Fortunately, the path decomposi-
tion expansion, due to Auerbach and Kivelson@33#, provides
a way to write a Green function as an integral over products
of Green functions that are restricted to different portions of
configuration space. In the case of fracture, the idea will be
to write the Green function for a system where a single bond
snaps as a product of Green functions, one describing the
system before the bond snaps and the other describing it
afterward, integrating over the time at which the snap occurs.
The Green functions in these two regions can be computed
relatively easily since the problems in the two regions are
completely linear. This calculation does neglect the contribu-
tions from paths in which a bond snaps and reheals many
times. There is also another set of approximations adopted
having to do with the space of intermediate configurations
that in fact leads to a desired final state. Because the solution
of these technical problems has been left for the future, I am
able to present only an estimate of the prefactors.

Auerbach and Kivelson’s decomposition may be general-
ized as follows: Suppose we divide phase space by a
(2M21)-dimensional plane, such as the plane on which
some position coordinate reaches the snapping pointx0

s51.
If we begin with an ensemble of systems at timet50, then
the number of systems that cross this plane during the time
interval betweent8 and dt8 and then go on to arrive at a
desired final location at timet is

E dxsdpsg0→s
t8 dt8

p0
s

m
gs→n

t2t8d~x0
s21!. ~45!

Thed function enforces the requirement that each system
being considered cross the plane at timet8 and the number of
systems that cross the plane duringdt8 is obtained by mul-
tiplying by the velocityp0

s/m. One has to multiply by the

probability that the system goes from the crossing point to
the desired final state and integrate over all possible crossing
points.

Suppose that to get from initial to final states, a system
must pass through the planex0

s51 at some time. Then one
has the identity

g0→n
t 5E

0

t

dt8E dxsdpsg0→s
t8

p0
s

m
gs→n

t2t8d~x0
s21!. ~46!

Despite the fact that Eq.~46! resembles the Chapman-
Kolmogorov equation, it is really quite different; the
Chapman-Kolmogorov equation says that the probability of
going from 0 ton is equal to the probability of going from
0 to s in time t8, times the probability of going then on to
n, integrated over all intermediate pointss. By contrast, Eq.
~46! says that the probability of going from 0 ton equals the
probability of going from 0 to some particular planes, which
divides 0 fromn, times the probability of going froms to
n, integrated over the plane, and all times at which one might
reach it. It is useful to derive this relation somewhat more
formally since it turns out to be possible to generalize it
slightly. This task is carried out in Appendix B. The gener-
alization says that the second probability distributiong in
Eq. ~46! may be replaced byḡ, where ḡ is a probability
distribution appropriate for forceF̄ rather thanF. F̄ andF
must be equal forx0.0, but on the initial side of this divid-
ing plane,F̄ can be chosen arbitrarily.

B. Application to the fracture problem

I now apply this formalism to the crack creep problem.
The first task is to decide when creep has occurred. The
distribution g gives the probability density of arriving at
points in phase space, while a statement such as ‘‘the crack
moved ahead’’ is consistent with a broad class of final states.
Define the probability of a creep event after timet as

P5E dx dpu~x0!g~xWpW ;t!. ~47!

The most likely way for the bond at 0 to snap is for the crack
to arrive at, or near, the saddle-point configuration~34a! at
some timet8. So long as the momentum of the snapping
bond is positive at this time, it is most likely that the crack
will progress forward@34#. The estimate embodying this idea
is

E dx dpu~x0!gs→n
t2t8'u~p0

s!. ~48!

Therefore,

P5E dt8E dxsdpsd~x0
s21!

p0
s

m
g0→s
t8 u~p0

s!. ~49!

Furthermore, for timest8 that are large compared to the char-

acteristic time needed for the creep event,g0→s
t8 must become

independent oft8. Assuming thatt is much larger than this
characteristic time, the rateR at which a crack starting in
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initial configuration 0 makes the transition to the neighbor-
hood of the final configuration is

R5E dxsdpsg0→s
` d~x0

s21!
p0
s

m
u~p0

s!. ~50!

The probability of starting at rest and arriving near a con-
figuration with a bond about to snap is given by Eq.~28! and
is proportional to exp@2E(xWs,pWs)/kBT#. Thus one may rewrite
Eq. ~50! as @35#

R5

E dxsdpse2E~xWs,pW s!/kBTd~x0
s21!

p0
s

m
u~p0

s!

E dxsdpse2E~xWs,pW s!/kBT

. ~51!

The energy is quadratic in momenta, so one can do the mo-
mentum integrals, obtaining an expression depending upon
the potential energyV as

R5A kBT

2pm

E dxse2V~xWs!/kBTd~x0
s21!

E dxse2V~xWs!/kBT

. ~52!

We have already identifiedUc as the minimum-energy con-
figuration at whichx0

s has been taken to the snapping point.
Holding the bond at 0 fixed, the energy is just a quadratic
functional of all remaining variables, unless a neighboring
bond moves far enough to snap as well. Ignoring these very
large excursions, there is a unique matrixV9 that describes
quadratic energy fluctuations. Thus, shifting the integration
coordinates to the appropriate minimum configuration, drop-
ping the superscripts, and expandingV gives

R5A kBT

2pm
e2Uc /kBT

E dx expS 2(
i , j

xiVi j 9xj /kBTD d~x0!

E dMx expS 2(
i j

xiVi j 9xj /kBTD ,

~53!

5A kBT

2pm
e2Uc /kBT

3

E dxE dz

2p
eizx0expS 2(

i , j
xiVi j 9xj /kBTD

E dx expS 2(
i , j

xiVi j 9xj /kBTD , ~54!

5A kBT

2pm
e2Uc /kBTE dz

2p
e2z2kBTG00/4, ~55!

5A 1

2p2m
e2Uc /kBT

1

AG00

, ~56!

where the matrixGi j is the inverse ofV9.
Computation ofG00 is simplest for the model defined by

Eq. ~33! in the limit N→`. One finds

G005
A321

2
, ~57!

giving a final result

R5
1

p
A 1

~A321!
e2Uc /kBT. ~58!

The original model had a number of dimensional constants
set to unity. If all the springs in the model had constantK
and if all the masses werem, thenR would be proportional
to v5AK/m.

Computation of the prefactor for the jump problem pro-
ceeds in an identical fashion, although uncertainties related
to the precise set of intermediate configurations that leads to
the desired final running state are more severe. Letp0

s be the
momentum of the bond at 0 at the instant it snaps. Using as
the analog of Eq.~48! the assumption that all configurations
with momentump0.p0

s will likewise proceed to the running
state, one finds exactly the same expression as Eq.~58!, but
multiplied by an additional factor of

A kT

p~p0
s!2/2m

. ~59!

VI. CONCLUSIONS

Since there is substantial literature on creep fracture@1#,
including careful experiments, it would be natural to con-
clude this paper with an attempt at quantitative comparison.
Instead, I must conclude by explaining why the comparison
is not yet possible.

There is first the difficulty that quantum-mechanical fluc-
tuations compete with thermal fluctuations in providing a
mechanism for atoms to cross energy barriers. The charac-
teristic temperature below which the quantum-mechanical
influence upon lattice vibrations cannot be neglected is the
Debye temperature, which is on the order of room tempera-
ture ~see Ref.@36#, p. 461!. Simple estimates carried out by
Gilman and Tong@6# show that the effects are not small.

There is second the difficulty that creep fracture is enor-
mously influenced by chemical reactions at the fracture tip,
which change the speed of creep by orders of magnitude
@13#. For example, moisture has such an effect upon cracks
in glass.

There is third the difficulty that one- and two-dimensional
models do not capture the right geometry by which creep
fracture must proceed. In three dimensions, the crack line
advances by forming tiny bumps, which reach out ahead of
the main crack@6#. Below a critical size they will shrink and
above it they will grow. One interpretation of the one-
dimensional model discussed in this paper is that it describes
part of one of these structures along a crack line in three
dimensions. Even in two dimensions crack tips can become
blunted, which means that there are many metastable con-
figurations of atoms near the crack tip that have large effects
upon its ability to propagate.

When one passes from the creep problem to the jump
problem, the comparison with experiment becomes even
more tenuous. The phenomenon of static fatigue sounds in-
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triguing; an experimental sample is placed under a static load
and one waits until it fractures. However, in checking the
experimental literature, I have not found a case in which the
comparison is really appropriate. In characteristic experi-
ments@37,38#, cracks are placed in loading conditions where
as they creep ahead, the energy flowing to their tips increases
for reasons associated with the loading geometry. The ex-
periments measure creep combined with a geometrical insta-
bility, rather than the jump phenomenon I have been describ-
ing theoretically. Therefore, at the end of this investigation,
the tasks still to be accomplished seem more numerous than
those that have been completed.
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APPENDIX A: DERIVATION
OF FUNCTIONAL INTEGRAL

Starting from Eq.~3!, one may write

g~xWpW ;t1dt!5)
i

F11S 2
]

]xi

pi
m

1
]

]pi
H 2Fi1bpi

1mkTb
]

]pi
J DdtGg~xWpW ;t! ~A1!

and then insert the complete set of states

E H)
i

dxi8dpi8dki
xdki

p

~2p!2
eik

x~xi82xi !1 iki
p
~pi82pi !F11S 2

]

]xi8

pi8

m
1

]

]pi8
H 2Fi1bpi81mkTb

]

]pi8
J D dtG J g~xW8pW 8;t!

~A2!

5E H)
i

dxi8dpi8dki
xdki

p

~2p!2
eik

x~xi82xi !1 iki
p
~pi82pi !F11S ik ix pi8m 2 ik i

p$2Fi1bpi82 ik i
pmkTb% D dtG J g~xW8pW 8;t! ~A3!

'E H)
i

dxi8dpi8dki
xdki

p

~2p!2
eik

x~xi82xi !1 iki
p
~pi82pi !e[ iki

x
~pi8/m!2 iki

p$2Fi1bpi82 iki
pmkTb%]dtJ g~xW8pW 8;t! ~A4!

5E H)
i

dxi8dpi8dki
p

2p
d~xi82xi1dt pi8/m!eiki

p
~pi82pi !e[2 iki

p$2Fi1bpi8%2~ki
p
!2mkTb]dtJ g~xW8pW 8;t! ~A5!

5E H)
i

dxi8dpi8

2p
d~xi82xi1dtpi8/m!A p

mkTbdt
e

2@pi82pi1dt~Fi2bpi8!#2

4mkTbdt J g~xW8pW 8;t!. ~A6!

With a slight change in notation,~A6! becomes~5!.

APPENDIX B: FORMAL DERIVATION
OF DECOMPOSITION FORMULA

This method is based on the procedure of van Baal@39#,
but requires some generalization. There are three steps. First,
one finds a partial differential equation forg in terms of the
initial positions and momenta of the particles rather than
final positions and momenta. Second, one broadens the equa-
tion to a wide class of force laws. Third, one takes the
Laplace transforms of the two differential equations, and by
multiplying them by appropriate factors ofg, subtracting two
equations, and using the Laplace convolution theorem gets
Eq. ~46!.

Step I. One can rewrite the probability to go from initial to
final states as

g0→n
t 5E dxsE dpsg0→s

dt gs→n
t2dt . ~B1!

From the Fokker-Planck equation~3! one has that

g0→s
dt 5F12(

i

]

]xi
s

pi
s

m
1

]

]pi
s H 2Fi1bpi

s

1mkTb
]

]pi
s J Gd~xs2xi !d~ps2p0!. ~B2!

Placing Eq.~B2! into ~B1! and integrating by parts to
remove the differential operators from thed functions gives
immediately

]g

]t
5(

i
Fp0m ]

]xi
0 1@Fi~x

0!2bpi
0#

]

]pi
0 1mbkBT

]2

pi
02Gg.

~B3!

This equation relates the evolution of the probability of start-
ing at initial condition 0 and ending at final conditionn to
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derivatives of the function with respect to the initial condi-
tions. The operator acting upong is the adjoint of the opera-
tor in ~3!.

Step II. Consider a probability distributionḡ. This distri-
bution obeys exactly the equations asg, except that the force
function F appearing in Eq.~B3! is replaced byF̄, where
F̄ is any function that is identical toF for x0.0 and can be
anything whatsoever forx0,0. It might equalF there too, or
it might be2`, in which case it represents an infinite cliff
swallowing up any particle whose coordinate passes the
planex050. In the first caseg and ḡ are the same, while in
the latter caseḡ is a probability distribution that vanishes for
x0
0,0. The equation obeyed byḡ is

]ḡ

]t
5(

i
Fp0m ]

]xi
0 1@ F̄ i~x

0!2bpi
0#

]

]pi
0 1mbkBT

]2

pi
02 ,G ḡ.

~B4!

Step III. Take the Laplace transform of Eqs.~3! and~B4!.
One has

d~xs2x0!d~ps2p0!1H 2E1(
i

F2
]

]xi
s

pi
s

m

2
]

]pi
s $Fi2bpi

s%1mkTb
]2

pi
s2 ,G J g0→s

E , ~B5!

d~xs2xn!d~ps2pn!1H 2E1(
i

F ]

]xi
s

pi
s

m
1$Fi2bpi

s%
]

]pi
s

1mkTb
]

pi
s2G J ḡs→n

E . ~B6!

Multiply Eq. ~B5! by u(x0
s)ḡs→n

E , multiply Eq. ~B6! by
u(x0

s)g0→s
E , subtract the two equations, and integrate over

xs and ps. The terms involving derivatives with respect to
ps turn into perfect differentials of products of the functions
g and ḡ and vanish, as do derivatives with respect with all
components ofxs exceptx0

s . What remains is

u~x0
n!g0→n

E 5E dxsdpsd~x0
s!
p0
s

m
g0→s
E gs→n

E . ~B7!

Inverting the Laplace transform, using the convolution theo-
rem, Eq.~B7! produces Eq.~46!.
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these cases would occur; they are sufficiently rare as to be hard
to pick up numerically.
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