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The contact process~CP! is generalized allowing the exchange of particles via Le´vy flights, where the flying
length (l ) is a random variable with a probability distribution given byP( l )} l2d2s, whered is the spacial
dimension ands is the dimension of the random walk. The contact process with Le´vy flights ~CPLF! exhibits
irreversible phase transitions between an active state and a vacuum state. It is show that within the superdif-
fusive regime of the walkers~i.e., s,1), the Lévy mechanism effectively build up additional long-range
correlations, therefore the critical exponents of the CPLF model depart from those of the standard CP and they
are tunable functions ofs. Comparison of the critical exponents characteristic of branching annihilating Le´vy
walkers @E. Albano Europhys. Lett.34, 97 ~1996!# and those of the CPLF gives strong evidences on a
universality class which comprises second order irreversible phase transitions in systems involving Le´vy
exchanges and/or flights. It is suggested that the CPLF is equivalent to the standard CP with long-range
interactions generated by a potential decaying with distancer as a power law of the formV(r )}r2d2s.
@S1063-651X~96!03510-6#

PACS number~s!: 05.40.1j, 05.50.1q, 64.60.Ht,82.20.Mj

I. INTRODUCTION

Interest in the understanding of the behavior of far-from-
equilibrium many-particle systems has recently experienced
a rapid growth because it is relevant in many branches of
science such as physics, chemistry, biology, ecology, and
even sociology. Special attention has been devoted to irre-
versible systems exhibiting irreversible phase transitions
~IPTs! from active~stationary! to inactive states. A common
feature of such systems is that they evolve according to a
Markov process governed by local, intrinsically irreversible
transitions rules; such models are collectivelly known as in-
teracting particle systems@1,2#. Some examples are the con-
tact process~CP! @1,3–7#, theA model @3#, surface reaction
models ~see, e.g.,@8–13#, etc.!, directed percolation@14#,
forest-fire models with immune trees@15#, the stochastic
game of life @16#, branching annihilating random walkers
@17–19#, etc. So far in all these examples long-range corre-
lations are developed as a consequence of the microscopic
mechanisms governing the evolution of the systems. In fact,
in most cases the ‘‘potential energy’’ of interaction between
particles ~or individuals! is simply ignored, while in other
examples only short-range interactions are considered
@13,20#. Therefore, our understanding of IPTs in systems
with long-range interactions is restricted to the same scarce
analytical results@2#. The lack of computer simulations in
this field is probably due to the huge effort required to obtain
accurate critical exponents.

Recently, it has been demonstrated, in the field of revers-
ible phase transitions, that random exchange via Le´vy flights
can effectively generate long-range interactions@21,22#. The

Lévy flight @23,24# is a random walk in which the step length
( l ) is a random variable with a probability distribution given
by

P~ l !} l2d2s, ~1!

whered is the spacial dimension and the parameters is the
dimension of the random walk for 0,s,1. It should be
noted that within that range ofs the walker exhibits super-
diffusive behavior, while fors51 one recovers ordinary dif-
fusion @25#. So, in Ising-like models, the random Le´vy ex-
change of spins generates an effective interaction potential
decaying with distancer as a power law of the form@21,22#

V~r !}r2d2s. ~2!

Within this context, the aim of the present work is to
study, by means of computer simulations, the critical behav-
ior of both a CP with Le´vy exchanges~i.e., the CPLF model!
and a CP with long-range interactions between particles~i.e.,
the CPLRI model!. This study will contribute to the under-
standing of both, irreversible reaction processes with anoma-
lous diffusion and IPTs in the presence of long-range ex-
changes and interactions. The manuscript is organized as
follows: Sec. II gives brief details of the simulation, in Sec.
III the theoretical background of the epidemic analysis used
to study the dynamic critical behavior of the models is dis-
cussed and the obtained results are presented. The order pa-
rameter critical exponent is evaluated in Sec. IV. The ob-
tained results are compared with recent data corresponding to
branching annihilating walkers where the walkers~or the off-
spring! have a finite probability to undergo Le´vy jumps in
Sec. V; and finally our conclusions are stated in Sec. VI.
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II. THE MODEL AND DETAILS
ON THE SIMULATION METHOD

Lévy flights

According to Eq.~1! the Lévy flight has a finite~although
small! probability to perform rather long jumps (l→`),
however in nature actual random walks necessarily perform
bounded hoppings~for experimental realizations of Le´vy
walkers see@26,27#!. For this reason and also due to obvious
limitations in the computer implementation of the algoritms,
we have earlier introduced the bounded Le´vy flights @28#
~also named truncated Le´vy flights @29#!. So, the probability
distribution of the hoppings is now given by

P~ l !} l2d2s, 0<s; l<RM , ~3!

whereRM is the length of the longest possible flight. In the
simulations we have usedRM5104 which is a quite safe
approach since in the worse case (s50) the probability of
having jumps longer than 103 lattice spaces is negligible.

B. The standard contact process„CP…

The contact process~CP!, as proposed by Harris@30#, is a
model for the growth of an epidemic with a single species.
The system evolves via a Markov process consisting in a
sequence of elementary transitions, each involving a single
process which takes place at a randomly selected site. In the
CP each sitei of a lattice, ind dimensions, is either vacant or
occupied~denoted byg i50, or g i51, respectively!. Mul-
tiple occupancy of lattice sites is forbidden. Randomly se-
lected particles are annihilated spontaneously with probabil-
ity p independent of the state of the others. However, a
randomly chosen vacant site becomes occupied with prob-
ability n/z, wheren is the number of occupied nearest neigh-
bors andz is the coordination number of the lattice. Since
spontaneous creation of particles is not allowed, the system
can irreversibly evolve into a vacuum state, which is the
absorbing state of the Markov process. Ifp is very large the
system always enters the absorbing state, but for small
enough values ofp the system has an active state with non-
zero average particle densityr. In one dimension the system
undergoes an irreversible phase transition~IPT! from the ac-
tive state to the absorbing state at a critical probabilitypc .
The IPT is continuous~second order! and belongs to the
universlity class of directed percolation.

C. The CP with Lévy exchanges„CPLF…

The generalization from the CP to the CPLF is straight-
forward: a randomly selected empty site evolves according
to the rules of the CP, however, a randomly chosen occupied
site may either evole according to the rules of the CP with
probability 12t or undergo a Le´vy exchange with other site
with probability t. We carried out Monte Carlo simulations
of the CPLF process in one dimension fort51/2 and
0<s<11.

D. The CP with long-range interactions„CPLRI …

In the CPLRI a randomly selected occupied site is vacated
with probability p; as in the CP; while a randomly empty
sites becomes occupied with probability

P~g i50→g i51!5C(
jÞ i

g j u i2 j u212s, ~4!

whereC is the normalization constant so that a single vacant
site in an otherwise filled lattice becomes occupied with uni-
tary probabilty.

III. EPIDEMIC ANALYSIS

A. Theoretical background and simulation details

Test runs of both the CPLF and the CPLRI models show
that, in fact, each system reaches an active stationary state
for small enough values ofp, while increasingp causes the
system to irreversibly evolve into an absorbing~vacuum!
state. The IPTs are continuous~second order! and the critical
values ofp at which such transitions take place depend on
s. Determining critical behavior from steady state simula-
tions in irreversible dynamic systems is often very difficult
due to large fluctuations, finite size effects, critical slowing
down, and uncertainty in the location of the critical point. In
fact, working with finite lattices, due to fluctuations of the
stochastic process, there is always a finite probability of the
active state to become inactive. Furthermore, this probability
increases when approaching the critical edge. These short-
comings can be avoided performing time dependent simula-
tions also known as epidemic analysis. This kind of simula-
tions allow us to determine reliable critical exponents related
to the dynamical critical behavior of the system under con-
sideration. The general idea behind epidemic simulations is
to start from a configuration which is very close to the inac-
tive state, and follow the averaged time evolution of this
configuration by generating a large ensemble of independent
realizations. So, the epidemic analysis is performed as fol-
lows: one starts, att50, with two occupied nearest neighbor
sites, placed in the center of the lattice, in an otherwise
empty sample. Then the configuration is allowed to evolve
according to the rules of the model. As the number of active
sites is always rather small, an efficient algorithm can be
devised by keeping two lists: one containing the occupied
sites and the other with the empty sites which have at least
one occupied nearest neighbor site. In each elementary step a
site of those lists is chosen randomly. After each attempted
change the time is incremented by 1/@N(t)1Ne(t)#, where
N(t) andNe(t) are the number of occupied and empty sites
contained in the lists at timet. Thus one Monte Carlo time
step~MCts! equals, on the average, one attempted update per
active site.

The time evolution of the sites is monitored and the fol-
lowing quantities are computed:~i! The average number of
occupied sitesN(t), ~ii ! the survival probabilityP(t) ~i.e.,
the probability that the system had not entered in the inactive
state at timet), and the average mean square distance of
spreading from the center of the latticeR2(t) @distances are
meassured in lattice units~LU!#. Notice thatN(t) is averaged
over all runs whereasR2(t) is only averaged over the sur-
viving runs.

At criticality, the following scaling behavior is expected
to hold @14#

P~ t !}t2d, ~5!
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N~ t !}th, ~6!

and

R2~ t !}tz, ~7!

whered , h, andz are dynamic critical exponents. At criti-
cality, one expects that log-log plots ofP(t), N(t), and
R2(t) versust would give straight lines, while upward and
downward deviations will occur even slightly off criticality.
This behavior would allow a precise determination of both
the critical points and the critical exponents.

After determining the critical points, one can gain further
insight of the critical behavior of the model performing epi-
demic analysis within the subcritical~vacuum! state. In fact
close to the critical point the following scaling law should
hold @14#:

N~ t !}thC~ up2pcut1/n i!, ~8!

wheren i is the correlation length exponent in the so called
time direction. In the vacuum state the correlations are short-
ranged and one therefore expectsN(t) to decay exponen-
tially. This can only happen if forDp5p2pc→0 and
t→`, the scaling functionC behaves as

C~y!}~y!2hn iexp2~y!2n i. ~9!

Therefore, using Eqs.~7! and ~8! it follows:

N~ t !}~Dp!2hn iexp2~Dp!n it. ~10!

It should be noted that the dynamic exponents are not
fully independent but a number of scaling relations are ex-
pected to hold@14#. For example, the relationship

dz52h14d, ~11!

may be valid ind dimensions.

Results and discussion

The CPLF model.For very large values ofs, Lévy flights
are restricted to nearest neighbor jumps since the probability
of larger jumps is negligible. In this limit, the CPLF model is
expected to exhibit the same critical behavior than the CP. In
fact, test runs performed fors511 give critical exponents
which are in excellent agreement with the universality class
of directed percolation~see Table I!. Decreasings causes
the critical point to increase, but the exponents remain al-
most unchanged fors>1. This behavior can be understood
since within that range ofs values, Le´vy flights exhibit or-
dinary diffusion properties. However, a further decrease of
s causes the exponents to change~see Table I!, in agreement
with the fact that fors,1 one has superdiffusive behavior.

Figures 1~a!–1~c! show log-log plots ofN(t), P(t), and
R2(t) versust obtained close to criticality fors50.75. The
plots ofN(t) andP(t) versust are quite sensitive with re-
spect to small changes ofp, so they are used to determine the
critical points and exponents. Error bars corresponding to the
critical points are estimated considering the closest values of
p, such as off-critical behavior is observed. The exponents
listed in Table I are obtained by means of least square fits of
the asymptotic regime of plots like those shown in Fig. 1.

TABLE I. Critical points and critical exponents of CPLF, CPLRI, branching annhilating Le´vy flights
~BALF, taken from Ref.@31#! and directed percolation~DP, taken from Ref.@14#!. The last column is a test
of the validity of the scaling relationship given by Eq.~11!. Figures between parenthesis indicate the error
bars in the last digit.

Model s pc h d z dz22h24d

DP — — 0.308 0.160 1.265 0.009

CPLF 11 0.4235(5) 0.305(5) 0.161(3) 1.257(5) 0.003
CPLF 2 0.4380(5) 0.304(5) 0.166(3) 1.261(5) 20.011
CPLF 1.50 0.4490(5) 0.306(5) 0.166(3) 1.260(5) 20.016
CPLF 1 0.4710(5) 0.306(5) 0.165(3) 1.260(5) 20.012
CPLF 0.75 0.4890(5) 0.328(5) 0.159(3) 1.262(5) 20.030
CPLF 0.50 0.5137(3) 0.352(5) 0.145(3) 1.265(5) 20.019
CPLF 0.25 0.5463(3) 0.367(5) 0.14(1) 1.28(2) 20.014
CPLF 0.0 0.5868(3) 0.403(8) 0.12(1) 1.30(2) 0.014

CPLRI 0.0 0.400(5) 0.31(1) 0.16(1) 1.26(2) 0.00
CPLRI 1.0 0.593(3) 0.31(1) 0.16(1) 1.27(2) 0.01

BALF 11 0.1070(5) 0.308(5) 0.156(3) 1.251(5) 0.011
BALF 2 0.1205(5) 0.303(5) 0.158(3) 1.258(5) 0.02
BALF 1.50 0.1306(3) 0.305(5) 0.164(3) 1.262(5) 20.004
BALF 1 0.1563(3) 0.309(5) 0.163(3) 1.263(5) 20.007
BALF 0.75 0.1861(3) 0.324(5) 0.164(3) 1.265(5) 20.039
BALF 0.50 0.2475(5) 0.351(5) 0.150(3) 1.270(5) 20.032
BALF 0.25 0.3853(3) 0.366(5) 0.13(1) 1.28(2) 0.005
BALF 0.0 0.6598(3) 0.405(8) — — —
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Errors bars in the exponents are estimated by evaluating the
slopes of the curves between different time intervals within
the asymptotic regime. It should be noticed that for
s<0.25 the plots of bothP(t) andR2(t) exhibit pronunced
curvature, so the obtention of accurate exponents becomes
difficult. Figure 2 shows log-log plots of N~t! versust taken
for different values ofs. Here the change in the asymptotic
slope can clearly be observed.

The evaluated exponents allow us to test the scaling rela-
tionship given by Eq.~10! and derived for a standard di-
rected percolation process@14#. The data show that the rela-
tionship holds, within error bars, for all the range ofs values
covered by the study. As it also follows from Table I, the
validity of Eq. ~10! may be due to the operation of an inter-
esting compensation effect: whilez remains almost un-
changed,h increases andd decreases. At a given asymptotic
time, a largerh value means that the number of occupied
sites is also larger, so one should expects an increment of the
spreading distance and consequently largerz values. How-
ever, sinceR2(t) is only averaged over surviving runs, this
effect is canceled by the enhanced survivability of the occu-
pied sites. The theoretical understanding of this behavior and
the underlaying physics remains unclear.

From Eq. ~10! it follows that in the subcritical regime
N(t) should decay exponentially and that the decay constant
l, governing the long-time behavior is proportional to
(Dp)n i. The model has been simulated in the subcritical re-
gion for different values ofs. Figure 3~a! shows that in ln-
l inear plots ofN(t) versust one can see asymptotically a
straight line behavior with slopel. In fact, this statement is
confirmed in Fig. 3~b! where log-log plots ofl versusDp
give straight lines and from the respective slopes one can
evaluate the exponentn i . For s52 ands51 we have ob-
tained n i>1.742(9) andn i>1.722(9), respectively. Large
error bars are mostly due to uncertainties in the location of
the critical point. The obtained figures are in excellent agree-

FIG. 1. Log-log plots of ~a! the number of occupied sites
N(t); ~b! the survival probabilityP(t); and ~c! the average square
distance of spreading~measured inLU2) R2(t) vs timet ~measured
in MCts!, obtained close to criticality fors50.75. Upper curves:
p50.4885~supercritical!, medium curves:p50.4890~critical! and
lower curvesp50.4895~subcritical!.

FIG. 2. Log-log plots of the number of occupied sitesN(t) vs
time t ~measured in MCts!, obtained at criticality for different val-
ues ofs. Upper curves50.0, medium curves50.50, and lower
curves511.0.
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ment with the accepted value for directed percolation in
111 dimensions, i.e.,n i>1.733@32#. However, decreasing
s departure from directed percolation values are found, e.g.,
for s50 we obtainedn i>1.996(9). This finding is again in
agreement with the superdiffusive behavior of the Le´vy
walkers observed fors,1.

The CPLRI model.Extensive simulations of the epidemic
behavior of the CPLRI model are only possible fors>1.
The obtained results are listed in Table I. Since for this range
of s the interactions are almost restricted to nearest neighbor
sites, it is not surprising that the obtained exponents are in
agreement with those of directed percolation and the CPLF
with s>1. For smaller values ofs the CPU time required
largely exceds our capabilities. So, we are unable to test
conclusively if both versions of the contact process are in the
same universality class.

IV. DETERMINATION OF THE ORDER PARAMETER
CRITICAL EXPONENT

As it has already been discussed in the preceding section,
the determination of critical exponents from steady state
simulations in irreversible dynamic systems is often very dif-
ficult. However, due to the accuracity obtained in the evalu-
ation of pc an attempt has been made for the evaluation of
the order parameter critical exponent. It is accepted that for
irreversible dynamic process undergoing IPTs the natural or-
der parameter is the concentration of active sitesr, such as
r→0 for p→pc . So, approaching criticality from the active
state one has

r}~pc2p!b, ~12!

whereb is the order parameter critical exponent. Figure 4
shows log-log plots ofr versusDp5pc2p obtained for the
CPLF model using the values ofpc listed in Table I and
taken two different values ofs. For s52 the slope of the
straight line givesb>0.278(9) in good agreement with the
best estimate for directed percolation in (111) dimensions,
i.e., b50.2763(6)~where the error bars account forb val-
ues determined using different lattices and for bond and site
directed percolation! @33#. As expected, within the superdif-
fusive regime of the Le´vy walkers the value of the exponents
depart from standart directed percolation given, e.g.,
b>0.500(9) fors50. This result may suggest the rational
valueb51/2, however, that conjecture can not strongly be
supported because the large error bars which are due to the
fact that the data have to be measured slightly out of criti-
cality due to the presence of fluctuations which drive the
system into the vacuum state.

FIG. 3. ~a! ln-lineal plots of the number of occupied sites
N(t) vs time t ~measured in MCts!, obtained within the subcritical
regime for s50.0 and different values ofp. Upper curve
p50.5895, medium curvep50.5930, and lower curvep50.6100.
The critical probability ispc50.586 75.~b! Log-log plots ofl vs
Dp. Upper curves50.00, the straight line has slopen i51.996;
lower curves52.00, the straight line has slopen i51.722.

FIG. 4. Log-log plots ofr ~measured as number of occupied
sites per LU! vs Dp, obtained for different values ofs. Lower
curves50.0, the straight line has slopeb51/2; and upper curve
s52.0, the straight line has slopeb50.278.
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V. BRANCHING ANNIHILATING LE ´VY FLIGHTS „BALF …

In the standard branching annihilating random walker
process~BAW!, a single random walk branches at some
specified rate and two random walkers annihilate when they
meet @17–19#. In the generalization from BAW to BALF,
randomly selected particles perform Le´vy flights instead of
jumps to nearest neighbor sites@31#. An epidemic analysis,
like that performed in the present work, has allowed us to
evaluated the relevant critical exponents which are listed in
Table I for the sake of comparison. As can be observed the
obtained exponents for the CPLF and the BALF models are
in excellent agreement. Furthermore, for the correlation
length exponent of BALF withs50 the valuen i>1.98(1)
has been obtained@31#. This figure is also in excellent agree-
ment with the resultn i>1.996(9) obtained in the present
work for the CPLF process (s50) and may suggest that the
limiting value of such exponent would ben i52, however,
the confirmation of this conjecture deserves further studies.

VI. CONCLUSIONS

A contact process where particles have a finite probability
to undergo Le´vy exchanges~CPLF! is formulated and stud-
ied by means of numerical simulations in one dimension.
The CPLF model exhibits irreversible phase transitions be-
tween an active stationary state and a vacuum~absorbing!
state. Within the range of Le´vy exponents (s.1) which
corresponds to standard diffusion the obtained critical expo-
nents reveal that the CPLF model belongs to the universality
class of directed percolation. This finding is in agreement
with well established concepts of universal behavior: since
exchanges are restricted to finite distances, the diverging cor-

relation length remains as the only relevant length scale.
However, for smallers values, when superdiffusive behav-
ior is observed, the exchanges are no longer restricted to
finite distances and additional long-range correlations can
effectively be established. So, in these cases, one observes
departure from the standard directed percolation behavior
and the critical exponents depend ons; in other words they
can be tuned varyings.

Numerical results suggest that in the limits50 at least
two critical exponents may adopt rational values, i.e.,
b51/2 andn i52.

The comparison of the obtained critical exponents for two
models, the CPLF process and the BALF reaction, strongly
suggests the existence of a more general universality class of
directed percolation, i.e., all second order irreversible phase
transitions in processes involving Le´vy exchanges and/or
flights may have the same critical exponents depending only
on s and the dimensionality. Our simulations do not allow
us to confirm if the Le´vy exchange mechanism can effec-
tively simulate a long-range interactive potential, as in the
case of reversible phase transitions. However, in our opinion,
the confirmation of this open question will certainly stimu-
late further work due to its relevance in the study of far from
equilibrium irreversible processes.
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