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Irreversible phase transitions in contact processes with Ley exchanges
and long-range interactions
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The contact procegEP) is generalized allowing the exchange of particles viay #lights, where the flying
length () is a random variable with a probability distribution given Byl)=|~97¢, whered is the spacial
dimension andr is the dimension of the random walk. The contact process witly fflights (CPLP exhibits
irreversible phase transitions between an active state and a vacuum state. It is show that within the superdif-
fusive regime of the walker§i.e., 0<1), the Lary mechanism effectively build up additional long-range
correlations, therefore the critical exponents of the CPLF model depart from those of the standard CP and they
are tunable functions af. Comparison of the critical exponents characteristic of branching annihilafing Le
walkers[E. Albano Europhys. Lett34, 97 (1996] and those of the CPLF gives strong evidences on a
universality class which comprises second order irreversible phase transitions in systems involging Le
exchanges and/or flights. It is suggested that the CPLF is equivalent to the standard CP with long-range
interactions generated by a potential decaying with distanes a power law of the fornV(r)er=9-9.
[S1063-651X96)03510-9

PACS numbe(s): 05.40+j, 05.50+q, 64.60.Ht,82.20.Mj

I. INTRODUCTION Levy flight [23,24] is a random walk in which the step length
(1 is a random variable with a probability distribution given
Interest in the understanding of the behavior of far-from-by
equilibrium many-particle systems has recently experienced
a rapid growth because it is relevant in many branches of
science such as physics, chemistry, biology, ecology, and
even sociology. Special attention has been devoted to irre-
versible systems exhibiting irreversible phase transitiongvhered is the spacial dimension and the parametds the
(IPT9 from active(stationary to inactive states. A common dimension of the random walk for<Oc<1. It should be
feature of such systems is that they evolve according to @oted that within that range ef the walker exhibits super-
Markov process governed by local, intrinsically irreversible diffusive behavior, while foir=1 one recovers ordinary dif-
transitions rules; such models are collectivelly known as infusion [25]. So, in Ising-like models, the random e ex-
teracting particle system4,2]. Some examples are the con- change of spins generates an effective interaction potential
tact proces$CP) [1,3-7], the A model[3], surface reaction decaying with distance as a power law of the forrf21,22
models (see, e.g.[8-13], etc), directed percolatiorj14],
forest-fire models with immune tredd5], the stochastic
game of life [16], branching annihilating random walkers
[17-19, etc. So far in all these examples long-range corre-
lations are developed as a consequence of the microscopic Wwithin this context, the aim of the present work is to
mechanisms governing the evolution of the systems. In facktudy, by means of computer simulations, the critical behav-
in most cases the “potential energy” of interaction betweenior of both a CP with Lgy exchangesi.e., the CPLF modg!
particles (or individualg is simply ignored, while in other and a CP with long-range interactions between patrtigles
examples only short-range interactions are considerethe CPLRI model This study will contribute to the under-
[13,20. Therefore, our understanding of IPTs in systemsstanding of both, irreversible reaction processes with anoma-
with long-range interactions is restricted to the same scarclus diffusion and IPTs in the presence of long-range ex-
analytical resultd2]. The lack of computer simulations in changes and interactions. The manuscript is organized as
this field is probably due to the huge effort required to obtainfollows: Sec. Il gives brief details of the simulation, in Sec.
accurate critical exponents. Il the theoretical background of the epidemic analysis used
Recently, it has been demonstrated, in the field of reversto study the dynamic critical behavior of the models is dis-
ible phase transitions, that random exchange viaylféights  cussed and the obtained results are presented. The order pa-
can effectively generate long-range interactif®$,22. The  rameter critical exponent is evaluated in Sec. IV. The ob-
tained results are compared with recent data corresponding to
branching annihilating walkers where the walké@sthe off-
"FAX: 0054-21-254642. spring have a finite probability to undergo” iz jumps in
Electronic address: ealbano@isis.unlp.edu.ar Sec. V; and finally our conclusions are stated in Sec. VI.
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Il. THE MODEL AND DETAILS o
ON THE SIMULATION METHOD P(y=0— 7i=1)=C,§_ yli—il=*e, (4)
IEall

Lévy flights

According to Eq(1) the Levy flight has a finite(although ~ whereC is the normalization constant so that a single vacant
smal) probability to perform rather long jumpsl-Go),  site in an otherwise filled lattice becomes occupied with uni-
however in nature actual random walks necessarily perforntary probabilty.
bounded hoppinggfor experimental realizations of kg
walkers se¢26,27)). For this reason and also due to obvious
limitations in the computer implementation of the algoritms, lll. EPIDEMIC ANALYSIS
we have earlier introduced the boundedvy elights [28] A. Theoretical background and simulation details

(also named truncated Lg flights [29)). So, the probability Test runs of both the CPLF and the CPLRI models show

distribution of the hoppings is now given by that, in fact, each system reaches an active stationary state
P(hxl~97 0<o; I<Ry, €) for small enough values qf, while increasingp causes the
system to irreversibly evolve into an absorbifgacuum
whereRy, is the length of the longest possible flight. In the state. The IPTs are continuo(second orderand the critical
simulations we have useRy,=10* which is a quite safe values ofp at which such transitions take place depend on
approach since in the worse case=0) the probability of o. Determining critical behavior from steady state simula-
having jumps longer than f0attice spaces is negligible. tions in irreversible dynamic systems is often very difficult
due to large fluctuations, finite size effects, critical slowing
B. The standard contact procesgCP) down, and uncertainty in the location of the critical point. In
fact, working with finite lattices, due to fluctuations of the
! oo . . __stochastic process, there is always a finite probability of the
model for the growth O.f an epidemic with a smgle_ SPECIES 5 ctive state to become inactive. Furthermore, this probability
The system evolves via a Ma_lr_kov process consisting In &,.reages when approaching the critical edge. These short-
sequence of elementary transitions, each involving a smglgOmings can be avoided performing time dependent simula-
process W.hi.Ch takes. plage at.a randomly se!ected site. In tq?ons also known as epidemic analysis. This kind of simula-
cP eaph sité of a lattice, ind dimensions, is elther vacantor inng allow us to determine reliable critical exponents related
occupied(denoted byy;=0, or y;=1, respectively. Mul- e qynamical critical behavior of the system under con-

tiple occupancy of lattice sites is forbidden. Randomly Sejqeation. The general idea behind epidemic simulations is

lected particles are annihilated spontaneously with probabile, 41t from a configuration which is very close to the inac-

ity p independent of the state of the others. However, gye gtate, and follow the averaged time evolution of this
randomly chosen vacant site becomes occupied with probsq o ration by generating a large ensemble of independent
ability n/z, wheren is the number of occupied nearest neigh- o jizations. So, the epidemic analysis is performed as fol-

bors andz is the coordination number of the lattice. Since |,.s: one starts. at=0. with two occupied nearest neighbor
spontaneous creation of particles is not allowed, the systergites’ placed in the center of the lattice, in an otherwise
can irreversibly evolve into a vacuum state, which is the

, empty sample. Then the configuration is allowed to evolve
absorbing state of the Markov processplfs very large the  ,ccording to the rules of the model. As the number of active

system always enters the absorbing state, but for smallies js always rather small, an efficient algorithm can be
enough values op the system has an active state with non-geyised by keeping two lists: one containing the occupied

zero average particle densipy In one dimension the system gjies and the other with the empty sites which have at least
undergoes an irreversible phase transiliétr) from the ac- e occupied nearest neighbor site. In each elementary step a

tive state to the absorbing state at a critical probabpify  sjte of those lists is chosen randomly. After each attempted
The IPT is continuougsecond ordgrand belongs to the change the time is incremented by N(t) + N(t)], where

The contact procegd€P), as proposed by Harr[80], is a

universlity class of directed percolation. N(t) andNg(t) are the number of occupied and empty sites
o contained in the lists at time Thus one Monte Carlo time
C. The CP with Levy exchanges(CPLF) step(MCts) equals, on the average, one attempted update per

The generalization from the CP to the CPLF is straight-active site. _ o _
forward: a randomly selected empty site evolves according The time evolution of the sites is monitored and the fol-
to the rules of the CP, however, a randomly chosen occupie®Wing quantities are computed) The average number of
site may either evole according to the rules of the CP withoccupied sitesN(t), (i) the survival probabilityP(t) (i.e.,
probability 1— 7 or undergo a Ley exchange with other site the probability that the system had not entered in the inactive
with probability 7. We carried out Monte Carlo simulations State at timet), and the average mean square distance of
of the CPLF process in one dimension fer1/2 and spreading from the center of the latti®(t) [distances are

O<o<1l. meassured in lattice unittU)]. Notice thatN(t) is averaged
over all runs whereaR?(t) is only averaged over the sur-
D. The CP with long-range interactions(CPLRI) vViving runs.

) o At criticality, the following scaling behavior is expected
In the CPLRI a randomly selected occupied site is vacategy hold[14]

with probability p; as in the CP; while a randomly empty
sites becomes occupied with probability P(t)et™?, (5)
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TABLE |. Critical points and critical exponents of CPLF, CPLRI, branching annhilatingy Lféights
(BALF, taken from Ref[31]) and directed percolatiofDP, taken from Ref[14]). The last column is a test
of the validity of the scaling relationship given by Ed.1). Figures between parenthesis indicate the error
bars in the last digit.
Model o Pc n 9 z dz—27p—46
DP — — 0.308 0.160 1.265 0.009
CPLF 11 0.4235(5) 0.305(5) 0.161(3) 1.257(5) 0.003
CPLF 2 0.4380(5) 0.304(5) 0.166(3) 1.261(5) -0.011
CPLF 1.50 0.4490(5) 0.306(5) 0.166(3) 1.260(5) —-0.016
CPLF 1 0.4710(5) 0.306(5) 0.165(3) 1.260(5) —-0.012
CPLF 0.75 0.4890(5) 0.328(5) 0.159(3) 1.262(5) —0.030
CPLF 0.50 0.5137(3) 0.352(5) 0.145(3) 1.265(5) —0.019
CPLF 0.25 0.5463(3) 0.367(5) 0.14(1) 1.28(2) —0.014
CPLF 0.0 0.5868(3) 0.403(8) 0.12(1) 1.30(2) 0.014
CPLRI 0.0 0.400(5) 0.31(1) 0.16(1) 1.26(2) 0.00
CPLRI 1.0 0.593(3) 0.31(1) 0.16(1) 1.27(2) 0.01
BALF 11 0.1070(5) 0.308(5) 0.156(3) 1.251(5) 0.011
BALF 2 0.1205(5) 0.303(5) 0.158(3) 1.258(5) 0.02
BALF 1.50 0.1306(3) 0.305(5) 0.164(3) 1.262(5) —0.004
BALF 1 0.1563(3) 0.309(5) 0.163(3) 1.263(5) —0.007
BALF 0.75 0.1861(3) 0.324(5) 0.164(3) 1.265(5) —0.039
BALF 0.50 0.2475(5) 0.351(5) 0.150(3) 1.270(5) —-0.032
BALF 0.25 0.3853(3) 0.366(5) 0.13(1) 1.28(2) 0.005
BALF 0.0 0.6598(3) 0.405(8) — — —
N(t)oct?, (6) It should be noted that the dynamic exponents are not
fully independent but a number of scaling relations are ex-
and pected to hold14]. For example, the relationship
R2(t)oct?, (7) dz=27n+456, 11

whered , n, andz are dynamic critical exponents. At criti-
cality, one expects that log-log plots &f(t), N(t), and
R2(t) versust would give straight lines, while upward and
downward deviations will occur even slightly off criticality.
This behavior would allow a precise determination of both
the critical points and the critical exponents.

After determining the critical points, one can gain further
insight of the critical behavior of the model performing epi-
demic analysis within the subcritic@acuun) state. In fact
close to the critical point the following scaling law should
hold [14]:

N(t) o=t "W (|p—pc[t*1), 8

wherev| is the correlation length exponent in the so called

may be valid ind dimensions.

Results and discussion

The CPLF modelFor very large values af, Léevy flights
are restricted to nearest neighbor jumps since the probability
of larger jumps is negligible. In this limit, the CPLF model is
expected to exhibit the same critical behavior than the CP. In
fact, test runs performed far=11 give critical exponents
which are in excellent agreement with the universality class
of directed percolatiorisee Table ). Decreasings causes
the critical point to increase, but the exponents remain al-
most unchanged forr=1. This behavior can be understood
since within that range o values, Ley flights exhibit or-
dinary diffusion properties. However, a further decrease of
o causes the exponents to charigee Table), in agreement

time direction. In the vacuum state the correlations are Sho”iivith the fact that fore<1 one has superdiffusive behavior

ranged and one therefore expedtt) to decay exponen-
tially. This can only happen if forAp=p—p.,—0 and
t—oo, the scaling function? behaves as

Figures 1a)—1(c) show log-log plots ofN(t), P(t), and
R?(t) versust obtained close to criticality foor=0.75. The
plots of N(t) and P(t) versust are quite sensitive with re-
spect to small changes pf so they are used to determine the

W (y)ec(y) " "exp ¥, (9 critical points and exponents. Error bars corresponding to the
critical points are estimated considering the closest values of
Therefore, using Eqg¢7) and(8) it follows: p, such as off-critical behavior is observed. The exponents
listed in Table | are obtained by means of least square fits of
N(t)=(Ap)~ ""lexp AP, (100  the asymptotic regime of plots like those shown in Fig. 1.
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FIG. 1. Log-log plots of(a) the number of occupied sites
N(t); (b) the survival probabilityP(t); and(c) the average square
distance of spreadingneasured in.U?) R?(t) vs timet (measured
in MCts), obtained close to criticality forr=0.75. Upper curves:
p=0.4885(supercritical, medium curvesp= 0.4890(critical) and
lower curvesp=0.4895(subcritica).
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FIG. 2. Log-log plots of the number of occupied siféét) vs
time t (measured in MCjs obtained at criticality for different val-
ues ofo. Upper curves=0.0, medium curver=0.50, and lower
curveo=11.0.

Errors bars in the exponents are estimated by evaluating the
slopes of the curves between different time intervals within
the asymptotic regime. It should be noticed that for
0=<0.25 the plots of botP(t) andR?(t) exhibit pronunced
curvature, so the obtention of accurate exponents becomes
difficult. Figure 2 shows log-log plots of () versust taken

for different values ofr. Here the change in the asymptotic
slope can clearly be observed.

The evaluated exponents allow us to test the scaling rela-
tionship given by Eq.(10) and derived for a standard di-
rected percolation proce§$4]. The data show that the rela-
tionship holds, within error bars, for all the rangemf/alues
covered by the study. As it also follows from Table I, the
validity of Eq. (10) may be due to the operation of an inter-
esting compensation effect: while remains almost un-
changedy; increases and decreases. At a given asymptotic
time, a largery value means that the number of occupied
sites is also larger, so one should expects an increment of the
spreading distance and consequently lamealues. How-
ever, sinceR?(t) is only averaged over surviving runs, this
effect is canceled by the enhanced survivability of the occu-
pied sites. The theoretical understanding of this behavior and
the underlaying physics remains unclear.

From Eq. (10) it follows that in the subcritical regime
N(t) should decay exponentially and that the decay constant
N\, governing the long-time behavior is proportional to
(Ap)”l. The model has been simulated in the subcritical re-
gion for different values otr. Figure 3a) shows that in In-
linear plots of N(t) versust one can see asymptotically a
straight line behavior with slopk. In fact, this statement is
confirmed in Fig. &) where log-log plots of\ versusAp
give straight lines and from the respective slopes one can
evaluate the exponeny. Foro=2 ando=1 we have ob-
tained v =1.742(9) andy=1.7249), respectively. Large
error bars are mostly due to uncertainties in the location of
the critical point. The obtained figures are in excellent agree-
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FIG. 4. Log-log plots ofp (measured as number of occupied
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° curve o=0.0, the straight line has slogg=1/2; and upper curve
08 L .o, | o=2.0, the straight line has slogg=0.278.
~< o e IV. DETERMINATION OF THE ORDER PARAMETER
o CRITICAL EXPONENT
ot L o | As it has already been discussed in the preceding section,
° the determination of critical exponents from steady state
o e simulations in irreversible dynamic systems is often very dif-
. (b) ficult. However, due to the accuracity obtained in the evalu-
ation of p. an attempt has been made for the evaluation of
107° - the order parameter critical exponent. It is accepted that for
107 107# irreversible dynamic process undergoing IPTs the natural or-
AP der parameter is the concentration of active sitesuch as

p—0 for p—p.. So, approaching criticality from the active
FIG. 3. (@ In-lineal plots of the number of occupied sites state one has

N(t) vs timet (measured in MCis obtained within the subcritical
regime for 0=0.0 and different values ofp. Upper curve
p=0.5895, medium curve=0.5930, and lower curvp=0.6100.
The critical probability isp.=0.586 75.(b) Log-log plots of\ vs
Ap. Upper curvec=0.00, the straight line has slopg=1.996;
lower curveo=2.00, the straight line has slopg=1.722.

p=(pc—P)”, (12

where B is the order parameter critical exponent. Figure 4
ment with the accepted value for directed percolation inshows log-log plots op versusAp=p.—p obtained for the
1+1 dimensions, i.e.yj=1.733[32]. However, decreasing CPLF model using the values qf; listed in Table | and

o departure from directed percolation values are found, e.gtaken two different values of. For =2 the slope of the
for o=0 we obtained/=1.9949). This finding is again in  straight line giveg3=0.278(9) in good agreement with the
agreement with the superdiffusive behavior of thévye best estimate for directed percolation in41) dimensions,
walkers observed foor<<1. i.e., 3=0.2763(6)(where the error bars account f@rval-

The CPLRI modelExtensive simulations of the epidemic ues determined using different lattices and for bond and site
behavior of the CPLRI model are only possible o 1. directed percolation[33]. As expected, within the superdif-
The obtained results are listed in Table I. Since for this rangéusive regime of the Ley walkers the value of the exponents
of o the interactions are almost restricted to nearest neighbatepart from standart directed percolation given, e.g.,
sites, it is not surprising that the obtained exponents are i8=0.500(9) fore=0. This result may suggest the rational
agreement with those of directed percolation and the CPLFalue 8=1/2, however, that conjecture can not strongly be
with o=1. For smaller values ofr the CPU time required supported because the large error bars which are due to the
largely exceds our capabilities. So, we are unable to tedct that the data have to be measured slightly out of criti-
conclusively if both versions of the contact process are in theality due to the presence of fluctuations which drive the
same universality class. system into the vacuum state.
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V. BRANCHING ANNIHILATING LE VY FLIGHTS (BALF) relation length remains as the only relevant length scale.
However, for smaller values, when superdiffusive behav-

In the standard branching annihilating random Walkerior is observed, the exchanges are no longer restricted to

process(BAW), a single random walk branches at somenite gistances and additional long-range correlations can
specified rate and two random walkers annihilate when theyectively be established. So, in these cases, one observes

meet[17-19. In the generalization from BAW to BALF, 4enarture from the standard directed percolation behavior
randomly selected particles performweflights instead of 5 the critical exponents depend enin other words they
jumps to nearest neighbor sitg&1]. An epidemic analysis, can be tuned varying.

like that performed in the present work, has allowed us 10 Nymerical results suggest that in the lioit=0 at least
evaluated the relevant critical exponents which are listed ig,,5 critical exponents may adopt rational values
Table | for the sake of comparison. As can be observed th =1/2 andy=2. '

obtained exponents for the CPLF and the BALF models ar€ ¢ ¢omparison of the obtained critical exponents for two

in excellent agreement. Furthermore, for the correlatior}nodds’ the CPLF process and the BALF reaction, strongly

length exponent of BALF withr=0 the valuer=1.98(1) g qqests the existence of a more general universality class of
has been obtaing@1]. This figure is also in excellent agree- gjrected percolation, i.e., all second order irreversible phase

ment with the resulty=1.996(9) obtained in the present ,nsitions in processes involving e exchanges and/or
work for the CPLF processo(=0) and may suggest that the fjighs may have the same critical exponents depending only

limiting value of such exponent would bg=2, however, 45 ; and the dimensionality. Our simulations do not allow
the confirmation of this conjecture deserves further studlesus to confirm if the Ley exchange mechanism can effec-

ie.,

tively simulate a long-range interactive potential, as in the
VI. CONCLUSIONS case of reversible phase transitions. However, in our opinion,

A contact process where particles have a finite probabilit)}he confirmation of th|s_open question will certainly stimu-
to undergo Ley exchangesCPLF) is formulated and stud- Iate.f_urt_her \_/vork dug to its relevance in the study of far from
ied by means of numerical simulations in one dimension.equ'“brlum irreversible processes.
The CPLF model exhibits irreversible phase transitions be-
tween an active stationary state and a vacuaivsorbing
state. Within the range of My exponents ¢>1) which This work was financially supported by the Consejo Na-
corresponds to standard diffusion the obtained critical expoeional de Investigaciones Ciéfitas y Tenicas(CONICET)
nents reveal that the CPLF model belongs to the universalitand the Universidad Nacional de La Plata, Argentina. The
class of directed percolation. This finding is in agreementomputer facilities used to perform this work were granted
with well established concepts of universal behavior: sinceby the Volkswagen FoundatigiGermany and the Commis-
exchanges are restricted to finite distances, the diverging cosion of European Communities under contract ITDC-122.
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