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Coupled chaotic chemical oscillators
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We present a model study of two mass-coupled reactors containing the Belousov-Zhabotinsky reaction
under chaotic conditions. The critical coupling strength is estimated for symmetry breaking when two identical
low flow rate chaotic modes are coupled. Our results confirm that the critical coupling strength is directly
proportional to the maximum Lyapunov exponent of the uncoupled system. The constant of proportionality is
found to be somewhat larger than the theoretical value. Direct integration reveals a rich structure of dynamical
behavior when the coupling strength and the flow rate in one cell are varied. Our simulations reveal domains
of oscillator death, in which a stable steady state coexists with limit cycle oscillations. We introduce a simple
model for predicting the dynamics of the coupled system from the dynamical behavior of the uncoupled
subsystems and the dependence on the coupling strength of the Hopf bifurcation of the coupled system. The
model gives good estimates of the dynamical behavior of two coupled oscillators with a small difference in one
parameter at intermediate and high coupling strend®%063-651X96)01210-X]

PACS numbd(s): 05.45+4+b

[. INTRODUCTION transition occurs, they directly evaluate the largest Lyapunov
exponent of the single system from the coupling strength.

Coupled oscillatory, bistable and excitable chemical sys- In this paper we pursue a more global investigation of
tems have been a subject of intense experiméftall] and coupled chaotic chemical oscillators at both low and high
numerical[12—1§ investigation for more than two decades, flow rates. We investigate a model of the BZ reaction in the
and coupled chaotic systems have been studied analyticallghaotic mode in a system of two reactors either with identi-
numerically, and experimentally in several fields for almostcal or with different parameters. In the system with identical
as long[17—30. Only quite recently, however, has the study Parameters, we study the symmetry-breaking transition at in-
of coupled chaotic oscillators been extended to chemical sydermediate coupling strengths and determine the critical val-
tems[31,32. The nature of the coupling is a distinctive fea- Ues of coupling for several chaotic modes. In studying two
ture of any coupled system. Mass exchange is the most con@scillatory systems described by the same set of rate equa-
monly employed form of coupling in chemical oscillators tions but with different values of one system parameter, the
[1_4,6_11_ Another type of Coup"ng has been accom- flow rate, we look for the emergence of oscillator ddml
plished electrically, via the connection of electrod63in ~ We propose a simple model for predicting the dynamics of
two continuous flow stirred tank reactai@STR'’S. the coupled oscillators from the dynamical properties of the

The Belousov-Zhabotinsk§BZ) reaction[33] is the most uncoupled subsystems and the dependence of the Hopf bifur-
studied oscillating chemical reaction. Although deterministiccation of the coupled system on the coupling strength.
chaos was found in the BZ reaction over twenty years ago
[34,35, the first chemically realistic model of chaos in the Il. PRELIMINARY CONSIDERATIONS
BZ system was suggested by Gggi and Field only within
the past few yearg36,37. Aperiodic oscillations are found
both at low and at high flow rates in the BZ flow system. To model the coupled chemical oscillators we employ a
While there was no dispute about the presence of determinnodel suggested by Gygyi and Field[37] to describe chaos
istic chaos at low flow rates, the origin of aperiodicity at highand other dynamical behavior in the BZ reaction
flow rates was a subject of controversy in the early 1990s.

A. Mathematical model

Schneider and NMhster[38] attributed the aperiodic oscilla- Br~+HBrO,+H"—2BrMA
tions to statistical noise, while Gygyi et al. [39] took the
reproducibility of complex dynamics as an indication of de- ry=2.0<x 10°[H"J[Br J[HBro,]
terministic chaos. In support of this latter contention, Gyo
gyi and others have shown that a four-variable model of the Br~+BrO; +2H"—BrMA +HBroO,
BZ reaction qualitatively reproduces the complex periodic
and chaotic behavior, including the aperiodic oscillations at a r,=2.0H"{Bro;][Br]
high flow rate.
Hauser and Schneid¢82] have studied the coupling of 2HBrO,—BIMA  r3=2x 103 HBrO,]?

identical chaotic modes in the BZ reaction at low flow rate.
They find that at high coupling strengths the coupled chaotic
states become synchronized, while at low coupling strengths
the chaotic states are asynchronous with close to zero corre-
lation. At intermediate coupling, where a symmetry-breaking r4=6.2< 10°[H"]([Ce]or— [CE" [BrO;est

0.5HBrO,+BrO; +H* —HBrO,+Cée**
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TABLE I. Constants in Eq(1)—fixed concentrations.

[H] (M) 0.26
[Bros] (M) 0.1
[Celiot (M) 0.001
[MA] (M) 0.25

HBrO,+Cée** —0.5HBrO, rs=7Xx10°[HBrO,|[Ce* ]

Cé"+MA— rg=0.3MAJCe "]
BrMA +Ce&"* —Br~  r,=30BrMA][Ce**]
BIMA—Br~  rg=2.4xX 10°[BIMATIMA Jyss,
where

[MA Jgss={—2.4X 10 BrMA]+((2.4X 10 BrMA])?

+7.2X109[MAT[Ce ' )%-51/1.2x 1010,

1
[BrO} o {0.854Br0; [H  IHBrO. 4.2 10705,

and
[Celiot= [Ce4+]+[Ce?‘+].

The concentrationgH™], [BrO3 ], [Cel,,; and malonic acid
[MA] are taken to be constant; their values are shown Tabl
I. The mathematical model of reaction schefhewith these
approximations in a single CSTR consists of four ordinary
differential equations with variables x;=[HBrO,],
X,=[Br ], xs=[Ce&"*], x,=[BrMA]

dx
d_tlz —r1+r2—2r3+0.5(r4— I’5)+k0(X01—X1),
dx,

gt - i retrotret Ko(Xo2—X2),
2
dx, i)
gt e fsTrem 7t Ko(Xo3—X3),

dxy

dt 2r 1o+ r3—r7=rg+Ko(Xos—Xy),

wherek, is the flow rate and,; are the inflow concentra-
tions.

B. Single CSTR
The dynamics corresponding to reaction schefjen a
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FIG. 1. One-parameter bifurcation diagrams and plots of the
largest Lyapunov exponent for mod@l) of the BZ reaction in a
single CSTR at lowa) and high(b) flow rates. Points in bifurcation
diagrams correspond to extrema values. Small nhumbers of points
and negative values of,,,, correspond to periodic states, while
many points and positive values bf,, indicate chaos. The largest
domains of chaos are denoted @sand the largest domains of
periodic oscillation a®; , where the subscript gives the periodicity.

the presence of chaos and to distinguish true chaotic behav-
ior from quasiperiodicity or periodic behavior with a high
periodicity. The largest Lyapunov exponent is shown in the
bottom frames of Figs. (&), 1(b). Positive values of the
Lyapunov exponent indicate deterministic chaos, which oc-
curs, as it does in the experiments, in relatively narrow win-
dows of the flow rate parameter.

There are two supercritical Hopf bifurcation points, which
indicate the limiting values of the flow rate within which the
single subsystem oscillates. These Hopf points are located at
k,=5.859 6410 * s! and atk,=1.28988% 10 3 s71.

We shall show later how the structure of alternating periodic
and chaotic regions in the uncoupled subsystems can be used

single CSTR include chaotic behavior at low and at high; predict the dynamics of coupled CSTRs
flow rates. The dynamical behavior is summarized in the '

bifurcation diagrams of Fig. 1, which display the extrema of
the oscillations at lowFig. 1(a)] and at high flow ratefFig.

1(b)]. A periodic state is represented by a finite number of

points at a given flow rate, while a continuous group of
points signifies a chaotic state. The largest windows of peri
odic behavior are denoted &s, the largest chaotic domains
are denoted a€.

We have calculated the full spectrum of Lyapunov expo-

nents by the method of Wokt al. [41] in order to confirm

C. Coupled CSTRs

The time evolution of a system of two well mixed reactors
coupled by symmetric mass transfeiffusionlike) coupling
can be written in the following form:

dx

dt

(i)

D))+ RO + e ),

(€©)

Re(x{ x5 ...
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ke - - — a loop inside the oscillatory region. The steady state solution
0.02 is stable inside the loop and unstable outside. The Hopf bi-
furcation is subcritical along the loop, which implies that the
stable steady state coexists with a stable limit cycle. Depend-
ing on the initial conditions, a trajectory will either reach the
steady state or will traverse the limit cycle. Finite perturba-
tion of the limit cycle can lead to cessation of oscillation, i.e.,
to oscillator death.

0.01

vi
0.02

001 B. Synchronization of identical chaotic oscillators

One measure of the degree of synchronization of two os-

0 1/ | ~ {1 : cillators is given by the correlation coefficient. For thé
00 i v * species, we define the correlation coefficient® as
N 1 1 2 2
cl2— EJ':1(><i(,j)_<x>i( ))(Xi(,j)_<x>i( ) @
. 12 > 5 .
ok IR = GO EL () - (o) 7T
0 50T 5002 0 0001 60020 o.ooll 0.002 k) The subscript designates the species, while the subsgript

enumerates thBl measurements that make up each time se-
FIG. 2. Two-parameter bifurcation diagrams for model of two fies. The superscriptkj=(1) or (2) specifies the reactor,

coupled oscillators. Solid curve is primary Hopf bifurcation; dotted and the bracketed quantiti¢s) are averages over each time
curve is secondary Hopf bifurcation. Solid loop inside the oscilla-series.
tory region is associated with oscillator death. Dashed curve is a Another measure of the similarity or difference between
saddle-node bifurcation line. Arrows indicate the fixed flow ratethe time series in the two reactors is given by the average
k(D for each diagrantin s°%): (i) 5.6x10°4, (i) 6.0x10°% (i)  distanceA X*?
6.52<1074, (iv) 7.24<1074 (v) 8.0x1074 (vi) 1.1x10 3, (vii)
1.25x1073, (viii) 1.3x1073, (ix) 1.35x10 2.

1 n N 1/2
o AXP=— 3, {2 X} -x3)? (5)
where the superscriptisj=1,2,i#], identify the reactors; ni=i1|j=1
xP x9 L x@ L, x() are the concentrations of the
chemical species in reactor Ry is the rate law for theth Hauser and Schneid@82] show that the correlation co-

reactantk §) is the flow rate into reactdr, x{ is the input  efficient of a pair of coupled oscillators displays hysteresis as
concentration of reactatin the inflow to reactof; andk.  the coupling strength is varied. They define critical coupling

is the rate of mass exchange between the reactors. strengths as the values where jumps occur and where the
For numerical analysis of the system we employ thecorrelation coefficients are still equal to unity.
CONT numerical bifurcation and continuation pack4gg|. We perform similar simulations and evaluate both the cor-
The values of all parameters, excégt, k§ andk(?), are  relation coefficientC }2 and the average distancex'? as
fixed (Table )) and equal in both cells. follows. At each value of the coupling strength, we discard
an initial transient period of 40 000 s and then eval@fé
Il RESULTS and Axlz according to Eqs(4) and (5), respectively, from
the time series for the next 60 000 s with data points taken
A. Steady state analysis and oscillator death approximately every secondN&60 000). The last data

In Fig. 2 we show the results of a two-parameterPOint in one time series is used as the initial condition for a

(k.— k‘?) bifurcation analysis for several fixed values of the Simulation with a new value of the coupling strength.

flow ratek (). The solid lines indicate a primary Hopf bifur-  We choose one of three chaotic states determined by the
cation, at which the real parts of two complex eigenvalued!oW ratek, (see Fig. 1: (a) from a narrow chaotic window,
become zero while the real parts of all other eigenvalues aréith K,=6.52<10"" s, (b) from the middle of a wide
negative. On crossing the primary Hopf line, the number ofchaotic window, withk,=7.24<10"" s~ and (c) near the
eigenvalues associated with unstable manifolds changéilge of the wide chaotic window in(b), with

from 0 to 2. The dotted lines denote a secondary Hopf bifurKo=7.19<10 ™ s In Fig. 3 we show how our measures of
cation, at which two complex eigenvalues have zero reaPynchronization = display  hysteresis fork =k
parts while the real parts of two other complex eigenvalues™ 7-19<10 " s . We observe that the synchronization and
are positive. On crossing the secondary Hopf line, the numdesynchronization processes occur gradually, without notice-

ber of eigenvalues associated with unstable manifold@ble jumps, as the coupling is increased and decreased, re-
changes from 2 to 4. spectively. Somewhat arbitrarily, we choose the value

When k(M e (6.8x10° s7%, 1.26<10°3 s, there are AX?=1x10'M to define the critical coupling strength
only two primary Hopf lines, both of which are supercritical Ko - In Table Il we give, for our three chaotic stai@s, (b),
and thus indicate the domain & and k@ within which ~ and(c), the calculated values ¢™ together with the ratio
oscillatory behavior occurs. Whek{P<6.8x107% st or  Ana/KE™", Whereh . is the maximal Lyapunov exponent in
k{M>1.26x10" s 1, an additional primary Hopf line forms the uncoupled subsystem.



3364 MILOS DOLNIK AND IRVING R. EPSTEIN 54

lo
A)flz [

-16

12
C3

1.0 P

081°7F

06§

1x10* 340 5104 k. (s)

5107 K e
FIG. 3. Synchronization of two identical chaotic oscillators. De- o
pendence of average distantX'? and correlation coefficient 32
on coupling strengttk, for k{Y=k{@=7.19x10"* s~ L. Squares
and dotted line show increasing coupling strength; triangles an
dashed line show decreasing coupling strength.

FIG. 4. Synchronization of nonidentical chaotic-chaotic and
§haotic-periodic oscillators in the vicinity of identical oscillators.
Reactor no. 1 is in chaotic state with fixé§"=6.52x10"* s,

Top frame displays dynamics in cell no. 1 with gray levels: white
denotes the stable steady state, black signifies chaos, and all other
C. Dynamics of nonidentical chaotic oscillators gray levels show periodic regimes. The lighter the gray level the

We have also investigated the behavior of coupled nonsmgller the periodicityP; _designates the periodicity_ of a per_io_dic
identical chaotic oscillators as follows. We integrate Eg@s.  '€9ime. Bottom frame_dls_plays value_s of _corzfelatlon coeffl_c:lents
for a fixed flow rate in reactor no. 1. The flow rdtéz) and With gray levels. Black indicates doma_lns_wlﬂ% s20.9 and white
the coupling strengthk, are first fixed at their minimum val- 9omains Ofl. hcomplete Syncmzn'zat'hqnhc% :1'?)'. For -
ues, and thek, is increased step by step. Whienreaches a 0.'9<C3 <1, lighter gray corresponds to higher correlation coeffi-
preset maximum value, the flow raté?) is increased while  ©'*""

k. is reset to its minimum value. The initial conditions are

taken for subsequent simulations as the last data point of the In Fig. 5 we investigate a broader range of flow ret€?,
previous simulation. The dynamics and the correlation coefi.e., a more dissimilar pair of coupled reactors. The top and
ficient are estimated from the stationary time series at eachiddle frames of Fig. 5 show the structure of the oscillatory
set of parameters. We define synchronized regimes in termegions in the two reactors. The conditions in reactor no. 1
of the correlation coefficient fdiCe**], C12>0.9, and asyn- correspond to chaotic behavior in an uncoupled subsystem.
chronous regimes as those wiit§?<0.9. Figure 4 displays Depending upon the conditions in the second reactor and on
the domains of synchronized and asynchronous regimes itlhe intensity of coupling, the chaotic oscillations may remain
the k,—k(?) parameter plane with ! fixed at 6.5%10 %  chaotic (synchronized or desynchronizedecome periodic
st andk'? not very different fromk (). The structure of (either simple or complex or the system may cease to os-
synchronized regimes resembles the Arnold tongues. Congillate.

paring the synchronized regions in the lower frame of Fig. 4 The domains of periodic behavior are significantly larger
with the dynamical behavior summarized in the upper framehan the domains of chaotic oscillation. The largest domains
demonstrates that the domains of synchronized behavior cdelong to the synchronized period-1 oscillations located to
incide with domains of periodic behavior. Thus domains ofthe left and right of the central part of the diagram. There are
periodic behavior for the coupled system of nonidentical osiwo other domains of period-1 behavior, which border on the
cillators are domains with higher correlation than domains ofegions in which the steady state is stable. Two large do-
chaotic behavior. The only exception to this observation ocmains in the central part of the diagram correspond to fre-
curs in the chaotic window surrounding the region where thequency locking, one with ratio 1:2 and the other with ratio
two flow rates are equal, so that the subsystems are identicél:3.

TABLE II. Critical coupling strengt

ko[s™] Amax Tke" Lke" Nmax! 1" Nmax! LK
6.52x10°* +2.02x10°3 6.8 x1074 6.0x10* 2.97 3.37
7.19x1074 +1.14x1073 4.0 x107* 2.9x10°* 2.78 3.93
7.24x1074 +3.34x1073 1.16x10°° 9.6x10°* 2.93 3.48

31 k™ __critical value ofk,, for increasing coupling] kS"—critical value ofk, for decreasing coupling.
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We make the assumption that the most important effects
of the coupling can be represented by changes in the effec-
tive values of the parameters. In our simulations, the only
parameter that differs in the two reactors is the flow rate. We
seek to evaluate the effective values of the flow rate, denoted
ask{Y) andk (2, starting from the hypothesis that the cou-
pling acts to diminish the difference between parameters in a
symmetric way according to

ki =k — Ak, (6a)
k) =k + Ak, (6b)

wherek ">k i j=1,2,i#], Ak denotes the apparent
change of the flow rate due to coupling.

The dynamics of the coupled system is then predicted
from the behavior of the uncoupled subsystems at the effec-
tive values of the flow rate. We assume that the coupled
system will adopt the regime of higher periodicity. An ex-
ample of this assumption is shown schematically in Fig. 6.
When one effective parameter lies in a steady state regime,
the dynamics is determined by the behavior of the other sub-
system; if one regime is chaotic, then the coupled system
should behave chaotically.

The key to quantifying our model is to establish how the
7 3 g g apparent change in the flow rak&k depends on the coupling

w0 HD Ll 201 2 strengthk, and on the difference betweedt” and k),
which we take to be the two relevant quantities that deter-

FIG. 5. Dynamics in a system of coupled chaotic oscillators.mine Ak. We make the assumption thak depends linearly
Top frame displays dynamics in reactor no. 1, middle frame theon the absolute value of the difference between parameters
dynamics in reactor no. 2, bottom frame the prediction by simple
model(see Sec. Il . Gray levels show periodicity of the oscilla- Ak= f(kc)|kf)1)— k5,2>|/2, @)
tions. P; designates domains with periodic oscillations of peiliod
SS is domain of stable steady state. Dashed line is Hopf bifurcatioWheref(kC) €(0,1). Clearly,f(0)=0, and we make the rea-
Ii_ne, separating region_ of _s,table steady state and domain of oscillasgnaple assumption thdt is a monotonically increasing
tions. Parameters as in Fig. 4. function ofk.. At infinite coupling strength both oscillators
behave as if they were identicaf €1), and the maximal
apparent change {& Y-k ?)/2.

To determinef (k;) in detail, we make use of one piece of

If we examine Figs. 1 and 5, we see that the dynamicainformation about the coupled system, the primary Hopf bi-
bifurcation structure of the coupled oscillators resembles thaurcation lines from thek, vs k{*) bifurcation diagram as
of the uncoupled subsystem. This similarity of dynamicalshown in Fig. 2. In effect, we assume that if we know, as a
behavior increases with the coupling strength, which is, ofunction of the coupling strength, the flow rate at which
course, to be expected, since in the limit of infinite coupling,period-1 oscillation begins in the coupled system, we will be
the two subsystems must behave as a single, synchronizadble to predict the onset of higher periodic and chaotic be-
system. These observations encourage us to seek a simgiavior in that system as well.
model for predicting the dynamics of a coupled system pri- Our analysis is shown schematically in Figa)f where
marily from the dynamical structure of the uncoupled sub-k; andkg are the lower and upper values, respectively, of the
systems. flow rate at the primary Hopf bifurcations in the uncoupled

D. A simple model for predicting the dynamics
of coupled systems

X
3107

FIG. 6. Schematic prediction of dynamics of
two nonidentical coupled oscillators from dynam-
ics of subsystems. Prediction is based on assump-
tion that coupling affects subsystem parameters
so as to diminish the difference between them. At
the chosen coupling strength, the corresponding
dynamics for effective flow rat&(Y) is period-1

2x1073

1x107

I ______.__
W‘ S S U,

C p ® c oscillation, while fork {2 we have a period-3 os-
0.0005 | :1 0001 . | cillation. The coupled system is predicted to
: L Ak ey : @ Ak K@ R ko adopt the period-3 oscillation.
kO 0o¢ (813 0
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FIG. 8. Dynamics of coupled chaotic oscillators near identical
conditions. Top frame displays results of direct simulations, bottom
frame displays results predicted by simple model. Gray levels show
periodicity of the oscillationsP; designates domains of peridod-
oscillations. Black regions are chaotic. Parameters as in Fig. 4.

0 0605 0010 §_s1) f(ke)=2[kg— kP I[KP (k) —KP]=fr(ke),  (9)

where, for the given fixe# (", the dependence &2 onk,

FIG. 7. Method of evaluating functiofi(k;) in Eq. (7) from  js determined by the Hopf curvélg. Similarly, when

Hopf bifurcation lines of coupled systefa) and results of evaluat- k(1)>k§,2), the effective valuekgle) coincides withk, , while

ing f(k;) (b). Reactor no. 1 is in chaotic state with fixed k§2e)< k, for any pair . ’k(()Z)) along the Hopf lineH, , and
k{=6.52<10"* s7*. Effective valuek{) becomes equal tar £ js given by

when the pair of valuesk(?) ,k.) lies on the Hopf lineHg, while

thg eﬁecFive valuek (2) is Iarger thankg . fL:. function obtaingd f(kc)=2[kél)—k,_]/[kél)—kgz)(kc)]zfL(kC). (10)
using points on left Hopf lineH ; fg: function obtained using
points on right Hopf lineH. The functionsfg(k.) andf (k.) are plotted in Fig. ®). If

Eq. (7) were valid over the entire parameter range, the func-
system, and the solid linds$, andHy delineate the primary tionsfg andf, would be identical. The discrepancy between
Hopf bifurcations in the coupled system whief}) is fixed at  the functions indicates the imperfection of the model. A
the value indicated. First, consider the case whgh>k "  simple modification consists of the following assignment for
[Fig. 7(a)]. Since thek (" that we have chosen lies between f(k.):

k, andkg, the system will oscillate for small values kf,

because reactor no. 1 lies in the oscillatory parameter range. f=f_ when k{Z<k{",
As we increase the coupling !y increases until, when o (12)
Ke=Ken, it reacheskFE. If the coupling is increased still fur- f=fg when k{Z>k{".

ther, bothk (Y and k{2 will lie to the right of kg, so that _ _ .

both effective flow rates will lie outside the oscillatory re-  The dynamics predicted by the above model is displayed
gion and, according to our assumptions, the coupled systeffi the bottom frame of Fig. 5 and in Fig. 8. Figure 8 shows
will no longer oscillate. The pair of value&{,k %) thus lies thel dyngmms in the vicinity of identical conditions
along the Hopf bifurcation lindHg in Fig. 7@] of the  (k&7=k§), where the predictions of the model are in ex-
Coupled System_ The border of the osci”atory region in th&e”ent agreement W|th the results of direct S|m-u|-at|0ns. The
coupled system is then associated with the equivalence of tHargest discrepancies between the model predictions and di-
Hopf bifurcation point valuekg of the uncoupled system rect integration occur at weak couplingg<1x10"~s™).
with the effective valuek (Y. At such a point, the apparent Formulation of a reliable simple model at such coupling is a

change of the flow ratdk is formidable task. The results predicted by this simple model
appear to be in good qualitative agreement with direct simu-
Ak=kgr— kgl) ] (8) lation even for the wider range of parameter differences ex-

amined in Fig. 5. The major domains obtained by integration
Combining Egs(6), (7), and(8), we obtain of the full set of equations are predicted by the simple model,
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supporting our assumption that information about higher pebetween the coupling and the tendency toward out-of-phase

riodicities and chaos can be obtained from knowledge onlentrainment. The balance can be destroyed by perturbation,

of the behavior of the uncoupled systems and the primargfter which the system begins to oscillate.

Hopf bifurcation of the coupled system. We have looked at identical oscillators in low flow rate

chaos to study the synchronization and desynchronization of

coupled chaos and to test the method of determining the

maximum Lyapunov exponent from the critical coupling
The present investigation represents only a beginning stegtrength. Fujisaka and Yamadla7] derived a relation be-

in the study of coupled chaotic chemical oscillators. Oscilla-tween the critical coupling strength and the maximum

tor death in coupled chemical systems has been reported ealyapunov exponent

lier for periodic oscillator§4,7,8,13, but to our knowledge

there are no previous reports of oscillator death in mass

coupled chaotic oscillators. Oscillator death in our model of

: crit ; R
the BZ reaction is not associated with a particular chaotic orOur values of the ratidma/k;” , summarized, in Table I

periodic mode but, as Fig. 2 shows, it occurs in a range O§upport _the existence of a relationship like EIp), but they .
k) andk 2 in which both periodic and chaotic oscillations ¢ not in good agreement as to the constant of proportion-
are found in a single CSTR. Because of the symmetry of th@“ty' The e.xact value o_)t.max/kﬁ ’ qf course, depen_ds on the
coupled system, the region of oscillator death fordetermlnatlon of the critical coupling strength, which for our
k(D=1 26x10 3 ’S—l is complementary to a similar region data is somewhat arbitrary. A smaller choice for our synchro-
for kD=6 8x10-4 51 nization criterion[e.g., AX*?=1x10"1* M, see Fig. ®)]
(o] . . .

Our direct simulations do not reveal the oscillator death""or‘]JId _gwe a reschJIt lcloser rfo that of EQL2). I(-j|auser_ and

that is predicted by the continuation method to occur inside>cneider32] and also Schuster, Martin, and Martienssen

- : : - ; 44] obtained similar deviations from the theoretical value.
the oscillatory regioiisee Figs. dii) and 5. The explanation , e )
for this failure is to be found in the subcriticality of the The model introduced here for predicting the behavior of

bifurcation and in the initial conditions. The domain of os- cOUPled nonidentical systems has both strong and weak

cillator death is located inside the domain of synchronized?©/Nts. It provides fast preliminary prediction of the dynami-
period-1 oscillations. As noted above, the initial conditionsC@l Pehavior of two coupled osgllators that d|ffgr only in one
of each simulation correspond to the final data point of thParameter. If the parameter q|fference IS relat|yely small the
previous simulation. When we increase the coupling strengt odel 'glve1s_hnearly qclij_antc;tatlve agrierrr:ent V(\;'tT .‘h? actuall
s0 as to enter the domain of oscillator death, the initial con&Ynamics. 1hé main disa vantage of the model is Its wea

ioti i (1) _ 1, (2)
ditions always lie within the basin of attraction of the stablePrediction for smalk. and for large differencei s — kg

limit cycle. The stable steady state can be attained by per'l_'he model also fails to reveal the domains of oscillator death

turbing this initial state to place the system within the steady_and frequency Iockipg. UtiIizing. the ”.‘Ode' requires the ex-
state’s basin of attraction. |s;_tence of supercritical Hopf bifurcations at both low and
One type of oscillator death has been explained f0|hlgh values of the parameter.

coupled identical oscillators as arising from an out—of-phas% In ?}dd't'on lto _refmm? t::e model furthgr and e)lf?mln:jn%
entrainment mode[8,16. In such cases the chemical "W the conclusions of the present study are afiected by

“force” that tends to “push” the two subsystems apart as changes in the nature of the component subsystems, further

they move out of phase around the limit cycle is balanced b)?tUdies are needed to explore th? feasibility of extending our
the “pull” of the coupling. Our simulations reveal the pres- approach to systems that differ in more than one parameter

ence of oscillator death in coupled chaotic oscillators, bufNd 1 Systems consisting of three or more coupled sub-

only for specific nonidentical conditions. A similar type of SYSt€MS.
oscillator death has been observed in two coupled Lorenz
systemg43]. Although our model at the parameters studied

does not give rise to the stable out-of-phase entrainment re- We gratefully acknowledge the support of the National
ported in Refs[7] and[8], the oscillator death in our simu- Science Foundation Chemistry Division and the W. M. Keck
lations can also be thought of as emerging from a balancEoundation.

IV. DISCUSSION

A max= 2K (12)
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