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We present a model study of two mass-coupled reactors containing the Belousov-Zhabotinsky reaction
under chaotic conditions. The critical coupling strength is estimated for symmetry breaking when two identical
low flow rate chaotic modes are coupled. Our results confirm that the critical coupling strength is directly
proportional to the maximum Lyapunov exponent of the uncoupled system. The constant of proportionality is
found to be somewhat larger than the theoretical value. Direct integration reveals a rich structure of dynamical
behavior when the coupling strength and the flow rate in one cell are varied. Our simulations reveal domains
of oscillator death, in which a stable steady state coexists with limit cycle oscillations. We introduce a simple
model for predicting the dynamics of the coupled system from the dynamical behavior of the uncoupled
subsystems and the dependence on the coupling strength of the Hopf bifurcation of the coupled system. The
model gives good estimates of the dynamical behavior of two coupled oscillators with a small difference in one
parameter at intermediate and high coupling strengths.@S1063-651X~96!01210-X#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Coupled oscillatory, bistable and excitable chemical sys-
tems have been a subject of intense experimental@1–11# and
numerical@12–16# investigation for more than two decades,
and coupled chaotic systems have been studied analytically,
numerically, and experimentally in several fields for almost
as long@17–30#. Only quite recently, however, has the study
of coupled chaotic oscillators been extended to chemical sys-
tems@31,32#. The nature of the coupling is a distinctive fea-
ture of any coupled system. Mass exchange is the most com-
monly employed form of coupling in chemical oscillators
@1–4,6–11#. Another type of coupling has been accom-
plished electrically, via the connection of electrodes@5# in
two continuous flow stirred tank reactors~CSTR’s!.

The Belousov-Zhabotinsky~BZ! reaction@33# is the most
studied oscillating chemical reaction. Although deterministic
chaos was found in the BZ reaction over twenty years ago
@34,35#, the first chemically realistic model of chaos in the
BZ system was suggested by Gyo¨rgyi and Field only within
the past few years@36,37#. Aperiodic oscillations are found
both at low and at high flow rates in the BZ flow system.
While there was no dispute about the presence of determin-
istic chaos at low flow rates, the origin of aperiodicity at high
flow rates was a subject of controversy in the early 1990s.
Schneider and Mu¨nster@38# attributed the aperiodic oscilla-
tions to statistical noise, while Gyo¨rgyi et al. @39# took the
reproducibility of complex dynamics as an indication of de-
terministic chaos. In support of this latter contention, Gyo¨r-
gyi and others have shown that a four-variable model of the
BZ reaction qualitatively reproduces the complex periodic
and chaotic behavior, including the aperiodic oscillations at a
high flow rate.

Hauser and Schneider@32# have studied the coupling of
identical chaotic modes in the BZ reaction at low flow rate.
They find that at high coupling strengths the coupled chaotic
states become synchronized, while at low coupling strengths
the chaotic states are asynchronous with close to zero corre-
lation. At intermediate coupling, where a symmetry-breaking

transition occurs, they directly evaluate the largest Lyapunov
exponent of the single system from the coupling strength.

In this paper we pursue a more global investigation of
coupled chaotic chemical oscillators at both low and high
flow rates. We investigate a model of the BZ reaction in the
chaotic mode in a system of two reactors either with identi-
cal or with different parameters. In the system with identical
parameters, we study the symmetry-breaking transition at in-
termediate coupling strengths and determine the critical val-
ues of coupling for several chaotic modes. In studying two
oscillatory systems described by the same set of rate equa-
tions but with different values of one system parameter, the
flow rate, we look for the emergence of oscillator death@40#.
We propose a simple model for predicting the dynamics of
the coupled oscillators from the dynamical properties of the
uncoupled subsystems and the dependence of the Hopf bifur-
cation of the coupled system on the coupling strength.

II. PRELIMINARY CONSIDERATIONS

A. Mathematical model

To model the coupled chemical oscillators we employ a
model suggested by Gyo¨rgyi and Field@37# to describe chaos
and other dynamical behavior in the BZ reaction

Br21HBrO21H1→2BrMA

r 152.03106@H1#@Br2#@HBrO2#

Br21BrO3
212H1→BrMA1HBrO2

r 252.0@H1#2@BrO3
2#@Br2#

2HBrO2→BrMA r 3523103@HBrO2#
2

0.5HBrO21BrO3
21H1→HBrO21Ce41

r 456.23104@H1#~@Ce# tot2@Ce41#!@BrO2
•#est
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HBrO21Ce41→0.5HBrO2 r 5573103@HBrO2#@Ce
41#

Ce411MA→ r 650.3@MA #@Ce41#

BrMA1Ce41→Br2 r 7530@BrMA #@Ce41#

BrMA→Br2 r 852.43104@BrMA #@MA •#qss,

where

@MA •#qss5$22.43104@BrMA #1„~2.43104@BrMA # !2

17.23109@MA #@Ce41#…0.5%/1.231010,
~1!

@BrO2
•#est5$0.858@BrO3

2#@H1#@HBrO2#/4.23107%0.5,

and

@Ce# tot5@Ce41#1@Ce31#.

The concentrations@H1#, @BrO3
2#, @Ce#tot and malonic acid

@MA # are taken to be constant; their values are shown Table
I. The mathematical model of reaction scheme~1! with these
approximations in a single CSTR consists of four ordinary
differential equations with variables x1[@HBrO2#,
x2[@Br2#, x3[@Ce41#, x4[@BrMA #

dx1
dt

52r 11r 222r 310.5~r 42r 5!1ko~xo12x1!,

dx2
dt

52r 12r 21r 71r 81ko~xo22x2!,

~2!
dx3
dt

5r 42r 52r 62r 71ko~xo32x3!,

dx4
dt

52r 11r 21r 32r 72r 81ko~xo42x4!,

whereko is the flow rate andxoi are the inflow concentra-
tions.

B. Single CSTR

The dynamics corresponding to reaction scheme~1! in a
single CSTR include chaotic behavior at low and at high
flow rates. The dynamical behavior is summarized in the
bifurcation diagrams of Fig. 1, which display the extrema of
the oscillations at low@Fig. 1~a!# and at high flow rates@Fig.
1~b!#. A periodic state is represented by a finite number of
points at a given flow rate, while a continuous group of
points signifies a chaotic state. The largest windows of peri-
odic behavior are denoted asPi , the largest chaotic domains
are denoted asC.

We have calculated the full spectrum of Lyapunov expo-
nents by the method of Wolfet al. @41# in order to confirm

the presence of chaos and to distinguish true chaotic behav-
ior from quasiperiodicity or periodic behavior with a high
periodicity. The largest Lyapunov exponent is shown in the
bottom frames of Figs. 1~a!, 1~b!. Positive values of the
Lyapunov exponent indicate deterministic chaos, which oc-
curs, as it does in the experiments, in relatively narrow win-
dows of the flow rate parameter.

There are two supercritical Hopf bifurcation points, which
indicate the limiting values of the flow rate within which the
single subsystem oscillates. These Hopf points are located at
ko55.859 6431024 s21 and at ko51.289 88331023 s21.
We shall show later how the structure of alternating periodic
and chaotic regions in the uncoupled subsystems can be used
to predict the dynamics of coupled CSTRs.

C. Coupled CSTRs

The time evolution of a system of two well mixed reactors
coupled by symmetric mass transfer~diffusionlike! coupling
can be written in the following form:

dxk
~ i !

dt
5Rk~x1

~ i ! ,x2
~ i ! ,...,xn

~ i !!1ko
~ i !~xok

~ i !2xk
~ i !!1kc~xk

~ j !2xk
~ i !!,

~3!

TABLE I. Constants in Eq.~1!—fixed concentrations.

@H1# (M ) 0.26
@BrO3

2# (M ) 0.1
@Ce#tot (M ) 0.001
@MA # (M ) 0.25

FIG. 1. One-parameter bifurcation diagrams and plots of the
largest Lyapunov exponent for model~1! of the BZ reaction in a
single CSTR at low~a! and high~b! flow rates. Points in bifurcation
diagrams correspond to extrema values. Small numbers of points
and negative values oflmax correspond to periodic states, while
many points and positive values oflmax indicate chaos. The largest
domains of chaos are denoted asC and the largest domains of
periodic oscillation asPi , where the subscript gives the periodicity.
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where the superscriptsi , j51,2, iÞ j , identify the reactors;
x 1
( i ), x 2

( i ) , ..., x k
( i ) , ..., x n

( i ) are the concentrations of then
chemical species in reactori ; Rk is the rate law for thekth
reactant;k o

( i ) is the flow rate into reactori , x ok
( i ) is the input

concentration of reactantk in the inflow to reactori ; andkc
is the rate of mass exchange between the reactors.

For numerical analysis of the system we employ the
CONT numerical bifurcation and continuation package@42#.
The values of all parameters, exceptkc , k o

(1) and k o
(2), are

fixed ~Table I! and equal in both cells.

III. RESULTS

A. Steady state analysis and oscillator death

In Fig. 2 we show the results of a two-parameter
(kc2k o

(2)) bifurcation analysis for several fixed values of the
flow ratek o

(1). The solid lines indicate a primary Hopf bifur-
cation, at which the real parts of two complex eigenvalues
become zero while the real parts of all other eigenvalues are
negative. On crossing the primary Hopf line, the number of
eigenvalues associated with unstable manifolds changes
from 0 to 2. The dotted lines denote a secondary Hopf bifur-
cation, at which two complex eigenvalues have zero real
parts while the real parts of two other complex eigenvalues
are positive. On crossing the secondary Hopf line, the num-
ber of eigenvalues associated with unstable manifolds
changes from 2 to 4.

When k o
(1)P~6.831024 s21, 1.2631023 s21!, there are

only two primary Hopf lines, both of which are supercritical
and thus indicate the domain ofkc and k o

(2) within which
oscillatory behavior occurs. Whenk o

(1),6.831024 s21 or
k o
(1).1.2631023 s21, an additional primary Hopf line forms

a loop inside the oscillatory region. The steady state solution
is stable inside the loop and unstable outside. The Hopf bi-
furcation is subcritical along the loop, which implies that the
stable steady state coexists with a stable limit cycle. Depend-
ing on the initial conditions, a trajectory will either reach the
steady state or will traverse the limit cycle. Finite perturba-
tion of the limit cycle can lead to cessation of oscillation, i.e.,
to oscillator death.

B. Synchronization of identical chaotic oscillators

One measure of the degree of synchronization of two os-
cillators is given by the correlation coefficient. For thei th
species, we define the correlation coefficientC i

12 as

Ci
125

( j51
N ~xi , j

~1!2^x& i
~1!!~xi , j

~2!2^x& i
~2!!

@( j51
N ~xi , j

~1!2^x& i
~1!!2#1/2@( j51

N ~xi , j
~2!2^x& i

~2!!2#1/2
. ~4!

The subscripti designates the species, while the subscriptj
enumerates theN measurements that make up each time se-
ries. The superscript (k)5(1) or ~2! specifies the reactor,
and the bracketed quantities^x& are averages over each time
series.

Another measure of the similarity or difference between
the time series in the two reactors is given by the average
distanceDX12

DX125
1

n (
i51

n F (
j51

N

~xi , j
~1!2xi , j

~2!!2G1/2. ~5!

Hauser and Schneider@32# show that the correlation co-
efficient of a pair of coupled oscillators displays hysteresis as
the coupling strength is varied. They define critical coupling
strengths as the values where jumps occur and where the
correlation coefficients are still equal to unity.

We perform similar simulations and evaluate both the cor-
relation coefficientC i

12 and the average distanceDX12 as
follows. At each value of the coupling strength, we discard
an initial transient period of 40 000 s and then evaluateC i

12

andDX12 according to Eqs.~4! and ~5!, respectively, from
the time series for the next 60 000 s with data points taken
approximately every second (N'60 000). The last data
point in one time series is used as the initial condition for a
simulation with a new value of the coupling strength.

We choose one of three chaotic states determined by the
flow rateko ~see Fig. 1!: ~a! from a narrow chaotic window,
with ko56.5231024 s21, ~b! from the middle of a wide
chaotic window, withko57.2431024 s21 and ~c! near the
edge of the wide chaotic window in~b!, with
ko57.1931024 s21. In Fig. 3 we show how our measures of
synchronization display hysteresis for k o

(1)5k o
(2)

57.1931024 s21. We observe that the synchronization and
desynchronization processes occur gradually, without notice-
able jumps, as the coupling is increased and decreased, re-
spectively. Somewhat arbitrarily, we choose the value
DX1251310210M to define the critical coupling strength
kc
crit . In Table II we give, for our three chaotic states~a!, ~b!,
and ~c!, the calculated values ofkc

crit together with the ratio
lmax/kc

crit , wherelmax is the maximal Lyapunov exponent in
the uncoupled subsystem.

FIG. 2. Two-parameter bifurcation diagrams for model of two
coupled oscillators. Solid curve is primary Hopf bifurcation; dotted
curve is secondary Hopf bifurcation. Solid loop inside the oscilla-
tory region is associated with oscillator death. Dashed curve is a
saddle-node bifurcation line. Arrows indicate the fixed flow rate
ko
(1) for each diagram~in s21!: ~i! 5.631024, ~ii ! 6.031024, ~iii !

6.5231024, ~iv! 7.2431024, ~v! 8.031024, ~vi! 1.131023, ~vii !
1.2531023, ~viii ! 1.331023, ~ix! 1.3531023.
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C. Dynamics of nonidentical chaotic oscillators

We have also investigated the behavior of coupled non-
identical chaotic oscillators as follows. We integrate Eqs.~2!
for a fixed flow rate in reactor no. 1. The flow ratek o

(2) and
the coupling strengthkc are first fixed at their minimum val-
ues, and thenkc is increased step by step. Whenkc reaches a
preset maximum value, the flow ratek o

(2) is increased while
kc is reset to its minimum value. The initial conditions are
taken for subsequent simulations as the last data point of the
previous simulation. The dynamics and the correlation coef-
ficient are estimated from the stationary time series at each
set of parameters. We define synchronized regimes in terms
of the correlation coefficient for@Ce41#, C 3

12.0.9, and asyn-
chronous regimes as those withC 3

12,0.9. Figure 4 displays
the domains of synchronized and asynchronous regimes in
the kc2k o

(2) parameter plane withk o
(1) fixed at 6.5231024

s21 and k o
(2) not very different fromk o

(1). The structure of
synchronized regimes resembles the Arnold tongues. Com-
paring the synchronized regions in the lower frame of Fig. 4
with the dynamical behavior summarized in the upper frame
demonstrates that the domains of synchronized behavior co-
incide with domains of periodic behavior. Thus domains of
periodic behavior for the coupled system of nonidentical os-
cillators are domains with higher correlation than domains of
chaotic behavior. The only exception to this observation oc-
curs in the chaotic window surrounding the region where the
two flow rates are equal, so that the subsystems are identical.

In Fig. 5 we investigate a broader range of flow ratesk o
(2),

i.e., a more dissimilar pair of coupled reactors. The top and
middle frames of Fig. 5 show the structure of the oscillatory
regions in the two reactors. The conditions in reactor no. 1
correspond to chaotic behavior in an uncoupled subsystem.
Depending upon the conditions in the second reactor and on
the intensity of coupling, the chaotic oscillations may remain
chaotic ~synchronized or desynchronized!, become periodic
~either simple or complex!, or the system may cease to os-
cillate.

The domains of periodic behavior are significantly larger
than the domains of chaotic oscillation. The largest domains
belong to the synchronized period-1 oscillations located to
the left and right of the central part of the diagram. There are
two other domains of period-1 behavior, which border on the
regions in which the steady state is stable. Two large do-
mains in the central part of the diagram correspond to fre-
quency locking, one with ratio 1:2 and the other with ratio
2:3.

FIG. 3. Synchronization of two identical chaotic oscillators. De-
pendence of average distanceDX12 and correlation coefficientC 3

12

on coupling strengthkc for ko
(1)5ko

(2)57.1931024 s21. Squares
and dotted line show increasing coupling strength; triangles and
dashed line show decreasing coupling strength.

TABLE II. Critical coupling strength.a

k0@s
21# lmax ↑kccrit ↓kccrit lmax/↑kccrit lmax/↓kccrit

6.5231024 12.0231023 6.8 31024 6.031024 2.97 3.37
7.1931024 11.1431023 4.0 31024 2.931024 2.78 3.93
7.2431024 13.3431023 1.1631023 9.631024 2.93 3.48

a↑kccrit—critical value ofkc for increasing coupling;↓kccrit—critical value ofkc for decreasing coupling.

FIG. 4. Synchronization of nonidentical chaotic-chaotic and
chaotic-periodic oscillators in the vicinity of identical oscillators.
Reactor no. 1 is in chaotic state with fixedko

(1)56.5231024 s21.
Top frame displays dynamics in cell no. 1 with gray levels: white
denotes the stable steady state, black signifies chaos, and all other
gray levels show periodic regimes. The lighter the gray level the
smaller the periodicity;Pi designates the periodicity of a periodic
regime. Bottom frame displays values of correlation coefficients
with gray levels. Black indicates domains withC 3

12<0.9 and white
domains of complete synchronization (C 3

1251.0). For
0.9,C 3

12,1, lighter gray corresponds to higher correlation coeffi-
cient.
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D. A simple model for predicting the dynamics
of coupled systems

If we examine Figs. 1 and 5, we see that the dynamical
bifurcation structure of the coupled oscillators resembles that
of the uncoupled subsystem. This similarity of dynamical
behavior increases with the coupling strength, which is, of
course, to be expected, since in the limit of infinite coupling,
the two subsystems must behave as a single, synchronized
system. These observations encourage us to seek a simple
model for predicting the dynamics of a coupled system pri-
marily from the dynamical structure of the uncoupled sub-
systems.

We make the assumption that the most important effects
of the coupling can be represented by changes in the effec-
tive values of the parameters. In our simulations, the only
parameter that differs in the two reactors is the flow rate. We
seek to evaluate the effective values of the flow rate, denoted
as k oe

(1) and k oe
(2), starting from the hypothesis that the cou-

pling acts to diminish the difference between parameters in a
symmetric way according to

koe
~ i !5ko

~ i !2Dk, ~6a!

koe
~ j !5ko

~ j !1Dk, ~6b!

where k o
( i ).k o

( j ), i , j51,2, iÞ j , Dk denotes the apparent
change of the flow rate due to coupling.

The dynamics of the coupled system is then predicted
from the behavior of the uncoupled subsystems at the effec-
tive values of the flow rate. We assume that the coupled
system will adopt the regime of higher periodicity. An ex-
ample of this assumption is shown schematically in Fig. 6.
When one effective parameter lies in a steady state regime,
the dynamics is determined by the behavior of the other sub-
system; if one regime is chaotic, then the coupled system
should behave chaotically.

The key to quantifying our model is to establish how the
apparent change in the flow rateDk depends on the coupling
strengthkc and on the difference betweenk o

(1) and k o
(2),

which we take to be the two relevant quantities that deter-
mineDk. We make the assumption thatDk depends linearly
on the absolute value of the difference between parameters

Dk5 f ~kc!uko
~1!2ko

~2!u/2, ~7!

wheref (kc)P^0,1&. Clearly, f (0)50, and we make the rea-
sonable assumption thatf is a monotonically increasing
function of kc . At infinite coupling strength both oscillators
behave as if they were identical (f51), and the maximal
apparent change isuk o

(1)2k o
(2)u/2.

To determinef (kc) in detail, we make use of one piece of
information about the coupled system, the primary Hopf bi-
furcation lines from thekc vs k o

(2) bifurcation diagram as
shown in Fig. 2. In effect, we assume that if we know, as a
function of the coupling strength, the flow rate at which
period-1 oscillation begins in the coupled system, we will be
able to predict the onset of higher periodic and chaotic be-
havior in that system as well.

Our analysis is shown schematically in Fig. 7~a!, where
kL andkR are the lower and upper values, respectively, of the
flow rate at the primary Hopf bifurcations in the uncoupled

FIG. 5. Dynamics in a system of coupled chaotic oscillators.
Top frame displays dynamics in reactor no. 1, middle frame the
dynamics in reactor no. 2, bottom frame the prediction by simple
model~see Sec. III D!. Gray levels show periodicity of the oscilla-
tions.Pi designates domains with periodic oscillations of periodi .
SS is domain of stable steady state. Dashed line is Hopf bifurcation
line, separating region of stable steady state and domain of oscilla-
tions. Parameters as in Fig. 4.

FIG. 6. Schematic prediction of dynamics of
two nonidentical coupled oscillators from dynam-
ics of subsystems. Prediction is based on assump-
tion that coupling affects subsystem parameters
so as to diminish the difference between them. At
the chosen coupling strength, the corresponding
dynamics for effective flow ratekoe

(1) is period-1
oscillation, while forkoe

(2) we have a period-3 os-
cillation. The coupled system is predicted to
adopt the period-3 oscillation.
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system, and the solid linesHL andHR delineate the primary
Hopf bifurcations in the coupled system whenk o

(1) is fixed at
the value indicated. First, consider the case whenk o

(2).k o
(1)

@Fig. 7~a!#. Since thek o
(1) that we have chosen lies between

kL andkR , the system will oscillate for small values ofkc ,
because reactor no. 1 lies in the oscillatory parameter range.
As we increase the coupling,k oe

(1) increases until, when
kc5kcH , it reacheskR . If the coupling is increased still fur-
ther, bothk oe

(1) and k oe
(2) will lie to the right of kR , so that

both effective flow rates will lie outside the oscillatory re-
gion and, according to our assumptions, the coupled system
will no longer oscillate. The pair of values (kc ,k o

(2)) thus lies
along the Hopf bifurcation line@HR in Fig. 7~a!# of the
coupled system. The border of the oscillatory region in the
coupled system is then associated with the equivalence of the
Hopf bifurcation point valuekR of the uncoupled system
with the effective valuek oe

(1). At such a point, the apparent
change of the flow rateDk is

Dk5kR2ko
~1! . ~8!

Combining Eqs.~6!, ~7!, and~8!, we obtain

f ~kc!52@kR2ko
~1!#/@ko

~2!~kc!2ko
~1!#5 f R~kc!, ~9!

where, for the given fixedk o
(1), the dependence ofk o

(2) on kc
is determined by the Hopf curveHR . Similarly, when
k o
(1).k o

(2), the effective valuek oe
(1) coincides withkL , while

k oe
(2),kL for any pair (kc ,k o

(2)) along the Hopf lineHL , and
f is given by

f ~kc!52@ko
~1!2kL#/@ko

~1!2ko
~2!~kc!#5 f L~kc!. ~10!

The functionsf R(kc) and f L(kc) are plotted in Fig. 7~b!. If
Eq. ~7! were valid over the entire parameter range, the func-
tions f R and f L would be identical. The discrepancy between
the functions indicates the imperfection of the model. A
simple modification consists of the following assignment for
f (kc):

f5 f L when ko
~2!,ko

~1! ,
~11!

f5 f R when ko
~2!.ko

~1! .

The dynamics predicted by the above model is displayed
in the bottom frame of Fig. 5 and in Fig. 8. Figure 8 shows
the dynamics in the vicinity of identical conditions
(k o

(1)5k o
(2)), where the predictions of the model are in ex-

cellent agreement with the results of direct simulations. The
largest discrepancies between the model predictions and di-
rect integration occur at weak couplings~kc,131023 s21!.
Formulation of a reliable simple model at such coupling is a
formidable task. The results predicted by this simple model
appear to be in good qualitative agreement with direct simu-
lation even for the wider range of parameter differences ex-
amined in Fig. 5. The major domains obtained by integration
of the full set of equations are predicted by the simple model,

FIG. 7. Method of evaluating functionf (kc) in Eq. ~7! from
Hopf bifurcation lines of coupled system~a! and results of evaluat-
ing f (kc) ~b!. Reactor no. 1 is in chaotic state with fixed
ko
(1)56.5231024 s21. Effective valuekoe

(1) becomes equal tokR
when the pair of values (ko

(2) ,kc) lies on the Hopf lineHR , while
the effective valuekoe

(2) is larger thankR . f L : function obtained
using points on left Hopf lineHL ; f R : function obtained using
points on right Hopf lineHR .

FIG. 8. Dynamics of coupled chaotic oscillators near identical
conditions. Top frame displays results of direct simulations, bottom
frame displays results predicted by simple model. Gray levels show
periodicity of the oscillations.Pi designates domains of period-i
oscillations. Black regions are chaotic. Parameters as in Fig. 4.
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supporting our assumption that information about higher pe-
riodicities and chaos can be obtained from knowledge only
of the behavior of the uncoupled systems and the primary
Hopf bifurcation of the coupled system.

IV. DISCUSSION

The present investigation represents only a beginning step
in the study of coupled chaotic chemical oscillators. Oscilla-
tor death in coupled chemical systems has been reported ear-
lier for periodic oscillators@4,7,8,12#, but to our knowledge
there are no previous reports of oscillator death in mass
coupled chaotic oscillators. Oscillator death in our model of
the BZ reaction is not associated with a particular chaotic or
periodic mode but, as Fig. 2 shows, it occurs in a range of
k o
(1) andk o

(2) in which both periodic and chaotic oscillations
are found in a single CSTR. Because of the symmetry of the
coupled system, the region of oscillator death for
k o
(1).1.2631023 s21 is complementary to a similar region

for k o
(1),6.831024 s21.

Our direct simulations do not reveal the oscillator death
that is predicted by the continuation method to occur inside
the oscillatory region@see Figs. 2~iii ! and 5#. The explanation
for this failure is to be found in the subcriticality of the
bifurcation and in the initial conditions. The domain of os-
cillator death is located inside the domain of synchronized
period-1 oscillations. As noted above, the initial conditions
of each simulation correspond to the final data point of the
previous simulation. When we increase the coupling strength
so as to enter the domain of oscillator death, the initial con-
ditions always lie within the basin of attraction of the stable
limit cycle. The stable steady state can be attained by per-
turbing this initial state to place the system within the steady
state’s basin of attraction.

One type of oscillator death has been explained for
coupled identical oscillators as arising from an out-of-phase
entrainment mode@8,16#. In such cases the chemical
‘‘force’’ that tends to ‘‘push’’ the two subsystems apart as
they move out of phase around the limit cycle is balanced by
the ‘‘pull’’ of the coupling. Our simulations reveal the pres-
ence of oscillator death in coupled chaotic oscillators, but
only for specific nonidentical conditions. A similar type of
oscillator death has been observed in two coupled Lorenz
systems@43#. Although our model at the parameters studied
does not give rise to the stable out-of-phase entrainment re-
ported in Refs.@7# and @8#, the oscillator death in our simu-
lations can also be thought of as emerging from a balance

between the coupling and the tendency toward out-of-phase
entrainment. The balance can be destroyed by perturbation,
after which the system begins to oscillate.

We have looked at identical oscillators in low flow rate
chaos to study the synchronization and desynchronization of
coupled chaos and to test the method of determining the
maximum Lyapunov exponent from the critical coupling
strength. Fujisaka and Yamada@17# derived a relation be-
tween the critical coupling strength and the maximum
Lyapunov exponent

lmax52kc
crit . ~12!

Our values of the ratiolmax/kc
crit , summarized, in Table II

support the existence of a relationship like Eq.~12!, but they
are not in good agreement as to the constant of proportion-
ality. The exact value oflmax/kc

crit , of course, depends on the
determination of the critical coupling strength, which for our
data is somewhat arbitrary. A smaller choice for our synchro-
nization criterion@e.g.,DX1251310214 M , see Fig. 3~b!#
would give a result closer to that of Eq.~12!. Hauser and
Schneider@32# and also Schuster, Martin, and Martienssen
@44# obtained similar deviations from the theoretical value.

The model introduced here for predicting the behavior of
coupled nonidentical systems has both strong and weak
points. It provides fast preliminary prediction of the dynami-
cal behavior of two coupled oscillators that differ only in one
parameter. If the parameter difference is relatively small the
model gives nearly quantitative agreement with the actual
dynamics. The main disadvantage of the model is its weak
prediction for smallkc and for large differencesuk o

(1)2k o
(2)u.

The model also fails to reveal the domains of oscillator death
and frequency locking. Utilizing the model requires the ex-
istence of supercritical Hopf bifurcations at both low and
high values of the parameter.

In addition to refining the model further and examining
how the conclusions of the present study are affected by
changes in the nature of the component subsystems, further
studies are needed to explore the feasibility of extending our
approach to systems that differ in more than one parameter
and to systems consisting of three or more coupled sub-
systems.
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