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In this paper we address the phenomenon we call ‘‘stochastic localization,’’ within which we include a
number of interrelated characteristics exhibited by soft anharmonic oscillators in thermal equilbrium. Principal
among these characteristics are a tendency for soft oscillators to spend more time at higher energies than
comparable harmonic oscillators, and for high-energy fluctuations in soft oscillators to persist longer than
lower-energy fluctuations, leading to a tendency for energy fluctuations to be organized into ‘‘bursts’’ sepa-
rated by intervals of relative quiet.@S1063-651X~96!01110-5#

PACS number~s!: 05.40.1j, 63.20.Ry, 63.20.Pw, 65.50.1m

I. INTRODUCTION

The localization of energy in time, that is, the enhanced
persistence and/or anomalously frequent occurrence of high-
energy states, is one factor in promoting chemical or physi-
cal processes that require epithermal energies for their initia-
tion. Another important factor may be the spatial localization
of energy in otherwise homogeneous extended systems. Ei-
ther of these distinct effects may be more prominent than the
other in a particular instance, and they may be correlated to
varying degrees depending on ambient conditions@1#.

It is well known that a wide variety of translationally
invariant, anharmonic systems are capable of supporting
long-lived, localized excitations under appropriate condi-
tions. Among these are systems modeled by completely in-
tegrable nonlinear wave equations that support robust, spa-
tially coherent, infinite-lived localized excitations known as
‘‘solitons’’ @2–8#. The beauty and potential power of the
soliton concept has motivated a substantial volume of re-
search on solitons and anharmonic models of diverse types.
There are well-known examples of soliton behavior suffi-
ciently well understood to be the basis of practical devices,
the best known, perhaps, being the soliton laser pulses used
to transmit information through long optical fibers@9#. On
the other hand, there are examples of solitonlike behavior for
which attempts at experimental observation and control have
been more equivocal; among these are molecular-scale soli-
tons that arise from a number of theoretical models of solids
and macromolecules@10,11#.

One of the central difficulties plaguing the attempted ob-
servation of molecular solitons both in laboratory experiment
and numerical simulation is the generally uncooperative na-
ture of thermal fluctuations at finite temperatures. There are
several distinct aspects to this difficulty:~1! The problem of
‘‘soliton stability’’; that is, the fact that few situations of
practical interest approach a degree of idealization consistent
with the existence of infinite-lived excitations such as soli-
tons. A particular challenge in this regard is arriving at a

meaningful and quantitative characterization of a ‘‘lifetime’’
that may be attributed to solitonlike initial conditions.~2!
The fact that in many cases of practical interest the relevant
circumstance is not a solitonlike initial condition, but the
long-time, unhappy equilibrium in which any solitonlike ex-
citations thatmaybe present have been thoroughly abused by
ravages of the heat bath.~3! The fact that most experimental
techniques available for probing soliton structure are indirect
and nondiscriminating in the sense that bulk properties of
materials are probed; thus, most measurements average sig-
nals over substantial volumes of space from coherent and
incoherent motions simultaneously, presenting serious chal-
lenges to ‘‘deconvolution.’’~4! The latter experimental dif-
ficulty has a counterpart in theoretical analysis; that of dis-
criminating a coherent ‘‘nonlinear signal,’’ such as a
possible solitonlike component, from the incoherent ‘‘non-
linear noise’’ that may account for a large fraction of the
energy in an anharmonic system.

We approach the general problem of anharmonic energy
localization from the noisy side; that is, we look first to en-
sembles of uncoupled anharmonic oscillators to determine
characteristics of the intrinsic noise with which any coherent
structure must coexist in thermal equilibrium. Later, we con-
sider arrays of weakly coupled oscillators and analyze the
nature of the spatial coherence that results from direct inter-
actions between oscillators. It may be useful to consider
Secs. II and III of this paper as being addressed to such
arrays of oscillators in the limit of vanishing coupling; in
such a limit, spatial averaging reduces to ensemble averag-
ing.

In this paper we focus our attention on fluctuations of the
local energy density of an oscillator system in both space and
time. We focus on the energy density rather than more direct
mechanical coordinates such as oscillator amplitudes for sev-
eral reasons:~1! the energy density determines the range of
mechanical amplitudes;~2! the energy density is an intrinsi-
cally slow variable relative to mechanical amplitudes, per-
mitting slow dynamics to be observed without the use of
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averaging;~3! the energy density is subject to thermody-
namic constraint.

We are concerned primarily with systems of ‘‘soft’’ os-
cillators, a soft oscillation being one whose period increases
with increasing amplitude; the periods of ‘‘hard’’ oscilla-
tions, on the other hand, decrease with increasing amplitude.
The soft or hard nature of an oscillation is reflected as well in
the structure of its phase space; the volume of phase space
G(E) included by the surface of constant total energyE of a
soft ~hard! oscillation increases more~less! rapidly than in
the harmonic case. It is important to note that not all oscil-
lators can be labeled definitively as ‘‘soft’’ or ‘‘hard’’; e.g.,
though the period of an oscillation may increase with ampli-
tude at low amplitudes, this trend may reverse itself any
number of times at higher amplitudes. Thus the characteriza-
tion of an oscillation as ‘‘soft’’ or ‘‘hard’’ generally is lim-
ited to a specific range of amplitude. Astrictly soft oscilla-
tion would be one whose period increases monotonically
with amplitude, or in terms of phase space volume, one for
which dG(E)/dE increases monotonically with total energy.

A more practical approach is to characterize an oscillation
as soft or hard depending on theleadinganharmonic behav-
ior at low amplitude. This is not only convenient, but it re-
flects the circumstance most commonly encountered in prac-
tice. It is this characterization that we shall employ
throughout this paper, taking care that the temperatures con-
sidered justify restricting our attention to this low-amplitude
regime.

For simplicity, we confine our explicit examples to sym-
metric potentials, but the same arguments apply to asymmet-
ric potentials such as the Morse or Lennard-Jones@12#.
Moreover, though much of the argument we present holds
for potentials exhibiting multiple relative minima, we focus
our discussion on potentials having unique, nondegenerate
global minima and approximate these by monostable poten-
tials at low temperatures.

II. THERMODYNAMICS

Consider a single oscillator described by the Hamiltonian

H$ẋ,x%5
ẋ2

2
1V~x!, ~1!

in which V(x) is a bound potential. For notational conve-
nience, we set the massm and low-amplitude frequencyv0
of the oscillator to unity, and complete the scaling to dimen-
sionless quantities by choosing the length scale to be the
amplitudexc characterizing the onset of softening or harden-
ing of the potential. The energy scale in these terms is
mv0

2xc
2 . For such systems, the generalized equipartition

theorem@13# reads

K ẋ ]H

] ẋ
L 5K x ]H

]x L 5kBT, ~2!

where ^•••& indicates the ensemble average andT is the
temperature. This implies that

^E&5^H&5kBT1^L&, ~3!

where

L~x!5V~x!2 1
2xV8~x! ~4!

is an auxiliary function containingno quadratic terms;
thoughL(x) is not equal to the anharmonic part ofV(x), it
is the vehicle through which the anharmonicity of the poten-
tial enters our calculations. We shall see below that^L& is
generally positive for soft potentials, indicating that the equi-
librium expectation value of the total energy of a soft anhar-
monic oscillator exceeds that of a harmonic oscillator at a
given temperature. This qualitative conclusion does not de-
pend on the frequency of the harmonic oscillator used for
comparison, nor on the degree of freedom underlying the
vibration, since all harmonic oscillators in equilibrium at the
same temperature share the same energy expectation value.
Consequently, we may conclude that any soft anharmonic
oscillator will equilibrate to an average energy higher than
that of any harmonic oscillator at the same temperature.

The magnitude of this excess is not necessarily large, of
course. Clearly, the magnitude of this disparity increases
with the strength of the anharmonicity, but for the same
value of the anharmonicity the expected value of the higher
moments~e.g.,^x4&) will be larger in comparable oscillators
having lower frequencies at low amplitude. This suggests
that we may expect anharmonicity-driven concentrations of
energy to be most pronounced among the lowest-lying vibra-
tional modes of a complex system.

We make use of the notion of a ‘‘comparable harmonic
oscillator’’ as a standard to use in discriminating deviations
from harmonic behavior. This hypothetical harmonic oscilla-
tor is understood to exist in the same degree of freedom as
the anharmonic oscillator in question, and its potential is
understood to be the parabola that osculates the anharmonic
potential at its global minimum. In such comparisons, quan-
tities associated withsoft anharmonic oscillators are deco-
rated with tildes~e.g.,Ṽ), while harmonic reference quanti-
ties are decorated with zeros~e.g.,V0) to indicate that the
anharmonicity has been set to zero.

It follows from considering either the behavior of the os-
cillator potential or the included phase space volumeG(E)
that the partition function

Q5E E e2@~1/2!p21V~x!#/kBTdpdx ~5!

of a soft anharmonic oscillator is greater than the partition
function of a comparable harmonic oscillator, at least at low
temperatures (Q̃.Q0). Consequently, the free energy

A5^E&2TS52kBTlnQ ~6!

of the soft anharmonic oscillator is lower (Ã,A0), and~us-
ing the equipartition result! the entropy and heat capacity
higher (S̃.S0, C̃v.Cv

0) than in a comparable harmonic os-
cillator.

From such considerations we may draw some conclusions
regarding energy fluctuations. The variance of the total en-
ergy in thermal equilibrium is related to the heat capacity by
the relation

^DE2&5kBT
2Cv . ~7!
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In view of the equipartition theorem, we may conclude that
the normalized variance of the total energy of a single har-
monic oscillator at thermal equilibrium is equal to unity

^DE0
2&

^E0&
2 51. ~8!

On the other hand, the normalized energy variance for our
anharmonic oscillator is given by

^DE2&

^E&2
5
kBT

2Cv

^E&2
. ~9!

We can use the relation

Cv5
]^E&
]T

~10!

to compute the heat capacity. We have then

]^E&
]T

5kB1
]^L&
]T

. ~11!

To complete the computation, we note that

^L&5Q21E E L~x!e2@~1/2!p21V~x!#/kBTdpdx, ~12!

so that the differentiation of̂L& with respect to temperature
involves two contributions, one involvinĝVL& arising from
the differentiation of the integral written explicitly above,
and one involvinĝL&^V& arising from the differentiation of
the normalizationQ21; thus

]^L&
]T

5
1

kBT
2 ~^VL&2^L&^V&!. ~13!

Substituting these expressions into our formula for the en-
ergy fluctuations, we get

^DE2&

^E&2
5

11
1

kB
2T2

~^VL&2^L&^V&!

S 11
1

kBT
^L& D 2 . ~14!

This quantity may be greater or less than unity, depending on
the nature of the potential~e.g., whether hard or soft! and the
temperature.

To make this more concrete, consider the example of a
bound, anharmonic oscillation in a potential whose Taylor
expansion at small amplitudes begins

Ṽ~x!5
1

2
x22

e

4
x41R$e,x%, ~15!

wheree.0. This potential is harmonic at small amplitudes
and softens initially as a quartic potential. The remainder
R$e,x% is understood to vanish relative to the exhibited terms
as eithere or x goes to zero; however, consistent with the
physical meaning ofV(x) as a bound potential,R$e,x% is
understood to dominate positively for any positivee when
x is sufficiently large. We concentrate on the small-e, small-

T regime, where, for the specific calculations we perform, it
is sufficient to expand quantities to leading order ine, such
that

^Ẽ&'kBT1
e

4
^x4&, ~16!

^DẼ2&

^Ẽ&2
'S 11

e

4kB

]^x4&
]T D S 11

e

4kB

^x4&
T D 22

. ~17!

Expanding the partition function in orders of the anharmo-
nicity parametere, we may computêx4& approximately as

^x4&'^x4&01
e

4kBT
@^x8&02^x4&0

2#, ~18!

'3~kBT!2124e~kBT!3, ~19!

in which the zero subscript indicates the thermal expectation
value in the absence of anharmonicity. From this one may
show that the normalized energy variance is greater than
unity in the soft anharmonic case,

^DẼ2&

^Ẽ&2
'11

87

16
e2kB

2T2.1. ~20!

This indicates that relative to harmonic oscillators, the en-
ergy fluctuations of soft anharmonic oscillators are marked
by an increased preponderance of high-energy fluctuations.

We can elaborate on this characterization by considering
an example for which the entire energy distribution can be
determined and not just its low moments.

The partition function of a simple, monostable oscillator
such as we considered above may be written

Q5E
0

`

e2bEdG~E!, ~21!

in whichG(E) is the phase space volume as discussed in the
Introduction. The probability density for finding the energy
E in a particular observation at thermal equilibrium is given
by

p~E!5
e2bE

Q

dG~E!

dE
. ~22!

A harmonic oscillator is characterized by aG(E)}E,
while a soft~hard! oscillator is characterized by aG(E) that
increases more rapidly~slowly! than a simple linear depen-
dence onE @14#. As a specific example, consider the piece-
wise linearG(E)

G~E!5g@E1e~E2Ec!u~E2Ec!#, ~23!

in which u(u) is the unit step function,g31 expresses the
rate at which phase space volume increases with respect to
energy atlow amplitudes, andg(11e) expresses the corre-
sponding rate above the energyEc . Thus, theonsetof the
soft anharmonicity is characterized by the energy scaleEc ,
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and thestrengthof the anharmonicity is characterized by
eP(0,`) for soft anharmonicity andeP@21,0) for hard
anharmonicity.

The partition function and mean energy are given by

Q5
g

b
@11ee2bEc#, ~24!

^E&52
]

]b
lnQ5b211

ee2bEc

11ee2bEc
Ec . ~25!

The probability density is given by

p~E!5
b@11eu~E2Ec!#e

2bE

11ee2bEc
. ~26!

The probability density for a harmonic oscillator (e50) is
simply the normalized exponentialp0(E)5be2bE. The
probability densityp̃(E) for the soft anharmonic oscillator,
on the other hand, is piecewise exponential with the property
that p̃(E),p0(E) belowEc and p̃(E).p0(E) aboveEc .

It is worth noting, perhaps, that although soft anharmonic-
ity is responsible for an increase in the mean energy^E& and
a spreading of the energy distribution to higher energies con-
sistent with the notion of a ‘‘hot’’ oscillator, the energy dis-
tribution of a soft oscillator differs from that of a harmonic
oscillatorqualitativelyas well asquantitatively. To illustrate
these qualitative differences, consider the artifice of a com-
parable harmonic oscillatoroverheatedto a temperature
T*.T chosen such that the harmonic and anharmonic oscil-
lators have the same mean energies. The probability density
p0* (E) for the energy in this overheated harmonic oscillator
is a normalized exponential, just likep0(E), but decreases
more slowly with increasing energy.

At low energiesp0(E).p0* (E),p̃(E), with the relation-
ship betweenp0* (E) andp̃(E) being determined by the tem-
perature; e.g., at higher temperaturesp0* (E). p̃(E), such
that the soft anharmonic oscillator experiences fewer low-
energy fluctuations than even the overheated harmonic oscil-
lator. At high energiesp0* (E). p̃(E).p0(E), reflecting the
fact that the exponential high-energy tails of the probability
densities for both the harmonic and soft anharmonic oscilla-
tors are controlled by the ambient temperatureT and thus fall
off more rapidly with increasing temperature. The typical
circumstance at intermediate temperatures is characterized
by p̃(E).p0(E),p0* (E). In terms of the specific phase space
measureG(E) employed in our example, the strength of the
anharmonicity as measured bye indicateshow muchenergy
redistribution occurs, while the energy scaleEc indicates
wherethe redistributed energygoes.

Thus, although the notion of overheating can account for
~1! an anomalous increase in the mean energy,~2! a relative
decrease in the probability of low-energy fluctuations, and
~3! a relative increase in the probability of high-energy fluc-
tuations, the actual reshaping of the energy distribution due
to soft anharmonicity differs in significant respects; namely,
a soft oscillator experiencesfewerhigh-energy fluctuations,
more intermediate-energy fluctuations, and may experience
more or fewerlow-energy fluctuations than does a compa-
rable harmonic oscillator having the same mean energy.

III. DUTY CYCLE AND DISSIPATION

The duty cycle of an oscillation is the ratio of the frac-
tions of a cycle that the oscillator spends in two essentially
exclusive states; for example, a square wave may be ‘‘on’’
for one third of a cycle and ‘‘off’’ for two thirds, for a duty
cycle of 1:2. For ourpurposes, it is useful to consider as
exclusive states the conditions that the energy of an oscilla-
tion reside~a! primarily in the kinetic form or~b! primarily
in the potential form. For harmonic oscillators, the energy
spends equal times in the two forms, for a duty cycle of
1:1. Forsoft anharmonic oscillators, the period of oscillation
is greater than that of the reference harmonic oscillator, and
most of this increase is accounted for by a lengthening of the
time that the energy spends in the potential form. This leads
to a duty cycle of 1:11h, whereh is a measure of the
lengthening of the period due to anharmonicity.

For use in concrete examples, we consider the symmetric
soft potential

V~x!5
1

2

x21ax4

11x2
. ~27!

For the immediate example, we seta50, such that the po-
tential is harmonic with unit frequency at low amplitudes,
and saturates to a constant at high amplitudes. The nature of
this oscillator’s duty cycle can be shown by comparing the
time traces of the kinetic energy for ‘‘kicked’’ initial condi-
tions x(0)50, ẋ(0)P(0,1) ~See Fig. 1!.

The duty cycle affords a dynamical understanding of the
equipartition results obtained earlier. Since the kinetic en-
ergy of both harmonic and anharmonic oscillators is a qua-
dratic degree of freedom, the equipartition theorem requires
that both harmonic and anharmonic oscillators have the same
average kinetic energy. However, since the energy of soft
anharmonic oscillators spends relatively more time in the
potential form than is the case for harmonic oscillators, the
equalityof the average kinetic energies forces aninequality
of the average total energies such that the greater average
energy is found in the soft anharmonic oscillator.

FIG. 1. Kinetic energy of free oscillations in the potential~27!
for initial conditionsx(0)50, ẋ(0)50.25,0.5,0.7,0.9,0.99, in or-
der of increasing total energy. Elapsed time for all traces is approxi-
mately four harmonic oscillator periods.
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The duty cycle also allows some conclusions to be drawn
regarding dissipation. Using the Langevin approach, for ex-
ample, one may model the dynamics of an oscillator in con-
tact with a heat bath by the equation of motion

ẍ52
]V

]x
2g ẋ1 f ~ t !, ~28!

in which g represents the dissipation andf (t) is a zero-
centered stochastic force. This implies that energy drains
from the oscillator according to

Ė522g~Ekin!1 ẋ f ~ t !, ~29!

whereEkin is the kinetic energy. Note that the oscillator po-
tentialV(x) does not appear explicitly in the latter equation,
so that the relationship among the displayed quantities is
valid for any oscillator. Since the kinetic energy is positive
definite, the first term on the right-hand side is strictly dissi-
pative; the noise term, on the other hand, may either increase
or decrease the total energy depending on the net sign of the
fluctuation and the instantaneous velocity. For bound oscil-
lations such as we consider, the kinetic term is ‘‘on’’ only
half of the time~harmonic potential! or less~soft potential!.
Moreover, though the fluctuation can be either a source or a
sink of energy, the fact that the fluctuation is weighted by the
velocity causes this term also to have greater impact during
the ‘‘kinetic’’ phase of oscillation. Thus, regardless of poten-
tial type, the energy drains nonuniformly in time, and prima-
rily during that fraction of the cycle in which the energy
resides mainly in the kinetic form. Since soft anharmonicity
lengthens the time that an oscillator’s energy resides in the
potential form, extending the phase ofleastdissipation, we
may conclude that softened oscillations decay more slowly
than corresponding harmonic oscillations. Since the low am-
plitude oscillations of a soft oscillator are quite harmonic, we
may conclude as well that low-amplitude oscillations of a
soft oscillator decay more rapidly than do high amplitude
oscillations in thesameoscillator. This phenomenon is illus-
trated in Fig. 2. This relative persistence of high-energy fluc-
tuations is quiteunlike the behavior of a harmonic oscillator,
in which oscillations of all amplitudes decay at the same rate.

These observations allow us to conclude that the time
trace of the total energy of a soft anharmonic oscillator in
thermal equilibrium is, in a sense,more organizedthan that
of a comparable harmonic oscillator under the same condi-
tions, despite the fact noted previously that the entropy of
such a soft oscillation is greater than that of a comparable
harmonic oscillation.

The nature of this organization is illustrated schematically
in Fig. 3 using the previously introduced artifice of a com-
parable harmonic oscillator overheated to a temperature
T* , such that the mean energy of the harmonic oscillator at
T* is equal to the mean energy of the soft oscillator atT.

Since the overheated harmonic oscillator has the same
mean energy as the soft oscillator, the areas under the time
traces of the total energy in these two oscillators are equal.
The first panel of Fig. 3 offers a schematic representation of
the energy time trace of the overheated harmonic oscillator.
The time trace shown in the second panel of Fig. 3 consists
of exactly the same energy excursions heuristicallyrear-

rangedso as to reflect the relative persistence of high-energy
fluctuations found to characterize soft oscillations. The es-
sential point of this illustration is that the rearrangement of
energy excursions that is required to reflect the relative per-
sistence of high-energy fluctuationsnecessarilyresults in an
increased persistence of low-energy fluctuations as well.

This bunching of energy fluctuations into bursts separated
by intervals of relative quiet is one aspect of the anharmonic
effect we call ‘‘stochastic localization.’’ This bunching phe-
nomenon is distinct from the reshaping of the energy prob-
ability density discussed at the end of the last section. Were
we to refine the second panel of Fig. 3 to include that redis-
tribution effect, we would have to reduce the height of some
of the larger fluctuations and increase the height of some of
the smaller fluctuations keeping the average energy across
the time record fixed, reflecting the increased probability of
midrange fluctuations relative to the extremes.

The quality of persistence that figures centrally in the con-
cept of stochastic localization can be measured quantitatively
using time correlation functions. We have made such mea-
surements in the course of Langevin simulations of both har-
monic and soft oscillations under identical conditions. In
each case the total energyE(t) in the oscillator was moni-
tored as a function of time and used to construct the correla-
tor

C~t!5
E~ t !E~ t1t!

E~ t !2
, ~30!

in which the overbar indicates the time average. Results typi-
cal of such calculations are shown in Fig. 4, which clearly
show the markedly increased persistence of energy fluctua-
tions in soft oscillations relative to comparable harmonic os-
cillations under identical conditions.

FIG. 2. Total energy of oscillations decaying freely according to
Eq. ~28! for a small value of the damping constantg. Solid curves
computed using the soft potential~27!; dashed curves computed
using the corresponding unit-frequency harmonic potential. Initial
data for all curves are the same as in Fig. 1. All harmonic oscilla-
tions ~dashed curves! decay at the same rate regardless of initial
energy, while oscillations in the soft potential~solid curves! decay
more slowly at higher energies. Elapsed time for all traces is ap-
proximately 13 harmonic oscillator periods.
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IV. SPATIAL COHERENCE

The previous sections have addressed the dynamics and
thermodynamics of single oscillators in contact with a heat
bath. In many cases, however, what is of primary interest is

not individual oscillators, but collections of coupled oscilla-
tors arrayed in specific configurations; e.g., as in vibrational
networks and lattices.

The generalization from single oscillators to collections of
decoupledoscillators is straightforward, and therefore omit-
ted, except to observe that through the equivalence of time
and ensemble averages, increased variability of the energy of
a single oscillator intime as found in the case of soft oscil-
lations implies a corresponding increase in the variability of
the energy density across the ensemble. In the absence of any
mechanical coupling between oscillators, we maynot expect
this increased variability to be manifested in spatial localiza-
tion per se. However, the increased variability of the energy
must be present in equilibrium averages, implying that al-
though arrays of decoupled soft oscillators cannot display
any collective behavior, the energy distribution across arrays
of such oscillators must display increasedinhomogeneity
relative to arrays of comparable harmonic oscillators under
the same conditions.

This influence of anharmonicity upon the spatial inhomo-
geneity of the energy density originates from exactly the
same physical mechanisms and thermodynamic consider-
ations as discussed in the preceding section, and may be
properly considered to be part of the same phenomenon of
stochastic localization, though in the absence of any cou-
pling between distinct oscillators there can be none of the

FIG. 3. Left panel: Schematic
representation of the energy time
trace in a harmonic oscillator
overheatedto T* as discussed in
the text. Right panel: Thesameset
of energy excursions heuristically
reordered to reflect the persistence
of high-energy fluctuations in a
soft anharmonic oscillator atT.
As a schematic representation
only, energy and time scales are
arbitrary.

FIG. 4. Time correlation functions computed by Langevin simu-
lation at intermediate temperature. Dotted line:C(t), computed for
the unit-frequency harmonic oscillator using potential~27! with
a51.0. Solid line:C(t), computed using the potential~27! with
a50.2.
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organization one might otherwise associate with the notion
of localization.

Spatial organization of the energy density requires me-
chanical couplings that allow spatially distinct oscillators to
interact directly, and through such interactions establish spa-
tial coherence. The most elementary interaction between
neighboring oscillators is the harmonic one giving rise to the
propagation of energy through space; e.g.,

H$ẋ,x%5(
n

@ 1
2 ẋn

21 1
2c

2~xn2xn21!
21V~xn!#. ~31!

In the absence of an on-site potentialV(x), this describes
acoustic vibrations in whichc is the speed of sound in units
of the lattice constant. The effect of the nearest-neighbor
interaction is to drive neighboring oscillators toward the
same phase, and thus to establish coherence on the smallest
spatial scale. Dynamically, this local drive toward spatial
coherence has the effect of dispersing any localized energy
distribution, since such a distribution constitutes adeviation
from perfect alignment. Thus the main dynamical conse-
quence of building spatial coherence in vibrational systems
is dispersion.

Thus we have the tendency of soft anharmonicity to in-
crease inhomogeneity, and the tendency of a drive toward
spatial coherence to lead to the dispersion of energy. Since
these opposing tendencies coexist in the same dynamical
system, it is reasonable to expect optimal solutions to
achieve some degree of balance between them. Indeed this is
the case, and it is this physical need to balance anharmonic
focusing against dispersion that gives rise to solitary waves,
and their idealization in the concept of the soliton@2–6#.

The value of the dispersion parameterc plays a central
role in deciding the nature of the ultimate self-consistent
state in the absence of thermal flucuations; large values tend
to result in broad solitary waves spanning many lattice sites,
and small values tend to result in compact localized vibra-
tions that may be ‘‘pinned’’ to particular lattice sites@8#. The
illustrations to follow use the valuec50.5, which besides
being ‘‘intermediate’’@the allowed range iscP(0,1)#, is mo-
tivated by consideration of the actual dispersion relations of
low-lying librations in certain organic molecular crystals
@11#.

As in other aspects of our analysis, the energy density
proves to be a useful discriminator of overall dynamical be-
havior. In light of the coupling between oscillators, however,
we must expand our notion of a local energy to include the
contribution from the nearest-neighbor restoring forces giv-
ing rise to dispersion. Thus we define

En5
1
2 ẋn

21 1
4c

2@~xn112xn!
21~xn2xn21!

2#1V~xn!, ~32!

E5(
n

En , ~33!

whereinE is now the total energy of the entire system of
oscillators. With this definition, all of the energy is captured
in local functionsEn that can be meaningfully analyzed and
visualized.

For simulating anharmonic lattices at finite temperature,
we useH$ẋ,x% with the potential~27!. Typical outtakes from

thermal equilibrium simulations of both harmonic and anhar-
monic systems showing the time evolution of the energy
density are presented in Fig. 5.

To obtain these results, we used Langevin terms as in Eq.
~28!, following Heun’s method@15,16#. Each simulation be-
gan with a warm-up phase, during which the system was
warmed to the desired temperature from a zero-temperature
initial state. Measurement began only after thermal equilib-
rium diagnostics fell within required tolerances. These par-
ticular runs were engineered such that both the harmonic and
anharmonic systems had the same temperature; that is, both
evolved with the same mean kinetic energy per oscillator
equal to1

2Ṽ(`), which in our units is 0.25. The rms ampli-
tudes of oscillators in the harmonic~anharmonic! system was
less~greater! than the amplitude thresholdxc , which in our
units is 1.0. It is important to note that unlike the situation in
Figs. 1 and 2, the initial data for the harmonic and anhar-
monic records shown arenot the same; since harmonic and
anharmonic systems thermalize differently, it is not possible
to make such direct comparisons. Instead, care has been
taken to assure that the records shown arecharacteristicof

FIG. 5. Time dependence of the energy density in a chain of
oscillators evolving according to~31! for c50.5. ~a! the harmonic
case,a51; ~b! the most anharmonic case,a50. Vertical axis rep-
resents energy in dimensionless units; horizontal axis represents
distance along the chain of 64 sites; time increases from top to
bottom and is represented by the incremental offset of successive
‘‘strobes.’’ Overall time elapsed from top to bottom is 8 harmonic
periods, with the strobe interval corresponding to approximately
two radians.
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the typical energy landscape of both systems.
The outstanding characteristic of these simulations is that

the difference between the harmonic and anharmonic simu-
lations isnot dramatic; it is difficult with the naked eye and
a common vocabulary to characterize the differences in tex-
ture. One may say that the energy density in the anharmonic
simulation is generally more smooth, and marked by a
smaller number of high-energy excursions that are generally
more broad in space; i.e., the anharmonic simulation displays
more spatial coherence.

A more quantitative characterization can be made using
the space correlation function

Cn5N
^(mEm~ t !Em1n~ t !&

^(mEm~ t !&2
, ~34!

in which ^•••& indicates the ensemble average, or, as imple-
mented in the Langevin simulation, a mixed time and en-
semble average over large space-time records.

In the absence ofanyspatial coherence,Cn should consist
of a central spike above a uniform background; i.e.,
Cn;adn01b. It is deviation from this form, primarily the
broadening of the central spike, that indicates the presence of
nontrivial spatial coherence. The result of computing the
space correlation function for the two scenarios of Fig. 5 are
shown in Fig. 6.

Clearly, the presence of nontrivial dispersion (cÞ0)
causes a broadening ofCn indicative of nontrivial spatial
coherence. Other conditions being equal, it is clear as well
that under the conditions simulated in Fig. 5, increasing the
‘‘softness’’ of the oscillator potentialincreasesthe amount
of spatial coherence. This is consistent with our qualitative
characterization of Fig. 5, but has the benefit of being subject
to quantitative measurement.

Those familiar with the study of solitons may find that
our simulations and quantitative characterization leave a nag-
ging question unanswered; namely, is the obvious ‘‘ridge’’
in Fig. 5~b! a soliton? While we do not expect our Langevin
model to support true infinite-lived solitons, the energy ex-
cursion in question does have some of the characteristic fea-
tures of a

soliton; it shows significant temporal persistence and appears
to retain its integrity while meandering somewhat in space.
This suggests that the ‘‘ridge’’ might be interpreted as a
solitonlike object @7,8#, arising from balancing of anhar-
monic and dispersive forces. In a blind comparison, how-
ever, one might be inclined to characterize the strictly har-
monic simulation illustrated in Fig. 5~a! as being more
‘‘solitonlike,’’ since the high-energy excursions in that
space-time record are in some respects more discrete and
more ‘‘ballistic’’ in their propagation, traits commonly at-
tributed to solitons; that ballistic appearance, however, is due
to the weak dispersion characteristic of Klein-Gordon equa-
tions in the parameter range studied and not any anharmonic
effect. Since the word ‘‘soliton’’ carries with it far greater
implications than we have been able to substantiate thus far,
we are reluctant to make such an assignment. A more com-
plete analysis of the thermal behavior of soft, low-lying, dis-
persive librations in certain organic molecular crystals will
be presented elsewhere@17#.

V. CONCLUSION

In this paper we have addressed the phenomenon we call
‘‘stochastic localization,’’ within which we include a number
of characteristics exhibited by soft anharmonic oscillators in
thermal equilbrium. Principal among these characteristics are
a tendency for soft oscillators to spend more time at higher
energies than comparable harmonic oscillators, and for high-
energy fluctuations in soft oscillators to persist longer than
lower-energy fluctuations, leading to a tendency for energy
fluctuations to be organized into ‘‘bursts’’ separated by in-
tervals of relative quiet. These characteristics of stochastic
localization can be traced to the entropic drive of a system in
thermal equilibrium to sample the ‘‘extra’’ phase space ren-
dered accessible by the softening of the vibrational potential,
and to the lengthening of the duty cycle of softened vibra-
tions that decreases the effectiveness of dissipation at higher
energies.

These characteristics of soft oscillators in thermal equilib-
rium are distinct from the spatial localization characteristic

FIG. 6. Energy-energy correla-
tion function Cn as defined in
~34!. From top to bottom, center:
Solid,a51.0,~harmonic!. Dotted,
a50.2, ~anharmonic!. Dashed,
a50.0, ~saturated, maximum an-
harmonicity for this potential!. All
results are from Langevin simula-
tions for c50.5 under equivalent
equilibrium conditions at interme-
diate temperatures.
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of solitons. In general terms, solitonlike order follows from a
minimization of the mechanical energy that brings dispersion
and anharmonic focusing into balance. Stochastic localiza-
tion, on the other hand, depends on the promoting effects of
the entropy. In thermal equilibrium, the minimization of the
free energyE2TS has the effect of balancing solitonlike
orderagainststochastic localization.

Thermal equilibrium in vibrational systems is inhospitable
to solitonlike excitations in the sense that it is typically dif-
ficult to resolve well-defined, long-lived vibrational excita-
tions. The leading causes of this difficulty are that~1! the
‘‘substance’’ of which any such excitation is made is thermal
energy that is not conserved except in a statistical sense,
being subject to loss through dissipation and being regener-
ated only stochastically,~2! solitons are low-entropy states
that exact a significant free-energy cost at elevated tempera-
tures, and~3! in order to achieve mean energies sufficiently
high to allow a significant penetration of the anharmonic
regime, the temperature must be significant as well, such that
whatever thermally generated solitonsmay appear are vul-
nerable to~1! and~2!. Soft anharmonic vibrations in thermal
equilibrium thusly execute a Sisyphean dance, perpetually

driving thermal fluctuations toward a solitonlike order, only
to see that growing order continuously degraded by never-
ending waves of randomizing fluctuations.

Stochastic localization may be thought of as the constel-
lation of dynamic and thermodynamic correlations that de-
pend on the existence of soft anharmonicity, but donot de-
pend on existence of spatial coherence. Stochastic
localization thus describes the properties of the background
against which solitons must be resolved in any practical cir-
cumstance.
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