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Decay rates of resonance states at high level density
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The time-dependent Schtimger equation of an open quantum-mechanical system is solved by using the
stationary biorthogonal eigenfunctions of the non-Hermitian time-independent Hamilton operator. We calcu-
late the decay rates at low and high level densities in two different formalism. The rates are generally time
dependent and oscillate around an average value due to the nonorthogonality of the wave functions. The decay
law is studied disregarding the oscillations. In the one-channel case, it is proportien&ivith b~ 3/2 in all
cases considered, including the critical region of overlapping where the nonorthogonality of the wave functions
is large. Starting from the shell model, we det2 for two and four open decay channels and all coupling
strengths to the continuum. When the closed system is described by a random brattix,K/2 for K= 2
and 4 channels. This law holds in a limited time interval. The distribution of the widths is different in the two
models when more than one channel is open. This leads to the different expbriarttse power law. Our
calculations are performed with 190 and 130 states, respectively, most of them in the critical region. The
theoretical results should be proven experimentally by measuring the time behavior of deexcitation of a
realistic quantum systerfS1063-651X96)07610-¢

PACS numbgps): 05.30—d, 05.40+j, 03.65.Nk, 24.60-k

I. INTRODUCTION many paperse.g., [11]) creates a separation of the time
scales at a critical value of the degree of resonance overlap-
The decay properties of quantum systems at high levebing. In another investigatiofil2], the survival and decay
density are discussed in the literature with a renewed interesprobabilities of high Rydberg states are studied. All these
Such systems arepensystems. The environment is the en- investigations of the time behavior of a decaying system are
ergy continuum of decay channels into which the discreteyerformed on the basis of the random-matrix theory. Thus
states of the closed system are embedded and gives themt question remains open whether similar results will be
finite lifetime. obtained if the calculations are performed in the framework
In [1-3] the decay law is studied analytically for an infi- of a more realistic formalism. Further, some of the results
nite number of states. It is exponential in the many-channeientioned above show a smooth time dependence of the
case, but proportional to-#?in the one-channel case. More decay probability, while others have an oscillatory behavior.
generally, it holdg ~1~¥/2 for a finite numbeK of channels. In the following we investigate the decay properties of an
This law is confirmed by recent results of microwave experi-open quantum system in detail in order to see not only the
ments[4]. Further theoretical investigations based on the demonotonic evolution but also the oscillations. We use the
rivatives of S-matrix eigenphases lead to similar resfid  continuum shell modglCSM) as well as the statistical model
The decay law of states at high level density in nuclei is(STM) and compare the results obtained. In Sec. II, the for-
studied in[6]. In [7], the fluctuations of delay times in few- malism for deriving the decay rates at high level density is
channel chaotic scattering are investigated. An expression faketched. The properties of the non-Hermitian Hamilton op-
the distribution of resonance widths is derived & for the  erator are described in detail. At high level density, the decay
case of a chaotic quantum system coupled to open decaytes are time-dependent functions. In Sec. Il the quantum
channels. This expression givegadistribution for isolated  coherence creating a redistribution in the system under criti-
resonances, but a broad powerlike distribution for overlapeal conditions(trapping effeck is described. Here the wave
ping resonances. functions of the single resonances are no longer orthogonal
The decay rates of a quantum system at low and higho each other due to the non-Hermiticity of the Hamilton
level density are studied {19]. They are shown to saturate at operator. Numerical results for the decay rates at low and
high level density. This result has been interpreted by théiigh level density are given in Sec. IV. By means of a simple
authors as a breakdown of the optical model at high levetase(two resonances and one open decay chantie time
density. In[10] however, it is shown that the saturation cor- dependence of the decay rates, as well as the relation be-
responds to the trapping effect observed in many differentween the decay rates and the widths of the resonance states
physical systems at high level density and that the opticaht high level density, is illustrated. Further, calculations are
model does not break down. The trapping effect studied irperformed for many resonances and a few channels. The
decay rates oscillate around an average value due to the non-
orthogonality of the wave functions. In Sec. V, the decay law

“Electronic address: persson@fz-rossendorf.de is studied numerically. In the one-channel case we see a
"Electronic address: gorin@fz-rossendorf.de power law in both the CSM and STM for all values of the
*Electronic address: rotter@fz-rossendorf.de coupling strength including the critical region. In Sec. VI
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some general conclusions on the decay properties of open The right and left eigenfunctions of a non-Hermitian

guantum systems are drawn. Hamilton operator are different from each other. Suppose
II. MODEL H| D) = E| DR™). ®
A. Stationary solution of the Schradinger equation Then, by multiplying (§) to the left With(EI;'s,ﬂ| we get
The Hamiltonian of an open quantum system is - - _~ e~ -
(DR M D) = E( DR D) = Erdrrer  (9)
H=Hgo+VoprGh 'Vpo, (1) 5 _
where the orthogonality o{(b';ftl and | &9 is assumed.
where From (9) it follows that
_ o - -~ ~
Hoo=Hqq* Vae 2 (DM H=E( DL, (10)

is the Hamiltonian of the closed system, which is the time-independent Sckinger equation for the

left state. One gets, from EL0),
(Hoo—ESM®SM=0, 3 g @0
1o/ gleftNt ok (s gleft\ T
V is the residual interaction between t@Wmound or unbound HI(PRT) = ER(PRT (1D
particles of the systenG(") is the Green’s function for the
motion of the particle in the energy continuum of decay
channels, an¥op=Hqgp andVpo=Hpg due to the orthogo- ~ ~ L
) QrP=Haqr PQ PQ left_ Fyright .
nality of the wave functions of the discrete and continuousandq)_R_ _q)RT - In our case chl_)' the Hamlltonlan IS non
states. The operatof3 and P project onto the subspaces of Hermitian S",LI iHC' '(I'T)e Cnondgagonal matrix  elements
the discrete and continuous states, respectively, S JdE (DRYIV[ER)GR(éE|V|®g,) of H are, however,
symmetric in relation tR and R’ since the®3" are real.

In the case of a Hermitian Hamiltonian™=H, it immedi-
ately follows from(11) by comparison with{8) that&y is real

N . .
Therefore, H'="H*. By taking the complex conjugate of
_ SM\ / 4, SM ' - =
Q_szl | PR PR 4) (11) and comparing with8), we getd)'ﬁ“*zd)ggf.
Therefore, the left eigenfunctions 81 are (®g*| if the
and right ones are denoted Bgpg). As a consequence, we have
A e~ ~ ~
” DEN DRI = (BF | DR) = Srrr 12
p:;l fe dE|§E(+)><§E(+)|_ (5) < R | R t> < R R> RR (12

where both(%’é, and &>R are taken at the same enerfy
Here the&g are coupled-channel wave functions in which the Further, it follows from(12) that
channel-channel couplingpp is involved

c <5R|5R>21 (13
(Hpp—E) =0, (6)

o . _ and that(CBR,|E>R) is generally nonzero and complex fBr
whereHpp=Hpp+Vpp. Further,N is the number of dis- +R’.

crete states and the number of open and closed decay FEor spectroscopic_investigations to make sense, we re-
channels. quire that(®%, (Eg:)|Pr(Er))~ Srr . This condition is ful-

In our investigationsp+Q=1. The division into the two illed only if the dy are nearly energy independent. In such a
subspaces is made by including all resonance phenomeﬁg yn R y gy pendent. .
case, relation(12) holds to a good approximation also if

into the Q subspace with the consequence that the wavée .
functions of theP subspace depend smoothly on energy in€Ve"Y Pr is taken at the energg of the resonance state
the region considered. Therefore, spectroscopic investigﬁ [13]. : .

tions make sense, i.e., the eigenvaluegioiave a physical In (tb)e CS,M' both the rgal and imaginary parts of
meaning[13]. DiagonalizingH [Eq. (1)], VqrGp ’Veq in (1) are taken into account,

- = s\~ H=Hgo+Re[VopGh Vpal +i1IM{VopGh Vel
HOr=| Er—5Tr|Pr, (7 (14)

. o~ . whereHqq, given by Eq.(2), is a standard nuclear shell
we get the energy-dependent eigenfunctidnsand eigen-  odel Hamiltonian with spin-orbit coupling and zero-range
valuesEr— (i/2)I's from which the position&r and widths  forces [13,15, G(=P(E—(H3p+Vpp) P is the

I'r of the resonance statés can be determined by solving Green's function in theP subspace, and the energy-
the fixed-point equationid 3]. The energy dependence of the yependent matrix element®SM V| £2) are calculated for all
Eg and I'z is smooth up to threshold effects in tH&  resonance state® and decay channets They contain the
[15,16. Therefore, far from thresholdEg~Egr(E;) and  parameterr, which is varied in order to investigate the be-
I'e~T'r(Ep), whereE, is a certain energy in the middle of havior of the system as a function of the coupling strength
the region considered. between the discrete states and the continulid].
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It is Vop=aVdp,Veo=aViy, and Vpp=aV} - ~
QP opr»VpPQ PQ: PP PP T i -
Voo=Vdo- A variation of the paramete leads also to (p(1)|=(p(0)|e!WH t—; aR(0)* eMIERT (2RI |

energy shifts that are large especially for the broad reso- (20)
nances.
These energy shifts do not appear in the S[IM]. This The justification of (17) and (18) consists in the fol-

model is used generally for the description of a group Oflowing. (i) As discussed in Sec. Il A, thEg, T'r, and g

states all lying in a relatively narrow energy region far from 5 aimost independent of energy in the region considered.

thresholds. Thus it is justified to choose the coupling matrix(ii) As shown in[13], the wave function of a resonance state
elementg @3V V|£L) to be energy independent. Further, we jg

neglect the channel-channel coupling. It is also assumed that
Re[VopGh Vpq} is energy independent and is effectively -~ o - -
taken into account together witloo in diagonalizing the QR:®R+2 Je dE'&2 (E™—E") "HEL V| Pg)
HamiItonianH’QQ of the corresponding closed system, i.e., C~
=(1+ G5 V)R, (21

Hoo=H3q+ Voot RE{VopGh Vpol- (15) - o
but not®g . The wave functiongg of the channels and the
Hq is drawn from the Gaussian orthogonal ensemble. Thefoupled-channel wave functiodg defined by Eq/(6), are
the relation between the Hamilton operatdgf of the open 'elated by

system andH, of the closed system reduces to
eQ &e=(1+Gp V)xg. (22

H' :H(’?Q’L”m{VQPG(PHVPQ}: H(’)Q_iﬂvw- (16 Therefore for the coupling matrix element of the resonance
stateR (with the wave functiorf)g) to the channet (with
The average coupling matrix elemenf=(1/N)=N ,|VS?  the wave functionyg) the relation[14]
contains  the vectors V¢ with components _ _
VE=(®;|\JaV|x.) [18]. In our calculations, either the ele- (QRIVIXE) = (PRI V| EL) (23
mentsV{ are randomly chosen or the vector§ are con-
structed orthogonal with random length. In the first case, thdollows. In our formulation(with the HamiltonianX of the
orthogonality is fulfilled with sufficient accuracy foi>K, CSM), the channel coupling is contained in the basic wave
whereK is the number of open decay channels. The couplindunctionség of the P subspac@Eq. (5)], in the same manner
matrix elementv? is a measure of the average couplingas configurational mixing is involved in the basic wave func-
strength of a discrete stade; (eigenfunction ofH ) to the  tions d3M of theQ subspac¢Eg. (4)]. In the representation
channely.. It can be varied by means of the coupling pa-(17), the eigenfunctionsPg of H should be used, therefore,
rametera. andnot the wave function€)y of the resonance states.
Using (19) and (20), the population probability is as fol-
B. Time-dependent equations lows. Since(®g/|PRr)# Srr'» generally, we have

Considering the case of overlapping resonances, we rep-
resent the time-dependent wave function of an ensemble of (#(t)|4(t))= >, ar(0)ar/(0)*
states by R,R’

x @~ (IM)[Eg—Eg/ —(i/2)(I‘R+FRr)]t<;f)R, | &,R>’

()= 2 ar(D)]Pr), (17 24
where the&)R are eigenfunctions ot{ [Eg. (1)]. Then the which can be rewritten as
time-dependent Schdinger equation reads o
($(D]B(1) =2 |ar(0)|?e™WIR 0g|g)
d
ifi—|d(1))=H|p(t) (18
dt|¢ ) (V) +2 2 e~ (120)(TR+ TRt
R<R’
and X Re{ag(0)ag/ (0)*
|¢(t)) =€~ """ $(0)) xe™ (1) (ErErI D [ D)} (25)
=> aR(o)ef(i/hHERf(i/2>~FR]t|("I')R>_ (199 A decay ratek®" can be defined by
R
d
effrey — |
The equation foK ¢(t)| is k() dt|n<¢(t)|¢(t)>’ (26)
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FIG. 1. Measure of the nonorthogonality of
the state$( g, |Dg)| — Sgr for N=70 states and
K=1 open channel(a), (b), and(c) are calcu-
lated in the CSM below¢=0.1), in (¢=2), and
above @=10) the critical region of reorganiza-
tion, respectively(d) is in the STM at the critical
point.
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which is in general a complicated time-dependent function. liyidth. In this casek® is time independent and the decay law
has a monotonic behavior according to the first ggingle s exponential.
sum overR) in (25) and a oscillating one arising from the  The shape of isolated resonances is of Breit-Wigner type.

second suntdouble sum oveR,R"). Therefore, we calculate the coefficiefig(0)|? in (25) and
To study the gross time behavior &f" we definekgf, (27) from the overlap integrals between Breit-Wigner distrib-
taking into account only the single sum ower uted resonancelR and an incoming wave, chosen Gaussian

distributed with energy¥, and widthT'y,:

d - ~
effy 2,—TRilh 12
kgf(t)_ dtln ; |aR(O)| e <(I)R|(I)R> |aR(0)|2:F*lf dE AFR Ze*[(EfEb)/Fb]Z,
(E-Eg)?+iTg
S, [an(0)[rre w4 (Bg T 29
15 R R RI™*R
=_ . (279  Where the normalization factor is
h S |ar(0)|2e TRV Dy Br) F=dee‘[(EfEb)’Fb]2= JaT',. The ag(0) used in the
R double sum in(27) are calculated as the positive root of

J[agr(0)[?, i.e., any initial phase from the excitation is ig-
Only under the conditiof®g/|Pg)~0 for R’ #R (see Fig. nored. A very small’y simplifies expressioii28)
1in Sec. ll) we getk® ~Kke'". 12
In the case of an isolated resona;g26) reduces to the |lag(0)|2~ 4°R _
standard relatiok®"= k§ﬁ= (1/2)I' g between decay rate and (Ep,—EgR)2+3% Fﬁ

(29



54 DECAY RATES OF RESONANCE STATES AT HIGH ... 3343

FIG. 1 (Continued.

For a very largd™y,, |ag(0)|>~Tg. N K N

It should be noted here that the nucleus is not necessarily— 2 IM{t H(E,a)1}= >, > yrdE,a@)= > Tr(E,a)
excited via one of the channetsthat define the® subspace R=1c=1 R=1
of decay channels. It may be excited via another mechanism =(E,a), (30)
such as, e.g., the deexcitation of a heavier nucleus.

wherec denote theK open decay channels and

1. QUANTUM COHERENCE y%{/§=(277)l/2<®§M|V|§E> (31
A. Trapping of resonance states at high level densit . . . .
pp. g ) 9 ] . y is the coupling matrix element between the discrete dtate
The trapping effect observed in many investigatiéfts  and the channdd. It should be mentioned here thgt2 may

references sefel 1]) appears if the second part of the Hamil- pe yery different from the amplitude of the partial width
tonian (1) becomes important relative to the first one. This

implies that the nondiagonal matrix elements are large with _ @ IV|£5)
the result that the diagonal matrix elements differ essentially Ii2= (277_)1/2# (32
from the eigenvalues. Since the trace is constant at a fixed (gl Dr)

energy E of the system and coupling strength between o
discrete states and continuum, we have of the resonance staR, even if(dg|dg)=1 [13,15.
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With increasing coupling strengtfa the widthsI'g of all  to that of the imaginary pafhaving rankK) with increasing
states increase until the diagonal matrix elements of theoupling strengthy as it is supposed in the STM. As a con-
Hamiltonian(1) and its eigenvalues start to~differ essentially 5equence22=K+lfR saturates with further increasingand
from one another. Here the imaginary palits of K eigen-  the widths are noj?distributed.
values start to increase much more strongly than the coupling
matrix elementsyg.. This is possible only at the cost of the B. Wave functions in the critical region
I'g of theN—K remaining state@trapping effect, which can

be seen from EQ30) rewritten in the manner The redistribution in the systerttrapping effect takes

place in a critical region of the level densitin relation to

K N the average width of the staje<l 3,15 in which the wave
> Tk(E, @) > Tk(E,a) functions of the short-lived states align with the channel
R=1 _q_ R=K+1 (39 wave functiong11]. In this critical region, the left and right

eigenfunctions ofH differ substantially from each other.
Thus the redistribution taking place in the system reflects
Equation(33) holds for alla. We define the critical region as itself in the nonorthogonality of thég [15].

that region where the reorganization takes place and charac- Beyond the critical region, the wave functions of tke

¥(E,a) ¥(E,a)

terize it by a valuen in its middle. short-lived states point into the direction of the decay chan-
Due to the trapping effect, different time scales arenels[11]. They are orthogonal to one another as the channel
formed above the critical regiofat high level density wave functions and are orthogonal also to the wave functions
of the trapped states. The wave functions of the K
K N . . . .
2 Tos E T 34 trapped Iong—hved states calculated W|th the full Hgmlltor)lan
& Rk R ‘H (14) retain partly the nonorthogonality. These investiga-
tions have been performed for the diagonal matrix elements
It also holds that (Dg|Pg) [15]. o
« \ The behavior of|(®g/|®g)| is illustrated in Fig. 1. The
1 ~ 1 ~ calculations are performed in the framework of the CSM
R;l Ig> N—K R_EK:H I'r (35 [Figs. Xa) to 1(c)] as well as in the STMFig. 1(d)]. In all

calculations we haveN=70 states andKk=1 open decay

Relations(34) and(35) are a consequence of the fact that thechannel. The figure showWéPg/|Pg)|— Srr, i.€., thedevia-
rank of Hoq in (1) is N, while that of the imaginary part of tions of (®g/|Pg) from (®f,|Pgr)= Srr, for all combina-
the second teriVopGh Vpq is K<N (because separability tionsR,R’ of the 70 states.

holds. Thus a redistribution must take place in the transition In Fig. 1(@), a<ai, Whereas in Figs. (b) and Xc)
from the low level density, where the first term of the Hamil- o= a;; and a> a;, respectively. Well belowy,;; the de-
tonian (1) is important, to the high level density, where the viations of(®g,|®g) from Sgg are small, but in andbove
second part becomes important. the critical region, the deviations are large.

In the random matrix moddSTM) with the Hamiltonian Figure Xd) is made in the STM at the critical point
‘H', a critical point can be defined by=2I'/KD=1 (for xk=1. The figure shows large deviations frofigg . Other
K<N), whereT is the average value of the widths of the calculations have shown that beloas well asabove, the
N resonance states afil is their average distandd.9,21]. critical point, the deviations are small in this model.

At this critical point,=R_,, I’k starts to decrease with in-  The plots of Fig. 1 show that in the critical region the
creasinge [20]. value |[(Pg/|Pg)|— drp is always large. Well below the

In the CSM a critical point cannot be defined by 1. In  critical region|(®g/|®Pg)|~ 6rgr in all cases considered. In
any case, the trapping of resonances occurs locally betwegRe STM, |(Dg/|®g)| is small also far beyond the critical
individual resonances for which a critical pOint is well de- region_ In the CSM, however, this value remains |arge for the

fined. But fluctuations in the level density cannot, as a ruletrapped states. This difference is caused by the term
be described by a simple law. This leads to uncertainties i’PQe[VQpG(P*)VPQ} in H Eq. (14) (see Sec. Il A.

the definition of a global critical poir]tLl1]. Thus we restrict
ourselves, in the framework of this model, to the definition

.\ . . N . IV. DECAY RATES AT LOW AND HIGH LEVEL
of a critical region(instead of a critical pointin which the

. . DENSITIES
separation of the time scales takes place.
In the CSM with the Hamiltoniari, the time scales are A. Two resonances and one open decay channel
~ N ™ . . . . . .
well separated also at~1 [22]. But Zg_y,,I'r does not In order to investigate relatiof25) in detail at high level

decrease with further increasirgas in the STM. A reason density, we performed some calculations. First, we consider
for this behavior is surely the term Ré,pGS Vpe}, which  the case with two resonances and one open decay channel.
appears explicitly ir{ of the CSM Eq.(14). This term cre-  This simple example allows us to illustrate the time depen-
ates energy shifts of all the states. Therefore, further levellence ofkef,

repulsions in the complex plane between trapped states may The Hamiltonian is taken according (b6) . It reads[11]
appear and a second generation of short-lived sfafgsan
be created. Further, the importance of the real partof

1 0 coSe  CoSpSing
(having rankN) does not decrease so strongly in comparison H' = —2ia

0 -1 cospsing  sirfe ) (36)
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FIG. 2. Complex eigenvalues 6{’ for (a) two states and in- FIG. 3. Decay ratek® (thin lines and kgf (thick lines for (a)

creaging coupling strengti to the cqntinugm antb) |ag(0)|? as a a<agy, () a~ayy and(c) a> ag;. The curves are for the two
function of « for the two states. Upright triangles, broad state wheng;ates shown in Fig. 2 arl,=E, .

the narrow state is excited; inverted triangles, narrow state when the
broad state is excited; stars, the other state in both cases.

the narrow stat&,=E, and(ii) the beam energy is equal to
Without loss of generality, we have chosen the eigenvaluethe energy of the broad stat®,=E,. In both cases the
of Hoo to be 1. The V in (16) are chosen as beam isd shaped and the maximum valya,;(0)[?=1

V=\2al m(cosp,sing) with ¢=/8. Thus the coupling of (marked with a staris obtained for the chosen state in both
one of the resonance states to the decay channel is strond&Ses: The upright triangles stand for the broad state of case
than that of the other one. (i) and the inverted triangles for the narrow state of dése

The influence of the parameterin the Hamiltonian36) ~ For small a, aimost only the chosen state is excited. As
onto the eigenvalue picture is illustrated in Figa2 The @ @i, [82(0)|* for the other state grows in both cases. As
“motion” of the eigenvalues is drawn here as a function of @ grows further beyonda, |a(0)|*—~1 in (i), but
the coupling strengthv. One observes the trapping effect, a,(0)|°*—0 in (ii). This is a direct reflection of the trapping
i.e., an attraction of the real parts of the eigenvalues and §ffect. .
repulsion in the imaginary parts far~ e . In Fig. 2 the three points marked correspond to

In the case of two resonancesp(t)|¢(t)) [Eq. (25)] a<agp, a~agp, and a>ag;. For these three values of

consists of three terms a, Keff and kgf;f are calculated. They afe/D=0.1,1.1, and
o 4.1, respectively, in these three cases. The results are shown

(d(1)] (1)) =|an(0)|?e” VWTor Y Dy | D) in Fig. 3 for E,=E, and in Fig. 4 forE,=E,,. It is

o a<agp In Figs. 38 and 4a), a~ a; in Figs. 3b) and

+]ag(0)|2e” YT Y b | dy,) 4(b), and a>ag in Figs. 3c) and 4c). The thick lines

_ represenkt and the thin onek®". In all casesk® oscillates
+2e” (Mo Refa,(0)24(0)* aroundkg‘;fgor it is keff~ kgf. Note the different ordinate and
x @~ (i/h)(Ep—Ey) t<{f)br| 5tr>}_ (37) abscissa scales in the different plots.
In Fig. 3(@), k§ is constantkSr =T, This arises from the
Here the index br stands for the broader of the two states argimall value of the first term if87) caused by the small value
the index tr for the narrower one. |a,(0)|2. k™, however, shows a periodic behavior caused by
In Fig. 2b), |ag(0)|? [Eq. (28)] is shown as a function of the interference term. It follows fror87) that the period is
a for two cases(i) the beam energy is equal to the energy of T=2##%/AE, where AE=|E,—Ep,|. In our case, AE=2
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Both kgf and k™ decrease faster from the large value at

0.45
0.40 3 t=0 toI'y, if « is larger[Fig. 3(c)]. The time whenl’;, is
Eg:ggz reached is approximately G./MeV in Fig. 3(c) compared to
< 0.25 a) approximately &/MeV in Fig. 3b). The difference between
2 5207 kgf andk®™ in Fig. 3(c) is small because of the large differ-
& 0.10 ence betweef',, andTy,.
3 0054 In Fig. 4(@), kgl is nearly constant far< 20/MeV for the
0 10 20 30 40 50 60 same reasons as in Figlak The value ofkSl' is, however,
t [h/MeV] I',/h corresponding to thbroadstate. Since the broad state
decays quicklykgf,f decreases tb /A of the narrow state at
44 aboutt=30%/MeV. The time when the first two terms in
g 5] (37]) are equal ig=29.87/MeV. The period of the oscilla-
S ] b) tion is 1w#/MeV also in this case. The amplitude is large
% 2 - aroundt=30i/MeV, but small for other times. This follows
e 4] from (37). For small times, the interference term is small due
¥ to a,(0)>a,(0) and the decay pattern is determined by
0 — T T T T T only the broad state. For long times, the broad state has
0 ! e 3 4 5 6 almost disappeared and the decay is determined by the nar-
t [h/MeV] row state in spite oh,(0)>a,(0). Only in the transition
1p] interval are both resonances of comparable importance and
10] interfere strongly.
€ 5] C) In Fig. 4(b), kgﬁf starts from an almost constant plateau
> 6 corresponding td',, and decreases to the valuelgf during
= a time 2i/MeV. Until the time 3i/MeV, k®" oscillates
£ 5] aroundk?!", but for longer timek® ~k¢'.
< 5] . : > . . . . The plateau akgle"b, for small times can clearly be
0.0 0.5 1.0 1.5 2.0 seen in Fig. &). In a short-time intervaIkSIf decreases to

t [h/MeV] I'y. The difference betweek?™ and kgf is small due to the
large difference betweehi,, andTl’y,.

FIG. 4. Same as in Fig. 3 bl,=E,,.

MeV, giving T=17#A MeV. This period can be seen in Fig. B. N resonances anc channels

3(a). The amplitude of the oscillations decreases in the re- In Fig. 5 we show the results of a calculation 8= 70
gion showed because the interference term decreases states and K=2 open channels using the STM
exd —1/2(I',+T')t/A], while the second term i(87) de- [Hamiltonian(16)] with randomly chosen coupling vectors
creases as exp(l'yt/h). VC¢. The degree of overlapping of the resonances is large,
At a=~aqi [Fig. 3b)], kgtf decreases from a value of x=10.0. We have therefore 2 broad states and 68 trapped
aboutl', to I';, in a time of about #/MeV. During this time, ~ ones. The beam i§ shaped and its enerdg, corresponds to
the broad state almost disappears ak@ﬁ:r" for larger  the energyE, of one of the trapped states. The thick line in
times. There are no long-time oscillations because the interFig. 5 ShOWSkgf, while the thin one i%®". Also in this case,

ference term disappears as pxf{I',,,/2A)t]. ke oscillates aroundkg‘;f.
0.150
0.125 -
0.100
S ff il | ff
® 0075 FIG. 5. Decay ratekg, (thick line) and k®
= (thin line) in the STM for N=70 states and
E K =2 open channelg=10. The beam is narrow,
£ 0.050 with the energy of one of the trapped states.
0.025 /\\
i /\/\/\/\ A S
v o
0,000 +—— L LV L T T
0 50 100 150 200 250 300 350 400

t [A/MeV]
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0.125

0.100

0.075

FIG. 6. Same as in Fig. 5, but the beam is
much broader than the spectrum.

0.050

k" [MeV/h]

0.025

T T T T T T T :
0 50 100 150 200 250 300 350 400
t [h/MeV]

The difference between the calculation with 70 reso-istic of the system ig=#/T=2.9% 104 /MeV. k& is shown
nances and that with 2 resonances consists mainly in the fag{ the figure as a function of and the plot is drawn in
that |ar(0)|2 is nonvanishing not only for the two broad log-log scale. The calculation of®™ is not made dense

states and the trapped one for whiEj=E, but also for  enough to catch all oscillations. The scattering of the points

other trapped states in the neighborhoodegf As a conse- aroundk? gives, however, a measure of how large the osil-

guence, many of the interference terms will be important tions are. For verv large tima€™ approaches the width
This can be seen in the complicated, overlaid oscillations OE i y a9 d% PP

ke The two broad states vanish very quickly. (/i of the narrowest state. We also see in Fif) that

eff i eff eff o 4
Further, some trapped neighbors of the chosen state colé-epgzgzun?ne;t Z:Ai?;gt aroundy as long askg: is time
tribute to Eq.(24). Aroundt=50/#/MeV we can see a tran-
sition forkg‘;f to a value corresponding to the more long-lived
states.
In the calculation above, the beam is much narrower than |solated resonances are usually assumed to decay accord-
the width of the chosen state, whichlig<0.084 MeV. Due  jng to an exponential law. It i&&=Tx/% for the stateRr,

to the uncertainity principle, this gives a resolution in time OfwhereFR is time independentsee Sec. Il B At high level

At=#lT,. ThusAt>12h/MeV. o peff ff ;
We performed another calculation with the same 70 stateger.1‘°"ty’|<R has tc_) be replac_e d by* _[Eq. (26) with (25)], .
which generally is a complicated time-dependent function

and 2 channels in which the incoming beam is much broade . off . : .
than the energy interval in which the states are lying. Thiﬁ compare Figs. 397 Ev.en.kgr . Eq.(27), in Wh'c.h t_he oscil-
ations are neglected, is time dependent. Deviations from the

ives |ag(0)|>~Tk for all the states. Figure 6 shows" ) .
gthin "|n:)(ar)1|dkeﬁ ?thick line) for this casegln spite of many exponential decay law appear, therefore, at the high level
ar ' density, as a rule.

. eﬁ .
terms in the double sum d®5), k™ shows a complicated In the following, we neglect the oscillations of

oscillatory behavior. : ;
The point is that also in this very complicated situation,<¢(t)|¢(t)>’ e, the double sum in Eq25). Suppose we
have a power law

ke oscillates aroundkgf. The double sum consists of

V. DECAY LAW

N(N—1)/2=2415 terms, each with a phase totally uncorre- (p(1)] (1))t P (39
lated with that of all the other ones. The lengths are also
uncorrelated. The double sum, however, doesvanish. instead of the exponential ole(t)|p(t))cexp(—T't/A) in

We also studiedk®™ in the CSM. We consideret{ =1 a certain time interval. Then the relation between the decay
open channel antll=190 states with @-2h nuclear struc- rate andb is

ture and)™=1" (for details se¢15]) andI/D=0.006."}, is

very large. In Fig. {a), kg‘;f (thick line) andk®f (thin line) are 1 — E (39)
ime i i kK€'(t) b’
shown for the same time interval as that of Figs. 5 and 6. The gr (1)

oscillations are much faster in this plot than those in Fig. 6. ) ) ] o
This is mainly due to the fact that the spectrum in Fig. gAccording to this equation, the deviations from the exponen-

covers an interval of 2/MeV, but in the calculation pre- tial decay law can be represented by the rise kﬁﬁ-as a

sented in Fig. 7 the length of the spectrum is 30 MeV. Thisfunction oft from which the exponerth can be determined.

implies that the fastest oscillations in this case are 15 times Figures 4—7 show platea§;(t)~const arising from the

faster than those of Fig. 6. different lifetimes of the different states. We expdx@f(t)
Figure 1b) presents a calculation for the same setup as in<b/t with b~const (power decay layif there are many

Fig. 7(a), but for much larger times. The time unit character-resonance states due to which the stairs between the different
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0.0010
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1 1 1 1 1
200 250 300 350 400 FIG. 7. Decay ratesS (thick lines in the
t [h/MeV] CSM with N=190 states (@-2h nuclear struc-
ture and J7=17), K=1 open channel, and
I'/D=0.012. In(a) the oscillations ofk®™ (thin
line) are shown, while inb) only some dots of
k" are given. The time scales are in different
units in (a) and (b).
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plateaus are smeared out. In the long-time scale however, In Fig. 8 we have shown the results at the critical value
kgf(t)wconst (exponential decay law where constI'| /% k=1. The results of other calculations well below and well
(I stands for the longest-lived statdn the following, we abovex=1 are similar to those shown in Fig. 8. In a certain
investigate the decay law numerically in both the CSM andiime interval, the power law is well fullfilled. We have
the STM for a finite numbeN of states and a small number b=1+K/2 for K=1-9.

K of open decay channels. In Figs. 8 and 9, we shckgr’]ds In [1,2] the decay law has been studied analytically using
a function of time for different values: of the coupling the Hamiltonian(16) with an infinite number of states, an
strength to the continuum and for differeit The time scale infinitely broad beam, anat well below the critical value,

is given in unitst=A/T", wherel is the average width of all while in [3] the investigations are performed for &l The
the N resonances. result is{ p(t)| p(t))ct~(1+K2) je b=K/2+1 in the case

Figure 8 shows klgf calculated in the STM for 130 states with K open decay channels. Our numerical results with a
(with orthogonal constructed coupling vectows), «=1 finite number of states agree quite well with the formula
(critical poiny, andK= 1 (a), 2 (b), 4 (c), and 9(d). The obtained analytically even in the critical regiolK€4),
beam is very broad. The different curves in each subplowhere the redistribution of the spectroscopic properties takes
correspond to different random choicesH)(BQ. place.

In all curves a power law is well fullfilled in a certain time In the CSM we have performed calculations for=190
interval. In the one-channel casb~3/2. The different states andK= 1, 2, and 4 channels. The 190 states have
curves deviate from each other, especially at times large2p-2h nuclear structure and”=1" (for details sed15]).
than 5@-. For two channels, the power law wilh=2 holds The average distancB between the states is defined by
quite well until t~30r, for four channels withh~2.7 until  those of the shell model states. The beam is very broad, i.e.,
t~87, and for nine channels with~4 until t~57. |ag(0)|?~TIg.
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FIG. 8. 1kg§f in the STM for 130 states and=1: (a) K=1, (b) K=2, (c) K=4, and(d) K=9. The different curves in each plot
correspond to different random matriddgQ The units arer=#%/T" (different scaling in all parjs

Figure 9a) shows ]kgf for one open neutron channel. different in the two models. This explains the differences for
The  different  curves  correspond to I/D b obtained in our calculations.
=0.000 72, 0.087, 0.32, 0.67, 1.14, 1.71, and 2.38. We see
thatb~3/2 for small times up to about=100r.

In Fig. 9b), 1/k3{f is drawn for the same 190 states, two n th ) . d the d .
open neutron channels, ahdD = 0.0035, 0.20, 0.70, 1.49, of a?]toee%ren?;r:t_paarr)t(iacrléveljg\rl]fjg]gztite%eTﬁgﬁaﬂﬁ%ﬁﬁs
2.53, 3.80, 5.29, and 6.97. For small time® to t~507) . pen many-particie g system. Th

o . . ; . is non-Hermitian and its eigenfunctions and eigenvalues are
b~2. A similar behavior withh~2 is obtained for four open . . :
. complex. The eigenfunctions form a biorthogonal system. As
channels(two neutron and two proton channglshown in .

. e a consequence, the wave functions of the resonance states are
Fig. 9(c). The 11 curves correspond /D= 0.00392, ganerally nonorthogonal to one another. Near the critical
0.003 94, 0.003 96, 0.0044, 0.0065, 0.016, 0.082, 9'32' 1.2Q0int of rearrangement, some states with short lifetimes align
4.18, and 57.5. We see a power law with-2 as in the

with the decay channels. As a result, their lifetimes become
two-channel case up tie=507.

still shorter, while the lifetimes of the remaining states be-

The main difference between the results obtained in th%ome longer. Finally, we have two groups of resonance
two models consists in the dependencebadn the number  ¢i5tes with Well-separ,ated lifetimes.

K of channels. FoK=1 we haveb~3/2 in both models. We calculated the decay rates at low as well as at high
For K=2 and 4,b~2 in the CSM. In the STM, however,

level density in the framework of both the continuum shell
b~1+K/2 (for k#1). _ model and the random-matrix formalism. The rates are pro-
In Fig. 10 the distribution of the widths calculated for portional to the widths of the resonance states at low level
a=4>aq; andK=4 channels in the CSM is showhisto-  gensjty where they are isolated. At higher level density, the
gram for thel'g). The full line is the best fit to these values decay rates show an oscillatory behavior caused by the non-
by a x? distribution. This fit to the calculatefiz is quite  orthogonality of the wave funtions. Disregarding the oscilla-
good. Nevertheless, it corresponds to the one-channel casetidns, the rates are, nevertheless, still time-dependent func-
the STM. For comparison, we show tly@ distribution cor-  tions. This implies deviations from the exponential decay
responding to four channe{dashed ling law. The decay law for an ensemble of states in a certain
As can be seen from Fig. 10, the width distribution is veryenergy region is non-exponentigiroportional tot~%?) for

VI. CONCLUSION
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the case of one open channel. This result is obtained in both
models and forll values of the coupling parameter be-
tween bound and unbound states. It is in agreement with the
result of analytical investigations in the random-matrix
theory for an infinite number of stat¢$—3|.

The decay lawt ~* X2 still holds good in the two models
for K=2 open channels. For more than two channels, the
exponent remains nearly constant in the CSM. In the STM,
however, the ~*~¥’2 Jaw holds also quite good fd¢ =4 and
even forK =9 far from the critical region.

The distribution of the widths is different in the two mod-
els when few channels are open. In the CSM, the distribution
for four channels cannot be fitted by the approprigtedis-
tribution for K=4 of the STM. This result explains the dif-
ferences in the decay law obtained in the two models. The
origin of the width distribution in the CSM is a question for
further investigations. Finally, we stress that a direct experi-
mental measurement of the decay properties of quantum sys-
tems at high level density is of great interest.
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