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We investigate properties of the fragment multiplicity distribution obtained in the sequential binary frag-
mentation process at the transition line. We show that the multifragment cumulant correlation functions have
the hierarchical, linked-pair structure. Several distinct classes of multiplicity domains are clearly identified and
the asymptotic appearance of the Koba-Nielsen-Olesen scaling is dis¢d&sgdPhys. B40, 317 (1972].
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[. INTRODUCTION Il the cascade equations for the multiplicity evolution. Par-
ticular properties of these equations at the transition line of
Most of the fragmenting systems are characterized byIB model are discussed in detail and the closed formulas for
strongly off-equilibrium processes that cease due to dissipahe higher-order moments of the multiplicity distributions are
tion. To take these features into account, a kinetic fragmengiven analytically. In Sec. IV we discuss features of the mul-
tation model has been proposed recently wherein a dissipaiplicity distributions that obey asymptotically the Koba-
tive process stops randomly the sequential fragmentatioNielsen-Olesen KNO) scaling law. Detailed properties of
[1,2]. Sequential, conservative fragmentation is particularlythe multiplicity distribution at the transition line are pre-
interesting since it is believed to yield “universal” features, sented in Sec. V. We show in particular the existence of
i.e., characteristic behaviors that do not depend on the preseveral distinct domains of the multiplicity distributions—
cise mechanism governing the fragmentation. In the followthe Cayley domain (& pr<1/2, a>—1), the evaporative
ing, we shall consider the simplest version of this modeldomain (0<pg<1, a<—1), the Brand-Schenzl¢BS) do-
called the fragmentation-inactivation-binaffIB) model,  main (1/2<pe<1, a>—1)—and discuss the appearance of
where the kinetic rate equation describes a purely binary prahe KNO asymptotic scaling. In Sec. VI we show that the
cess, i.e., any fragmenting cluster gives birth to exactly twaasymptotic multiplicity distributions in the BS domain arise
fragmentd3]. as a special solution of the stochastic equations of the mul-
Our aims in this work are limited to an understanding oftiplicative type. In Sec. VIl we investigate the structure of
the multiplicity distributions at the transition line between higher correlations in the FIB process at the transition line.
»-cluster and shattering phases of the FIB prodds&.  We show in particular that the linked-pair ansatz for higher
(Multiplicity probability distributions in bottee-cluster and  multifragment correlations holdexactlyin all multiplicity
shattering phases are planned to be discussed in a separétfmains and seems to be a basic property of a self-similar
paper[4].) It is our experience that most of the gross mea-binary fragmentation process with inhibition. Finally, the
sures of the cluster-magsize) distribution do not discrimi-  main conclusions of the paper are given in Sec. VIII.
nate among models unless supplemented with more fine-
grained information, especially correlations of various kinds.
For that reason, we analyze in detail the supplementary in- Il. SOME FEATURES OF THE FIB MODEL
formation that could help to distinguish different fragmenta-
tion mechanisms and are contained in the multiplicity distri- In the FIB model, one deals with clusters characterized by
butions and their scaling features. The generality of thesome conservative scalar quantity, which shall be called the
fragmentation process as described by the FIB model permigjuster massThe ancestor cluster of mabkrelaxes via an
us to hope that the results of this paper should be relevant iardered and irreversible sequence of steps. The first step is
different domains of physics: multihadron production in either a binary fragmentation, sayNY—(j)+(N—j), oc-
high-energy collisions, nuclear multifragmentation pro-curring with the probability p:(N), or an inactivation
cesses, polymer fragmentation, photoelectron count distribuN)— (N)* with probability p;(N)=1—pg(N). Once inac-
tions in optics, meteorite or asteroid fragmentation, and théive, the cluster cannot be reactivated anymore. The fragmen-
galaxy distribution. After all, the common feature of galaxy tation leads to two fragments, with the mass partition prob-
distributions, the quantum chromodynamic evolution, andability ~F; \_;. In the following steps, the relaxation
the turbulent cascades is an underlying scaling and branchirgyocess continues independently for each descendant cluster
mechanism, even if obscured in observable limits. All theseuntil either the low mass cutoff for monomers is reached or
systems are clearly dissipative and hence apt for a descrigdl clusters are inactive. Since for any event the fragmenta-
tion by FIB process. tion and inactivation occur with the probabilities per unit of
Atfter briefly discussing in Sec. Il some general features otime ~F; ,_; and ~1, respectively, the knowledge of the
the FIB model(for details see Ref2]), we present in Sec. initial state and these two rate functiofisand | defines
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completely the fragmenting system and its evolution in therandom walk because the previously activated sites of this
framework of the FIB model. treelike process “repel” any subsequent reactivafi8h
The composed particle first momeiNc=1—(n;)/N, The mean-field limit in a broad class of dissipative
where(n;) is the average number of monomers, plays thecoupled systems exhibiting the self-organized criticality
role of an order parameter when the total mhisbecomes (SOQ [10] can be described by such a critical branching
infinite. If the probabilityl /dy that no event occurs tends procesg9,8]. It was also demonstratg¢d1] that by adding a
to 1, thenNc—1. This is called thec-cluster phasesince  simple perturbation mechanism to the relaxation rules of the
there remains a large cluster of size of ortlerOn the con- FIB model one obtains the FIB automaton, which for any
trary, whenl \ /®y—0, Nc<1, i.e., a finite ratio of the total initial condition in the “high-viscosity” region
mass is converted into finite-size clusters: monomers(0<pg<1/2) drives into the SOC stafé0] without charac-
dimers, etc. This is thehattered phasand the asymptotic teristic scales in space and time.
(N—=) value of N¢ coincides with the total mass. There-  In the following, we shall assume the homogeneous mul-
fore, asN—c, one has, in the FIB model, a distinct second-tiplicative fragmentation kerndf;;>(ij)“ and the inactiva-
order phase transition associated with the shattering, i.e., tHion kernel I in the form I,=1,k?. The transition line
total destruction of an infinite cluster. [pr(k)=consi in this case corresponds 8=2a+1 if
The second-order shattering phase transition can be chag>—2 and B=a—1 if a<—2. The size distribution
acterized by the following alternative reasoning. Each indi-ng(N) at the transition line is a power law
vidual event is either a fragmentation or an inactivation. Oneng(N)~N""1s~7(1<k<N) and the exponent is always
can define the fragmentation probabilipy attached to this smaller than 2. For=0 at the transition line==2pg. The
choice without specifying the sizes of the descendants:  size distribution in the whole shattered phase behaves also
like a power law[1]: ng(N) ~Ns#~2¢73(1<k<N), with the
1 4 exponent always larger than 2 independently of the strength
I+ 2 E ) I, of the inactivation ratd12]. The value of the exponent
=T 7 that is easiest to determine phenomenologically does not
fix unambiguously the parameters of fragmentation and in-
activation kernels and hence does not correspond to a unique
The inactivation probability is thep,(k)=1—pg(K). When  fragment multiplicity distribution. It is thus inevitable to
the instability of the larger clusters is more important thancarefully investigate the properties of the fragment multiplic-
the instability of the smaller onegg is an increasing func- ity distribution in addition to the standard techniques of the
tion of the size and the system is in the shattered phasétagment-size distribution in order to avoid possible confu-
Conversely, when the instability of the smaller clusters ission, particularly dangerous in small- and intermediate-size
more importantpg is a decreasing function of the fragment fragmenting systems such as atomic nuclei, fullerenes, or
size and the system is in the-cluster phase. The transition metallic clusters.
line is characterized by the rigorous independence of the
probabilitiespg andp, on the size of the considered object at
any stage in the fragmentation avalanche. It should be em- Ill. CASCADE EQUATION
phasized that the asymptotit—{ <) fragment mass distribu- FOR THE MULTIPLICITY EVOLUTION
tion is independent of the functional form of the rate func-

tions F and | on the transition line, whereas it dependsd ot f the f tati f initial clust
strongly on their form in both shattered amecluster phases. escription ot the fragmentation of an initial clustenass,
energy, etg, such as master and cascade equations, have

The fragmentation process at the transition line of th een given beforel, 2], H di v th feat
shattering phase transition can be viewed as an externaleg/ g ,<). nere we discuss only those teatures

. : . f the FIB model that are relevant for the understanding of
tne 010 of the cving noioe. The agmantdton prapabiity MUUPICHy distbuions and their propertes.
Let us define the multiplicity of an event at a timas the

Pr during the fragmentation avalanche hafixadvalue be- total number of fragmentations that occurred in this event
tween 0 and 1, independent of time or the size of the frag- Y v

menting objecf5]. This FIB process is a branching process,um" time t. Multiplicity defined in_this way is the_n equal to _
which can be mapped onto the directed percolation on thgqe total numper of ragments minus one., eg., it equa!s i
Cayley tree(a mean-field percolation6]. Each node of a no fragmentapo_n _occurreq. Letus c_EI,l,[m,t] the probabil-
Cayley tree is occupied with a probability 1 and at each't.y to getmulﬂphutym ‘fit timet, spartmg fror_n one cluster Of.
occupied point at timédt one chooses between three possi-‘c".ze.N 'at t!me 0. The t.'me evolpt|on equatlon for the mgltl-
bilities: fragmentation, inactivation, and “no event” with re- plicity is given by the integro-differential cascade equation
spective  probabilites Po=p? P;=(1-p)? and
P,=2p(1—p). At each fragmentation, a given ancestor 1 _
cluster is replaced by two descendants and the fragmentation Plmit]=s(m)exd = Pn(t)]

multiplicity increases by one unit. Frqm one generation to +8(m)(1—pp){l—exd — Dy ]}
the next, the number of fragments increases by a factor
p1+2p, in the average. At criticality where the branching t e

tree barely survives,po=p,=(1-p;)/2 and therefore + Oexp(—(I)Nt )dt 1.21 Fin-j 2 P;
pe=1/2=p,. Let us note in passing that the FIB process at m=0

the transition line is analogous to the process of self-avoiding X[m"t=t"]Py_j[m—m'—-1;t—t']. (D)

k—1

pF(k)=i=21 Fik-i

The basic equations of the FIB process, relevant for the

N—-1 m—1
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In the above equation, exp\t) is the probability that no IV. KOBA-NIELSEN-OLESEN SCALING LAW

event occurs in the time intervp t] and In general, the form of the probability distribution

N-1 Pn[m] depends on the size of the fragmenting sysiémind
D=yt >, Finoi. hence on the mean multiplicity of fragmer{ts)y . The be-
i=1 havior of Py[m] for large m and (m)y is of interest for

many reasons. In the context of strong interaction physics at
The parametepe in (1) is generally a function of botk; ;  very high energies, Koba, Nielsen, and Olegad] sug-
and®\ rate functions and, with the exception of the transi-gested that the hadron multiplicity data for different average
tion line, pe depends explicitly on the cluster size. The hadron multiplicities(m) (different high energy collisions
meaning of the terms on the right-hand side of 8q.is the  should fall on the same curve whém)P,, (P, is the nor-
following. The first term is the probability that no fragmen- malized probability to observen hadron$ is plotted against
tation happens in the intervaDt]. The second term de- the scaled variablen/(m):
scribes the inactivation of the clustrin [0,t]. Finally, the
third term corresponds to the fragmentation of the cluster m
N into fragmentsj and N—j at timet’ in the interval <m>Pm:f(m)' ®)
[0t]. In terms of the generating function

The KNO prediction was based on the assumption of the

- e, Ik validity of Feynman scaling for the many-body inclusive
GN(th):mE:O Pn[m;t]x :kzo (m >NW! (2 cross sections. Later, the relation of a KNO scaling to a
phase transition in the Feynman-Wilson gas was emphasized
[15].

the evolution equation can be written in a compact form
a P The KNO scaling limit is defined by the asymptotic be-

N havior of(m)P, asm— o, (m)— o, andz=m/(m} is fixed.
— ——(X,t) + Gp(X,t) The scaling functiori(z) must satisfy the normalization con-
by at diti
itions
N—1
X (e
=(1—pg)+ qTNJZl Fin-jGj(x,HGN-j(X,1), (3) fo f(z)dz=1,

with *
zf(z)dz=1.
GL(x.t)=1. °
) ) ) ] o The latter condition fixz)=1. Obviously, the moments of
This equation provides a convenient way of deriving equathe scaling function
tions for the time evolution of moments of the probability

distribution Py[ m]. For example, for the factorial moments : - (m')
of Py[m], (z"Y= fo Z'f(z)dz= my 7
F=FR=(m(m—1).--(m—k+1)), (4)  are independent of the average multiplicity) and this is a

- characteristic feature of the KNO scaling. Besifl€n), there
with the particular cas€,=Fy=1, one gets the evolution s another scaling functiog(z)=zf(z) that yields a differ-

equations ent form of the KNO scaling law:
= k N-1
1 oFy ~ ki 1 e ( m )
(DN ot +Fk 20 (I)(I)NJEJ. FJvN_]F](FN—j m g <m>
+(k=HFRZ, (5) The scaling form(6) is satisfied by many distributions in

the class of the Poisson transforpi$]:

- (2(my)Mexpt — 2(m))
FO=1, Fk=o0. Pm:fode(Z) m : ©)

Using the known relations between factorial moments andvhere

other families of moments such as the ordinary moments,

central moments, cumulant moments, or the factorial cumu-

lant moments, one may obtain frof®) for each member of

this family the corresponding evolution equation. As each set

of moments has its merits and most naturally describes cer- o
tain distributions, there is not a preferred evolution equation E
and the choice depends on the example studied.

with
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If the weight functionf(z) in (9) is suitably smooth then, process can be safely discussed. Otherwise, if
independently of its specific form, the corresponding distri-(m)y=const{N), then changing ofm) means changing the
bution P, satisfies the KNO scaling6) for large m and rate functions(or pg and «) of the fragmentation process
(m) [17], i.e., an exact form oP,,, can be reconstructed from and hence the asymptotic multiplicity distribution. In this
the asymptotic limitf (z). The Bose-Einstein, negative bino- case, there is no reason whatsoever for the existence of a
mial, Laguerre distributions are only a few examples ofunique scaling functiorf (m/(m)y)={(m)yPF P ((m)y)
physically important distributions in the class of Poissonfor different(m)y. In other words, even though, is inde-
transforms that satisfy the KNO scaliri§). pendent oiN for fixed pg and«, the multiplicity distribution

The scaling functiori(z) can itself be regarded as a prob- neither belongs to the class of Poisson transforms nor obeys
ability distribution defined on the intervakdz<<«. Itis then  the KNO scaling. In such a case, the normalized cumulant
interesting to compare the momentsRyf for various system moments off(z) are not equal to the normalized factorial
sizes(m)y with those off(z) [Eqg. (7)]. For P, in the class cumulant moments of the corresponding multiplicity distri-
of Poisson transformg9), the ordinary moment¢z¥) of  bution P,
f(z) are related to the reduced factorial moment$gf: An important feature holds when the generating function

of the multiplicity probability distribution depends on a

(m(m=1)---(m-k+1)) single complex variabla{™n:

_ /K
Fe= (my¥ (z%.

Similarly, the normalized cumulant moments bfz) are Gn(x,t)= Z Pn[m;t]xM=F (x(Mn). (12
given by m=1

" f In this case, since this generating function is nothing but the

yp(n:f (z—(2))Pf(2)dz= : p (10) Laplace transform ofPy[ m], the probability to get a multi-

0 (f1) plicity m is just
wheref, (p=1,2,...) are thefactorial cumulant moments 1 (c+iw
of Pp, (mnPr[m]=5—|  F(e"")e!™™vdu, (13

c—iw

fi=(m=F, wherec is a complex constant having a positive real part.

_ ) = = The condition expressed i12) is then sufficient to get the
fo=(m(m—1))—(m)*=F5—F1, KNO scaling, provided the integral3) is defined. We shall
_ 3 return to this problem in the next section when discussing the
fa=(m(m—1)(m—2))—3(m(m—1))(m)+2(m) scaling properties of the FIB process at the transition line.
:E3_3E1E2+ ZES,
V. MULTIPLICITY PROBABILITY DISTRIBUTIONS

fa= <m(m_ 1)(m—2)(m— 3)> _ 4<m(m_ 1)(m— 2)><m> AT THE TRANSITION LINE
+12(m(m—1))(m)2—3(m(m—1))2—6(m)* Let us study the generic caég =(ij)“ and focus on the
L o asymptotic regimeé—oc. As it will be shown below, various
=F,—4F3F,+12F ,F2—3F2—6F1, (11)  classes of the multiplicity distributions can be defined in dif-
ferent domains of the parametgrs and «.
etc., and:k are the factorial momentd). BothF, andf , (or On the transition line, the asymptotic cluster size distribu-

y(z) moments will be shown to be averages over relatedion is a power law with the exponemtdepending on values
correlation functions, wittf,, allowing the expression of the of both the fragmentation probabilityr and the exponent
easily determined-, moments in terms of mostly lower- « of the fragmentation kernel 42]
order factorial cumulant moments. For distributions in the

I'r+a) 1 T'(at+2)

class of Poisson transforms and for large value<moj, - _ (14)
¥ should be constant independently of the precise value of [(7+2a+1) pgl'(2a+3)
(mj.

Before further continuing discussion, one should examln%? onnt?oer (t)rt]r;errnﬂﬁ:’glc:‘tr;rgl\sl);;;eobtams the recurrence rela-
meaning of the system size. From the point of the KNO
multiplicity scaling law, the size of the system is given by N-1
the average fragment multiplicigm). On the other hand, in (Myy=pe+ —E JUN=j)(m);, (15)

the kinetic fragmentation models such as, e.g., the FIB
model, the natural size of the system is given by the initial .
massN. The important question is then how does the frag—W'th
ment multiplicity (m) depend orlN for given fragmentation (m);=0

and inactivation rate functions or, equivalently, for a given

fragmentation probabilitpr and asymmetry exponent If  For the power-law trial function in the case> —1 (the case
(m)y is a monotonic function oN, then there is one to one 4 < —1 will be treated in Sec. V ) one finds
correspondence betweém) andN size scales and a possi-

bility of the multiplicity scaling law in the fragmentation (myy~aN®,
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with two solutions: I(a+1) \* 1t
o K\ 7=t ;
b=0—(m)y~—F—, (16
1-2pe wherek>1. In particular, we can remark that ali’s di-
S . verge whenr approaches 1, i.e., whgr— 1/2. An impor-
which is valid forpg<1/2, and tant case isx=0, for which the solution 0f22) is
b>0—(m)y~NP, (17

which is valid forpg>1/2. In the latter case, the exponent

b can be obtained by solving the relation deduced f(@s),

T(a+b+1) T(2a+2)
2P T (2a+b+2) T(atl) * (

By comparing with(14) we see that Eq(18) implies
b=7-1.

Hence, forpe<1/2 the fragment multiplicity is a constant
independent ofN, whereas foipg>1/2 the fragment multi-

plicity is an algebraic function of:
(myy~aN""1, (19

Finally, for p.=1/2 one finds

<m>N~%InN. (20

One can also obtain frorfb) the generalization of the recur-
rence relation for higher-order multiplicity moments. An ex-
ample of that will be shown below in the case of the BS

fragmentation regime.

A. Brand-Schenzle fragmentation regime:pg>1/2, a>—1

he=(r— 1) Kk=1).

Using (22) for any value ofa, one can calculate, for ex-
ample, the asymptotic ordinary scaled moments of the mul-
tiplicity distribution

<mk>N~
(m)y

(7—1)
Pl (a+1)

o Pl (a+ 1) (a+1) K
eZ—T(T_l)a+T ’
(23

whereN>1 andk>1. Since this ratio is independent of the
average multiplicit myy, the generating functio®y(x) is

a function of the variable™n and according td12) and
(13) the KNO scaling holds. The relatiof23) can be ap-
proximated around the maximum of the multiplicity prob-
ability distribution as

a+1+k
<mk>N c
ka2
c

which immediately suggests the form of the scaling function
f(z)=AZexd — (b2)] (25

in the BS domain. Comparin@4) with (23), one can deter-

Let us generalize the above solutions for the average mufine the coefficienta andc of the KNO scaling function in

tiplicity (m)yy [Eq. (19)] to the case of higher-ordek$ 1)
multiplicity moments. For that purpose, let us write

~ 1 kl[apel'(a+7)]"

K" e T(c(k) +a+1) NWyy, 21)

wherec(k) is an unknown function of botk and ¢ and
a is the coefficient in Eq(19). Equation(5) for F,, in the
limit t—oo, yields, in this case,

c(k)=c(l)+c(k=1),
which, knowing thatc(1)=7—1, leads to
c(k)=k(7—1).
Moreover,

Tk(r—1)+2a+2) T(a+1l) X
TR DTaiD TEata) = Wt
(22

with
Yo=Pe, P1=1.

Equation(22) leads to

the BS fragmentation regime, which reads
f(2)=AZ2@ D1 texd — (b2 M2~ 7], (26)
whereA is a normalization constant and
b=(2-7%"(r—1)7" L.

The most probable valug, of the scaling functiori26) as
a function ofr is given by

0 for 7<3/2

0=\ (r—1) " V[2(2- 7] @ I(27-3)2" " (27)
for 7>3/2.

The behavior of, at 7=3/2 is reminiscent of an equilibrium
phase transition if we interprét, as some kind of the order
parameter. Together wiiti4), the relation(27) demonstrates
also an implicit dependence of the most probable vajuef

the scaling functiori(z) both on the fragmentation probabil-
ity pg, i.e., on the strength of the external driving noise, and
on the degree of asymmetgy of the fragmentation kernel
through the dependence afon bothpgr and «. Figure 1
shows the diagrampg— a with all fragmentation regions as
well as the liner=3/2:



-

0.75 =312

-

BS regime

Evaporative
regime

0.50

0.25 Cayley regime

0.00 :
-10 10 20
o

FIG. 1. Diagrampg— « showing different multiplicity domains

at the transition line of the FIB process. The dashed line represents

the line 7=3/2 separating two phaseg=0 and z,>0 in the
Brand-Schenzle fragmentation regime.

1
Pr= 22a73

I'?(a+1)T'(4a+4)
I3(2a+2) ’

separating the two phasé€27) in the BS fragmentation re-
gime. A few typical multiplicity distributions for various val-
ues of 7 are shown in Fig. 2. Unless stated differently, all

calculations presented in this work have been done for th

initial system of sizeN=2'"=131 072 and then results have
been extrapolated to the limiN—o using the Shanks
method[18].

On the transition line, the normalized cumulant moment

¥{? can be calculated analytically for ampg and a>—1.

f(z)
3.0

20 |

1.0 |

0.0

0.0 0.5 1.0 1.5 2.0

zZ
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Let us consider first the BS domdih9]. The moments of the
multiplicity distribution are[cf. (21) and (22)]

1 ki[apel(a+ 7)1

- k(r=1)
e T(r—D)+arD Yic

<mk>N”

where N is large andk is fixed. Keeping only the leading
terms forN large, one gets asymptotically the solutions

@1 2[pel(a+7)]1?

Y2 T TR +a+1) 2

vi,
@ 1 6[pel(atn]®

Y3 =— 3
3 "peI'B(r—1)+a+1)

1 2[pel(a+1)]?
P T2(7—1)+a+1)

Yoty + 2473,

1 24pel(atn)]
pe T@(7—1)+a+1)"*
1 6[pel(a+7)]®
T T@R(r— 1) tat 1) Ve

1 2pl(a+n]2
e TRt ar 1) 2

1 2[pel(a+7)]? 2 4
pr T@(—Dra+D) 2| ~001

yP=

(28)

etc., which are valid forw>—1 andpg>1/2. These solu-
ﬁons foryE)Z) are independent of the system sit@nd hence
of the average fragment multiplicitym)y [Eq. (19)] pro-
vided this size is large enough. This is a property of distri-

sbutions obeying the KNO scalin@) as well as the distribu-

tions in the class of Poisson transforms.

One can easily verify that all moment&? are infinite for
pr—1/2 and vanish forpe=1. Moreover, ) becomes
negative forpg larger than some value that depends @n
(provideda<2). For exampley(SZ) for =0 is negative for
pr>0.8856. The dependence of? and y{? on pg for
a=-—1/2, 0, and+1/2 is shown in Figs. 3 and 4, respec-
tively.

B. The marginal case:pr=1/2, a>—1

The casepg=1/2 corresponds to the critical point of the
FIB branching process. This case has not yet been solved, as
far as we know, for generak. We present hereinafter the
exact solution for the remarkable poiat=0. To find this
solution, one uses the fact that the momemts), depend
only on simple combinations of quantities

Nfll
S;(N)= Tq-
{N)= 2, g

In the expression for the momegP),, only the combina-

FIG. 2. Typical multiplicity distributions in the Brand-Schenzle tions of Sq(N) satisfying the relatiory; +q,+---<2p—1
fragmentation regime, plotted in the KNO variables for various val-are allowed. It is then easy to obtain all solutions for
ues ofr in the two phase&,=0 (7=<3/2) andz,>0 (r>3/2). (m¥yy (k=1,...) using symbolic operations
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0.5 0.6 0.7 0.8 0.9 1.0

FIG. 3. Normalized cumulant moment? as a function ofpg
in the Brand-Schenzle fragmentation regime for—1/2, 0, and
+1/2.

1
<m>N2531(N),

, 1 1 1, 1
(M =3 Si(N) = 5 S(N) + 5 SHN) + 5 S5(N)

1
— 7SS (N)+ 75 82<N>

o 1 3 3,
(M*)=5S1(N) = 5 S(N) + 5 SE(N) +285(N)

3
—3S,(N)S,(N) +S(N) — 5 S4(N) +25,(N)S5(N)

@)
Y4

FIG. 4. Same as in Fig. 3, but fgr? .

3, 3 s Lt s 3

—5 SHN)SHN) + 2 S5(N)+ 7 SHN) + £ S5(N)
3 1 1,

—Zsl(N>s4(N)—582(N>33<N>+581<N>83<N>

3
§(N)Sz (N)+ = sl(N>sz<N>+ Si(N),
(29)

etc. As in the previously discussed cdSec. V A, one can
compute, using these solutions, the leading behavior of the
normalized cumulant momen(&0):

p—1
LMWL (30

Yo~

P—IN~
) INP™*N= 5
which divergewhenN— o, following the divergence of the
average multiplicity(20) whenN—oo. Hence the multiplic-
ity distributions in the marginal cagg-=1/2 anda>—1 do
not belong to the class of the Poisson transforms and do not
obey the asymptotic KNO scaling law.

C. Cayley fragmentation regime:pg<1/2, a>—1

The FIB process in this regime is analogous to the inva-
sion percolation on the Cayley tree becausepio«1/2 and
a>—1 the cutoff scale for monomers does not intervene
[11]. In the following, we shall call this kind of fragmenta-
tion the “Cayley” or the “high-viscosity”” fragmentation. In
this regime, the sequential fragmentation process leads natu-
rally to power-law distributions in space and time and is
analogous to the SOC phenomenon. In Réf], the ava-
lanches were defined in terms of the fluctuating instanta-
neous dissipation rate

f(t)=§ Xi(t), (31)

where the summation goes over all clusters in the fragmen-
tation cascadéi.(t) is an indicator function of unstable clus-
ters at a timet. y,(t) is the characteristic function of the
clusterk and equals either 1 fare[t,,t], wheret, is the

time when the clustek appears and, is the time when it
disappears, or 0 otherwise. The avalanche size is then de-
fined as the total dissipation

=fwf(t)dt=; (t,—t)~mT (32
0

of the fragmentation avalanche. This is just the sum of the
lifetimes of all the clusters that have appeared in the se-
guence of breaks, where andT are the average multiplicity
and the total fragmentation time for a given event, respec-
tively. For each value of the fragmentation probability,

the FIB process provides a different mean-field realization of
a SOC phenomenon with its particular exponents of the
power-law spatiotemporal distributioptl]. The relation be-
tween the invasion percolation and the SOC phenomenon
was noticed independently by Roux and Guyaaq].
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Following (3) and assuming that there exists a limiting
stable distributiorGy(x) — G(x) whenN— =, one may de- <m>P,,

rive the following equation for the generating function: 1.0

G(X)=(1—Pg) + PeXGA(X).

Solving this equation fof5(x), one obtains the multiplicity
probability distribution for large enough sizés

(2m)! am
m:m!(m+1)! (1+a)2m+1(a>_1)1 (33

-

05 |
wherea '=1+(m)~! as long as

<m>N:1_p—2FpF (34

-
A

is positive. Equatior{33) can be rewritten also in the form

1 @ecm! I
m= 1 mimr PF (L PR (Pe<1/2,a>—1),

(39

0.0

10

FIG. 5. Typical multiplicity distributions in the Cayley fragmen-

. o _ tation regime[Eq. (35)] for various values of the fragmentation
which explicitly shows the dependence on the fragmentatioprobability: p=0.05 (long-dashed ling 0.25 (solid line), and

probability and hence om. This distribution is peaked at 0.45(short-dashed line plotted in the KNO variables.

m=0 and decreases for large multiplicities. As can be seen

from (16), the average multiplicit{m)yy for eachpr is as- Note the appearance of a power-law distribution
ymptotically constant and depends neither on the total siz®(z)~z *? whenpg— 1/2.

N of the fragmenting system nor on the value aaf Obvi-

ously, these distribgtiops do not belong to the plass of Pois- Evaporative fragmentation regime: pg>0, a<—1
son transform distributions and also do not satisfy the KNO

scaling. The independence of functiops=f,/(f1)P on the The fragmentation kernels in this regime are strongly
system size is not a sufficient condition for this function to@symmetric and the preferred splitting at each step in the
obey the KNO scaling. In any case, the normalized factoriafragmentation cascade ik)—(k—1)+(1). This process
cumulant moments,=f,/(f,) provide valuable informa- resembles the evaporation of light fragmeggsedominantly .
tion about the multifragment correlations. We shall return tomonomersfrom a large cluster and therefore we shall call it
this problem in Sec. VII when discussing the structure ofthe “evaporative fragmentation regime.” At each step of this

multifragment correlations. The values of the first few nor-Process, one branch of the binary fragmentation almost
malized cumulant moments are given by

surely dies out. The dominance of only one fragmentation

branch associated with a large cluster leads to an approxi-
3—4pe mateN independence of the average multiplicisee Fig. 6.
Y2~ 1-2pg’ Hence, also in this domain the multiplicity probability distri-
butions are not Poisson transforms, nor do they obey the
(1-Ppe)(3—4pe) KNO scaling. SN
v3=06 A-2p)2 The limiting casew= —<o is particularly interesting as in
Pr this case at each step of the fragmentation one monomer is
. 2 g3 separated from the large cluster. The generating function of
74:635 126(p1F+2154;)3F 64pF, (36)  the probability distribution fora=—c, which can be de-
—<Pr

rived from Eq.(3), satisfies the recurrence relation
etc. As in the BS fragmentation regime, we see once again

. _ Gn(X)~1—=pe+PeXGn-1(X),
the divergence of these moments for— 1/2. In Fig. 5 we

show a few examples of the multiplicity distributions for which yields

different values of the fragmentation probability:

pe=0.05,0.25,0.45. Iz=m/{m) is large, then these distri-
butions behave like

1-pe
Gn(X)~ T—pex’
P(z)=z %%xp —bz), (37)
The probability distribution in this case
where
o Pnm]~(1—pg)pF (38)
F

is a special case of a Gamma distribution
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<m>
10

0 500 1000
N

FIG. 6. Dependence of the average fragment multipli¢ity
on the size of the fragmenting systawin the evaporative frag-
mentation regime, plotted fquz=0.25,0.5,0.75 and for= —3/2
(solid line) and a= —7/2 (dashed ling

k
Pu(2)= %exa— y2)2< (39

in the variablez=m/(m), with

= pF |n(i)
L P \Pr

and

k

Pr
==

(9="2=7

y=1 in the limit pr—1 and one recovers frornB9) the
negative binomial distribution

k

Pu(z)= X3

exp(—kz)Z<" L. (40)

The Bose-Einstein distribution correspondste 1.

The multiplicity distributions in the evaporative phase for
several values of the parameigt are shown in Fig. 7 for
a=—5/2 and in Fig. 8 fora= —o0. The multiplicity distri-
butions exhibit a strong dependence @nClose to the bor-

derline between the BS and evaporative fragmentation re-

gimes (see Fig. 1, the multiplicity distributions in the

evaporative phase exhibit certain similarities with those in

the BS phasésee Fig. 2 and are different from the distribu-
tions in the limita— —oo.

In Figs. 9 and 10 we show the dependence of the normal-

ized cumulant moments of ordpe=3 and 4 on the fragmen-
tation probability pe for three different values ofa:
—5/2,—7/2 (solid lineg, and—< (dashed ling In the latter
case,y, is independent ope and equalsi§—1)!, as for the
Bose-Einstein distribution. One should stress thatannot
be calculated using the integral form of the relat{@f) with

<m>P

1.0

m/<m>

FIG. 7. Typical multiplicity distributions in the evaporative
fragmentation regime, plotted in the KNO variables for various val-
ues of the fragmentation probabilityp-=0.5,0.75,0.9 and for
a=—"5/2. The simulations correspond to®1fBagmentations of the
system with the initial siz&l=1024.

the limit (39) for f(z), becausgm)y is independent ofN

and hence the multiplicity distributions in the evaporative
phase do not belong to the class of Poisson transforms. Con-
sequently,y, in Figs. 9 and 10 are calculated directly using
f,'s (11). The value ofy, for a=—o suggest that we are
dealing with the Bose-Einstein distribution, whereas, in fact,
it is theI" distribution that approaches the Bose-Einstein dis-
tribution asymptotically whempg—1. Nevertheless, as can
be seen in Fig. 11, wher@g/Zy% is plotted versugg for
different «, the relations between momenig of different

<m>P,,

0.50

0.40

0.30

0.20 |

0.00

m/<m>

FIG. 8. Typical multiplicity distributions in the evaporative
fragmentation regime, plotted in the KNO variables for various val-
ues of the fragmentation probabilitp: =0.25,0.5,0.75,0.9 and for
a=—= [Eq.(39)].
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Y. 2
2
W20v]
1.1
1.0 F-mmmmmmm s mo s e
a=-3/2
o=>5/2
=7/2
0.6 : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.9 ) '
p 0.0 0.5 1.0
E P
F
FIG. 9. Normalized cumulant momenyg as a function opg in _ _ )
the evaporative fragmentation regime far=—5/2, —7/2 (solid FIG. 11. Ratio of the normalized cumulant momemntg (2v5)
lines), and —« (dashed ling in the evaporative fragmentation regime, plotted versgugor dif-

ferent values oftx. The dashed line correspondsde= — .

rank for those different distributions in the evaporative phase

are “similar” to the corresponding relations for the negativem+ I yPN[M:t]

binomial distribution. Fore= — (dashed ling this quan- ot

tity equals 1,exactlyas for the negative binomial distribu- N-1 m-1

i 2 i ! ’. ’
tion. The curvesys/2y5 vs pg calculated for differentr’s = ;1 Fin-j > Pi[m’;t—t']

(a# —) all converge to 1 in the limipp—1. m’ =0

. — ' 14+ —¢t'1— .
VI. BRAND-SCHENZLE FRAGMENTATION REGIME AS XPN*J[m m’—Lit—t"] = Py[mit]

A MULTIPLICATIVE STOCHASTIC PROCESS

The generic statistical framework for the appearance of Fyotm), (41)

the KNO scaling in the binary fragmentation process is prowhich are basicallyronlinear Rate equations provide a tra-
vided by the cascade equatiofi3. They can be written also gjtional context for number evolution@1]. The effect of
in the form of the rate equations mode-mode coupling can be often represented as a noise or
fluctuating force, acting on the chosen mode. These fluctua-
tions arise from the elimination of the irrelevant microscopic
Y3 degrees of freedom in favor of a small nhumber of macro-
5.0 : : : : scopic variables. In this way, one arrives at the Langevin
formulation of the initial multidimensional problem in which

macroscopic variablefg} are driven by the fluctuating force
F(t):

d - -
Ga=TidzD+G{zZHF(1). (42

The stochastic procegd?) is called additive ifG is inde-

pendent of{f}; otherwise it is called the multiplicative sto-
chastic process.

The multiplicity distributions generated by the rate equa-
tions(41), when expressed in the KNO variable, aentical
in the whole BS domain to the special solution of the one-

1.0 : : : ‘ dimensional, nonlinear stochastic processes with multiplica-
0.0 0.2 0.4 0.6 0.8 1.0 tive fluctuations

d
—z=Dz—-BZ"*7+zF 4
FIG. 10. Same as in Fig. 9, but fou,. dt ' (43
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which was studied by Brand and Scher28] in connection  solution fory=1 [Eq. (47)] is not satisfied by the FIB model
with certain stochastic processes in nonlinear optics anth the BS regime for whictB+#D.

chemical reactions. Solutions of this equation include also

many analytic functions proposed to describe multiplicity vi|. STRUCTURE OF THE HIGHER-ORDER CUMULANT
distributions inpp ande*e™ collisions[23]. In the above CORRELATIONS

equation,F represents a Gaussian white noise ] ) ) )
The n-fragment correlation function consists mainly of

(F(F(t"))=Qd8(t—t"), (44)  statistical combination of lower-order correlations. In order
) ) B ) to study genuinen-fragment correlations, one has to define

variablem/(m). The associated Focker-Planck equation  the expression fop,, together with cumulants of the order
lower thann. The first few densities are

d J
Ef(z,t)z — —[(Dz—BZ"""+1Q2)f(z1)]

2 p2(1,2=p1(1)p1(2)+Kx(1,2),
Q# o
t o zlz ] (49 p3(1,23=p1(1)pa(2)p1(3)+ 2 pa(i)Ka(j k)
permits an interpretation of the FIB process in the BS frag- +K3(1,2,3,

mentation regime in terms of the generalized diffusion pro-
cess. The parameterB,D,y) of the BS equation$43) and  p4(1,2,3,4=p1(1)p1(2)p1(3)p1(4)
(45) can be expressed by a unique parametef the power-

law fragment-size distribution +0 pa(i)pr(Ka(k, D+ 2 pa()Ka(j k1
E:(T_l)(r—lw(z—r)' o
Q +2 Kali,))Ka(kD+Ky(1,2,34, (49
Q _ 1 and so on, where the sums are taken over all permutations of
Q 2(2-17)° {1, ... n} without the transposition inside the factors of the
sums. Then-fragment distribution densities i%8) are re-
1 lated to then-fragment inclusive cross sections
T
Thus the multiplicity evolution in the BS fragmentation do- Pr(Y1: - Yn)= o dy; ...dy,’ n=12..., (49

main is a special case of the BS stochastic multiplicative

equation with the parameter8(7), D(7), and y(r) Where o, is the total inelastic cross section. The
(1=r=<2), defining a line in the manifoldB,D,y}. The n-fragment cumulant measures the statistical dependence of
KNO scaling function(26) depends only o [1< 7< 2 fol- the wholen-fragment set. Tha-fragment cumulant is zero if
lowing Eq. (14)] and hence the kinetic aspects of the FIBany of then fragments is independent of the others. The
process that are contained in the fragmentation and inactivesecond-order cumulant is equivalent to the two-fragment cor-
tion functions cannot be studied unambiguously. Formallyrelations, but already at the three-fragment level the study of
parameter$3,D,y can be identified with parameters of the the cumulant distribution requires the subtraction of the com-
fundamental Hamiltonian of the system as it was demonbinatorial part from the lower-order correlations from the
strated, for example, in the laser mo@i2#]. The FIB model genuine three-fragment correlation function.

with 7=3/2, corresponding to a special case of the BS equa- The factorial moments arise from the integration of the
tions with y=2, leads indeed to the laser mod@l]. For  corresponding particle distribution densities over a domain
y=1,B=D, and D/Q=k, the BS equations are equivalent {}:

to the linear rate equations for the multiplicity evolution

[17): Famtma= | dypu(v).
d
aPm=(m—1))\Pm_1—m)\Pm (Po=0), (47)
for which {m)(t)=keM. The solution of this equation has Fe=(m(m—1)---(m—k+1))q
the same scaling limit40) as the negative binomial distribu-
tion with = fgdyl' - fﬂdykpk(YL ce oY), (50
k= (D) N=2
Q-

The FIB proces$41) is compatible with the linear rate equa- The choice of() depends on the physical problem consid-
tions only in the limit whenp—1/2, though the particular ered. For example, in relativistic heavy-ion collisions or
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high-energy hadronic collisions, domaih refers usually to Consequently,
the kinematic variables such as the longitudifrapidity) or

transverse momentf25]. At lower energies, in the total A, Yo fo \[f1
charge fragmentation regim&{(A=5-7 MeV), this domain N = (f )<f—> (53
was also identified with the range of masgeisarge} of the p=1 Yp-1¥2 ATp-1/1 72
fragments[26,27. In photoelectron count experiment,
refers to the arrival time interval of photons exciting elec-and
trons in the detector.

As for the factorial moment&0), the factorial cumulants Ap=7p(72 P). (54)
(11) arise in the integration of the multifragmefrhultipar-
ticle) correlation functionK,(ys, ... yn) over a domain}  The validity of the LPA can also be tested through various
of the studied distribution. Equatiort41) relating factorial  scaling laws such a82]
moments with factorial cumulant moments ameactinde-
pendent of the functional form of the underlying correlation fOAL[f,\ 0P
function. GivenF,, we may computé, and insert this into f_p: A_q(f_z) . (55)
the F5 identity in (11). MeasuringF5 in a domain{) gives 4 pill

then f5, and so forth. Hence, if the experimental statistical ) . ) )
accuracy allows, one has access to the sequence of cumuldrte hierarchical amplituded,, in the above formulas are
moments and hence to the genuine, higher-order fragmelfﬁee parameters to _be determlned_ from the fit to _the data. For
correlations. If all cumulant moments of order 3 and higherth® LPA to be valid, the coefficient8,, or, equivalently,
are zero then only two-fragment correlations are present iftp Should be independent of the fragment multiplicity
the system. Similarly, if only two- and three-particle corre- {Mn and hence of the siz¢ of the fragmenting object. This
lations are present, the correspondifig term would be 1S the case irall domains of 'ghe m_ultlpllplty distributions for_
present, but all cumulant factorial moments of order highetthe FIB process at the transition line with a notable exception
than 3 would be identically zero. The structure of higher-for the marginal caseg=1/2. .
order cumulants was addressed in the context of high-energy The hierarchical structures for higher-order cumulant cor-
nuclear collisions where for certain reactions the cumulantéelations(51) have been used to fit the correlation of galaxies
of order 3 and higher were found to be z§28]. This yields ~and higher-order correlathns m_hadror_uc multiparticle data.
a particularly simple correlation scheme for those multihag/Numerous phenomenological hierarchical models that pos-
ron production processes. In the FIB model, this correlatiorf€SS this linking scheme for correlauon_functlons have been
scheme is nowhere exactly realized as shown by the analytfonstructed for that purpod@3]. The difference between
cal results in Eqs(28), (30), and(36) for the BS domain, the them I|es_ in t_he patte_rn of tha, coeff|C|e_nts that measure
marginal case ffr=1/2,a>—1), and the Cayley domain, the amplification of hlg.her-order correlations.
respectively. The numerical results for the evaporative frag- In the Cayley domain of the FIB process; starts from
mentation regime, shown in Figs. 8—10, confirm this finding2 for pe=0 and approaches 3 whem— 1/2. In the limit
as well. However, whepe is close to 1 in the BS fragmen- Pr— 1/2 of the BS fragmentation regime, the coefficiént
tation domain, the higher-order cumulant moments approacPProaches 3/2 and decreases-te whenpg—1. Thus we
zero much faster than does the second-order cumulant m@ave a discontinuous change of the high-order correlations
ment, so the leading behavior of the binary fragmentatiovhen passing from Cayley domain to BS domain through the
process can be closely approximated by neglecting fragmengritical pointpg=1/2 of the branching process. The marginal
fragment correlations of order higher than 2. case pg=1/2, a>—1) is particularly interesting because the
For other types of high-energy reactions, the linked-paircoefficientsA;, are independent oN even though ally,
approximation(LPA) of the higher-order cumulants, inspired depend orN explicitly. One should recall that the multiplic-
by the structure of the galaxy distribution in the universeity distributions in this case do not belong to the class of
[29], was applied to fit the daf@8,30. In the framework of ~ Poisson transforms and do not satisfy the KNO scaling. In
the LPA, the two-fragment cumulant correlations provide thethis special casef\;=9/5 for a=0.

building blocks of the higher-order cumulafs,31], which In the BS domain of the FIB fragmentation process, we
are built up as sums of products of linked two-particle cu-have succeeded in calculating the dependenc&;0bn pe
mulants analytically. At pr—1/2 the coefficientA;=3/2, indepen-

dently of «, and decreases monotonically with increasing
p—1 pe. For a=0 it becomes negative fquz>0.8856 and di-
_ verges to—o whenpg—1. The precise value dk; in the
Kp(1,2....p) App;m H K2(1,2). (51) BS regime depends strongly on bathandpg and one may
hope to learn about the details of the rate functions from the

Assuming the translational invariance and evaluating cumudétailed knowledge of thé,’'s. On the contrary, the hierar-
lant moments in the strip approximati28] produces nor- chical amplitudes are strictly independentwofn the Cayley

malized factorial cumulant moments obeying regime. In the evaporative phase, amplitudesare only
weakly dependent on botlk and pg. In the limiting case

f f.\p-1 a=—x (dashed ling A; in the evaporative phase equals
f—gz'}/p:Ap( Vz)p_lep(f—zz) ) (52) 2 independently (_)DF. A qualitatively similar behavior is
1 (f1) seen also foA,. Figures 12 and 13 show the dependence of
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of pg permits, in principle, the detection of the change in the

A3 structure of higher-order multifragment correlations associ-
3 , k ated with passing through the critical point of the associated
Cayley branching process.
2 t— o=0
a=—3/2 a=—1/2 VIIl. CONCLUSIONS
T =0 In this work we have analyzed in detail the properties of
the multiplicity probability distributions as obtained in the
0 \ nonequilibrium sequential binary fragmentation model with
the inhibition. We have restricted our analysis to the transi-
1t § tion line between theo-cluster and shattering phases of the
binary fragmentation. In this region, the FIB process is self-
Py similar at all scales until the low-mass cutoff for monomers,
i.e., the fragmentation probability does not depend on the
size of the fragmenting cluster for all fragments with masses
-30.0 0:2 014 0:6 0:8 10 s>1.1In our garllier yvorks, we have studied_ thg asymptotic
cluster-size distribution, which at the transition line is given
Pg by the power lawng~s™ " with 7<2. In this region, the FIB

model describes well the fragment-size distribution and all
FIG. 12. Dependence of the hierarchical amplitidleon the  charge-fragment correlations in the heavy-ion collisions at
fragmentation probability in different domains at the transition intermediate energid84]. Other statistical approaches have
line of the FIB model. also been tried successfu[l$5], so the supplementary infor-

) ) ) mation contained in the multiplicity distributions and cumu-
the hierarchical amplitude&; andA,/A; on the fragmenta-  |ant correlations is strongly needed.

tion probability pg in different fragmentation regimes on the | this work we have emphasized the intrinsic properties
transition line. o of classes of probability distributions of the critical FIB pro-

In conclusion, the FIB process on the transition line hassess in order to see clearly those features not tied to a spe-
the hierarchical structure of higher-order cumulants ancific condition of the kinetic evolution. We believe that this
obeys the LPAeverywhereIn the Cayley and evaporative | help in correlating theoretical fragmentation scenarios
fragmentation domains, this structure is somewhat trivial agyjth experimental results. One should, however, remember
the mean multiplicity of fragmentém)y is approximately  that multiplicity distributions in different domains at the
independent of the system size and chapges with th_e parafansition line depend principally on the exponenand do
eters {pg,a} only. In these two domainsi, are either pot allow for an unambiguous determination of the fragmen-
strictly independent of (the Cayley domainor the depen- tation and inactivation kernels. These ambiguities should be
dence onw is very weak(the evaporative domainThe hi-  strongly emphasized in order to discourage premature con-
erarchical amplitudes\, are discontinuous while passing clusions.
from the Cayley fragmentation regime to the BS regime Even though the KNO scaling appears to be replaced as a
through the critical point of the FIB branching process. Thusyndamental symmetry of th® matrix at ultrarelativistic en-
exact empirical knowledge of those amplitudes as a functioryrgies, nevertheless, it should be remembered that much of

the energy redundancy is removed by plotting the data in the

AJA KNO way. It is then interesting to note that the KNO scaling
41433 appears from our studies as a fundamental property of the
6 - - ' critical binary fragmentation process, whenever the average

fragment multiplicity(m), depends on the initial system size

S 1 N, i.e., in its low-viscosity pr>1/2, >—1), or BS phase
___Ciyli’)/ and is absent everywhere outside of the transition [#le

4k ] The appearance of the KNO scaling is hence related to the

second-order phase transitions associated with breaking the

3 """'""'/'"""""""";,'" == initial system, characterized by a large scalar quartity.,

ol =—3/2 =12 | energy, mass, and chajgend called its “mass,” into dust
fragments, each one having only an infinitesimal portion of

1t 0=0 \ the initial mass. In this sense the KNO scaling not only is a
property of certain relativistic field theories but more gener-

0 ally appears as a property of the critical fragmentation that
can be realized both in quantum systems as well as in the

-1 ‘ ‘ ‘ macroscopic classical objects. This general foundation of the

0.0 0.2 0.4 0.6 0.8 KNO scaling opens the possibility for its existence in many
Pp fragmentation processes in nature.

In order to analyze the higher-order correlations in the
FIG. 13. Same as in Fig. 12, but féy /A;. multifragment(multiparticle distributions one has to recog-
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nize that the density correlations contain usually lower-ordeprder correlations. This particular structure for higher-order
background correlations. These can be conveniently removerbrrelations is absent in both-cluster and shattering phases
using the cumulant correlation functiofé8). The statistical [4]. Up to now, no convincing explanation for the hierarchi-
independence of any; in Ky(y1, ....yp) results in factor-  cal structures of the multifragmefultiparticle) correlation
ization of thep, densities and vanishing cumulant. Hencefunctions have been put forth, although Peeldlg6] has

the cumulantsK, are key quantities to be produced by theo-shown that a random fractal cascade process could have this
retical models of the fragmentation. Following the linked property. In view of the above results one is tempted to look
pair ansata51), the high-order cumulants can be expressedor the justification of its ubiquity in nature in the ubiquity of

in terms of the cumulants of order 2. We have found that theéhe shattering transition. Curiously, the same correlation
critical FIB process, which obeys the KNO scaling of the structures describe galaxy correlations and phase-space cor-
multiplicity probability distributions, is characterized also by relations in the multiparticle distributions in ultrarelativistic
the appearance of the hierarchical structure of the highercollisions.
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