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Optimal periodic orbits of chaotic systems occur at low period
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Invariant sets embedded in a chaotic attractor can generate time averages that differ from the average
generated by typical orbits on the attractor. Motivated by two different tapiamely, controlling chaos and
riddled basins of attractionwe consider the question of which invariant set yields the largggimal value
of an average of a given smooth function of the system state. We present numerical evidence and analysis that
indicate that the optimal average is typically achieved by a low-period unstable periodic orbit embedded in the
chaotic attractor. In particular, our results indicate that, if we consider that the function to be optimized
depends on a parameter then the Lebesgue measurejyirtorresponding to optimal periodic orbits of period
p or greater decreases exponentially with increagindg-urthermore, the set of parameter values for which
optimal orbits are nonperiodic typically has zero Lebesgue measst663-651X96)10307-X]

PACS numbd(s): 05.45+b

I. INTRODUCTION our knowledge this question has not been previously ad-
dressed, yet it is fundamental to at least two important prob-
Many questions concerning dynamical behavior are adlem areas of current interest:
dressed by consideration of the long-time average of a func- a. Controlling chaosln one often used methdd] for the

tion F of the state vectox, control of chaos by use of small controls the strategy is to
1 first identify several low-period unstable periodic orbits em-

(F)=lim _f F(x(t"))dt’, (1a) bedded in the chaotic attractor. One then determines the sys-
towo tJo tem performance that would apply if each of the various

determined unstable periodic orbits were actually followed
1.0 by the system. In many cases the system performance can be
(F)=lim TE F(X¢), (1b)  quantified as the value of some time aver&ge, as in Eq.
toew Ttf=1 (1). One then selects an orbit yielding performance that is
best and feedback stabilizes that orbit. A question that might
be asked is whether one can obtain much better performance
looking exhaustively at higher-period orbits or by consid-

wheret denotes time and is either continudu&y. (1a)] or
discrete[Eq. (1b)]. [Assuming ergodicity, the time average
in Eq. (1) can be replaced by a state space average over the. N i e )
relevant invariant measure of the systeiwe call F the €19 stablh_zatlon of atypicahonperiodicorbits embedded
performance function. in the chaotic attractor.

In this paper we consider systems, such that,typical b. Bifurcation to riddled basins of attractiofRecently a
choices of the initialx, the trajectory generated by the dy- New type of basin of attraction has been found. This new
namical system is chaotic, and has a well-defined long-tim&asin type is called addled basin[2,3], and has the prop-
averagg1). (Here “typical” is with respect to the Lebesgue erty that any point in the basin has points in another attrac-
measure of initial conditions in state spacéle note, how- tor’s basin arbitrarily close to itthe basin, although of posi-
ever, that atypical initial conditions may generate orbits emdtive volume, has no interigr Thus an arbitrarily small error
bedded in the chaotic attractor that have different values foin the determination of an initial condition may cause the
(F) than typical orbits. For example, consider a chaotic at-orbit to go to a different attractor. This type of behavior can
tractor with a basin of attractioB. Even though there is a be present in dynamical systems that possess an invariant
set of initial conditions irB all yielding thesamevalue for  manifold M and a chaotic attractor in that manifold. An in-
(F), and the state space volurfieebesgue measuref these  teresting basic question is that of how a nonriddled basin for
initial conditions is equal to the entire volume Bf there is  the chaotic attractor oM becomes riddled as a system pa-
still a zero volume set of initial conditior(8atypical” initial rameter is variedi.e., the bifurcation to a riddled bagif4].
conditions whose orbits asymptote to sets within the chaoticThis bifurcation occur§5,6] when an invariant set within the
attractor but for which(F) is different from the average strange attractor first becomes unstable for perturbations
attained by typical orbits. A familiar case where this happengransverse to the invariant manifol. That is, the bifurca-
is when the initial condition is placed exactly on an unstabletion occurs when the transverse Lyapunov exponent maxi-
periodic orbit embedded in a chaotic attractor on the  mized over all invariant sets in the chaotic attractor first be-
stable manifold of the unstable periodic ojbit comes positive. In the simplest case, where the invariant

The question we address is the followinghich (atypi- manifold M has codimension one, the transverse Lyapunov
cal) orbit on the attractor yields the largest value(®)? To  exponent is obtained from an average of a funcfasin Eq.
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(1)] over the relevant orbit5,6], and again the study of this 24
bifurcation focuses on the invariant set maximizing an aver-
age[7]. o0 L

In this paper we only treat discrete time systdity. The
case of continuous time systems is expected to yield similar
conclusions and is deferred to a future study. Our principal
result is that the largest value () is typically achieved by
a low-period periodic orbit embedded in the chaotic attractor.

The outline of this paper is as follows. In Sec. Il we
consider the “doubling transformation”xX modulol with a e t ! L
performance functiorF (x) with a single quadratic maxi- u L] |
mum for xe[0,1]. This example reveals interesting Farey i — —
tree structure of the period of the optimal orbit as a function

p 12t

of the parametery. On the basis of this structure_and other. 00 01 02 03 04 05 08 07 08 09 1
numerical results we can make several conclusions for this

example.(1) The Lebesgue measure i corresponding to Y

optimal periodic orbits of periogh or greater decreases ex-

ponentially withp for largep. (2) The setS, of parameter FIG. 1. Period that optimizegF,) as a function ofy for the

values for which optimal orbits are nonperiodic has Le-doubling transformatiori2) and performance functiofB). Unless
besgue measure zer@) The setS, is uncountable, but has otherwise noted, all tables and graphs are based on computations
fractal dimension zero(4) Optimal nonperiodic orbits for using 16 evenly spaced values gf and orbits of periods 1—24.
ye S, are similar to periodic orbits in that they have zero
topological entropy and zero fractal dimension. essential behaviors that should be expected in general for
In Sec. Il we consider the tent map with a performancelow-dimensional chaotic systems. A main point will be that
function F(x) with a single quadratic maximum. We again the optimal average is typically achieved by a low-period
find conclusion(1), listed above for the doubling transforma- periodic orbit[8].
tion, holds. However, for the tent map we find that the pa-
rameter se§,, corresponding to optimal nonperiodic orbits,
is empty. Thus conclusion®)—(4) above are trivially satis-
fied. Furthermore, the Farey structure observed for the dou- For each of 1B evenly spaced values of, we tested the
bling transformation is absent, and a simpler structure prevalue of (F,) for all periodic orbits of the mag2) with
vails. We then consider several other cases in Sec. IV: thperiods 1 to 24. There are on the order of Bdich orbits.
doubling transformation with a multihumped performanceFigure 1 shows the period of the orbit that maximizés))
function, the tent map with a multihumped performancefor Egs.(2) and(3) as a function of the phase angje The
function, the Kaplan-Yorke map, and the g map. It ap- second column of Table | gives the fractié(p) of phase
pears that in all of the examples in Sec. IV the basic structurgalues y for which a periodp orbit maximizes(F,). For
is a combination of the two prototypical structures observedexample, ify is chosen at random {0,1], then over 93% of
in Secs. Il and lll. We believe that this composite type ofthe time, the optimal periodic orbit does not exceed 7 in
structure should be typical of what will occur in applications. period, and more than half the time the optimal orbit’s period
Based on our results in Sec. IV, we conjecture that concluis 1, 2, or 3. The last column in Table | gives a conjectured
sions (1) and (2) above hold in general for typical low- asymptotic prediction of the fractiofi(p) of the time a
dimensional chaotic systems and typical smooth perforperiodp orbit maximizes(F ) if y is chosen at random in
mance functionsF depending on a parameteffor the [0,1],
examples of Sec. IV, we do not presently know whetbgis

A. Periods of optimal orbits

empty (as in Sec. 1] or not (as in Sec. I1.] Finally, we f(p)=~Kp2~Po(p). (4)
discuss the practical importance of our conclusions in the
contexts of chaos contréL]. Here ¢(p) is the Euler function, which is defined as the
number of integers between 1 apdinclusive that are rela-
II. THE DOUBLING TRANSFORMATION WITH A tively prime top [e.g., the numbers 1, 5, 7, and 11 are rela-
SINGLE-HUMPED PERFORMANCE FUNCTION tively prime to 12, and s@(12)=4]. Thus¢(p)<p—1 for

p=2, and¢(p)=p—1 if p is a prime. The factoK is a
fitting parameter, which we choose to be 1/6 in this example.
We see from Table | and the data plotted as diamonds in Fig.
2 that Eq.(4) agrees very well with the numerical results for
largep [the straight line in Fig. 2 has slopeln2 and, for the
plotted diamonds, the vertical axis is the logarithm of the
numerically computed(p) divided byp¢(p)]. From Table
F(x)=cog2m(x—y)]. (3 I, the agreement with Eq4) is better than 5% fop>5.
Note that Eq(4) apparently has nothing to do with the pre-
Although some of the results we observe for E@$.and(3) cise choice of the functioR , in Eq. (3). We believe that Eq.
are model specific, we claim that Eq®) and(3) also yield (4) is a good approximation for typical smooth functions

To begin we consider a simple example, namely, the dou
bling transformation,

Xi+1=2%; (modulol), (2

and forF we take
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TABLE I. Numerical results for the doubling transformatic®).

Eq. (3 Eq. (6) —(x=v)? Eq. (4)
p f(p) fo004(P) f(p) f900(P) f(p) f(p)
1 0.299 0.333 0.230 0.258 0.333 0.0833
2 0.160 0.212 0.163 0.175 0.148 0.0833
3 0.176 0.294 0.186 0.234 0.163 0.125
4 0.0985 0.143 0.0850 0.110 0.0948 0.0833
5 0.116 0.0180 0.136 0.169 0.111 0.104
6 0.0310 0 0.0350 0.0473 0.0322 0.0313
7 0.0573 0 0.0427 0.00664 0.0555 0.0547
8 0.0211 0 0.0583 0.00031 0.0210 0.0208
9 0.0178 0 0.0244 0 0.0176 0.0176
10 0.00644 0 0.00697 0 0.00652 0.00651
11 0.00918 0 0.0164 0 0.00900 0.00895
12 0.00196 0 0.00516 0 0.00196 0.00195
13 0.00324 0 0.00446 0 0.00316 0.00317
14 0.00084 0 0.00389 0 0.00086 0.00085
15 0.00062 0 0.00105 0 0.00058 0.00061
16-24 0.00092 0 0.00167 0 0.00092 0.00091

with a single maximum whose parameter dependence corp. Thus, for this example, if one is willing to settle for 90%
sists of a phase shift. Tests using other quadratic maximurmaf optimal, oneneverhas to go above period 5. Also for over

single-humped functions in place of E) confirm this;

83% of they values it suffices to consider only period 1,

results forF_(x) = — (x— y)? are shown in the sixth column 2, and 3. The relatively small increase (&f,) achieved by

of Table I.[Although Eq.(4) appears to give a good approxi- going to higher period is also evident in Fig. 3, which plots
mation for largep, we do not know whether the relative the optimal value of(F,) as a function of the phase.
Switching of optimal periods occurs at apparent changes in

error goes to zero gs— .|

Not only are low-period orbits most often optimal, but, the slope of this plot. For example, the inset in Fig. 3 shows
even when a somewhat higher-period orbit is optimal, it ap{F,)p, the average of, over the optimal periog orbit,

parently only leads to a relatively small increasgifn,) as

versus y for p=3,5,8 in the region neary~0.37. The

compared to a lower-period orbit. This point is emphasizediashed line is a weighted average(6f,) for periods 5 and
by the third column in Table I, which gives the fraction of 3, (5(F,)s+3(F,)3)/(5+3). The optimal period 8 value of
the y values such that the lowest-period orbit that yields a(F,) closely follows this average, but is slightly above it.
value of(F ) within 90% of the maximum value has period
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FIG. 2. Graph of Iff(p)/pN(p)] vs p, whereN(p) is the number
of y intervals for which a periogr orbit is optimal. The straight
line has slope-In2. The diamonds correspond to E¢®) and(3);
the squares correspond to Edq8) and (6), the triangles to the

Kaplan-Yorke map example, and the crosses to theoHemap

example.

B. Farey tree structure

It is also interesting to note the Farey tree structure

present in Fig. 1; the periods follow the pattern of the de-
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FIG. 3. Maximum value ofF,) as a function ofy for the

doubling transformatior{2) and function(3). Inset: closeup with

added detail.
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nominators in the Farey construction of the rational numbersat stages 1 throughp leaves of the order op? unremoved
That is, between any twe intervals with optimal orbits of intervals[recall that¢(p)<p—1], which according to our
periodsp, and p, and only higher periods associated with numerical evidence have widths of orde2 P or less. Thus
any interveningy intervals, there is a smalley interval of  an e covering of the unremoved intervals at stgg®f the
period p,+py, in between, and all othey intervals in be-  generation ofS, requires N(e)~p? covering intervals if
tween have period higher thgn+py,. This is illustrated by e~p2~P. Noting that [InN(e)J/[In(1/e)]~p tIn(p) ap-
Fig. 1 and the magnification of the interval [0.35,0.45 proaches zero gs—o°, we conclude that the fractal dimen-
shown in Fig. 4. The inset in Fig. 4 shows the correspondingsion of S, is zero.

tree. Between the period-3 interval and the period-2 interval

there is a period-5 interval. Between the 3 and the 5 there is D. Symbolic dynamics

an 8, between the 5 and the 2 there is a 7, and so on. Nu-

merically we find an exponential decreasepascreases, of
the total lengthr (p)=f(p)+f(p+1)+ - +f(pmay Of the

The symbolic dynamics of the doubling transformation is
particularly simple. Each orbit is represented by a sequence

; . . . .~ of two symbols, which we take to be zeros and ones, where
y intervals with period at leagt (see the diamonds in Fig. "6 "0 nol'ic 0 if the orbit is ifi0.1/2) and is 1 if the

5). Noting this and thinking of optimal nonperiodic orbitsas ~ ~. "> . I .
being created in the limit as the Farey tree level approache%rblt is in[1/2,1). The symbolic dynamics is then given by

infinity, we infer that optimal nonperiodic orbits typically do
not occur on a positive Lebesgue measure seg.of

The form of Eq.(4) is obtained as follows. The factor
¢(p) is the number of times the integ@r appears in the 2| 9
complete Farey tregstarting at the lowest level with RN
Pa=P,=1). The factop2~P is obtained from our numerical 4t .0
observationsand by direct analytical calculation in a special ~ — - F 5 >
case, see Appendix)/f how the width of an interval scales SR + L %
with the periodp. = Tea

= 8 N
C. Fractal dimension of the setS,, R= 0l T 8

Next, we consider the dimension of the Sgtof y values ’ : P
for which optimal orbits are nonperiodic. From the above -12 + § 3
discussionS, has zero Lebesgue measure. Furtherm8ye,
can be generated by successive removal with increasiofg -14 o > 4 6 s 10 12 14 16
¢(p) intervals of optimal periogh orbits from they interval
[0,1], and because of the Farey structure these intervals are p
separated by a positive distance from previously removed
intervals. ThusS, is a Cantor setin particular, S, is un- FIG. 5. Graph of Ifr(p)/p?] vs p. The straight line has slope
countable. We can determine the fractal dimensionS)fas  —In2. The various symbols plotted correspond to the same cases as

follows. The removal ofp(1)+ $(2)+ - - - + $(p) intervals  in Fig. 2.
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/ \ We find that the period-8 orbit comes closest to the period-

©=8) 1 3 orbit at 73/255 and 217, respectively
00100101 (73/255-2/7~=2"11. For the next two iterates, the period-
8 orbit closely tracks the period-3 orlivith the distance
(b) (%01%1) between the two doubling on each itepatat the third iter-
- ate of 73/255, the period-8 orbit makes its closest approach
001 to an element of the period-5 orbit; the points involved are
(p=3) 741255 and 9/31, respectively (9/374/255~2"13). The

FIG. 6. (a) Farey tree specification of the symbolic dynamics of P€riod-8 orbit then tracks the period-5 orbit for four more

optimal periodic orbits for Eqg.2) and( 3). (b) The part of the tree iterates, after which it again makes its closest approach to the

in (a) corresponding to thp=23,5,8 periodic orbits occurring in the Period-3 orbit, and so on. Thus the period-8 orbit is approxi-
inset of Fig. 3. mated by alternately following one of its Farey parents and

then the other. This explains WH¥ )¢ in the inset of Fig. 3
the shift on the symbol sequences and corresponds precisetp closely follows the weighted average ¢F.); and
with the operation  modulol if x is represented in as a (F,)s (the dashed line in the inset of Fig). 3A little more
binary “decimal.” Thus each periog periodic orbit can be analysis of the placement of the various points of the peri-
represented as a string pf zeros and onegor any cyclic  odic orbits explains why(F_)g lies slightly above the
permutation theredfgiving the order in which the intervals weighted averagg.

[0,1/2) and 1/2,1) are visited. We find that the optimal pe-
riodic orbits for Eqs(2) and(3) exhibit a very regular sym- E. Metric entropy for optimal nonperiodic orbits
bolic representation[This structure was also found for

other single-humped performance functions for which the Next, consider a nonperiodic orbit that maximizgs,)
location of the maximum was monotonic iy, e.g., for somey=y,€S,. We claim that such an orbit has very

Fy(x)=—(x—y)2.] The general scheme that we numeri- spetcial s_ynjbolli:c d)f/namicsbgenelrated by thz pe:ciodtk;] orbits
cally observe is best expressed using the Farey tree represdfat maximize(F ) for nearby values ofy, and in fact has
tation shown in Fig. @). Starting on the lowest tree level Metric entropy zero. Recalling the Farey structure of the
with the symbol 0 on the left and the symbol 1 on the right,Complement of5, , we regardy, as being the limit of inter-
higher levels in Fig. @) are generated as follows. If there is V@IS in the complement &, corresponding to optimal orbits
a periodp, orbit on the tree, and its parent orbits on the tree®f Perods py,p, ..., where for n=3 we have
have periodsp, andp,, wherep,=p.+py, then the sym- Pn= pa+ Py for sqmea,b<_n._ Exam|n_at|on of f[he periodic
bol string representing the periga, orbit is obtained by orbits that(numer_lcally 0pt|m|z§(F7> in these intervals re-
listing the p,, symbol string followed by the,, symbol string ~ V€als that the points in the orbit of perigy always closely
[see Fig. &)]. [Here the subscripa corresponds to the left @PProximate the points in the orbits of periogs and py,
parent orbit on the tree in Fig(#, andb corresponds to the With the approximation becoming increasingly goochais-
right parent orbif creases. We mfer_ that the_optlmal nc_mp(_enodlc orbit corre-
We now consider a specific example, namely, thequndlng t07= Yo IS approxmated arbitrarily closely by the
p=3,5,8 orbits occurring in the inset to Fig.(8ee also Fig. OPtimal orbits of periodp, asn—c [9]. Furthermore, as
4). The picture obtained for this example holds for all otherfollows from the discussion in the previous subsection, the
orbits in the Farey tree. The portion of the tree of Figwe Symbolic dynamics of the optimal periqr} orbit is always a
corresponding to these three orbits is shown in Fig).6The ~ concatenation of the symbolic dynamics of the perjed
period-3 orbit is obtained by noting that the repeated binan"d Py Orbits that generate, in the Farey tree. It follows
expansion 0.0010010Q . . isequal to 1/7 which, using Eq. that the symbolic dynamics of the orbits of periods

(2), gives the orbit Pn+1:Pn+2, - .- are also concatenations of multiple copies
of the blocks of lengthg, and p,, corresponding to the pe-
1 2 4 1 riod p, and p, orbits. Again we infer that the symbolic dy-
p=31 FoZogogo namics of the optimal nonperiodic orbit for= 1y, is also

composed entirely of two types of blocks of lengthsand
Similarly, 0.00101001010010. . . =5/31, and for period 5 Py, concatenated in a nonperiodic fashion. It then follows

we obtain the orbit that the metric entropy associated with this orbit is small; as
shown in Appendix B, in a segment df iterates along the

5 10 20 9 18 5 orbit, the logarithm of the number of possible symbol se-
P=5 317371731731 31 31 quences is at most of the order dflfip,)/p,, Where we

assumep,=p,. Thus the entropy is at most of order
while for period 8 we have (Inp)/pa. Since we can start this analysis arbitrarily far
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TABLE Il. Numerical results for the tent ma(b).

Eqg. (3) Eq. (6) 0.23427P
p f(p) fo0%(P) f(p) fo0u(P) f(p)
1 0.705 0.727 0.426 0.450 0.117
2 0.0314 0.0319 0.185 0.189 0.117
3 0.0611 0.0712 0.190 0.229 0.0878
4 0.0791 0.115 0.115 0.0791 0.0585
5 0.0580 0.0542 0.0147 0.0193 0.0366
6 0.0312 0 0.0175 0.0140 0.0219
7 0.0159 0 0.00666 0.00601 0.0128
8 0.00832 0 0.00568 0.0137 0.00731
9 0.00442 0 0.0171 0 0.00411
10 0.00238 0 0.0100 0 0.00229
11 0.00129 0 0.00540 0 0.00126
12 0.00069 0 0.00311 0 0.00068
13 0.00038 0 0.00156 0 0.00037
14 0.00020 0 0.00083 0 0.00020
15 0.00010 0 0.00048 0 0.00011
16-24 0.00012 0 0.00084 0 0.00012

along the Farey treep, can be arbitrarily large, and we starting with periodp=1, as the optimal period changes
conclude that all optimal nonperiodic orbits have metric enfrom p to p+ 1. Exactly at they value y, corresponding to
tropy zero. the step increase from perigdto periodp+ 1, the averages
This conclusion has an immediate consequence for th¢k ), and(F,),., are equal, and are larger thaR, ), for
fractal dimension of the invariant measure generated by aall p’ #p,p+1. For y neary, and y<y, (y>7y,) we nu-
optimal nonperiodic orbit. In particular, the information di- merically observe tha{F,),>(F,)p+1 ((F,)p>(F)p+1)-
mension of an invariant measure of the m@p has been The situation is qualitatively similar to that in the inset to
shown[10] to be the metric entropy divided by In2; the latter Fig. 3, except that the dotted line, which would correspond in
quantity is the Lyapunov exponent of the ma. Thus op-  this case to(F,),,.1, lies belowthe weighted average of
timal nonperiodic orbits also have information dimension(F,), and(F,),,;. Thus there is noy interval of period
zero. Hence these orbits, although nonperiodic, are similar tap+1 derived by Farey summation between the pepod-
periodic orbits in that they have zero entropy and zero di-and period-p+ 1) intervals. On the other hand, we can think

mension. of each period{y+ 1) interval as being created by Farey
summation from the adjacent periqdinterval and the large
IIl. THE TENT MAP WITH A SINGLE-HUMPED period-1 interval. The structure in this example can thus be
PERFORMANCE FUNCTION likened to a single brancfthe leftmost of the Farey tree

discussed in Sec. Il. Ay decreases further, there are an

We consider next the tent map 00,1, infinite number of the step increases described above, accu-

2% X =1/2
1T o1-x)  x=1/2,

( 5) 24

20 }
with the same performance functi¢®). Results, based again
on 1@ evenly spaced values of and orbits of period up to
24, are shown in the second and third columns of Table II
and in Fig. 7. We see that, again, most of the time optimiza- 2l
tion is obtained at low periodFor instance, for more than p

87% of they values the optimum period is 4 or less; if one
is willing to settle for 90% of optimal, one never need go
above period 5.) The excellent agreement of the largata

with f(p)=Kp2~P shown in the last column of Table I 4r

again implies an overall exponential decrease of the Le-

besgue measure correspondingytwalues yielding optimi- 00 0'1 0'2 0'3 0'4 0‘5 0‘6 0‘7 0‘8 0'9 !
zation at periodp or greater. The valu&=0.234 used in oo T T e e e
this case is derived analytically in Appendix A. y

Referring to Fig. 7, we see a structure very different from

the Farey structure observed in Fig. 1. In particular,yas FIG. 7. Period that optimized=,) as a function ofy for the tent
decreases frony=1, there is a succession of step increasesmap(5) and performance functio8).
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mulating to they value y,~0.14955. For & y<vy, the 0.5
optimal orbit is the period-1 orbiffixed poiny at x=0.

Again thinking of a nonperiodic orbit as the limit of a
sequence of periodic orbits as the period goes to infinity, we
infer that the only possibley value at which optimization
might be achieved only by a nonperiodic orbityis- y,,. On
the other hand, by continuity the interval on which the fixed
point x=0 is optimal must be closed, and thus this interval
includesy.,. We conclude that the s&, of y values for
which optimal orbits are nonperiodic is empty in this ex-
ample.

We remark that many of the conclusions we obtained in
this and the previous section ought to be amenable to rigor-

ous analysis of the map®) and (5) and the performance 05 —_—
function (3). We hope to be able to report such results in a o 01 02 03 04 05 08 07 08 09 1
future publication. T

Our examples in this sectidEgs.(5) and(3)] and in the
previous sectiofiEgs.(2) and(3)] illustrate two prototypical FIG. 8. Attractor for Kaplan-Yorke map with=0.4.

behaviors, step changes in the optimal perib@. 7), and

Farey structurgFig. 1). In the next section we consider sev- asp2~P; if we replace the Euler functions(p) in Eq. (4) by

eral other examples. In all of these examples we find a “mix-the numerically observed number of intervals N(p) for

ture” of the two types of structure found in this section andwhich a periodp orbit maximizes(F,), good agreement

in Sec. Il. Based on our examples we offer two conjecturesvith Eq. (4) is restored. This is illustrated by the data repre-

concerning typical low-dimensional chaotic systems andsented as squares in Fig. 2. Another important point is that

typical smooth performance functions with a parameter defor Eq. (6) [as for Eq.(3)] we observe an exponential de-

pendence: crease, as a function ¢, of the proportionr(p) of phase
Conjecture 1 The Lebesgue measure of the parametersaluesy for which (F ) is maximized on an orbit of period

corresponding to optimal periodic orbits with peripdor  at leastp. This is shown by the data plotted as squares in

greater decreases exponentially with Fig. 5. Thus the result that low-period orbits most often are
Conjecture 2 The set of parameter values for which op- optimal is apparently independent of our choice-of
timal orbits are nonperiodic has Lebesgue measure zero. Similar results and conclusions apply for the tent nf@p
with the multihumped performance functigd). Data corre-
IV. OTHER EXAMPLES sponding to this case are given in the fourth and fifth col-

. . umns of Table II.
In the remainder of this paper we present some further

numerical results involving different choices of the optimi-

zation functionF and different dynamical systems, in sup-

port of the above conjectures and the principle that, for most The above discussion was for a one-dimensional map.

parameters{F) is maximized by a low-period orbit. The How do these results carry over into higher dimensionality?

composite Farey-step structure we observe in all these exto get some indication of the situation we consider two dif-

amples is discussed in Sec. IV D. ferent two-dimensional maps. First we discuss the Kaplan-
Yorke map[11],

A Th.e doubllng transformation and the te'nt map Xos1=2X, (modulod), (79)
with a multihumped performance function

B. The Kaplan-Yorke map

The fourth column of Table | shows the fraction of°10 1
evenly spaced values of for which a periodp orbit of the Yn+1=AYnt — SIN27X,). (7b)
map (2) maximizes the average of a different function:

F,(X)=cog2m(x—y)]+si6m(Xx—7y)]. (6)  The Lyapunov exponents are In2 and IrChoosing\ =0.4
7 we have an information dimension bBf~ 1.76 for the attrac-

The fifth column of Table | gives the corresponding fractiontor. A picture illustrating the fractal structure of the attractor
for the lowestp within 90% of optimal. The function in Eq. appears in Fig. 8. Results for the optimal period wtitho-
(6) has three local maxima and three local minima. Thissen to be
increases the likelihood of a higher-period orbit maximizing
(F,), as is reflected in the data. The Farey structure, present F (x,y)=cog2m(x+y—y)] 8
for smooth functions with a single maximupe.g., Eq.(3)],
is found only partially in this cas@nd in the examples with are shown in the second and third columns of Table 1lI, and
two-dimensional maps that followThus the number of in- in Fig. 9. The scaling of the average size of thenterval on
tervalsN(p) for which a periodp orbit maximizegF,) isin  which a given periog orbit maximizes(F ,) is shown by
general not equal to the Euler functigi(p). However, we the triangles in Fig. 2, and the decay of the proportion
find that the size of each periqalinterval still tends to scale r(p) of y values for which(F ) is maximized by an orbit of
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TABLE Ill. Numerical results for 2D maps.

28 20 | ' 1 1
Kaplan-Yorke Map(7, 8 Henon Map(9, 10 16 -
p f(p) Foo(P) (P foon(P) “ H
1 0.282 0.319 0.427 0.434 g I )
2 0 0 0.421 0.424 0.2 0.25 0.3
3 0 0 0 0 P 30} '
4 0.140 0.188 0.0862 0.0857 24 ¢
5 0.223 0.326 0 0 bl
6 0.127 0.139 0.00823 0.0352 6k
7 0.0768 0.0285 0.0415 0.0210 00'2766 0277 02774
8 0.0466 0 0 0
9 0.0524 0 0 0 0 . . . - . . . : :
10 0.0162 0 0 0 0 01 02 03 04 05 06 07 08 09 1
11 0.0169 0 0 0 v
12 0.00518 0 0.00915 0
13 0.00750 0 0.00531 0 FIG. 10. Period that optimized=,) as a function ofy for the
14 0.00274 0 0 0 Henon map(9) and performance functiofl0). Periods 1-30 were
15 0.00158 0 0 0 considered. Top inset: closeup of region with large periods. Bottom
16—24 0.00214 0 0.00205 0 inset: further closeup showing even larger periods detected using

v values spaced 10 apart and orbits up to period 33.

period at leasp is depicted by the triangles in Fig. 5. These considered(there are approximately 1Gsuch orbity. The

results offer further support for our conjectures. results are given in the fourth and fifth columns of Table IlI,
and by the crosses in Figs. 2 and 5. Evidently the principle
C. The Hénon map that the optimum is typically achieved by low-period orbits,

and that near optimum performance can always be achieved

Next we consider the H®n map by such orbits, continues to hold.

Xoi1=a+by,—x2, 9
i Yo™Xn 3 D. Farey tree structure
Yne1=Xn, (9b) Finally, we note that in all the cases we studied in this
_ ) section, the Farey tree structure we found in the prototype
with the often studied parameter values 1.4,b=0.3. The  case of Sec. Il is still partially present. For example, in Fig.
perIOdIC orbits of this map were found using the method Of:]_o we see the maximizing period as a functionryofor the
[12], and the function we averaged was Heénon map example above. There are “step” transititas
_ in Sec. Ill) from period 1 to 2, 2 to 4, and so on; however, in
Fy(xy)=cod (m/2)(x+y—7)]. (100 the insets we see that the high-perigd intervals near

There are many fewer orbits of a given period for this mapyzo'3 are created by Farey summation: between the period-

than in the previous cases, thus orbits of period up to 30 Wer% interval and the period-6 interval there is a period-7 inter-

val, between periods 7 and 6 there is period 13, between 7
and 13 there is period 20, and on either side there are periods

24 27 and 33; also between period 6 and 12 there is period
18. Similarly in the other cases we see that there can be step
20 . transitions between low-periog intervals, but that when
high-period intervals are created they follow the Farey pat-
16 | 1 tern. Since the se$,, with optimal nonperiodic orbits results
from the limit as the period goes to infinity, the occurrence
p 2l ] of the higher-period orbits in a Farey sequence suggests that
our arguments in the case of Eq®) and (3) that S, (if
8l i i | nonempty is a Cantor set with fractal dimension zero and
— | B that optimal nonperiodic orbits have metric entropy zero
al carry over to the other cases.
0 V. FURTHER DISCUSSION

6 01 02 03 04 05 06 07 08 09 In the past, experimentalists working on controlling chaos

ol have often experimentally determined only low-period un-

stable periodic orbits embedded in the chaotic attractor. This

FIG. 9. Period that optimizeé~,) as a function ofy for the  is partly because the determination of many high-period un-
Kaplan-Yorke mag7) and performance functio(8). stable periodic orbits can be very demanding and in many
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cases not feasible. Our work in this paper indicates that there Let|, be the periodp interval depicted in Fig. 7. Numeri-
will usually be little gain, and often none, by going to the cally we observe that eadh for p=2 corresponds to the
considerable effort of determining many more embedded peperiodp orbit of the tent map

riodic orbits.
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APPENDIX A . . .
To estimate the difference betwegp and the accumulation

In arriving at Eq.(4) we use the numerical observation point .. of the intervalsl,, asp—c«, we make a series of
that the width iny of an interval with an optimal periog- approximations to the difference between the two sides of
orbit scales ap2~P for largep. In this Appendix we derive Eg. (11), retaining terms of order 2° but throwing away
this result analytically for Eq<5) and(3), and indicate how terms of order 22P. Multiplying both sides of Eq(11) by
our analysis extends to the case of E@.and(3) as well.  p(p+1) and subtracting yields

P k+1 p oK
0=p2, FV(W ~(PrD 2 Pyl e
p 2k+l 2k
ZKZ:L [Fy(m +pF7(W —(p'f'].)F7 m

~ 2, {Fy(0)+27 PR (0)+ pLF,(27P) = 2K 2P~ IR (2XP) ] (p+ 1)[F (2X P) =24 2PF (2% P)]}

p
Substitutingn=p—k we proceed to get

p—1
0~ > [F,(0)—F,(27M+27PF/(0)+(p+2)2 P "k (2]
n=0

~ 2 [Fy(0)=F,(2™M]+ X 27"F(0)+p2 PF(0)+(p+2)2 P 1 > 27"F (27"
n=0 n=p 4 Y n=0 4
=n§0 [Fy(O)—FV(Z‘”)]WL(|0+2)2‘p‘1n§0 27"[F(0)+F(27M].
In the limit asp— o the above approximation becomes exact, and thus when., ,

go [F,(0)—F,(2~™]=0.

It follows that

Sho? "TF(0)+Fi2 "]
Sn-d (AV)F (0= (GlapF2 ]| _

Yo~ ')’oo”_(p*'z)zipil
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and consequently that two periodic orbits. This is the situation for optimal orbits of
B Egs.(2) and(3) in the Farey tree; see Fig. 6. For larige we
Yp-1~ ¥p~Kp2~P, ask how many distinct strings of lengthone can form from
where blocks consisting of the, andp, strings. For simplicity we
assumeN is an integer multiple op, . We divide a string of
Eﬁzozfn[p;(o)Jr,:;(zfn)] length N into substrings of lengttp, and ask how many
K=—% — . ways each substring can be divided into the building blocks
2250l (9/9Y)F(0) = (dldy)F(27T)] =7, of typep, andp, . We allow for partial blocks at each end of
the substring, and do not worry about these partial blocks
In the case of Eq¥5) and(3), we obtainK~0.234. matching up from one substring to the next—thus our even-

An analogous argument can be made in the case of Eqfsal count of the number of distinct strings of lengdthwill
(2) and(3). In Fig. 1 we observe a similar sequence of inter-pe an overestimate.
vals |, accumulating to the left towargi~0.14955. Though The number of possible partitions of a substring of length
there are higher-period intervals intervening between conp, is bounded above by the number of possibilities for the
secutivel,, we find the widths of these higher-period inter- starting block(or partial block times the number of possi-
vals to be negligible compared with the widths of the sur-pjlities for the ending blockor partial block. This is be-
roundingl,, . Repeating the above analysis yields in this caseause the spadéf any) between these blocks must be filled
S% 27ME(0)—F(2°")] with blocks of typep, . The starting block can be a block of
_ n=1 Y Y ~0.150. type p, or a partial block thereof with length
ZEﬁ:l[(a/ay)Fy(O)—(r?/&y)Fy(Z_”)] Y 1,2,...p,—1, giving p, possibilities. Likewise there are
* Py, possible starting blocks or partial blocks of typg, for a
Similar but more complicated formulas can be derived fortotal of p,+ py, possibilities. Similarly there arp,+ p;, pos-
the values oK corresponding to other steplike cascades ofsible ending blocks, for a total of, at mosp(+p,)* pos-
y intervals in Fig. 1; remarkably, our numerical results indi- Sible partitions of a given substring of length .

K

cate that all such values &f are near to 1/6. This analysis gives an upper bound @k - p,)*\'Pa pos-
sible strings of lengthN when the building blocks have
APPENDIX B lengthsp,=p,, . The entropy in this situation is thus bounded
above by

We consider two periodic orbits of length, and p,,
where we take the conventign,=p,, and assume the two 1 2
orbits are encoded symbolically by strings of zeros and ones. N/NL(Pat pp)?N/Pa]= E'”(Da*‘ Pb)-
We wish to obtain an upper bound on the metric entropy of
an orbit that spends all its time tracking one or the other ofThus, asp, is allowed to approach infinity, this expression
these orbits, so that its symbolic dynamics can be formed bgoes to zero, and we conclude that the entropy of a nonpe-
concatenating successive copies of the symbol strings for thiodic orbit is zero.
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