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Regular and irregular features of classical motion described by a quadrupole boson Hamiltonian
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A fourth-order quadrupole boson Hamiltonikhis treated semiclassically through a time-dependent varia-
tional principle. The variational functions are coherent states for boson operators. In the parameters space of
H there are regions, conventionally called “nuclear phases,” determining specific static properties. Several
ground states corresponding to different equilibrium shapes are found as static solutions of classical equations
of motion. The mechanism of destroying the tori of regular orbits and the onset of chaos depend on the nuclear
phase. The regular and chaotic motions are analyzed in terms of Poseiens and the largest Lyapunov
exponent][S1063-651X96)10309-3

PACS numbd(s): 05.45+b

I. INTRODUCTION the classical limit, the geometrical moddl6,20,22,21.
In a previous pap€g25] we initiated the study of classical

Many achievements of nuclear many-body formalismsproperties of a fourth-order quadrupole boson Hamiltonian.
such as the time-dependent Hartree-Fock formalism, th#e were interested in several aspess:static features(b)
BCS treatment of the pairing interactions, the random-phasBPA-like equations for quadrupole intrinsic degrees of free-
approximation(RPA), and boson expansion methods have adom, andc) quantization of classical orbits. In another paper
classical origin1-9]. Indeed, the solutions for a stationary [26] we proved that the ground state and the two RPA one-
eigenvalue problem associated with an approximated manyhonon states are just the generating functions for the CSM
body Hamiltonian can be obtained at the classical level byormalism. In this way, the CSM acquires a classical foun-
solving a set of time-dependent variational principle equadation. Here we continue the project of the classical descrip-
tions. Sometimes the quantal results obtained by some agon of quadrupole degrees of freedom, pointing out possible
proximate procedures may be improved by the requantiza|ations of various classical “phasegéuch as spherical,
tion of the classical motion. In general, results allowing for deformed, andy unstable equilibrium shapeand the onset
correspondence of quantal and classical features have bee,g.haos. We address the question whether the onset of chaos

most attractive goal for physicists working in this field. carries any “fingerprint” of nuclear phases. Starting with an

AIt(_arnatlver, th_e huclear structure and dynamics can bei'ntegrable limit, deviations leading to various phases are pro-
described by treating only a few degrees of freedom of col-

lecti . duced by an order parameter that in fact, decides to what
ective character. Such a concept was introduced by Bohr o N
and Mottelsor{10] by quantizing the classical motion of the exten_t the “order” and chaos share.the phase space. The
harmonic liquid drop(LD). Although the LD model is very cla§5|ca|.features genera‘ged, by no.nl|near dynamics are de-
successful in many conceptual respects, it is not able to d&cibed in terms of Poincaresections and the largest
scribe the full picture for the quadrupole collective motion, -yapunov exponer{27-34. Corresponding quantal aspects,
Indeed, there are plenty of data whose interpretation is poguch as Poisson versus Wigner distribution 14@5-39 for
sible only by going beyond the harmonic picture. This stimu-level energies statistics, are postponed to a future paper.
lated alternative formalisms dealing with highly anharmonic ~ The article is outlined as follows. The model Hamiltonian
terms in the model Hamiltonian. Here we enumerate onlys treated through a time-dependent variational principle for-
few of the attempts that contributed to a deeper understandnalism in Sec. IIl. Here we also describe the static properties
ing of nuclear structure in terms of boson degrees of freeas well as the RPA-like solutions of the classical equations
dom: the vibration-rotatioVR) model [11], the Greiner- of motion. The regular and chaotic orbits are analyzed in
Gneus model[12], the interacting boson approximation terms of Poincarsections in Sec. Ill. A possible interpreta-
(IBA) [13], and the coherent state mod€ISM) [14]. tion of the onset of chaos as being caused by an interfering
In contrast to the LD and VR models, which are classi-effect of several resonances is presented. The maximal
cally motivated, some of these nuclear models, such as theyapunov exponent is calculated for various nuclear
|BA, are of quantum Origin. This has led to eXplOfationS Of“phases” as a function of classical energy and order param-

the classical limits through a dequantisation procedure. Fagters in Sec. IV. The final conclusions are drawn in Sec. V.
example, the classical limjtL5] of the IBA model has been

studied by several authof46—23. In this way it was pos-
sible to describe not only the static properties, corresponding;; THe MODEL BOSON HAMILTONIAN AND ITS TDVP

to various symmetries, but also the excited states by quantiz- TREATMENT
ing the classical motion. Moreover, at the classical level, the
connection between different quantal approadid$can be Here we shall investigate some semiclassical features of a

established. To give an example, the IBA model yields, inparticular fourth-order quadrupole boson Hamiltonian
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H:Al[b+b]0+{A2[b+b+]o ZM:uM+iUM’ Z:::UM_iUM, (24)

ththt tht
+As([b"b7b" Jo+3[b b7 b]o) the equations of motions read

+Aq(z[b"D Jo[bTb

1oH . 10H
Up=% —, =—=—
+[b"b"Jo[b blo)+ H.c} +Ay(3 [b b Jo[bblg 2w " 24w
+[b*[b*b]ob]°). 2.1 1 1M ,
Y25, U2 douy @5

The quadrupole bosons are denoted ko, with
—2=m=2. The coefficient®,, with 1<m=4 are consid-
ered to be free parameters.

The Hamiltonian(2.1) differs from that used in a previous

where’H denotes the classical energy function defined as the
expected value ofl:

publication[25] in that Eqg.(2.1) includes an additional term H=( R =A’ (v2+ 202) + A(UZ+ 2u2
multiplied byA,. As shown later on, this term is necessary to (UH[Y) =A'(vo+2v2) + Al 2u3)
approachy unstable regimes. We study this Hamiltonian +2BUg(6us—ud)+ D (uz+2u3)?. (2.6

since it is the simplest fourth-order boson Hamiltoniaa.,
with a minimal number of parametgr¢hat enables a full The factorsA,A’,B,D are related to the coefficients,, in
description of various nuclear equilibrium shapes. This asthe HamiltonianH by the expressions

sertion becomes obvious by writing in terms of quadru-

pole shape coordinateg and their conjugate momenta.

This is done in the Appendix. From there one notes that A=

1 1 16
=(A1T2A;y), A'=—=(A1=2A;), B=-—=A;,
does not contain coordinate-momentum coupling terms. Vo

V5 V35
Also, the fourth-order terms in momenta are missing. Of
course, the classical picture is changed if one takes another D— SA 5
boson Hamiltonian. Also for a realistic description of nuclear T 2.7

spectra a more complex boson Hamiltonian is necessary.
However, the simple structure éf suits the purpose of this |t can be easily checked that théZQM)M(uM,U#) with
work, i.e., to investigate the dependence of chaos onset op=0,2 are canonically conjugate coordinates, i.e., their

nuclear phases. Moreover, among parameters defiling equations of motion are of Hamiltonian type, wit2v, and
there is an order paramet® that describes the transition 2, taken as linear momenta.

from order to chaos. . ' The explicit form of Eqs(2.5) are
Some properties oH can be obtained by solving the
equations of motion derived from a time-dependent varia- Uo=A"vg,

tional principle(hereafter the unité =1 will be used

t 9
5f0<¢‘H—IW

If the variational stategy) span the whole boson space, U=—(AUy+6BuUgu,+4Du3+2Dudu,). (2.9
solving Eq.(2.2) is equivalent to solving the time-dependent

Schralinger equation. Since this is not possible in practice Note that?{ is a constant of motion
we chose as the variational function, the coherent state

vo=—(AUg+6BU3—3BU3+2Du3+4Dugu3),

z//>dt’=0. 2.2

UZZArvz,

H=const. (2.9
| ) =exd zobg —Zgbo+25(b; +b15) =23 (b +b_5)]|0),
2.9 Equation(2.9) defines the energy surfa&of classical dy-
namics. Stationary points of the energy surface are particular
where|0) is the vacuum state for the quadrupole bosons andplutions of Eqs(2.5). Moreover, some of these are energy
z,(n=0,2) are complex functions of time. The correspond-minima.
ing complex conjugate variables are denotedzpy The set Equations(2.8) are highly nonlinear and therefore only
of functionsz, ,z:; defines four-dimensional classical phase-numerical solutions are possible. However, trajectories lying
space coordinates. The motivation for choosing such a triatlose to a given minimum point might be reasonably well
function as well as the set of propertiestdfthat might be  described by the linearized equations of motion, which are
described in this restricted space are given in R&5]. The  obtained by expanding the right-hand side (2f8) around
time-dependent treatment has the advantage, over the stiftat point and retaining only the linear terms. The resulting
tionary ones, that besides the static properties, informatioequations are nothing else but the RPA equations for the

about the dynamics of collective motion is obtained. intrinsic quadrupole boson degrees of freedom. The station-
In order to fix the notations, the formalism of R€R5]  ary points and RPA solutions are described in Secs. Il A and
will be reviewed briefly. In terms of the real, and imagi- 1l B, respectively, while the following subsection is devoted

naryv, components of the phase-space coordinates to some classes of exact numerical solutions.



3266 V. BARAN, A. A. RADUTA, AND D. S. DELION 54

(a) D (b) D

- -unstable
1 | :
B ) )I L/
111 i)/
1 i
L !
N 0.4 Bl k  m

NI y 5 oblate prolate

E( MeV |

0.5 0.632 0.8 B B

FIG. 1. (a) Paraboldb = EBZ (full line) and abscissa axis define
three regions, in the upper plafme=0, which are labeled as fol-
lows: 1, in any point of this region, the potential energy has only
one minimum that is spherical; 11, there are two minima, one spheri-
cal and one deformed prolate; Ill, there are two minima, one spheri-
cal and one deformed oblate. Regions Il and Ill are cut in two
pieces by the parabola=B? (dashed ling (i) The spherical mini-
mum is higher than the deformed or{g) The spherical minimum
is lower than the deformed one(b) Phase diagram for
A=—A’=1. In the sectorD=0, B>0 there are three prolate L
minima for the potential energy, while f@=0, B<0 the potential e VAU SN O SVVEN FESSVIRFES SVEVSESS ESRS SIS SR

energy has three oblate minima. e e o2 1 " : 2 ’ o
A. Static solution 5
=
Without any loss of generality we can confine our consid- &
erations to the cases 12
|A|=A"=1. (2.10 10
In what follows the two solutions of this equation are con- i

sidered separately.
(1) The parameteré& andA’ are equal:

A'=A=1. (2.11
If the remaining parametei® andD satisfy the equation

9B2—-8AD=<0, (2.12
the energy surface has only one stationary point and this is a T
minimum whose energy is equal to zero irrespective of val- -4
ues taken byB andD. The corresponding state describes a
spherical shape. When the relati¢h12 is not obeyed, be-
sides the spherical minimum, another six stationary points o , B )
exist: three saddle points and three minima. Any of these six tirIaGdazs S‘)ffr?étgg 'cA;B_I%o? ;ezcé'%”:ﬁ;g izf:r?lercg)?’llesirfﬂg?i; |
stationary points define a deformed shape. Classical stat@éonimum For B=0.632 .there are .two de enera¥e mininlza while
corresponding to these minima are degenerate. Saddle poi P e - . 9 .

? . . or B=0.8 the deformed minimum is lower than the spherical one.
are Cha_racterlzed_ by the same energy. These QSItZyatlons % ForA=—A’'=1 a sectioru,=0 of energy surfaces is shown as
syntheS|ze_d in Fig. (.h)’ where .th.e parabolé)-z sB° and anllfunction ofug for three values oB. The right minima are also
absciss® =0 determine thre(_-:‘ distinct phases: two deforme inima for the energy surface, while the left minima are saddle
ones(Il and Ill) and a spherical ond). In region Il, only

- 1T ! points forB+#0 and oblate minima foB=0.
prolate shapes appear, while in region lll oblate shapes are

obtainable. Al=—A=1. (2.13

The relative positions of spherical and deformed minima
depend on sgi?—D). Thus the parabold=B? deter- The phase diagram for this case is plotted in Figp).IWhen
mines two regions labeled) and (ii). In domain (i), the  B#0 there are seven stationary points: a maxintime ori-
spherical minimum corresponds to an energy that is smallegin), three saddle points, and three deformed minima. For
than that determined by the deformed minimum, while in theB>0, the corresponding shapes are of prolate type, while for
region(ii) the two energies ordering is opposite. On the bor-B<0, the nuclear system exhibits an oblate shape. When
der D=B?2, the two minima are degenerate. In Figa2for ~ B=0, a y-unstable regime is reached. Indeed, the classical
a fixed value ofu, (=0), the potential energies correspond- energy has the ellipse
ing to the pointsP,,P,,P3 specified in Fig. 1a) are plotted
as functions oluy, respectively.

(2) The parameterd’ and A have opposite signs:

-A
325u3+2u§=ﬁ, (2.14
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as a continuous degenerate minimum. Here, like in Ref. 15anonical transformation one can always choose two pairs of
the following relation between phase space coordinates amgblar radii and angles as conjugate coordinates. Hence, such
nuclear deformations is used: a system evolves on trajectories lying on a torus. These tra-
jectories are conventionally called regular.
i For B=0 it can be easily checked that up to a multipli-
Up= Bcosy, UZZEIBS'”% (219 cative constant the constant of motih19 is given by

In Fig. 2(b) the energy surfaces, corresponding to three dis- by =12(Uguo— Uzv0). 3.9
tinct values for the(D,B)-parameters, are sectioned by the
planeu,=0. The resulting curves have two minima and one
maximum. It is worth noting that g unstable situation is
characterized by a prolate-oblate shape coexistence. Mor
over, the potential energy does not dependyorror B#0,
the left-hand side minima, shown in Fig(k, are saddle
points for the energy function.

To what symmetry does this constant of motion correspond?
To answer this question we note that the present procedure
describes the intrinsic motion of the quadrupole degrees of
freedom that span a two-dimensional space. Therefore, our
problem is equivalent to that of two interacting oscillators
system. The mapping of the boson operators onto the oscil-
lator creation operators is achieved by

B. The RPA treatment b, +b’,

+ + +
The equations of motiofR2.8) can be easily linearized by a,=by, ay 2
expanding their right-hand side around a deformed mini-
mum. For the sake of simplicity, here we consider an axially Some time ago, a schematic model consisting of a two-
deformed equilibrium shape described by the coordinatelimensional oscillator potential plus a spin-orbit term, the
Ug. As shown in Ref[25], the linearized equations have two mean field, and a special quadrupole-quadrupole interaction
solutions describing3- and y-like oscillations. The corre- was proposed by Moszkowski in R¢#0]. By varying con-

(3.2

sponding energies have the expressions tinuously the relative strengths of spin-orbit and quadrupole-
o . ° 2 1o quadrupole interactions, the interplay between single-particle

wo=[A"(A=6BUy+6DUy) ] and collective features has been studied. Although the mo-

o o /2 tion is taking place in a plane, this schematic model is able to
w,=[A"(A+6BUg+2D) ] (216 simulate many predictions of realistic models. This is pos-

sible since the symmetry group;, describing rotations in

Taking into account the explicit expression wf [15], one a fictitious three-dimensional space and having

finds a very simple equation for these energies:
1
w5—3wi=6AA". (2.17 szz(a;ax—a;ay),

Hence, fory stable nuclei, wherdA’>1, the following

ordering equation holds: 1
9 €da Ty=§(a;ay+a;ax),

wy> . (2.18
When AA'<0 and B=0, a y unstable situation is + 4
reached. The potential energy does not dependyaand T=5(acay—ayay) 3.3
therefore the " oscillation” becomes spurious, which re-
flects, in fact, the existence of a constant of motion as generators. Since the classical Hamiltonian describes a
planar motion, theR; group and its subgroups might be
¢,=const, (219 good candidates for investigating its symmetries. Indeed, it is

. . worth noting thate ., is just the expected value af,:
with ¢, the conjugate momentum of. Moreover, for g thatd, is | P z

s b, = (T ¥). (3.9
_AA/>?' (220 This reflects the fact that fd=0, the commutation relation
the ordering relatiorf2.18) is changed, i.e., [H,T,]=0 (3.5
w,<wg. (2.2  holds for the quantal system. Therefore the constant of mo-

tion ¢, corresponds to the invariance bif to the rotation
aroundz axis in a fictitious space.

For B#0, the symmetry corresponding to the constant of

In this section we shall analyze the classical trajectoriesnotion ¢, is broken and moreover there is no new symmetry
satisfying the exact equations of motit8). In the preced- replacing it. Consequently, the system becomes non-
ing section, two distinct classes of stationary points characintegrable. Such a system is moving on trajectories that are
terized by Eqgs(2.11) and (2.13 respectively, were consid- very sensitive to any small change of initial conditions. Be-
ered. In both cases, the system is integrab®=f0. Indeed, cause of that the motion may acquire a chaotic behavior. A
there are two constants of motioh:and¢,, . By means of a  good signature for regular and chaotic trajectories are their

lIl. REGULAR AND CHAQOTIC FEATURES
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intersections with the surface of Poincaection defined as in Ref.[41]) is “no,” i.e., the system is not integrable. This
follows. Consider the system initial position at the pointsuggests that the class of regular orbits defined by means of
P v®>0uf’ v with v, chosen positive and so that the Poincaresurface of sections is larger than that of orbits
PeS, whereS is defined by(2.9). The equations of motion characterizing integrable systems.

provide the solution for the classical orbit To answer the question how the chaos settles in this case,
we invoke here the arguments given in R&fl], where the
Up=Uo(t), vo=vg(t), Uz=Uy(t), vo=va(t). transition from regular to chaotic regime is attributed to the

(3.6)  Hamiltonian amplitude instability, which, in fact, is pre-
dicted by the Kolmogorov-Arnold-Moser theorei2—44.

We record the times Indeed theB=0 Hamiltonian may be expressed in terms of

b ot = .. two action variables canonically related to the two constants
tostystpos<- - < 3.7 . .
of motion. The third-order term can be expressed as a Fou-
when the conditions rier series with the general term of the type cuos(;
_ +ndg,), where ¢, and ¢, are the angles conjugate to the
Ug(t)= ug), vo(t)=0, H=E (3.8  two actions, respectively. Increasing the energy, several reso-

nant terms depending on frequencies may appear and favor
are fulfilled. Fort=t, the trajectory passes through the planethe distortion or even the destruction of some tori. In this
(uz,v,) at the pointP, = (u,(ty),v,(ty)). For a regular orbit, case, the space that was previously occupied by tori is filled
the Py are distributed sequentially on a closed curve, whilenow randomly by chaotic trajectories.
for a chaotic orbit, the pointB, fill densely and randomly a Let us analyze now the behavior of the classical trajecto-
certain region of the plane. ries when —A=A’"=1B=0.2,andD=0.4. The corre-

Now let us first consider the case oA=A’'=1, sponding potential energy is that represented in Fig) By

B=0.8,D=0.4, and three energy surfaces corresponding tehe dashed line. From there it is obvious that such a situation
E=0.025,0.05, and 0.07 MeV. In all cases, the surface ofs close to ay unstablepicture. The saddle point energy, for

section is defined by the restrictions this case, is-0.27 MeV and the depth of the secondary well
is —1.58 MeV. In Figs. &), 3(g), and 3h) the Poincare
Up=0, vo>0, H=E. 8.9  surface of sections

The results are plotted in Figs(é8—3(c), respectively, for
several initial conditions. The saddle point energy is
E,=0.075 MeV. As shown in Fig. (8, when the energy .
value is far away fromE, the trajectories are regular. By With E=-0.3,0.0, and 1.0 MeV and
contrast, when the energy approaches the saddle point vale=1-25,0.0, and 0.0, respectively, are plotted. Note that
the chaos appears. The closer the energy is to the saddp€low the saddle pointFig. 3(f)], the classical motion is
point, the larger the volume of the phase space filled witr92in regular. Above the saddle point, two effects are to be
chaotic orbits. This conclusion hinges on the comparison oftoted. One is the distortion of the tori and another one is the
Figs. 3b) and 30). In each of the three situations mentioned @PPearance of the chaotic motion. Moreover, the chaotic
above, the motion takes place around thepha;e-space \_/oll_Jme is an increasing functlon_ of energy.
spherical minimunrof the energy surface. E|gure 3a) indicates that tra!eptor|es associated with the
Keeping the same parametgksA’,B,D as before, con- motion arpund the sph.er|(_:al minimum of the ;urface energy
sider the motion in the potential well corresponding to theencwcl_e five §tab|e per'lodlc.trajectorles tha} prick t'he section
deformed minimunshown in Fig. 2a). In Figs. 3d) and plane in the fixed elliptic points of the Poincarepping. By

vo=0, H=E, (3.11

3(e) the Poincaresurface of section defined by contrast, for the case corresponding to the deformed mini-
mum, according to the Fig.(8), a single elliptic point exists.
up=2.5 vo>0, H=E, (3.10 The situation described in Fig(f3, which deviates only

slightly from a y unstable picture, exhibits two elliptic

with E=0.0 and 0.95, respectively, is shown. When thepoints, each of them being surrounded by another three sat-
value of E is smaller than that of the saddle point energyellitelike elliptic points reflecting the presence of active reso-
Es, all trajectories are regular. F&>Eg chaotic trajecto- nating terms in the classical Hamiltonian. A common prop-
ries, surrounding several minima of the energy surface magrty of all Poincaresections presented above consists of their
appear. IfE>Eg and initial conditions are chosen so that theinvariance with respect to the transformation, (v,)
trajectory encircles only one minimum, the motion is still —(—u,,—v,). Obviously this feature is inherited from the
regular. Finally, we note that there are portions on the energglassical energy functioft{. Although in Fig. 3a) the un-
surface where a regular motion exists, irrespective of thatable trajectories fill a phase-space volume equal to zero
value of E. This might suggest that even for the situation (within the computer erroyghe curves’ distortion reveals the
whenB#0 there exists a second constant of motion. incipient stage of a resonant structure for the nonintegrable

Note that wherB+0 the third-order boson term is acti- system. From Fig. ®) one sees that the chaos is accompa-
vated and consequently a classical cubic term in coordinatased by two effectsi(a) the decrease of the number of the
appears. Moreover, the expression of this new term is iderregular orbits encircling the stable trajectories d@bdsome
tical to the cubic term appearing in the hten-Heiles Hamil-  satellite islands appearing in the vicinity of stable trajecto-
tonian[41]. Therefore the answer to the question whether amies. These islands reflect the presence of high-order reso-
additional constant of motion exists f8 0 (already given nances. The fact that for some parameters and energy, order



54 REGULAR AND IRREGULAR FEATURES OF CLASSICAL ... 3269

0075 -

01

-0.05

015 |

u

v
V2

I A O\
N WA

1 1 I 1 I 1 1 L
_ L2 | - L !
= - ot — X 1 15 6.2 t !
02 -015 -01 -005 O 005 0 [ 2 o3 o2 o1 o o1 o3 o3
2

1 1 I 1 1
-1 -0.75 ~05 ~0.25 0 025 05 0.75 1 =15 -1 ~0.5 0 05 1 1.5
2 u

2

FIG. 3. (a) Poincaresurface section defined by the equatiogs-0, v,=0, and<=0.025 MeV. The parameters involved in the model
Hamiltonian areA=A’'=1, B=0.8, andD =0.4. (b) Poincaresurface section defined by the equatios=0, v,=0, and=0.05 MeV.
The Hamiltonian parameters are the same agajn (c) Poincaresurface section defined byy,=0, v,=0, and H=0.07 MeV. The
Hamiltonian parameters are the same again (d) Poincaresurface section defined hy,=2.5, v,=0, andH#=0. The Hamiltonian
parameters are the same agan (e) Same as ir(d), but % = 0.95 MeV. (f) Poincaresurface of section defined hyy=1.25, v,=0, and
‘H=—0.3 MeV. The Hamiltonian parameters were taken-a&=A'=1, B=0.2, andD=0.4 MeV. (g) Same as inf), butuy,=0 and
H = 0 MeV. (h) Same as ir(f), butuy,=0 andH = 1 MeV.
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and chaos share the phase space suggests that for the corre-
sponding quantal system the energy spacings obey a law that
is intermediary to the Poisson and Wigner distributif3g].

It is fair to say that the motion of our nuclear system around
spherical, deformed, angd unstable equilibrium shapes have
Poincaresections that are topologically distinct.

IV. LYAPUNOV EXPONENTS

In this section we study the orbits’ character, regular or
chaotic, from a different point of view, namely, by calculat-
ing the largest Lyapunov exponent, hereafter denoted by
Amax- The regular orbits are characterizedXyy,,~0, while
Amax>> 0 indicates a chaotic trajectory. The largest Lyapunov
exponents for three phases—spherical, deformed prolate, and
v unstable—are presented and some specific features are
pointed out. For an orbit surrounding the
spherical minimunshown in Fig. 2a), we plotted, in Fig.
4(a), the largest Lyapunov exponent as a function of energy
(the value of the constant of motidk) for two values of
B. As we have already seen, this controls the transition be-
tween different phasepherical deformed ang unstable
deformed. These values arB=0.5, for which the potential
energy has only one minimum, am= 0.632, when the po-
tential energy exhibits two minima. The remaining parameter
D is taken to be equal to 0.4. To calculatg,,, the method
described in Refd.28, 30| was used.

One notes thak 5 IS an increasing function dB. This
means that for a given energy, the largeis, the larger the
chaotic volume of phase space. It is worth noting that the
slopes of the two functions, shown in Figa# have a jump
for an energy value equal to the saddle point enefgy
(=0.075 Me\). While for E<E the slope is very large,
indicating a rapid growth of chaos with energy, t6r-Eg,

Amax IS Slowly increasing with energy, suggesting that the
chaos occupies almost the whole phase-space volume. In
Figs. 5a) and 8b) for two values of excitation energyvith
respect to the lowest minimygthe B dependence of . is
studied. Three common features of these figures are to be
mentioned.(i) For small values oB, \ 4 is small. Obvi-
ously this is a reminiscence of tlee=0 case, when the sys-
tem is integrable. AB=0.2 MeV the slope jumps to a larger
value, showing a rapid development of the chaos, reaching a
plateau atB=0.44 MeV that lasts until the valuB=0.59
MeV. (ii) Starting withB=0.59 MeV[which marks the tran-
sition from the situation when the potential energy has only
one (spherical minimum to that with two minima
(one spherical and one deformdd the slope of \ .
jumps to a larger valudiii) The third common property is
the discontinuity of the\ . for B=0.8. This indicates a
transition from a chaotic to a regular regime and is caused by
the fact the orbit is trapped by the well of the deformed
minimum. This critical value oB is larger for larger values
of excitation energy.

Now let us consider the case efA=A’=1, which al-
lows, by changingB, the study of theprolate-oblate transi-
tion through ay unstable regime. In Figs(d)—4(d) we plot-
ted A nax @s a function of energy, for three valuestafWhen
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FIG. 4. (a) Largest Lyapunov exponent plotted as a function of
classical energy, for two values B8f The parameteD is taken to
be equal to 0.4, whil& andA’ are equal to 1(b) \ .« IS plotted as

B is large there is a tendency for a plateau that reflects a function of energy for a fixed set of parametersA=A’
saturation effect indicating that the distance between the cho=1,8=0.2, andD=0.4. (c) Same as ir(b), but B=0.3. (d) Same
sen orbits approaches the maximum value allowed by thes in(b), butB=0.4.
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08 x ‘ ; f shape phase transitions such as spherical-prolate, spherical-
E, = 3 MoV ) oblate, and prolate-oblate viay unstable regime, respec-
B er 3 ] tively, by a smooth variation of an order paramegefwhich
Fouf ﬂﬂ-@g 4 multiplies the cubic term We studied the onset of chaos for
ﬂ@ﬁﬂ@ each of these phases. We found that Box 0, the system
oz p38e? 1 was integrable and therefore the classical motion is regular.
o §§§§§§ , ‘ 8555355 | Although the classical Hamiltonian contains fourth-order
00 02 o4 06 o8 Lo terms, an analytical solution for the second constant of mo-
(b) tion (the first one being the energwas possible. This cor-
_ o8 Be =0 by 3 . responds to the symmetry expressing the classical Hamilto-
%0.4- ﬂ@@@@ ] nian’s ?nvariance against rotations around an axis
< @ﬁ@@@@ 3 perpendicular to the planaig,u.).
02l 5 o2 ] For B#0 the chaos onset was studied in terms of Poin-
@Nﬂ 5553 caresections. The surface of section comprises the points of
0.9 oz oa Py T 7o trajectories belonging to the planayuv,) for a fixed value

By of ug andvy=0. For every phase one finds a specific set of
stable and periodic orbits encircled by tori of regular orbits.

0.5 T T T T

Also the resonances appearing in the amplitudes of the
L 04F Br =S Mev ° - angle-dependent terms of the classical Hamiltonian, ex-
2 osf % 1 pressed as a function of action-angle pairs of conjugate vari-
< % % % % } % % ables, are different for different phases. Such resonances are
02 % % 7 . . .
9 accompanied by some tori destruction and chaos onset. The
o1 ¢ 33 ! % 1 volume in the phase space that is governed by chaos depends
0gl- ~ - - — - ” i 55 on both the energy and order paramederfor a given en-
05| } ' i ‘ ) ergy, the motion amplitude plays a decisive role in determin-
o4r E. = 5 Mev d) ing the character of the given orbit. To be more concrete, the
503_ ] i P ? I - ] trajectory is regular even for an energy larger than the saddle
:g ' ) te ¢ 7 point energy if the initial conditions are so that the motion
02r 5 53 J ¢ b SR takes place around the deepest minimum. By contrast, if the
S orbit surrounds several energy surface minima, i.e., the mo-
, ‘ ‘ . } tion amplitude is large, its chaotic character prevails. Global
%40 0.1 02 0.3 0.4 05 information about the distribution of the chaos and order in

B(MeV)

phase space given by the largest Lyapunov exponent was

FIG. 5. Largest Lyapunov exponent plotted as a functioBof found to be consistent with our Poincasections. o
for two values of the excitation energga) E,=3 MeV, and(b) Before closing, we would like to mention that a similar

E,=5 MeV. The remaining parameters are the same as in Fay. 4 Study in the IBA Hamiltonian was performé@2]. By con-
(©) Amax is plotted as a function oB for an excitation energy trast, our model Hamiltonian does not involve thdoson
E,=3 MeV. The coefficients of the model Hamiltonian are and does not conserve the number of bosons. If the terms of
—A=A'=1, andD=0.4. (d) Same as ir(c), butE,=5 MeV. third order are missing, the system is integrable even though
it contains high anharmonic terms, including some that do
finite size of the phase space. For two excitation energiesjot commute with the boson number operator. In our case
A max iS plotted versusB in Figs. 5c) and gd). The largest the order parameter B ( the strength of cubic termswhile
Lyapunov exponent has a local minimum 8=0.14 and a for the IBA Hamiltonian, the parametgy, the strength of the
global maximum inB=0.25 forE,=3 MeV andB=0.325 anharmonic quadrupole moment, dictates the transitions be-
for E,=5 MeV. For E,=3 MeV a sharp transition from a tween different phases. While in Rd2] the analysis of
chaotic to a regular regime takes placeBat 0.325. Such a chaos and order is confined to Lyapunov exponents, here we
transition is reached more slowly fé,=5 MeV. Compar- have also studied the Poincaections that give information
ing Figs. %c) and Jd) and Figs. %) and Jb), respectively, about the local structur€haos and ordgof the phase space
we note that in the former case the transition to the regulags well as about the dynamic of developing the chaos and
regime is reached for smaller value Bf destroying the order. In Ref32] the plot of Poincaresec-
tions was not possible since the classical treatment accounts
for all six degrees of freedom. However, by using a Monte
Carlo procedure, the authors calculated the volume of the
We have studied the classical static and dynamic featurgshase space occupied by chaos. A classical Hamiltonian de-
of a particular fourth-order boson Hamiltonian. The couplingpending on the3 and y nuclear deformations has been stud-
of coordinates and momenta was ignored. Only kinetic enied in Ref.[33], where their criterion for the onset of the
ergy terms that are quadratic in momenta are considered. Thehaotic motion was the negative curvature of the potential-
cases when the crossover terf,E0) and harmonic term energy surface. However, this only characterizes the local
(A;=0) are missing were treated separately. These Hamilinstabilities and is not suited for the behavior of trajectories
tonians allow for the description of various equilibrium surrounding two local minima. Finally, one may say that the

V. CONCLUSION
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present paper provides a full picture of the competition be-H= A+ B(7 7)o+ C(aa)o+ Dy(@aa)y+ Dy aa)o(aa),.
tween chaos and order for a nonintegrable system of two (A2)
degrees of freedom that corresponds to a fourth-order quad-

rupole boson Hamiltonian describing the nuclear surface mo-

tion. These features are important for a realistic descriptiorrhe coefficientsA, B,C, D5, D, are related to those defining
of the coupling between surface fluctuations and other dethe hoson Hamiltonian by

grees of freedom in highly excited nuclei.

APPENDIX 1
In terms of quadrupole coordinates and conjugate mo- A=3| Aam EAl)' B=3(A=2A),
menta
! [br+(—)*b_,] 1 7
a, == - — I}
o2 g C=S(Ar+A)— —=A,, Ds=2\2A;, Dy=A,.
\J5
i (A3)
7, =—=[(-D*bl, ~b,], -2su<2, (A1)

"2

the model Hamiltonian has the expression
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