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In this paper we identify phase-locked states among the solutions of the Zakharov equations. Locked states
appear as resonant island chains in the appropriate Poincare´ plots, with the relevant surface of section obtained
by projecting out the full dynamical set on a subspace defined in terms of a pair of center-manifold variables.
This pair allows an accurate canonical description of the system immediately after an inverse pitchfork bifur-
cation destabilizes an initial homogeneous steady state. If one is very close to the bifurcation point, nonlinear
saturation of the initial instability is provided by quasistatic integrable ion-acoustic fluctuations, but as one
proceeds away from that point, resonant nonintegrable ion-acoustic fluctuations become gradually more im-
portant; we show that the phase-locked states result from those resonant fluctuations. If one is not too far from
the pitchfork bifurcation, locking is the stable asymptotic state of the interaction. As one moves farther away,
locking exists only over long but finite amounts of time. In addition, the resonance separatrix appears to bring
the first chaotic activity into the system.@S1063-651X~96!09109-X#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Langmuir turbulence has been one of the most studied
problems in modern nonlinear plasma physics. During the
past years a great deal of effort has been directed to its analy-
sis, as well as to the analysis of related subjects as soliton
dynamics, collapse, nucleation of cavitons, electromagnetic
emission, and others@1–6#.

There has been a growing tendency in looking at Lang-
muir turbulence as a result of chaos in nonlinear dynamical
systems. The nonlinear system here is described by the Za-
kharov equations that couple the slowly varying amplitude of
a high-frequency electric field, the Langmuir field, to slow
density fluctuations, the ion-acoustic field.

Following this line of reasoning, all the tools and lan-
guage so usual in the study of nonlinear dynamics have been
used to search for signatures revealing chaotic activity, as
well as transition to chaos, in both the dissipative and con-
servative versions of the turbulence@3–6#. In the presence of
dissipation the system has been found to be accurately de-
scribed by a reduced set of dissipative nonlinear equations
@5#. On the other hand, under certain conditions the turbu-
lence can be modeled in terms of a one-dimensional conser-
vative nonlinear system. Indeed, it has been shown that if the
system is placed in a moderately strong background mag-
netic field, electrostatic disturbances tend to align along the
field — the transverse growth rate is much smaller than the
longitudinal one — which otherwise does not exceedingly
affect the qualitative aspect of the wave dynamics as long as
the electron-cyclotron frequency is smaller than the electron-
plasma frequency; in that case the basic characteristics of the
turbulence could be described in terms of a one-dimensional
unmagnetized model@5#. As for the conservative character of
the model the justification goes as follows. Dissipation is
crucial if one studies large values of the wave vector where
the resonant wave-particle interaction is relevant. On the
other hand, the wave-particle interaction and dissipation are

greatly reduced if the analysis does consider pump ampli-
tudes just below the threshold for the inverse cascade that
transport energy from low to large values of wave vectors.

Here we will be working with regimes dominated by
modulational processes where pump amplitudes are below
the threshold for the inverse cascade. Thus all the features
we detect involve wave vectors somewhat trapped in a range
of small magnitudes where dissipation is not as crucial
@3,4,6#. In other words, we shall analyze the one-dimensional
Zakharov equations without sources and dissipation.

As mentioned, our basic interest is to investigate the
modulational behavior of the system immediately after an
inverse pitchfork bifurcation rendering a homogeneous
steady state unstable. We will see that by varying the appro-
priate parameters, the transition to chaos, if any, does take
place close to that bifurcation. Besides, and precisely be-
cause one is close to a bifurcation, we shall see that the entire
multidimensional system may be dealt with in a center-
manifold-like fashion, displaying therefore characteristics of
low-dimensional dynamics. In concrete terms, the type of
transition we detect here involves phase-locked states among
a few active modes. Locking does take place when a triplet
formed by high-frequency modes and the corresponding en-
slaved, or quasistatic, ion-acoustic fluctuations starts to inter-
act nonlinearly with ion-acoustic-free, or normal, modes.

From the above paragraph, it is thus seen that to observe
locking one must be somewhat close to the pitchfork bifur-
cation; but the situation can be further detailed. We have
found that if the parameters are such that one is sufficiently
near the pitchfork point, locking is stable and represents as-
ymptotic states of wave interaction. On the other hand, as
one starts to move away from that point, locking turns out to
be transient. In that case higher harmonics of the high-
frequency field detunes the interaction after long but finite
periods of time.

Technically, to describe the modulational instability we
make use of a spectral analysis and write all the relevant
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dynamical variables as Fourier series in terms of a basic
wave vector. As seen in the previous paragraphs, we shall
analyze the dynamics just as it departs from its steady state.
Therefore, we follow the usual procedure adopted in calcu-
lations involving transition to modulational instability@4#
and choose a wave vector that varies around its critical value
where the homogeneous equilibrium goes unstable via the
pitchfork bifurcation. The basic wave vector introduced this
way is an important parameter in determining all relevant
frequencies of the system. Our approach renders the system
spatially periodic since the basic wave vector creates a peri-
odicity length. But from the above comments we can actu-
ally expect some characteristic wave vector in weakly un-
stable regimes, the wave vector being close to the critical.
We mention that periodic solutions both in time and space
are thought to be present in magnetospheric plasmas such as
those found in a pulsar@7#. In fact, the observed periodic
radiation pulses emitted by these objects are believed to be
formed when the amplitude of homogeneous trains of elec-
tromagnetic radiation crosses the threshold and causes the
train to become modulationally unstable: in this kind of en-
vironment, the dynamics is likely to be described by a non-
linear Schro¨dinger equation, which is a particular case of the
equations analyzed here. In any case, apart from placing the
basic wave vector near the instability threshold, no further
assumptions are used here in the sense that all the subsequent
dynamics, including harmonic generation, is self-consistently
governed by the nonlinear interactions.

The paper is organized as follows. In Sec. II we write
down the governing equations and derive a low-dimensional
integrable description of the system: the initial inverse pitch-
fork bifurcation destabilizing a homogeneous steady state is
pointed out and the integrable low-dimensional topology on
the appropriate phase space is described: In Sec. III we pin-
point the dynamical variable responsible for the transition to
chaos. In addition, signatures of the transition, appearing in
the form of phase-locked states or nonlinear resonant islands,
are identified. In Sec. IV a low-dimensional nonintegrable
model comprising the basic features of the transition is con-
structed and compared with further simulations of the real
system. In Sec. V we conclude the work.

II. GOVERNING EQUATIONS AND A
LOW-DIMENSIONAL INTEGRABLE MODEL

The one-dimensional Zakharov equations governing the
Langmuir turbulence can be written in the adimensional
form @6#

i ] tE1]x
2E5nE ~1!

and

] t
2n2]x

2n5]x
2uEu2. ~2!

E(x,t) is the slowly modulated amplitude of the high-
frequency electric field, the Langmuir field, andn(x,t) is the
low-frequency density fluctuation associated with the ion-
acoustic field.

Let us assume that the system is placed in a spatially
periodic, one-dimensional box of lengthL. Then one can
expand the fieldsE(x,t) andn(x,t) into Fourier series as

E~x,t !5 (
m52`

1`

Arm~k,t !eifm~k,t !eimkx ~3!

and

n~x,t !5 (
m52`

1`

nm~k,t !eimkx, ~4!

where the basic wave vector is defined in terms ofL as
k52p/L and the amplitudesrm(k,t) and phasesfm(k,t)
are conveniently introduced.

We now focus attention on initially homogeneous
dipolar states whose fields are given by
Edipolar(x,t50)5Ar0

dipolar[Ar* and ndipolar(x,t50)50.
The analysis is performed for a dipolar pump withk50, but
we expect that the results hold for nonvanishing values of the
pump wave vector provided that the system be modulational
but not parametrically unstable.

The stability of the dipolar state can be examined if it is
perturbed with a small disturbancer61 ,n61!r* . In the
subsonic regime, one obtains for the corresponding growth
rateG,

G;kA2r*2k2, ~5!

from which one sees that instability sets in only if
k2,2 r* . It has been shown@6# that the destabilization is
accompanied by an inverse pitchfork bifurcation where an
unstable fixed point bifurcates into one stable and two new
unstable points; we shall locate the fixed points later on.
Now, it suffices to note that only if

r*!1 ~6!

or if the above inequality is not true,

u2 r*2k2u!1, ~7!

the dynamics is really subsonic in the sense that the growth
rate is much smaller thanuku, the basic frequency of ion-
acoustic normal modes. One can better visualize the region
defined by the relations~6! and ~7! on a r*3k parametric
plane; this is done in Fig. 1. Above curveku(r* ), which is
analytically represented byku5A2r* , the homogeneous
state is stable and below the curve it becomes unstable; con-
dition ~7!, in turn, defines a narrow band very close to curve
ku(r* ). Below curveku /2, not only is the mode with wave
vectoruku unstable but also the mode with a higher harmonic
wave vector 2uku; further reduction ofuku gradually destabi-
lizes more and more higher harmonics. All these facts lead
us to think that ifk andr* are such that either condition~6!
along withk.ku /2 or condition~7! is satisfied, the dynam-
ics may be well described only in terms of the three linearly
unstable high-frequency modes

Etrunc~x,t !5 (
m521,0,11

Arm~ t !eifm~ t !eimkx, ~8!

and enslaved ion-acoustic fluctuations obtainable from the
quasistatic equation
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]x
2nens52]x

2uEtrunc~x,t !u2; ~9!

we shall refer to this low-dimensional system as ther triplet.
In the general case where an arbitrary number of modes is
allowed, it can be shown that if the density is related to the
electric field as above, with the completeE(x,t) field replac-
ing Etrunc(x,t), the resulting equation governing the Lang-
muir field turns out to be a nonlinear Schro¨dinger equation
that is completely integrable; Eq.~6! indicates that such a
kind of dynamics would take place only on the leftmost side
of Fig. 1. In the narrow band given by Eq.~7! only low-
dimensional dynamics can occur.

Let us then proceed to the study of the truncated system,
postponing the appropriate numerical checkings for later on.
On using expansion~8! with Eqs. ~9! and ~1! one readily
obtains a Hamiltonian dynamical system with the phasesf
as canonical coordinates and the amplitudesr as their re-
spective conjugated momenta. The Hamiltonian reads

H52r0Ar11r21cosc2k2~r111r21!1r11r211r11r0

1r21r0 , ~10!

with c[f111f2122f0. Considering the form of the
Hamiltonian, it is convenient to perform the following ca-
nonical transformation, which convertsc into a new canoni-
cal coordinate:

f111f2122f0→f085c,

r0→22 r08 ,

r61→r618 1r08 ,

f61→f618 ,

and

H→H~r08 ,c!,

where the primes denote new coordinates. The usefulness of
the transformation is that it allows us to explicitly see the
time conserved character ofr618 since they appear as mo-

menta conjugated to cyclic coordinatesf618 . At this point it
seems appropriate to look at the dynamics generated by the
Hamiltonian~10! and this is done with the contour plots of
Fig. 2, where we record trajectories on (r0 ,c) space. To
build up the contour plot we launch several initial conditions
always keeping the same value forr618 with

r218 5r118 5 1
2 r* , r*50.1, andk50.9075ku . There is no

problem in takingr618 as a common value for various initial
conditions at the present stage of the analysis, but one should
verify whether this choice provides relevant information
when we simulate the full system with its corresponding
nonintegrable features. One could argue, for instance, why
distinct values ofr618 are not assigned to distinct initial con-
ditions, exactly as done with regard to the energy~different
orbits in a contour plot correspond to different values of
H). Our point is that, so far, the transition to chaos basically
involves only three active modes, with modesm511 and
m521 sharing complete symmetry among themselves; the
conserved quantity of the full system~1! and ~2!

E
0

L

uE~x,t !u2dx5const ~11!

guarantees thatr012 r6152 r618 is a conserved quantity
for the system irrespective of the complexity of the dynam-
ics. Note that the when transition takes place one can no
longer consider the ion-acoustic field as totally enslaved to
the Langmuir field. This means that the approximation~9!
and, subsequently, the constancy ofH break down. Equation
~8!, however, may still hold and this is the regime we are
interested in.

From Fig. 2 one can still observe the positioning of the
fixed points related to ther triplet. The figure, which repre-
sents a typical orbital dynamics after the pitchfork bifurca-
tion, reveals the presence of the fixed points mentioned ear-

FIG. 1. Boundaries of the low-dimensional region.

FIG. 2. Low-dimensional integrable trajectories on the (r0 ,c)
plane forr*50.1.
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lier: two unstable points located at (r05r*50.1,c'61)
and one stable central fixed point~CFP! located at
(r0;0.09,c50). Before the transition there is only one un-
stable fixed point at (r0.r* ,c50) and any orbit launched
with r05r* is stationary in the sense thatdr0 /dt50; see
Ref. @6#.

Another quantity of interest is the frequency with which
trajectories circulate around this CFP. We refer to this fre-
quency asV0, pointing out that it is a function of the nu-
merical value ofH corresponding to the initial condition
with which the orbit is launched. One can therefore write
V05V0(H), noting that at the separatrixH50. Referring to
Fig. 2, we present a plot of the gyrofrequencyV0(H) versus
H in Fig. 3. From the figure one appreciates the usual behav-
ior of frequency curves; the frequency reads a nonvanishing
value at the CFP~rightmost extreme! whose absolute value
we denote byVc , going to zero as one approaches the sepa-
ratrix. This fact shall be seen to have relevant implications
on the location of locked states.

Vc can be calculated analytically@9#. In order to do so we
expand the HamiltonianH(r08 ,c) around the CFP. The ex-
pansion reads

H~r08 ,c!'const1
1

2
@]r

08
2
HuCFPdr08

21]c
2HuCFPc2#

andVcis written as

Vc~k,r* !5Au]r
08
2
H]c

2HuCFP5
2A2

7k

A k2

~12k2!~ 3
4 1k2!ku

2

.

(12)

With the above tools one can now proceed to study the tran-
sition to chaos in the next section.

III. TRANSITION TO CHAOS

Now we perform a variety of simulations of Eqs.~1! and
~2! to check our assumptions and to detect the transition to
chaos. As it is somewhat usual for this kind of system, our
simulation scheme consists of writing all the dynamical vari-
ables and the differential equations as Fourier series in the
spatial variable. A numberN of modes ranging from
N532 to 128 for each dynamical variable is used, nonlinear
products in the differential equations are evaluated with a
fast Fourier transform~FFT! subroutine, and the set of tem-
poral equations is advanced in time with a predictor-
corrector algorithm. Both the FFT and the predictor-
corrector algorithm are subroutines of a Cray Y-MP2E
computer. Numerical precision is tested by requiring stability
against variation of tolerance factors and by monitoring the
time evolution of the conserved quantity

H5E
0

L

@ u]xEu21nuEu21 1
2 ~n21v2!#dx, ~13!

with ] tn52]xv. In terms ofH, relative errors were found to
be about one part in 108.

Returning to physics, we have seen that if we operate in
that region of Fig. 1 where the basic wave vectork satisfies
ku.k.ku /2, the generation of harmonic modes with wave

FIG. 4. Schematics of the interaction process involving ther
triplet and normal mode ion-acoustic fluctuationsnf .

FIG. 5. Estimated winding at the CFP,k/Vc , versusk for
r*50.1.

FIG. 3. GyrofrequencyV0 versus H for r*50.1 and
k50.9075ku .
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vectors62k,63k,64k, . . . is greatly inhibited: this will
be confirmed with the coming numerical simulations. In ad-
dition, if one also satisfies either condition~6! or ~7!, ion-
acoustic modes are enslaved to the truncated Langmuir field
through relation~9!. In the first case where ion-acoustic
modes are enslaved regardless of the value ofk, the transi-
tion to chaos is unlikely because the system can be always
approximated by an integrable model governed by the
Hamiltonian~10!. In the second case where the magnitude of
r* is not too small, the situation changes. The ion-acoustic
field will be enslaved only if one is really close toku . As
soon as that region is abandoned, nonintegrable features take
place, driving the transition. The question is what kind of
nonintegrable features are likely to be expected. In order to
address the issue, we proceed as follows. We decompose the
density associated with the ion-acoustic field in the form

n~x,t !5nens~x,t !1nf~x,t !. ~14!

In that equationnf accounts for the free (f ) component of
the total density, i.e., the component not enslaved to the
Langmuir field under the static approximation. We expect
this component to be the responsible for the transition since
nensalone generates only regular dynamics.

The dynamical equation governing the basic Fourier com-
ponent ofnf , for instance, can be written in the form

~dt
21k2!nf ,1~k,t !5k2S dt2~ uEu2!1~k,t !

k2 D , ~15!

with dt[d/dt. The right-hand side term, the one containing
the electric field, can thus be seen as a source drivingnf
oscillations. Once again one observes that ifdt

2!k2 the
source term is small andnf→0. On the other hand, as soon
as the nonlinear frequency of ther triplet becomes compa-
rable tok, Eq. ~15! suggests thatnf can no longer be dis-

FIG. 6. ~a! Winding number andp54 lock-
ing: ~b! Corresponding Poincare´ plot and
resonant island. r*50.1, k50.9075ku ,
tfinal54644.51, and there are approximately 300
ion-acoustic cycles.
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carded; this is the situation where one should look for chaos.
Equivalent equations can be written down for higher Fourier
components and similar reasoning is applicable. In any case,
numerical simulations will reveal that the role played by the
nf at the fundamental wave vectork is the most relevant.

An examination of Eq.~15! in conjunction with the equa-
tion for the slow amplitude of the electric field, Eq.~1!, also
suggests that transition to chaos is marked by nonlinear lock-
ing or nonlinear resonance. Indeed, due to the form of the
nonlinearity one is lead to think that resonances are present
and that in order to see one of them one should meet the
condition

pV0'qk, ~16!

with p andq integers, sincek, as we recall, is approximately
the oscillatory frequency ofnf andV0 is the nonlinear fre-

quency of ther triplet. The schematics for the nonlinear
interaction is displayed in Fig. 4.

The relation~16! indicates how nonlinear resonances are
to be located. Accordingly, what we actually do here goes as
follows. We first plot the estimated winding number at the
CFPk/Vc as a function ofk keepingr* fixed. We choose
r*50.1 andq51 throughout the paper, displaying the plot
in Fig. 5. The conditionq51, in particular, enables one to
work with stronger resonances, which can be more easily
seen on phase space. With the plot we estimate the particular
value ofk, kp , where ap resonance orp locking is born: it
suffices to evaluate it fromkp /Vc(kp)5p, wherep is the
integer naming the resonance. Now, by virtue of the shape of
the gyrofrequency curve represented in Fig. 3, for slightly
smaller values ofk the resonance moves away from the CFP
towards the separatrix. In particular, the conditions for ob-
serving the resonance become ideal when it is not too close
to either the CFP or to the separatrix.

FIG. 7. ~a! Winding number andp56 lock-
ing: ~b! Corresponding Poincare´ plot and
resonant island. r*50.1, k50.9425ku ,
tfinal54472.03; there are approximately 300 ion-
acoustic cycles.
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To actually see the locking we proceed to simulations in
two steps. First of all we plot the simulated winding number
against r0(t50)[r (0) consideringf0(t50)50, to pre-
cisely locate the resonance. The windingW here is used in
the form @10#

W[ lim
t→`

FNnf

Nr0
G , ~17!

the capitalN representing the number of cycles of the re-
spective variables appearing as subscripts. If there is locking
involving ther triplet andnf , a plateau should appear in the
figure. From Fig. 5, in the casep54 locking is expected for
k,k4'0.92ku because for larger values ofk, the resonance
is not yet born. We takek50.9075ku into the simulations to
produce Fig. 6~a!. The plateau is clearly devised for which

p54. The second step is to ask how the locked state mani-
fests itself in a Poincare´ plot constructed with the coordinates
r0 andc of the unperturbedr triplet; compare with Fig. 2.
The answer is given in Fig. 6~b!, where we plot the pair
(r0 ,c) each time Re$nf(k,t)% attains a maximum;
dtRe$nf(k,t)%50, dt

2Re$nf(k,t)%,0. The simulation runs
until a final time tfinal54644.51, corresponding approxi-
mately to 300 ion-acoustic cycles, and a chain of four reso-
nant islands is seen encircling the CFP, as expected. In Fig. 7
we investigate the behavior ofVc in another range of values
of k such that ap56 locking would be present; this will be
useful in what follows. It is seen from Fig. 5 that if
k,k6'0.95ku then one could expect to see thep56 lock-
ing. In Fig. 7~a! the winding is shown fork50.9425ku , ac-
tually displaying thep56 locking, and in Fig. 7~b! the cor-
responding resonant chain is seen; simulations run until
tfinal54472.03 and the number of ion-acoustic cycles is again

FIG. 8. Quasiperiodic cycle for the same pa-
rameters used in Fig. 6~b!.

FIG. 9. Separatrix of thep54 resonant is-
land.
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approximately 300. For sake of comparison, in Fig. 8 we use
the same parameters as in Fig. 6~b! to make a Poincare´ plot
of an initial condition corresponding to the absence of lock-
ing: we choose an initial condition off the plateau. In this
case the figure reveals the familiar quasiperiodic behavior,
where a full curve replaces the discrete islands.

Besides locking, another important feature of a resonant
island is its ability in developing chaotic activity near its
separatrix. It is known indeed that chaos first appears around
the separatrix as a result of homoclinic and heteroclinic
crossings. Let us make sure that in our case chaos is actually
stronger on that location. To see that, let us first analyze the
phase space in order to pinpoint a separatrix. This is done in
the Poincare´ plot of Fig. 9, where we consider the same
parameters as in Fig. 6~b!, with the exception ofr (0), which
is slightly displaced relatively to the previous value; this new
value ofr (0) lies closer to the leftmost side of the plateau of

Fig. 6~a!. Figure 9 suggests that the final effect of the dis-
placement is actually bringing the system nearer the separa-
trix: at least the orbit represented in the figure looks like a
separatrix orbit. Now we return to the original question: is
chaos stronger if one is closer to this apparent separatrix?
One single way to look at the issue is to perform a power
spectrum analysis of the orbit. This is done in Fig. 10. In Fig.
10~a! we plot the power spectrum ofr0(t) relative to the
situation depicted in Fig. 6~b! and in Fig. 10~b!, relative to
the situation depicted in Fig. 9. In the first case, the one
farther from the separatrix, the spectral distribution contains
several spikes, which suggests subharmonic generation but
not chaos. As for the second case, the distribution is spread
out, which reveals the presence of stronger chaotic activity.
The conclusion is that the first manifestations of chaos in our
system are really connected to nonlinear locked states and
the corresponding nonlinear resonances.

FIG. 10. Power spectra of thep54 locking:
~a! corresponding to the situation of Fig. 6~b! and
~b! corresponding to the situation of Fig. 9.
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IV. COMPARISON WITH A LOW-DIMENSIONAL
NONINTEGRABLE MODEL AND ASYMPTOTIC STATES

OF THE FULL SYSTEM

Figure 11 shows the space-time history ofnf(x,t) for the
same parameters and initial conditions used in Fig. 6~b!.
From the figure it becomes apparent that the free density
fluctuations follow a quasistationary pattern with amplitude
approximately constant and characteristic periodTf;14, as
it should be if one estimates the period fromTf;2p/k with
k50.9075ku , which yieldsTf;15. This pattern is coherent
with the previsions of Ref.@8#. In this reference it is sug-
gested that nonintegrablity in this kind of system requires
two counterpropagating ion-acoustic waves such that the
second-order differential operator in Eq.~2! cannot be low-
ered to a first-order operator. If one had a single free-

streaming ion-acoustic wave, the order could be reduced via
use of characteristic coordinates.

These observations help us to construct a very simple
low-dimensional nonintegrable model for our system, which
keeps the basic characteristics observed in the simulations.
To construct the nonintegrable model we simply replace
nensin our integrable model bynens1nf , wherenf is written
as nf5N0cos(kt)cos(kx). The amplitudeN0 is determined
from direct inspection of the simulations: in general the am-
plitude is proportional tor* whose magnitude is, in turn,
proportional to the driving term in Eq.~15!.

Bearing all these facts in mind, we now present a Poin-
caréplot of the low-dimensional nonintegrable model in Fig.
12 usingr*50.1, k50.9075ku , andN050.1. The final re-
sult is quite similar to the one depicted in Fig. 6~b!. The

FIG. 12. Poincare´ plot of the low-dimensional
nonintegrable model. Same parameters as in Fig.
6~b!.

FIG. 11. Space-time history ofnf(x,t). Pa-
rameters and initial condition are the same as
those used in Fig. 6~b!.
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similarity appears to indicate that the overall dynamics of the
full system can be completely understood in terms of the
nonintegrable model. However, we shall see next that the
situation is a little more delicate.

The low-dimensional nonintegrable model gives birth to
stable resonant chains. However, as one goes back to the full
simulation and lets the simulation time increase, we see that
sometimes the chains may not be the final asymptotic state of
the interaction. This is shown in Fig. 13~a!, where the simu-
lation performed with the same parameters as in Fig. 6~b!
runs until the final timetfinal511611.3, which corresponds
approximately to 750 ion-acoustic cycles. Clear detuning, or
diffusion, on phase space is seen as opposed to the previous
shorter run where the number of cycles was about 300. We
would like to know what drives the detuning and the subse-
quent diffusion. As it appears, detuning seems to arise as a
result of coupling of ther triplet with high-frequency modes
characterized by wave vectors 2k or larger. This conclusion

is immediate because if one suppresses artificially these
higher-harmonic modes, similarly as is done in our low-
dimensional nonintegrable model, detuning does not take
place during arbitrarily long simulation intervals and the as-
ymptotic state turns out to be thep54 locking. An equiva-
lent but realistic way to look at this feature without any
artificial suppression of active modes is the following. Con-
sider a resonance that occurs for values ofk closer to the
instability thresholdku than the values we have been work-
ing with up until now. If such is the case, higher harmonics
mk, with umu52,3, . . . , would be as far as possible from the
instability band and their participation in the interaction
would be greatly reduced. Under such conditions one could
also expect a behavior of the full system closely resembling
that of the low-dimensional nonintegrable system. In particu-
lar, the resonance island would be likely to become a very
stable entity of the system, in contrast to the transient aspect
of thep54 locking seen earlier. To investigate this possibil-

FIG. 13. Long time runs for~a! p54 locking,
tfinal511611.3, and approximately 750 ion-
acoustic cycles and ~b! p56 locking,
tfinal574533.8; approximately 5000 ion-acoustic
cycles.
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ity, in Fig. 13~b! we use the same parameters used in Fig.
7~b! to plot thep56 island, with the exception of a longer
simulation timetfinal574533.8 corresponding to 5000 ion-
acoustic cycles. Recalling that the wave vector here is closer
to ku , the stability of the resonance shown in the figure
really appears to inform that the closerk is toku , the smaller
the participation of higher harmonics is and the more stable
the low-dimensional locked states are.

Thep56 locking survives even if the simulation runs for
as large as 10 000 ion-acoustic cycles. We could not deter-
mine whether a threshold exists such that ifk is above it, but
below ku , locking is the asymptotic state, or if the detuning
effect is so weak that diffusion does not manifest itself
within the time intervals used in the simulations. In any case,
for practical purposes it seems that if one is sufficiently close
to ku , but of course not so close as to makenf→0 and the
system integrable, locking can be seen as a stable and robust
structure.

The importance of this feature is that low-dimensional
locked states, under the weak instability conditionk→ku ,
can be seen as asymptotic states to which initial disturbances
tend and stay in a stable fashion after some small transient
during which the ion-acoustic field becomes enslaved to the
high-frequency electric field. On the other hand, ask begins
to move away fromku it has been seen that the stability of
the locked state weakens in the sense that the resonant state
tends to blur after long but finite time scales. These features
are somewhat similar to what has been found in Ref.@11#,
where nonlinear coupling between a low-dimensional nonin-
tegrable system and higher harmonics induces Arnol’d diffu-
sion by means of which energy flows from small to large
wave vectors. In our particular case, one would be tempted to
say that stability of locking causes energy to be confined
within the low-dimensional nonintegrable model, inhibiting
all the dynamics related to very small spatial scales, such as
collapse, cavitation, and Landau damping. Previous simula-
tions point in that direction. To close this section, we men-
tion that the higher chaotic activity near the separatrix is
independent of locking stability as long as locking exists for
a large number of ion-acoustic cycles.

V. FINAL REMARKS

In this paper we have investigated the transition to chaos
in the Zakharov equations. The kind of approach we have
adopted is similar to the one used in some very recent papers
where a periodic and dissipationless model is used, which
displays the presence of few unstable modes@4#. We have
detected that the transition involves the presence of nonlinear
locked states preceding chaos. We find that these states ap-
pear when the parameters governing the system are such that
one is close to a pitchfork bifurcation destabilizing an homo-
geneous equilibrium. Under such condition one fulfills the
requirement of a small number of active modes and locked
states are likely. We have numerically observed these states
that mark transition to chaos. A low-dimensional model is
presented that contains the basic characteristics of locking.

Then, as one moves away from the pitchfork bifurcation,
it was observed that the locked states lose their stability.
What happens then is that if one is not sufficiently close to
the bifurcation point, higher harmonics of the high-frequency
field cannot be discarded and locking is perturbed, taking
place only during finite, although very long, time intervals.
On the other hand, if one is close enough to the bifurcation
point, locking appears to survive over arbitrarily large peri-
ods of time. Some kind of sharp change ask is varied may
exist that divides the asymptotic behavior of the system into
locked and unlocked final states.

In any case, chaos has been found to be stronger if one is
close to the separatrix associated with the related resonant
island. This suggests that locked states signal the start of the
transition to chaos, just like what happens in low-
dimensional systems.
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