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Low-dimensional phase-locked states in the Zakharov equations
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In this paper we identify phase-locked states among the solutions of the Zakharov equations. Locked states
appear as resonant island chains in the appropriate Poiplcase with the relevant surface of section obtained
by projecting out the full dynamical set on a subspace defined in terms of a pair of center-manifold variables.
This pair allows an accurate canonical description of the system immediately after an inverse pitchfork bifur-
cation destabilizes an initial homogeneous steady state. If one is very close to the bifurcation point, nonlinear
saturation of the initial instability is provided by quasistatic integrable ion-acoustic fluctuations, but as one
proceeds away from that point, resonant nonintegrable ion-acoustic fluctuations become gradually more im-
portant; we show that the phase-locked states result from those resonant fluctuations. If one is not too far from
the pitchfork bifurcation, locking is the stable asymptotic state of the interaction. As one moves farther away,
locking exists only over long but finite amounts of time. In addition, the resonance separatrix appears to bring
the first chaotic activity into the systef§1063-651X96)09109-X]

PACS numbe(s): 05.45+b

[. INTRODUCTION greatly reduced if the analysis does consider pump ampli-
tudes just below the threshold for the inverse cascade that
Langmuir turbulence has been one of the most studiedransport energy from low to large values of wave vectors.
problems in modern nonlinear plasma physics. During the Here we will be working with regimes dominated by
past years a great deal of effort has been directed to its analyaodulational processes where pump amplitudes are below
sis, as well as to the analysis of related subjects as solitotihe threshold for the inverse cascade. Thus all the features
dynamics, collapse, nucleation of cavitons, electromagnetieve detect involve wave vectors somewhat trapped in a range
emission, and otherfd —6]. of small magnitudes where dissipation is not as crucial
There has been a growing tendency in looking at Lang{3,4,6]. In other words, we shall analyze the one-dimensional
muir turbulence as a result of chaos in nonlinear dynamicaZakharov equations without sources and dissipation.
systems. The nonlinear system here is described by the Za- As mentioned, our basic interest is to investigate the
kharov equations that couple the slowly varying amplitude ofmodulational behavior of the system immediately after an
a high-frequency electric field, the Langmuir field, to slow inverse pitchfork bifurcation rendering a homogeneous
density fluctuations, the ion-acoustic field. steady state unstable. We will see that by varying the appro-
Following this line of reasoning, all the tools and lan- priate parameters, the transition to chaos, if any, does take
guage so usual in the study of nonlinear dynamics have begrlace close to that bifurcation. Besides, and precisely be-
used to search for signatures revealing chaotic activity, asause one is close to a bifurcation, we shall see that the entire
well as transition to chaos, in both the dissipative and conmultidimensional system may be dealt with in a center-
servative versions of the turbulen®-6]. In the presence of manifold-like fashion, displaying therefore characteristics of
dissipation the system has been found to be accurately désw-dimensional dynamics. In concrete terms, the type of
scribed by a reduced set of dissipative nonlinear equationsansition we detect here involves phase-locked states among
[5]. On the other hand, under certain conditions the turbua few active modes. Locking does take place when a triplet
lence can be modeled in terms of a one-dimensional consefermed by high-frequency modes and the corresponding en-
vative nonlinear system. Indeed, it has been shown that if thelaved, or quasistatic, ion-acoustic fluctuations starts to inter-
system is placed in a moderately strong background magact nonlinearly with ion-acoustic-free, or normal, modes.
netic field, electrostatic disturbances tend to align along the From the above paragraph, it is thus seen that to observe
field — the transverse growth rate is much smaller than théocking one must be somewhat close to the pitchfork bifur-
longitudinal one — which otherwise does not exceedinglycation; but the situation can be further detailed. We have
affect the qualitative aspect of the wave dynamics as long af®und that if the parameters are such that one is sufficiently
the electron-cyclotron frequency is smaller than the electronnear the pitchfork point, locking is stable and represents as-
plasma frequency; in that case the basic characteristics of thenptotic states of wave interaction. On the other hand, as
turbulence could be described in terms of a one-dimensionalne starts to move away from that point, locking turns out to
unmagnetized modgb]. As for the conservative character of be transient. In that case higher harmonics of the high-
the model the justification goes as follows. Dissipation isfrequency field detunes the interaction after long but finite
crucial if one studies large values of the wave vector whergeriods of time.
the resonant wave-particle interaction is relevant. On the Technically, to describe the modulational instability we
other hand, the wave-particle interaction and dissipation aremake use of a spectral analysis and write all the relevant
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dynamical variables as Fourier series in terms of a basic +o

wave vector. As seen in the previous paragraphs, we shall E(x,t)= D, Vpu(k,t)e émkgimkx ©)
analyze the dynamics just as it departs from its steady state. m=—e

Therefore, we follow the usual procedure adopted in calcu-

lations involving transition to modulational instabilify}]

and choose a wave vector that varies around its critical value o
where the homogeneous equilibrium goes unstable via the _ imkx

. . ; X X X n(x,t)= Nny(k,t)e™* 4
pitchfork bifurcation. The basic wave vector introduced this 6t) m;x m(k:t) @

way is an important parameter in determining all relevant

frequencies of the system. Our approach renders the systewhere the basic wave vector is defined in termsLofs
spatially periodic since the basic wave vector creates a perk=2#/L and the amplitudeg,(k,t) and phasesp.(k,t)
odicity length. But from the above comments we can actu-are conveniently introduced.

ally expect some characteristic wave vector in weakly un- We now focus attention on initially homogeneous
stable regimes, the wave vector being close to the criticaldipolar  states whose fields are given by
We mention that periodic solutions both in time and spacegedirolaiy t=0)= ‘/poa'PoafE\/Z and ndPolaiy t=0)=0.

are thought to be present in magnetospheric plasmas such fie analysis is performed for a dipolar pump Witk 0, but
those found in a pulsa7]. In fact, the observed periodic \ve expect that the results hold for nonvanishing values of the

radiation pulses emitted by these objects are believed to e ymp wave vector provided that the system be modulational
formed when the amplitude of homogeneous trains of elechyt not parametrically unstable.

tromagnetic radiation crosses the threshold and causes the The stability of the dipolar state can be examined if it is
train to become modulationally unstable: in this kind of en-perturbed with a small disturbange.;,n.,<p, . In the
vironment, the dynamics is likely to be described by a non-sypsonic regime, one obtains for the corresponding growth
linear Schrdinger equation, which is a particular case of theyater

equations analyzed here. In any case, apart from placing the

basic wave vector near the instability threshold, no further F~km, (5)
assumptions are used here in the sense that all the subsequent

dynamics, including harmonic generation, is self-consistentlfrom which one sees that instability sets in only if

governed by the nonlinear interactions. ~ k?<2p, . It has been showfB] that the destabilization is
The paper is organized as follows. In Sec. Il we write accompanied by an inverse pitchfork bifurcation where an

down the governing equations and derive a low-dimensionalinstable fixed point bifurcates into one stable and two new

integrable description of the system: the initial inverse pitchynstable points; we shall locate the fixed points later on.
fork bifurcation destabilizing a homogeneous steady state ifjow, it suffices to note that only if

pointed out and the integrable low-dimensional topology on

the appropriate phase space is described: In Sec. Il we pin- pe<l (6)
point the dynamical variable responsible for the transition to

chaos. In addition, signatures of the transition, appearing iwr if the above inequality is not true,

the form of phase-locked states or nonlinear resonant islands,

are identified. In Sec. IV a low-dimensional nonintegrable |2 p, —k?|<1, (7
model comprising the basic features of the transition is con-

structed and compared with further simulations of the reathe dynamics is really subsonic in the sense that the growth

system. In Sec. V we conclude the work. rate is much smaller thafk|, the basic frequency of ion-
acoustic normal modes. One can better visualize the region
Il. GOVERNING EQUATIONS AND A defined by the relationg) and (7) on ap, Xk parametric
LOW-DIMENSIONAL INTEGRABLE MODEL plane; this is done in Fig. 1. Above curkg(p, ), which is

i i ) ) analytically represented bk,=\2p,, the homogeneous
The one-dimensional Zakharov equations governing thgtate is stable and below the curve it becomes unstable; con-
Langmuir turbulence can be written in the adimensionalyition (7), in turn, defines a narrow band very close to curve
form [6] ku(p,). Below curvek,/2, not only is the mode with wave
: 2= vector|k| unstable but also the mode with a higher harmonic
|E+RE=nE @ wave vector 2|; further reduction ofk| gradually destabi-
lizes more and more higher harmonics. All these facts lead
us to think that itk andp, are such that either conditid6)
92n—an=2|E|. (2)  along withk>k,/2 or condition(7) is satisfied, the dynam-
ics may be well described only in terms of the three linearly
E(x,t) is the slowly modulated amplitude of the high- unstable high-frequency modes
frequency electric field, the Langmuir field, anix,t) is the
low-frequency density fluctuation associated with the ion- Epund X,t) = D \/meicbm(t)eimkx, @)
m=-1,0,+1

and

acoustic field.

Let us assume that the system is placed in a spatially
periodic, one-dimensional box of length Then one can and enslaved ion-acoustic fluctuations obtainable from the
expand the field&(x,t) andn(x,t) into Fourier series as  quasistatic equation
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we shall refer to this low-dimensional system as gheiplet. ) ) ) ) )
In the general case where an arbitrary number of modes is_T'C: 2- Low-dimensional integrable trajectories on thg (/)
allowed, it can be shown that if the density is related to the”'@"€ forp. =0.1.
electric field as above, with the compldiéx,t) field replac-
ing EyundX,t), the resulting equation governing the Lang- menta conjugated to cyclic coordinatgé$ , . At this point it
muir field turns out to be a nonlinear Schimger equation seems appropriate to look at the dynamics generated by the
that is completely integrable; E@6) indicates that such a Hamiltonian(10) and this is done with the contour plots of
kind of dynamics would take place only on the leftmost sideFig. 2, where we record trajectories opy(y) space. To
of Fig. 1. In the narrow band given by E7) only low-  build up the contour plot we launch several initial conditions
dimensional dynamics can occur. always keeping the same value fop., with

Let us then proceed to the study of the truncated sySteTFL1:P:r1: 15, p.=0.1, andk=0.907%,. There is no

postponing the appropriate numerical checkings for later o problem in takingp’., as a common value for various initial

On using expansiori8) with Egs. (9) and (1) one readily g :
obtains a Hamiltonian dynamical system with the phages COI‘!dItIOhS at the present stage of_the analysis, b_ut one should
. . . : verify whether this choice provides relevant information
as canonical coordinates and the amplitugeas their re- when we simulate the full system with its correspondin
spective conjugated momenta. The Hamiltonian reads . y X P 9
nonintegrable features. One could argue, for instance, why
H=2p, /—p+1p_1008ﬂ— K2(pyq+p_1)+pi1p 1+ Pi1Po d!s_tlnct values op’., are nqt assigned to distinct |r_1|t|al con-
ditions, exactly as done with regard to the enefdifferent
+p-1pP0, (10 orbits in a contour plot correspond to different values of
_ o H). Our point is that, so far, the transition to chaos basically
with y=¢ .1+ ¢_1—2¢o. Considering the form of the jnyolves only three active modes, with modes= +1 and
Hamiltonian, it is convenient to perform the following ca- j— —1 sharing complete symmetry among themselves; the

nonical transformation, which conversinto a new canoni-  conserved quantity of the full systeft) and (2)
cal coordinate:

L
b1t d1—2do— o=, fo |E(x,t)|?dx=const (11)

Po— —2pg, U .
guarantees thap,+2p.,=2p’; is a conserved quantity

for the system irrespective of the complexity of the dynam-

p1—p1+ Py, : "
ics. Note that the when transition takes place one can no
ber—dly, longer consi_de_r the iorj-acoustic field as totally _enslaved to
- - the Langmuir field. This means that the approximat{&h
and and, subsequently, the constancy-bbreak down. Equation
(8), however, may still hold and this is the regime we are
H—H(pg,¥), interested in.

From Fig. 2 one can still observe the positioning of the
where the primes denote new coordinates. The usefulness fiked points related to thg triplet. The figure, which repre-
the transformation is that it allows us to explicitly see thesents a typical orbital dynamics after the pitchfork bifurca-
time conserved character of, ; since they appear as mo- tion, reveals the presence of the fixed points mentioned ear-
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k=0.907%,. Q. can be calculated analyticall@]. In order to do so we
expand the Hamiltoniab (p},¢) around the CFP. The ex-

lier: two unstable points located apd{=p, =0.1,~=*1) pansion reads

and one stable central fixed poinfCFP located at

(pp~0.09,4/=0). Before the transition there is only one un-

stable fixed point atdy>p, ,#=0) and any orbit launched

with po=p, is stationary in the sense thdp,/dt=0; see

, 1 5 ,
H(pg, y)~const- 5[ 7, Hlcepdpo”+ JH cre”]

Ref. [6]. and().is written as

Another quantity of interest is the frequency with which
trajectories circulate around this CFP. We refer to this fre- 3 2 \/gk
quency as(),, pointing out that it is a function of the nu- Qe(kpi)= \/|‘9P6H‘9¢H|CFP: K2
merical value ofH corresponding to the initial condition \/ NERTENTE
with which the orbit is launched. One can therefore write (1-Kk9)(5 +kI)kj

Qy=0Q4(H), noting that at the separatrix=0. Referring to (12)
Fig. 2, we present a plot of the gyrofrequerf@y(H) versus )
H in Fig. 3. From the figure one appreciates the usual beha\x\_/'.th the above .tOOIS one can now proceed to study the fran-
ior of frequency curves; the frequency reads a nonvanishing!tion © chaos in the next section.
value at the CFRrightmost extremewhose absolute value
we denote by, going to zero as one approaches the sepa- IIl. TRANSITION TO CHAOS
ratrix. This fact shall be seen to have relevant implications  Now we perform a variety of simulations of Eq4) and
on the location of locked states. (2) to check our assumptions and to detect the transition to
chaos. As it is somewhat usual for this kind of system, our
simulation scheme consists of writing all the dynamical vari-
ables and the differential equations as Fourier series in the
E, spatial variable. A numbeN of modes ranging from
N=32 to 128 for each dynamical variable is used, nonlinear
products in the differential equations are evaluated with a
fast Fourier transforniFFT) subroutine, and the set of tem-
I poral equations is advanced in time with a predictor-
SN corrector algorithm. Both the FFT and the predictor-
QQ():qK) corrector algorithm are subroutines of a Cray Y-MP2E
computer. Numerical precision is tested by requiring stability
/ j """"" against variation of tolerance factors and by monitoring the
E < E, time evolution of the conserved quantity

L
, H=f [|0«E|?+n|E|?+ 3(n?+v?)]dX, (13
0

| with d.n=—d,v. In terms ofH, relative errors were found to
be about one part in £0
Returning to physics, we have seen that if we operate in
FIG. 4. Schematics of the interaction process involving ghe that region of Fig. 1 where the basic wave vedtasatisfies
triplet and normal mode ion-acoustic fluctuatioms k,>k>k,/2, the generation of harmonic modes with wave
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vectors + 2k, = 3k, =4k, . .. is greatly inhibited: this will I that equatiom; accounts for the freef§ component of

be confirmed with the coming numerical simulations. In ad-the total density, i.e., the component not enslaved to the
dition, if one also satisfies either conditi@f) or (7), ion-  Langmuir field under the static approximation. We expect
acoustic modes are enslaved to the truncated Langmuir fielgiS component to be the responsible for the transition since
through relation(9). In the first case where ion-acoustic Nens@lOne generates only regular dynamics. _

modes are enslaved regardless of the valuk, dhe transi- The dynamical equation governing the basic Fourier com-
tion to chaos is unlikely because the system can be alwayRonent ofn¢, for instance, can be written in the form
approximated by an integrable model governed by the

Hamiltonian(10). In the second case where the magnitude of 2 2 5 df(|E|2)1(k,t)
p, is not too small, the situation changes. The ion-acoustic (di+kInea(k )=k —— 77—/,
field will be enslaved only if one is really close ig. As

soon as that region is abandoned, nonintegrable features take . . -
place, driving t%le transition. The questiorgmJ is what kind ofWlth d‘Ed./dt: The right-hand side term, the one cont'a!nmg
nonintegrable features are likely to be expected. In order t(ghe_ele.ctrlc field, can thus be seen as a source zdrmmg
address the issue, we proceed as follows. We decompose tRgcillations. Once again one observes thatdff<k? the

density associated with the ion-acoustic field in the form Source term is small andi—0. On the other hand, as soon
as the nonlinear frequency of thetriplet becomes compa-

N(X,t) =ngd X,t) +n¢(X,1). (14 rable tok, Eq. (15 suggests thah; can no longer be dis-

(15
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carded; this is the situation where one should look for chaosquency of thep triplet. The schematics for the nonlinear
Equivalent equations can be written down for higher Fouriefinteraction is displayed in Fig. 4.
components and similar reasoning is applicable. In any case, The relation(16) indicates how nonlinear resonances are
numerical simulations will reveal that the role played by theto be located. Accordingly, what we actually do here goes as
n¢ at the fundamental wave vectkris the most relevant.  follows. We first plot the estimated winding number at the
An examination of Eq(15) in conjunction with the equa- CEpk/Q, as a function ok keepingp, fixed. We choose
tion for the slow amplitude of the electric field, EQ), also p,=0.1 andg=1 throughout the paper, displaying the plot
suggests that transition to chaos is marked by nonlinear lockp, Fig. 5. The conditiorg=1, in particular, enables one to
ing or nonlinear resonance. Indeed, due to the form of thg,q k with stronger resonances, which can be more easily

nonlineari'ty one is lead to think that resonances are prese@ben on phase space. With the plot we estimate the particular
and that in order to see one of them one should meet thg; e ofk ko, where ap resonance op locking is born: it

condition suffices to evaluate it fronk,/Q(k,)=p, wherep is the
integer naming the resonance. Now, by virtue of the shape of
O.~ak 16 the gyrofrequency curve represented in Fig. 3, for slightly
p 0 q ’ ( )
smaller values ok the resonance moves away from the CFP
towards the separatrix. In particular, the conditions for ob-
with p andq integers, sincé, as we recall, is approximately serving the resonance become ideal when it is not too close
the oscillatory frequency afi; and ) is the nonlinear fre- to either the CFP or to the separatrix.
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FIG. 8. Quasiperiodic cycle for the same pa-
rameters used in Fig.(6).
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To actually see the locking we proceed to simulations inp=4. The second step is to ask how the locked state mani-
two steps. First of all we plot the simulated winding numberfests itself in a Poincanglot constructed with the coordinates
against po(t=0)=p(® considering ¢o(t=0)=0, to pre-

cisely locate the resonance. The windivig here is used in

the form[10]

Np,

N

Po

W=Ilim

t—oo

’

17

po and ¢ of the unperturbeg triplet; compare with Fig. 2.
The answer is given in Fig.(B), where we plot the pair
(po,¥) each time Rf(k,t)} attains a maximum;
d;Re{n¢(k,t)}=0, d’Re{n¢(k,t)}<0. The simulation runs
until a final time tg,,=4644.51, corresponding approxi-
mately to 300 ion-acoustic cycles, and a chain of four reso-
nant islands is seen encircling the CFP, as expected. In Fig. 7
we investigate the behavior 6f; in another range of values

the capitalN representing the number of cycles of the re-of k such that =6 locking would be present; this will be
spective variables appearing as subscripts. If there is lockingseful in what follows. It is seen from Fig. 5 that if
involving thep triplet andn; , a plateau should appear in the k<<kg~0.95, then one could expect to see the6 lock-

figure. From Fig. 5, in the cage=4 locking is expected for

ing. In Fig. 7@ the winding is shown fok=0.942%,, ac-

k<k,~0.9%, because for larger values kf the resonance tually displaying thep=6 locking, and in Fig. {) the cor-

is not yet born. We tak&=0.907%,, into the simulations to

responding resonant chain is seen; simulations run until

produce Fig. €8). The plateau is clearly devised for which t;,,=4472.03 and the number of ion-acoustic cycles is again

FIG. 9. Separatrix of theo=4 resonant is-
land.
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approximately 300. For sake of comparison, in Fig. 8 we usé-ig. 6(a). Figure 9 suggests that the final effect of the dis-
the same parameters as in Figb)gto make a Poincarplot  placement is actually bringing the system nearer the separa-
of an initial condition corresponding to the absence of lock-trix: at least the orbit represented in the figure looks like a
ing: we choose an initial condition off the plateau. In this separatrix orbit. Now we return to the original question: is
case the figure reveals the familiar quasiperiodic behaviorghaos stronger if one is closer to this apparent separatrix?
where a full curve replaces the discrete islands. One single way to look at the issue is to perform a power
Besides locking, another important feature of a resonangpectrum analysis of the orbit. This is done in Fig. 10. In Fig.
island is its ability in developing chaotic activity near its 10(a) we plot the power spectrum gfy(t) relative to the
separatrix. It is known indeed that chaos first appears arounsituation depicted in Fig.(®) and in Fig. 1Qb), relative to
the separatrix as a result of homoclinic and heterocliniche situation depicted in Fig. 9. In the first case, the one
crossings. Let us make sure that in our case chaos is actuallgrther from the separatrix, the spectral distribution contains
stronger on that location. To see that, let us first analyze theeveral spikes, which suggests subharmonic generation but
phase space in order to pinpoint a separatrix. This is done inot chaos. As for the second case, the distribution is spread
the Poincareplot of Fig. 9, where we consider the same out, which reveals the presence of stronger chaotic activity.
parameters as in Fig(I), with the exception 0p®), which  The conclusion is that the first manifestations of chaos in our
is slightly displaced relatively to the previous value; this newsystem are really connected to nonlinear locked states and
value ofp(? lies closer to the leftmost side of the plateau ofthe corresponding nonlinear resonances.
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FIG. 11. Space-time history afi;(x,t). Pa-
rameters and initial condition are the same as
those used in Fig.(6).

IV. COMPARISON WITH A LOW-DIMENSIONAL streaming ion-acoustic wave, the order could be reduced via
NONINTEGRABLE MODEL AND ASYMPTOTIC STATES use of characteristic coordinates.

OF THE FULL SYSTEM These observations help us to construct a very simple

Figure 11 shows the space-time historyngfx,t) for the  low-dimensional nonintegrable model for our system, which
same parameters and initial conditions used in Fidn).6 keeps the basic characteristics observed in the simulations.
From the figure it becomes apparent that the free densitfo construct the nonintegrable model we simply replace
fluctuations follow a quasistationary pattern with amplituden,,gin our integrable model by..s+ n;, wheren; is written
approximately constant and characteristic peflget 14, as  as n;=Ngcoskt)coskx). The amplitudeN, is determined
it should be if one estimates the period frdi~2 7/k with  from direct inspection of the simulations: in general the am-
k=0.907%,, which yieldsT;~15. This pattern is coherent plitude is proportional top, whose magnitude is, in turn,
with the previsions of Ref[8]. In this reference it is sug- proportional to the driving term in Ed15).
gested that nonintegrablity in this kind of SyStem requires Bearing all these facts in mind, we now present a Poin-
two counterpropagating ion-acoustic waves such that thgareplot of the low-dimensional nonintegrable model in Fig.
second-order differential operator in E@) cannot be low- 12 ysingp, =0.1, k=0.907%,, andNy=0.1. The final re-
ered to a first-order operator. If one had a single freexyt js quite similar to the one depicted in Figlbp The
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FIG. 12. Poincarglot of the low-dimensional
nonintegrable model. Same parameters as in Fig.
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v tina=11611.3, and approximately 750 ion-
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similarity appears to indicate that the overall dynamics of thes immediate because if one suppresses artificially these
full system can be completely understood in terms of thehigher-harmonic modes, similarly as is done in our low-
nonintegrable model. However, we shall see next that theimensional nonintegrable model, detuning does not take
situation is a little more delicate. place during arbitrarily long simulation intervals and the as-
The low-dimensional nonintegrable model gives birth toymptotic state turns out to be thee=4 locking. An equiva-
stable resonant chains. However, as one goes back to the fldint but realistic way to look at this feature without any
simulation and lets the simulation time increase, we see thartificial suppression of active modes is the following. Con-
sometimes the chains may not be the final asymptotic state aider a resonance that occurs for valuesatloser to the
the interaction. This is shown in Fig. &3, where the simu- instability thresholdk, than the values we have been work-
lation performed with the same parameters as in F{) 6 ing with up until now. If such is the case, higher harmonics
runs until the final timetg,,=11611.3, which corresponds mk, with |m|=2,3,. .., would be as far as possible from the
approximately to 750 ion-acoustic cycles. Clear detuning, oinstability band and their participation in the interaction
diffusion, on phase space is seen as opposed to the previowsuld be greatly reduced. Under such conditions one could
shorter run where the number of cycles was about 300. Walso expect a behavior of the full system closely resembling
would like to know what drives the detuning and the subsethat of the low-dimensional nonintegrable system. In particu-
guent diffusion. As it appears, detuning seems to arise as lar, the resonance island would be likely to become a very
result of coupling of the triplet with high-frequency modes stable entity of the system, in contrast to the transient aspect
characterized by wave vectorkar larger. This conclusion of thep=4 locking seen earlier. To investigate this possibil-
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ity, in Fig. 13b) we use the same parameters used in Fig. V. FINAL REMARKS

7(b) to plot thep=6 island, with the exception of a longer In this paper we have investigated the transition to chaos

in the Zakharov equations. The kind of approach we have
o i i ea{dopted is similar to the one used in some very recent papers
to ky, the stability of the resonance shown in the figure\yhere a periodic and dissipationless model is used, which
really appears to inform that the clc_)siel_s toky, the smaller  gisplays the presence of few unstable mofi#ls We have
the participation of higher harmonics is and the more stabl@jetected that the transition involves the presence of nonlinear
the low-dimensional locked states are. locked states preceding chaos. We find that these states ap-
The p=6 locking survives even if the simulation runs for pear when the parameters governing the system are such that
as large as 10 000 ion-acoustic cycles. We could not detewne is close to a pitchfork bifurcation destabilizing an homo-
mine whether a threshold exists such thadt i§ above it, but geneous equilibrium. Under such condition one fulfills the
belowk,, locking is the asymptotic state, or if the detuning requirement of a small number of active modes and locked
effect is so weak that diffusion does not manifest itselfstates are likely. We have numerically observed these states
within the time intervals used in the simulations. In any casethat mark transition to chaos. A low-dimensional model is

for practica| purposes it seems that if one is Sufﬁcient|y C|osepresented that contains the basic characteristics of Iocking.

to k,, but of course not so close as to make-0 and the Then, as one moves away from the pitchfork bifurcation,
system integrable, locking can be seen as a stable and robds{V@s observed that the locked states lose their stability.
structure. What happens then is that if one is not sufficiently close to

|the bifurcation point, higher harmonics of the high-frequency
field cannot be discarded and locking is perturbed, taking
ace only during finite, although very long, time intervals.
%n the other hand, if one is close enough to the bifurcation
goint, locking appears to survive over arbitrarily large peri-
ods of time. Some kind of sharp changekais varied may
exist that divides the asymptotic behavior of the system into

The importance of this feature is that low-dimensional
locked states, under the weak instability conditior-k,,
can be seen as asymptotic states to which initial disturbanc
tend and stay in a stable fashion after some small transie
during which the ion-acoustic field becomes enslaved to th
high-frequency electric field. On the other handkasegins
to move away fronk, it has been seen that the stability of .
the locked state weakens in the sense that the resonant st‘lﬂgked and unlocked final states.

tends to blur after long but finite time scales. These features In any case, chaos_ has bee_n founq to be stronger if one is
are somewhat similar to what has been found in Ref], close to the separatrix associated with the related resonant

where nonlinear coupling between a low-dimensional nonin_island. This suggests that locked states signal the start of the

tegrable system and higher harmonics induces Arnol'd diffylransition to chaos, just like what happens in low-
sion by means of which energy flows from small to |arged|men3|onal systems.

wave vectors. In our particular case, one would be tempted to
say that stability of locking causes energy to be confined
within the low-dimensional nonintegrable model, inhibiting ~ The authors wish to thank Ibete Caldas for helpful and

all the dynamics related to very small spatial scales, such asteresting discussions. This work was partially supported by
collapse, cavitation, and Landau damping. Previous simulaFinanciadora de Estudos e Projet6$NEP) and Conselho
tions point in that direction. To close this section, we men-Nacional de Desenvolvimento Ciéiito e Tecnolgico

tion that the higher chaotic activity near the separatrix iS(CNPq, Brazil. Numerical computing was performed on the
independent of locking stability as long as locking exists forCRAY Y-MP2E at the Universidade Federal do Rio Grande
a large number of ion-acoustic cycles. do Sul Supercomputing Center.
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