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We study statistical properties of the ensemble of IdigeN random matrices whose entriely; decrease
in a power-law fashiom;; ~|i—j|~ % Mapping the problem onto a nonlinearmodel with nonlocal interac-
tion, we find a transition from localized to extended statesatl. At this critical value ofa the system
exhibits multifractality and spectral statistics intermediate between the Wigner-Dyson and Poisson statistics.
These features are reminiscent of those typical of the mobility edge of disordered conductors. We find a
continuous set of critical theories at=1, parametrized by the value of the coupling constant obthreodel.
At a>1 all states are expected to be localized with integrable power-law tails. At the same time, for
1< a<3/2 the wave packet spreading at a short time scale is superdiffghijes t¥(2¢~1 which leads to a
modification of the Altshuler-Shklovskii behavior of the spectral correlation function. AL %Z 1 the sta-
tistical properties of eigenstates are similar to those in a metallic sampie=ifw—1/2)" dimensions.
Finally, the regiona<1/2 is equivalent to the corresponding Gaussian ensemble of random matrices
(«=0). The theoretical predictions are compared with results of numerical simulations.
[S1063-651%96)06209-5

PACS numbgs): 05.45:+b, 71.30+h, 71.55.Jv, 72.15.Rn

I. INTRODUCTION R |“2 o
H= 2 +V(6) > st—-mT), 2
Recently, there has been considerable interest in the prop- m=-=
erties of largeN X N random banded matricéRBM's). The  \ynerel= —i% /96 is the angular momentum operator con-

ensemble of RBM's is defined as the set of matrices W'ﬂ}ugate to the anglé. The constant3 andl are the period of
elements kicks and the moment of inertia, correspondingly, and
V(0) is usually taken to be&/(6)=kcosh. Classically, the
Hij=Gja(li—jl), (1) KR exhibits an unbound diffusion in the angular momentum
space when the strength of kicksexceeds some critical
value. It was observed, however, that in a quasiclassical re-
gime quantum effects suppress the classical diffusidnin
close analogy with the effect of Anderson localization of a

where the matrixG runs over the Gaussian orthogonal en-
semble(GOE) anda(r) is some function satisfying the con-
dition lim,_a(r)=0 and determining the shape of the 4
band. In the most frequently considered case of RBM’s th&iuantum particle by a _random potent[!ﬁll.
functiona(r) is considered to be fagat least exponentially - It is natural to consider the eVO'U“‘?('F'Oq”e’ operatgr
decaying wherr exceeds some typical value called the U that relates values of the wave function over one period of
bandwidth. Matrices of this sort were first introduced as arPerturbation(6,t+T)=U(6,t) in the “unperturbed” ba-
attempt to describe an intermediate level statistics for Hamilsis ~ of  eigenfunctions  of the  operator I:
tonian systems in a transitional regime between completf)=[1/(27)?|exp(né), n=+0,+1,.... Thematrix ele-
integrability and fully developed cha¢$] and then appeared ments(m|U|n) tend to zero whepm—n|—c. In the case
in various contexts ranging from atomic physisee[2] and  V(6)=kcos) this decay is faster than exponential when
references therejnio solid state physics3] and especially in  |m—n| exceedsb~k/#, whereas within the band of the ef-
the course of investigations of the quantum behavior of pefective widthb matrix elements prove to be pseudorandom
riodically driven Hamiltonian systemp4]. The most fre- [5]. All these observations attracted much interest to the sta-
quently studied system of the latter type is the so-calledistical properties of the ensemble of RBM’s in order to use
quantum kicked rotatoiKR) [5] characterized by the Hamil- the extracted information for understanding the dynamical
tonian properties of the KR.
Let us note, however, that the fast decay(oflU|n) in
the above mentioned situation is due to the infinite differen-

"On leave from Petersburg Nuclear Physics Institute, 18835Qiability of V(6) = cosd. If we took a functionV(6) having a

Gatchina, St. Petersburg, Russia. discontinuity in a derivative of some order, the correspond-
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ing matrix elements of the evolution operator would decay inThe parameteb will serve to label the critical models with
a power-law fashion whefn—m|—c. (The authors are a=1. We will considerb to be largeb>1 in order to justify
grateful to F. Izrailev for attracting their attention to this formally the derivation of ther model. We will argue later
fact) In fact, there is an interesting example of a periodicallyon that our conclusions are qualitatively valid for arbitrary
driven system where the matrix elements of the evolutiorb as well. We will call the ensemblél) and (5) the power-
operator decay in a power-law way, namely, the so-calledaw random banded matriPRBM) model.
Fermi acceleratof7]. This system does not show the effect In Refs.[11,3] it was shown that the RBM modél) can
of dynamical localization in energy space typical for the KR.be mapped, for arbitrary band shapér), onto a field-
One can hope to understand this difference in behavior byheoretical model of interacting 88 supermatrices
studying properties of RBM's with power-law decay of the ¢; (i=1,2,... N) characterized by the action
functiona(r) at infinity.

One may also consider the random mattly as the
Hamiltonian of a one-dimensional tight-binding model with S{o-}zStr( %E RijGinJrE U(a’i)]. (6)
long-ranged off-diagonal disordefrandom hopping A ] i
closely related problem with nonrandom long-range hopping
and dlagqnql disorder was studied numerically in Ref. Here R;j— (A~ 1)| — (N8, S (A 1Y, A is the matrix
The qualitative effect of weak long-range hopping on the ith el tsA, = (/i |J
localized states in a three-dimensiof@D) Anderson insu- with € emen =a(li=ih.
lator was discussed by Levitd@]. We will discuss the cor-
respondence between our results and those of [Rgfater
on. Let us note that similar models with a power-law hop- U(0)= 28tr[|n< E- U—l—
ping appear also in other physical contet8]. In Ref.[31]
a model of Ly matrices was studied, which was argued to
be thed—« limit of a d-dimensional tight-binding model
with power-law random hopping. Str denotes the supertracey is the frequency, and

As shown in Ref[11] (see the reviewW3] for more de- A=diag(l,—1) in the “advanced-retarded” representation.
tails), the conventional RBM model can be mapped onto arhe supermatrixo; can be parametrized as=Ti_lPiTi,
1D supermatrix nonlineas- model, which allows for an ex- with P; being block diagonal in the advanced-retarded de-
act analytical solution. The same model was derived ini- composition andT; belonging to the graded coset space
tially for a particle moving in a quasi-1D systef@mwire) and OSR2,24)/0OSR2|2)xOSR2|2), see the reviews
being subject to a random potential. All states are found t¢12,13. For b>1 the integral over the matrice®, can be
be asymptotically localized, with the localization length evaluated by the saddle-point methidd]. Then the action

(6) is reduced to ar model on a lattice

1
+ N; A_l)k|0'2] f
)

©

2B,—E?
(—O) b2, B,= > ainrk (3
8B 12w
S(Qh=— 3 (mvAg)*Str2, [(A™1);~ A0 "5,1Q()Q()
In the present paper we consider the case of a powerlike

shape of the band | TVW

2 StrQ(i (8)

a(r)ycr~« forlarger. 4)

Under these conditions, the derivation of ttremodel pre-
sented in3,11] loses its validity.

Reconsidering this derivation, we arrive at a more gener
1D o model with long-range interaction. Performing its per-
turbative and renormalization-group analysis, we find that
the model is much richer than the conventional short-range
one. In particular, it exhibits an Anderson localization tran- v=——(4A,— E?)2 9

HereQ(i)=Tf1ATi satisfies the constrai?(i)=1, A, is
given by Ag=3A, =3[ __a’(r), and v is the density of
states

sition at «=1. The main scope of the present work is to 2mAo
study the statistical properties of the model in the whole
range of the parameter. [The expression foA, is valid for >1/2 and in the limit
N—o. Whena<1/2, A, starts to have a dependence n
II. THE POWER-LAW RANDOM BANDED MATRIX that can be removed by a proper rescaling of the matrix
ENSEMBLE AND THE EFFECTIVE NONLINEAR elementsH;; in Eq. (1). Then the properties of the model
o MODEL with @<<1/2 turn out to be equivalent to those of the GOE, so
, ] ) we will not consider this case any furthpr.
Let us consider the ensemble given by Ef). with the The standard next step is to restrict oneself to the long-
functiona(r) having the form wavelength fluctuations of th@ field. For usual RBM char-

acterized by a functioma(r) decreasing faster than any
(5) power of r asr—oo, this is achieved by the momentum
expansion of the first term in the actid®):

1, r<b

3=\ 1/py=e,  r>b,



54 TRANSITION FROM LOCALIZED TO EXTENDED ... 3223

1
S A~ A" 1Q()Q() soiQ}=—7st[ @ala 0.0 o (13

] 1 a-1 where[(dg)=/dg/27=N"13,, cannot be reduced to the
=N % [Aq "= Ao 1QqQ—q local-in-space form in the c%ordinate representation any
longer. Here /= 1(7v)%c,b?*xb2*~1>1 plays the role of
~2N’12 20,Q coupling constant, justifying the perturbative and
2A, 3 4"Rq¥-q renormalization-group treatment of the model described in
the following sections.
B 5 Let us mention that, considering the RBM model as a
_Z_AOJ dx(9xQ)%, (10 tight-binding Hamiltonian, the corresponding classical mo-
tion described by the master equation on the same 1D lattice
where Q, is the Fourier transform ofQ(i) and B, is superdiffusive for 1/ a<3/2:(|r|)t¥(?*~ 1), As will be
=3A(k—1)2, as defined in Eq(3). This immediately discussed in Sec. VI, this influences the asymptotic behavior
leads to the standard continuous version of the nonliesear of the spectral correlation function for the corresponding

model: guantum system.
av
S - _ —Strf dx[iDA(a 24iwQA], 11 lll. PERTURBATIVE TREATMENT OF THE NONLINEAR
Qi 4 [2Do(2:Q) QA (D o MODEL: GENERAL FORMULAS
with the classical diffusion constailt,= wvB,, which im- In this section we derive one-loop perturbative corrections
plies the exponential localization of eigenstates with the lo10 the density-density correlation function and inverse par-
calization lengthé= vDyxb?. ticipation ratios. The analysis of these expressions for vari-

Let us try to implement the same procedure for theous values of the power-law parametewill be presented in
present case of powerlike band shape H). Restricting Sec. V.
ourselves to the lowest-order term in the momentum expan-
sion, one arrives again at E@L1) as long ase=3/2. This A. Density-density correlation function
suggests that fow=3/2 the eigenstates of the present model 1o pagic object characterizing the behavior of a particle
should be localized in the spatial domain of the extengion j, 5 random medium is the density-density correlation func-

«vD,. However, in contrast to the usual RBM model, We yjo, “\vhich can be generally expressed in terms of dhe
expect this localization to be powerlike rather than eXPONen;, o el[12]

tial: [(r)|2cr ~2% atr>¢. This is quite evident due to the

possibility of direct hopping with the same power law. On a

more formal level, the appearance of power-law tails of wave K(ry,raiw)= —(WV)ZI DQQ124p(r1)
functions is a consequence of the breakdown of the momen-

tum expansion for the functiof; *— A, * in higher orders in X KgpQo1pa(r2)e” S, (14

q2. The presence of power-law “tails” of the wave func-

tions, with an exponent determined by the decay of hop- Here the indicep,p’ of the matrixQpy .4 correspond to its
ping elements, was found in numerical simulations in Refdvanced-retarded block structure, whereg8 discriminate
(8. between bosonic and fermionic degrees of freedom. The ma-

The most interesting region H2x<3/2 requires a sepa- 11X Kgg is equal to 1 for bosons ane 1 for fermions. In
rate consideration. In this case, Ed0) loses its validity in ~ order to calculate the correlation functiad4) perturba-

view of the divergence of the coefficieBb. Instead, a close fiVely, one needs to parametrize the mat@xn terms of the
inspection shows that independent degrees of freedom. We find it convenient to

use the parametrizatidri 2]

2 -1 -1
AG(Aq "= Ag I=Ag— A W WA
. Q=AW+ {1+W9)=A 1T+Wh —— =t |,
=2 f dra(r)(1—coqr
| dra(r)(1—comr) 15
2 blql whereW is block off diagonal in the advanced-retarded rep-
= ﬂ[ dx(1—cox) resentation. To get the perturbative expansion for
ai{ Jo K(r,,r,; ), one has to substitute E(L5) into (14) to sepa-
= dx rate the part quadratic W from the rest in the exponent and
+(b|q|)2“J %(1—0090] to apply the Wick theorentsee Ref[14] for the contraction
bl X rules. In the usual case, when the action is given by Eq.
~c,b2|q[2*~ L for 1/2<a<3/2, |g|<1/b (11), the leading-ordeftree leve) result reads in momentum
* ’ ' space
(12
—9(* 2a\(1 — i ; 27y
wherec,=2[;(dx/x“*)(1—cos) is a numerical constant. Ko(q, o) (16)

The corresponding long-wavelength part of the action - Dog’—iw"
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1'*(2)_ j(dk)|q|_|:| |(r 23)

There is also a contribution t6(® from the Jacobian of
transformation(15), which is equal td16]

FIG. 1. One-loop diagram contributing to the self-energy part of
the density-density correlation function. The solid line denotes the 5F(22)= —18(0)=— %f (dk). (24
Q-field propagator, whereas the dashed line represents the interac-
tion U(r—r"). Combining Eqs(23) and(24), we get
The perturbative quantum corrections do not modify the gen- @_ lg+k|7—|k|”
eral form (16), but change the value of the diffusion con- oI = J (dk) TR (25
stant. In particular, in one-loop order one gets Bd) with
D, replaced by15] Finally, we get the following expression for the density-
density correlation function up to one-loop order:
1 1
D=Do{1-— > =5 1. 17) (mv)? lq+k|7— k|7
TV Bodt e KMo =Ke -2 [ (ak K
This induces the standard weak-localization correction to the (26)
conductivity.
Now we implement an analogous procedure for the non- B. Inverse participation ratio

local o model of the type of Eqd(8) and(13): In order to characterize eigenfunction statistics quantita-

1 i tively, it is convenient to intr_oduce a set o.f moments
S[Ql=2Str> U(r—r")Q(nQ(r)—i—> StrAQ(r), l4==|(r)|?® of the eigenfunction local intensityy(r)|?
t 4 % [17,18. The quantityl , is known as the inverse participation
(18 ratio (IPR). The whole set of moments is a useful measure
_ _2 _ of the eigenfunction structure. For completely “ergodic”
with U(r)ecr == asr—oo, so that the Fourier transform of gjgenfunctions covering randomly but uniformly the whole

U(r) behaves at small momenta as sample(l4)=(29—1)!"/N97%, as in the GOE. In contrast,
~ if eigenfunctions are localized in a domain of sigethen
U(q)=—1q|”, 12<o<2. (19 (1,)=1/&%" 1. Finally, the multifractal structure of the wave

. function manifests itself via the dependencdg)
The exponentr is related to the parameter of the RBM o« 1/Nd(a-1) with d,<1 being the set of fractal dimensions

model byo=2a—1. In leading order, we keep in the action [17 19.

the terms quadratic ikV only, which yields The method allowing one to calculate perturbative correc-
tions to the GOE-like results in the weak localization regime
B 27y was developed i120,14). It is straightforwardly applicable
Ko(d,w)= (20)

8(mrvt) Yq|"—iw’ to the present case of power-law RBM, provided the appro-
priate modification of the diffusion propagator entering the
corresponding to a superdiffusive behavior. contraction rules is made; see the text preceding (9.

To calculate the one-loop correction #y,(q) (we set One finds

w=0 for simplicity) we expand the kinetic term i§{Q} up

to fourth order inW: (Ig= 1+$q(q—1)2 I1(r,r) (2?\1;—_11)” 27
2 St (r—r")Q(r)Q(r ") fourth order where II(r,r") = (1/N) = II(q)exdig(r—r’)] and II(q) is

given by Eq.(22).
=" 1StWA(r)WA(r"). (22)

r,r’

IV. RENORMALIZATION-GROUP TREATMENT

, ] Our effective ¢ model [Eq. (18)] is actually of one-
The contraction rules are given by E¢8) and(16) of Ref.  gimensjonal nature. However, for the sake of generality, in
[14], with the propagatofI(q) replaced by the present section we find it convenient to consider it to be
defined ind-dimensional space with arbitray. The form
22) (20) of the generalized diffusion propagator suggests that
d= ¢ should play the role of the logarithmic dimension for
the problem. In the vicinity of this critical value it is natural
There is only one one-loop diagram contributing to theto carry out a renormalization-grolfRG) treatment of the
self-energy part in the present parametrization; see Fig. Inodel. We will follow the procedure developed for general
Evaluating it, we find nonlinearo models in[16]. We start from expressing the

t
(@)= g
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action in terms of the renormalized coupling constant|q+k|”

t=2; tgu’" 7, wheretg is the bare coupling constarg; is KT
the renormalization constant, and * is the length scale
governing the renormalization. aq'k+ o q2+ o . q-k 2+ »
ui-o K T2k %2 W) e A
S=%5 > U([r—r")St{ —W(r)W(r") =\ gl
1! W' g>Kk.
(31

FVIFWA() I+ WA ) ]~ ”7%2 Stry1+WA(T).

Thus the integral in Eq(26) can be estimated as

2
(28) B lg+k|” o—2 q2
i L =] (dk) ——1|=~ dKkyo| 1+ ——| 53
(Note that thewW-field renormalization is absent due to the |K| k>q d |2k
supersymmetric character of the problem, which is physi- v
cally related to the particle number conservatjdg].) Ex- n f (dk)ﬂ 32
panding the action in powers ®¥(r) and keeping terms up k<q [k|””

to fourth order, we get _ ) _ ) )
and we are interested in the particular case of the dimension
S=Sy+S;+ O(WH), d=1. For c>d=1 the integral diverges at low and the
second term in Eq32) dominates. This gives

d-o o—1|n|o
So=E=—3 Ul =1’ SIW(r) —W(r ) =Ll 39
L whereL is the system size determining the infrared cutiff
iTrw 5 the original RBM formulation it is just the matrix sizd).
g Z StW=(r), This leads to the following one-loop expression for the dif-
fusion correlator
d—o e
_r L 2 2,01 _ (mv)t To1_ -1 o—1
St 8t21§/ U(lr—r’[)StwW=(r)W=(r") K(q)——4|q|g , tl=t"l-consxL’"t (349
iwvwz 4 5 Now we turn to the renormalization-group analysis, as
+ 32 4 SUW(r). (29) described in Sec. IV. In one-loop order, the expression for

the renormalization constat, is determined essentially by

We have restricted ourselves to fourth-order terms since the}p‘he same integral [Eq. (32)], with the RG scalgqu playing
are sufficient for obtaining the renormalized quadratic part of "€ role of the infrared cutoffanalogous to that of the sys-
the action in one-loop order. The calculation yields, after thd®™ SizeL in Eq. (34)]. This yields(in the minimal subtrac-
cancellation of arf (dk)e 5(0) term with the contribution of 0N SCheme
the Jacobian,

Z(t)=1 !
o (D)= pye

t
2
1 ” o1 +0O(t7). (35
Squad=So+(S1) = Ef (dg) StWW_4| — _tzl u(q)

It is easy to check that this results in a relation between the
bare and the renormalized coupling constant analogous to

~ _ Eq. (34):
1 U(k)—U(k+
_EJ (dk) d(ig ( I(j:mu ) (30) E 170:&—&_3 1 1-0 (36)
B Tw- t4 TR T 20-1M
tZ, 4

From Eq.(35) we get the expression for the function
According to the renormalization-group idea, one has to

chose the constardy(f)=1+at+--- so as to cancel the 9t | _ (1-ot
divergence in the coefficient in front of the leadifug” term. A= dlnu . S 14tadnZy(t)
This will be done in the next section. B

2

t 3
(o= Dt=5—+0(t°).

(37)
V. ANALYSIS OF THE MODEL FOR DIFFERENT Both Egs.(34) and (37) show that the coupling constant
VALUES OF THE EXPONENT o=2a—-1 increases with the system sike(scalew), which is analo-

gous to the behavior found in the conventional scaling theory
A 1<0o<2 (1<a<3/2) of localization ind<2 dimensions[21,22. The RG flow
To evaluate the one-loop correcti¢?6) to the diffusion reaches the strong-coupling regime-1 at the scale

propagator, we use the expansion ,u~té’(‘”1). Remembering the relation of the bare cou-
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pling constanttz and the indexs to the parameters of the Since all states of the model turn out to be delocalized,
original PRBM modeltg«cb?*~! ando=2a—1, we con- one might think that their statistical properties are the same

clude that the length scale as for GOE. This, however, is not quite true. In particular,
calculating thevarianceof the inverse participation ratib,
E~tg oD pRamDi2e=2) (38) in the same way as it is done in R¢L4] we get
plays the role of the localization length for the PRBM model. (|§>—<|2>2 8 ,
This conclusion is also supported by an inspection of the (H= W_Zﬁzz I2(r,r")
expression for the IPREq. (27)]. Evaluating the one-loop 2 rr!
perturbative correction in Eq27), one gets 8
- > o). (42
(Zq_l)!_[ t g=mn/N;n=1.2, ...

(lg= —a=T | 1+ aa- D g LN, (39 _ o
77 At 0>1/2 the sum oveq is convergent, yielding

where{(o) is Riemann’s zeta functiorfy(o)=1/(c—1) for 2 {(20)
o close to unity. The correction term becomes comparable to o(1)=
the leading (GOE) contribution for the system size
N~t¥(=1) parametrically coinciding with the localization
length ¢. For largerN the perturbative expressidB89) loses
its validity and the IPR is expected to saturate at a consta
value(lg)~ &9 for N>¢. cter
In concluding this subsection, let us stress once more tha X

the localized eigenstates in the present model are expected ﬁ%)eclgr;f'ﬁf;ngO:;gzﬁéslt[f;utﬁflg Onl]zogé ehrgﬁor??sla:zgoorg dat
have integrable power-law tailgy?(r)|ocr 2¢=r~"1 at N 2/irs

. o<oM=1/n. In this sense, the model is analogous to a
' d-dimensional conductor al=2/o. Therefore, only when
o—0 (correspondingly—1/2 in the original PRBM for-
B. O<o<l(lf<a<l) mulation all statistical properties become equivalent to those
We start again from considering the perturbative correctypical for the GOE.
tions to the diffusion propagatd®6). The first term on the

(43)

87T2(r N272(r .

Thus, in this regime the fluctuations of the IPR are much
n%tronger than for the GOE, wheré(l)«1/N. Only for
0<1/2 («<3/4) the IPR fluctuations acquire the GOE char-

right-hand side of Eq(32) proportional tof dk/k? is deter- C. Critical regime: o=1 (a=1)
mined by the vicinity of its lower cutoffi.e.,k~q), whereas )
the second one is poroprtional fak/k’ and thus deter- As we have seen, the cage=1 separates the regions of
mined by the vicinity of its upper cutoffi.e., againk~q). localized (¢>1) and ext_e.ndedo(< 1) states. It is then natu-
Therefore, the integra32) is now dominated by the region '@l to expect some critical properties showing up just at
k~q and is proportional tdq|. We get, therefore, o=1. Let us again start from considering the generalized
diffusion propagatofEg. (26)]. At =1 the one-loop cor-
~ 4|q|” rection yields
(mv)’K (@)= ———C,ldl, (40

K™Y (a)=4|qg|[t"*— 3 In(|q|L)]. 44
with a numerical constar€,, . (mv)? (@) =4lall 2 In(lalL)] 49

We see that the correction term is of higher ordelginas ) - ]
compared to the leading one. Thus it does not lead to &S it was natural to expect for the critical point, the correc-

renormalization of the coupling constant This is readily ~ tion to the coupling constant is of logarithmic nature. How-
seen also in the framework of the RG scheme, where th8Ver, Eq.(44) differs essentially from that typical for al®
one-loop integral in Eq(30) does not give rise to terms of disordered conductor

the form|g|“. One can check that this feature is not specific 41

to the one-loop RG calculation, but holds in higher orders as t =ty —In(L/D), (49

well. An analogous conclusion was reached for the case of a .
vector model with long-ranged interaction by Bireet al. ~ Where the bare coupling constamt corresponds to scale
[23]. Comparing the two formulas, we see that in E44) the

mean free path is replaced by the inverse momentum
q~ L. Therefore, the correction to the bare coupling constant
is small for low momenta~ 1/L and the correlatoK(q) is

B(t)=(1-o)t. (41) not renormalized. This implies the absence of eigenstate lo-

calization, in contrast to the 2D diffusive conductor case,

This means that the model does not possess a critical poifithere Eq.(45) results in an exponentially large localization
and, fore<1, all states are delocalized for any value of thelength éxexptz*. On a more formal level, the absence of
bare coupling constant This property should be contrasted essential corrections to the logvbehavior ofK(q) is due to
with the behavior of @-dimensional conductor described by the fact that the regiolk>q does not give a logarithmic
the conventional local nonlinear model and undergoing an contribution. This is intimately connected with the absence
Anderson transition at some critical couplibgt. [22]. of t renormalization ab<<1.

In our case this implies that the renormalization constan
Z, is equal to unity and th@ function is trivial:
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To study in more details the structure of critical eigen-ing the limitt>1. Formally, the nonlineas- model for ar-
functions, let us consider the set of IPR, The perturbative bitrary t can be derived from a microscopic tight-binding

correction[Eq. (27)] is evaluated ar=1 as model by allowingn>1 “orbitals” per site [22].
. (2q—1)1! At any rate, the PRBM moddlEgs. (1) and (5)] with
qg- L= arbitrary 0<b<(c or the o model[Eq. (18)] with arbitrary
={1+q(g—1)=— —_— ; ; ; "
(lg=11+alq 1)87r|n(N/b) Na-1 (46) coupling constant &t<ew display ato=1 a rich critical

) _ behavior parametrized by the valuelofandt respectively.
where the microscopic scale[Eq. (5)] enters as the ultra-

violet cutoff for theo model, the role usually played by the
mean free path. This formula is valid as long as the correc-
tion is small:q<[ (t/8)In(N/b)]~*2. For largerq the pertur- Let us consider now the issue of spectral statistics of the
bation theory breaks down and one has to use th®RBM model. As is well known, a usual diffusive conductor
renormalization-group approach. This procedure, pioneeredxhibits the Wigner-Dysofirandom matrix theory(RMT)]

by Wegner[17] and developed by Altshuler, Kravtsov, and level statistics in the limit of infinite dimensionless conduc-
Lerner [24], requires the introduction of higher vertices of tance g=27vDL%"2. At finite g>1, deviations appear
the typez,[Stri(QkA)dr in the action of the nonlineas  [25,20,2§. In the present section we would like to address
model and their subsequent renormalization. This results ithe analogous problem in the case of the PRBM model.

RG equations for the chargeg that in the present case and  The basic quantity characterizing the spectral properties is

VI. SPECTRAL PROPERTIES

in one-loop order, read the two-level correlation function
dz, t 1
W=q(q—l)§zq, (47) R(s)= W(V(E)V(E-Fw)), (51)
Where,u‘1 is the renormalization scale. Integrating B4[7),  wheres=w/A, A is the mean level spacing;(E) is the
we find density of states at enerdy, and( ) denotes the ensemble
2g—1)11 [N\ a@-1iwem) averaging. Followind20], we find the leading correction to
(I >:% <_) (48) the Wigner-Dyson formR“P(s) of the level correlation
d N b function[Eq. (51)] as
Note that this formula is reduced to the perturbative expres- g2
sion[Eq. (46)], in the regimeq<[ (t/8)In(N/b)]~*2. R(s)=|1+ %0@52 RWD(s), (52
The behavior described by E@8) is characteristic for a
multifractal structure of wave functions, when
where
(lgyeN~ (@D, (49)
=S M=y S 11%(q)
with d being the set of fractal dimensions. We find, from NTH, ' NZq=miNT= 12, ...
Eq. (48,
t2 20-2
o >
d—1-q— (50 sz T
q s’ = 2 (53
_ . o _ const———1—>-N"1, o<1/2.
This form of the fractal dimensions is similar to that found in 477
2 and 2+ e dimensions for the usual diffusive conductor ) ) .

The set of fractal dimensiord, (as well as spectral prop- g~ /b, thg procedure leaving undetermined a constant of
erties ato=1; see Sec. lis parametrized by the coupling ©order of unity. _ _ _ _
constantt. Strictly speaking, out-model derivation is jus- ~1he correlation functiofk(s) is close to its RMT value if
tified for t<1 (i.e., b>1). However, the opposite limiting o<1 (the region of delocalized stajesr else ifoc>1 and
case can be also studied, following the ideas of Levigly  the system siz&\ is much Iess- 'Fhan the localization length
This corresponds to a-dimensional Anderson insulator, ¢ [Ed.(38)]. Under these conditions, E¢52) holds as long
perturbed by a weak long-range hopping with an amplitudeS .the correction term is small compar'ed to thg [eadmg one.
decreasing with distance as”. The arguments of Levitov This requirement produces the following restriction on the
[9] suggest that the states delocalizeratd, carrying some frequencys=w/A:
fractal properties abr=d. Our PRBM model in the limit
b<1 is just the 1D version of this problem. This shows that
the conclusion about localizatiofelocalization of eigen-
states fore>1 and o<1, respectively, withoc=1 being a
critical point holds irrespective of the particular value of the At larger frequenciess>s,), the form of the level correla-
parameteb. Alternatively, the regime of the Anderson insu- tion function changes from the s/ behavior typical for
lator with weak power-law hopping can be described in theRMT to a completely different onf25]. Extending the cal-
framework of the nonlinearr model[Eq. (18)] by consider- culation of Ref.[25] to the present case, we find

t7INTTo, o>1/2

S<Sc~ t-1pM2-oNVZe (ND)Y2 < 1/2,

(54)
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FIG. 2. Typical eigenfunctions for the matrix sike=800 and four different values eaf: (a) «=0.375,(b) =0.875,(c) «=1.250, and
(d) «=1.625.

A? 1 conductor ind>2 [29]. Let us finally mention that the value

R(s)= —Re _021

- 8 (mn.° 2 of « [Eq. (57)] is in agreement with the formula
—(—) —iw k=(d—d,)/2d, suggested recently if30], where d, is
7t N given by Eq.(50) with q=2, andd=1 in the present case.
Nl*l/(rtl/(rsl/0'72, o>1/2 (0_?5 1)
oc[tlebZ"loc(Nb)l, o<1/2. (85) VIl. NUMERICAL SIMULATIONS

At last, let us consider the level statistics in the critical W€ have performed numerical simulations of the PRBM

regimeo=1. In this case the coefficient of proportionality in Model for values otre[0,2] andb=1. In Fig. 2 we present

the asymptotic expressidB5) vanishes in view of analytic- YPical eigenfunctions for four different regions af. In
ity: agreement with the theoretical picture presented above, the

eigenstates correspondingdce=0.375 anda=0.875 are ex-
At [ dx tended, whereas those corresponding 4e=1.25 and
R(s)~ 16wzf_x(x—iw)2_o'

(56)  «=1.625 are localized. At the same time, one can notice that
the states withw=0.875 anda=1.25 exhibit a quite sparse
This is similar to what is known to happen in the case of aStructure, as opposed to the other two cases. We believe that
2D diffusive conductof27,28. A more accurate consider- thiS can be explained by the proximity of the former two
ation requires taking into account the high-momentum cutofi/alues ofa to the critical valuea=1.0, where eigenstates
atg~b~L. In full analogy with the 2D situation mentioned Should show the multifractal behavior, see Sec. V.

[27,29,28, we find then a linear term in the level number In order to get a more quantitative insight into the prop-
variance: erties of the eigenstates, we concentrated our attention on the

behavior of the mean value of the IPR,), and on the
relative varianced= ((15)—(1,)2)/(1,)2. At any givena we
studied the dependence of the quantities and & on the
matrix sizeN and approximated these dependences by the
power laws(l,)x1/N” and §«1/N# for N ranging from
100 to 2400. In Figs. 3 and 4 we plotted the values of the
The presence of the linear ter(g7) (as well as the multi- exponentsy and . obtained in this way, versus the PRBM
fractality of eigenfunctions; Sec. )vimakes the case=1 parameter. The expected theoretical curves following from
similar to the situation on the mobility edge of a disorderedthe results of Sec. V are presented as well. We see from Fig.

(8N(E))=x(N(E)),

t
K:J R(s)ds=%. (57
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FIG. 3. Indexv characterizing the dependence of the inverse FIG. 4. Same as Fig. 3, but for the index derived from the
participation ratio(l,) on the matrix sizeN via (I,)«1/N”, as a N dependence of the varianéeof the inverse participation ratio:
function of a. Points refer to the best-fit values obtained from ma- 5= ((12)—(1,)2)/(1,)?<1/N*. The dashed line corresponds to the
trix sizes betweerN=100 andN=1000 (squares or N=2400  predicted linear crossover from=1 ata<3/4 tou=0 ata>1.
(circles. The dashed line is the theoretical prediction for the tran-
sition fromv=1, at smalle, to »=0, at largea.

Turning our attention to the regime of localized states, we

3 that the data show a crossover from the behavior typical fofrInOI that it can be subdivided into two domains. In the region

. ) a>3/2 the properties of the model are rather close to those
extended statesyE&1) to that typical for localized states of a conventional quasi-1D conduci@]. On the other hand
(v=0), centered approximately at the critical poiat=1. 4 ' '

We attribute the deviations from the sharp step-like theoretifo" 1<« <3/2 the wave packflzzgerl?admg on a short time
cal curver(a) to the finite-size effects, which are unusually SCale is superdiffusiver|)~t , Which leads to a
pronounced in the PRBM model due to the long-range naturgodification of the Altshuler—Shklovskii “tail” of the spec-
of the off-diagonal coupling. The data for the exponent tral correlation functiofEqg. (55)] and to an unusual scaling
(Fig. 4 also show a reasonable agreement with the expecte®f the localization lengttg=b>*~*. The regime of extended
linear crossoverp=4(1—a) for 3/4<a<1; see Eq(43). states,«<<1, can be also subdivided into two domains. For
a<1/2, all statistical properties are identical to those of the
GOE (which corresponds ta=0). On the other hand, at
1/2< a<1 the model is quite similar to a diffusive conductor
in d=(a—1/2)"* dimensions. This is reflected, in particular,
In this paper we have performed a detailed investigatiorin the fluctuations of the IPRsee Eq(43) and the discussion
of the RBM model with a power-law decay of the matrix following it] and in the large-frequency tail of the spectral
elementdEq. (5)]. Physically, one can look at this model as correlator[Eq. (55)].
describing a particle in a 1D disordered system with a power- QOur conclusion about the existence of a set of critical
law hopping term. As a theoretical tool, we have used aheories atae=1, parametrized by the coupling constant
mapping of the problem onto a supermatrix nonlinear perfectly agrees with earlier results by Levit8]. He stud-
model[Egs. (18) and (19)]. Depending on the value of the ied the effect of a weak power-law hopping on an Anderson
power-law exponenta in Eq. (5 [or, equivalently, insulator, which corresponds to the limit>1 in the
o=2a—1 in Eqg. (19)], three different regimes are found. ¢-model formulation, and arrived at the conclusion of criti-
Fora>1 (0>1) all eigenstates are localized with integrable cality of the model atx equal to the spatial dimensiah Let
power-law tails. Fora<1 (0<1) the eigenstates are delo- us also note that our results are in accordance with the fact of
calized for any value of the bandwidthof the PRBM model  absence of localization effects in the quantum Fermi accel-
[Eq. (5)] and coupling constart<b' 2« of thes model[Eq.  erator mode[7]. As it was pointed out i7] the evolution
(19)], respectively. These two regimes are separated by thequation for this model takes the form of a finite-difference
critical value a=1 (o=1), where the structure of eigen- equation of the tight-binding type with a long-range hopping
states is multifractal and energy levels show statistics interterm decaying in a power-law fashig&q. (5)] with a=1.
mediate between Wigner-Dyson and Poisson statistics. Theggur results show that this case corresponds to the critical
critical properties are similar to those found on the mobility point with extended eigenstates and intermediate level statis-
edge of ad-dimensional disordered conductor. &t=1, we tics, in agreement with the behavior found in Réf].
find a family of critical points labeled by the value of the  We have presented results of a direct numerical simula-
coupling constant of the nonlinearoc model, so that the tion of the PRBM model. Our data are in reasonable agree-
critical behavior is parametrized by the valuetoin particu-  ment with the above theoretical picture. However, a more
lar, it determines the multifractal exponemtsand the coef- detailed numerical investigation of the structure of eigen-
ficient « of the linear term in the level number variance, states and of spectral statistics is certainly desirable. In par-
which are given at<1 by Eqgs.(50) and(57), respectively. ticular, it would be very interesting to study the critical mani-

VIIl. CONCLUSION
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fold =1, where the multifractal properties of eigenstatespitality extended to them during the Program “Quantum
and intermediate level statistics are predicted by our theoryChaos in Mesoscopic Systems” in the Institute for Theoreti-
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