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We study statistical properties of the ensemble of largeN3N random matrices whose entriesHi j decrease
in a power-law fashionHi j;u i2 j u2a. Mapping the problem onto a nonlinears model with nonlocal interac-
tion, we find a transition from localized to extended states ata51. At this critical value ofa the system
exhibits multifractality and spectral statistics intermediate between the Wigner-Dyson and Poisson statistics.
These features are reminiscent of those typical of the mobility edge of disordered conductors. We find a
continuous set of critical theories ata51, parametrized by the value of the coupling constant of thes model.
At a.1 all states are expected to be localized with integrable power-law tails. At the same time, for
1,a,3/2 the wave packet spreading at a short time scale is superdiffusive:^ur u&;t1/(2a21), which leads to a
modification of the Altshuler-Shklovskii behavior of the spectral correlation function. At 1/2,a,1 the sta-
tistical properties of eigenstates are similar to those in a metallic sample ind5(a21/2)21 dimensions.
Finally, the regiona,1/2 is equivalent to the corresponding Gaussian ensemble of random matrices
(a50). The theoretical predictions are compared with results of numerical simulations.
@S1063-651X~96!06209-5#

PACS number~s!: 05.45.1b, 71.30.1h, 71.55.Jv, 72.15.Rn

I. INTRODUCTION

Recently, there has been considerable interest in the prop-
erties of largeN3N random banded matrices~RBM’s!. The
ensemble of RBM’s is defined as the set of matrices with
elements

Hi j5Gi j a~ u i2 j u!, ~1!

where the matrixG runs over the Gaussian orthogonal en-
semble~GOE! anda(r ) is some function satisfying the con-
dition limr→`a(r )50 and determining the shape of the
band. In the most frequently considered case of RBM’s the
functiona(r ) is considered to be fast~at least exponentially!
decaying whenr exceeds some typical valueb called the
bandwidth. Matrices of this sort were first introduced as an
attempt to describe an intermediate level statistics for Hamil-
tonian systems in a transitional regime between complete
integrability and fully developed chaos@1# and then appeared
in various contexts ranging from atomic physics~see@2# and
references therein! to solid state physics@3# and especially in
the course of investigations of the quantum behavior of pe-
riodically driven Hamiltonian systems@4#. The most fre-
quently studied system of the latter type is the so-called
quantum kicked rotator~KR! @5# characterized by the Hamil-
tonian

Ĥ5
l̂ 2

2I
1V~u! (

m52`

`

d~ t2mT!, ~2!

where l̂52 i\]/]u is the angular momentum operator con-
jugate to the angleu. The constantsT andI are the period of
kicks and the moment of inertia, correspondingly, and
V(u) is usually taken to beV(u)5kcosu. Classically, the
KR exhibits an unbound diffusion in the angular momentum
space when the strength of kicksk exceeds some critical
value. It was observed, however, that in a quasiclassical re-
gime quantum effects suppress the classical diffusion@5#, in
close analogy with the effect of Anderson localization of a
quantum particle by a random potential@6#.

It is natural to consider the evolution~Floquet! operator
Û that relates values of the wave function over one period of
perturbationc(u,t1T)5Ûc(u,t) in the ‘‘unperturbed’’ ba-
sis of eigenfunctions of the operator l̂ :
u l &5@1/(2p)1/2#exp(inu), n560,61, . . . . Thematrix ele-
ments^muUun& tend to zero whenum2nu→`. In the case
V(u)5kcosu this decay is faster than exponential when
um2nu exceedsb'k/\, whereas within the band of the ef-
fective widthb matrix elements prove to be pseudorandom
@5#. All these observations attracted much interest to the sta-
tistical properties of the ensemble of RBM’s in order to use
the extracted information for understanding the dynamical
properties of the KR.

Let us note, however, that the fast decay of^muUun& in
the above mentioned situation is due to the infinite differen-
tiability of V(u)5cosu. If we took a functionV(u) having a
discontinuity in a derivative of some order, the correspond-

*On leave from Petersburg Nuclear Physics Institute, 188350
Gatchina, St. Petersburg, Russia.

PHYSICAL REVIEW E OCTOBER 1996VOLUME 54, NUMBER 4

541063-651X/96/54~4!/3221~10!/$10.00 3221 © 1996 The American Physical Society



ing matrix elements of the evolution operator would decay in
a power-law fashion whenun2mu→`. ~The authors are
grateful to F. Izrailev for attracting their attention to this
fact.! In fact, there is an interesting example of a periodically
driven system where the matrix elements of the evolution
operator decay in a power-law way, namely, the so-called
Fermi accelerator@7#. This system does not show the effect
of dynamical localization in energy space typical for the KR.
One can hope to understand this difference in behavior by
studying properties of RBM’s with power-law decay of the
functiona(r ) at infinity.

One may also consider the random matrix~1! as the
Hamiltonian of a one-dimensional tight-binding model with
long-ranged off-diagonal disorder~random hopping!. A
closely related problem with nonrandom long-range hopping
and diagonal disorder was studied numerically in Ref.@8#.
The qualitative effect of weak long-range hopping on the
localized states in a three-dimensional~3D! Anderson insu-
lator was discussed by Levitov@9#. We will discuss the cor-
respondence between our results and those of Ref.@9# later
on. Let us note that similar models with a power-law hop-
ping appear also in other physical contexts@10#. In Ref. @31#
a model of Lévy matrices was studied, which was argued to
be thed→` limit of a d-dimensional tight-binding model
with power-law random hopping.

As shown in Ref.@11# ~see the review@3# for more de-
tails!, the conventional RBM model can be mapped onto a
1D supermatrix nonlinears model, which allows for an ex-
act analytical solution. The sames model was derived ini-
tially for a particle moving in a quasi-1D system~a wire! and
being subject to a random potential. All states are found to
be asymptotically localized, with the localization length

j5
B2~2B02E2!

8B0
2 }b2, Bk5 (

r52`

`

a2~r !r k. ~3!

In the present paper we consider the case of a powerlike
shape of the band

a~r !}r2a for large r . ~4!

Under these conditions, the derivation of thes model pre-
sented in@3,11# loses its validity.

Reconsidering this derivation, we arrive at a more general
1D s model with long-range interaction. Performing its per-
turbative and renormalization-group analysis, we find that
the model is much richer than the conventional short-range
one. In particular, it exhibits an Anderson localization tran-
sition at a51. The main scope of the present work is to
study the statistical properties of the model in the whole
range of the parametera.

II. THE POWER-LAW RANDOM BANDED MATRIX
ENSEMBLE AND THE EFFECTIVE NONLINEAR

s MODEL

Let us consider the ensemble given by Eq.~1! with the
functiona(r ) having the form

a~r !5H 1, r<b

~r /b!2a, r.b.
~5!

The parameterb will serve to label the critical models with
a51. We will considerb to be largeb@1 in order to justify
formally the derivation of thes model. We will argue later
on that our conclusions are qualitatively valid for arbitrary
b as well. We will call the ensemble~1! and ~5! the power-
law random banded matrix~PRBM! model.

In Refs.@11,3# it was shown that the RBM model~1! can
be mapped, for arbitrary band shapea(r ), onto a field-
theoretical model of interacting 838 supermatrices
s i ( i51,2, . . . ,N) characterized by the action

S$s%5StrH 1
2(
i , j

Ri js is j1(
i
U~s i !J . ~6!

Here Ri j5(A21) i j2(1/N)d i j(k,l(A
21)kl , A is the matrix

with elementsAi j5a2(u i2 j u),

U~s!5 1
2StrH lnSE2s2 i

v

2
L D 1

1

N(
k,l

~A21!kls
2J ,

~7!

Str denotes the supertrace,v is the frequency, and
L5diag(I ,2I ) in the ‘‘advanced-retarded’’ representation.
The supermatrixs i can be parametrized ass i5Ti

21PiTi ,
with Pi being block diagonal in the advanced-retarded de-
composition andTi belonging to the graded coset space
OSP(2,2u4)/OSP(2u2)3OSP(2u2), see the reviews
@12,13#. For b@1 the integral over the matricesPi can be
evaluated by the saddle-point method@11#. Then the action
~6! is reduced to as model on a lattice

S$Q%52 1
4 ~pnA0!

2Str(
i , j

@~A21! i j2A0
21d i j #Q~ i !Q~ j !

2
ipnv

4 (
i
StrQ~ i !L. ~8!

HereQ( i )5Ti
21LTi satisfies the constraintQ

2( i )51, A0 is
given byA05( lAkl'( r52`

` a2(r ), andn is the density of
states

n5
1

2pA0
~4A02E2!1/2. ~9!

@The expression forA0 is valid for a.1/2 and in the limit
N→`. Whena,1/2, A0 starts to have a dependence onN
that can be removed by a proper rescaling of the matrix
elementsHi j in Eq. ~1!. Then the properties of the model
with a,1/2 turn out to be equivalent to those of the GOE, so
we will not consider this case any further.#

The standard next step is to restrict oneself to the long-
wavelength fluctuations of theQ field. For usual RBM char-
acterized by a functiona(r ) decreasing faster than any
power of r as r→`, this is achieved by the momentum
expansion of the first term in the action~8!:
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(
i , j

@~A21! i j2A0
21d i j #Q~ i !Q~ j !

[N21(
q

@Aq
212A0

21#QqQ2q

'
B2

2A0
N21(

q
q2QqQ2q

5
B2

2A0
E dx~]xQ!2, ~10!

where Qq is the Fourier transform ofQ( i ) and B2
5( lAkl(k2 l )2, as defined in Eq.~3!. This immediately
leads to the standard continuous version of the nonlinears
model:

S$Q%52
pn

4
StrE dx@ 1

2 D0~]xQ!21 ivQL#, ~11!

with the classical diffusion constantD05pnB2, which im-
plies the exponential localization of eigenstates with the lo-
calization lengthj5pnD0}b

2.
Let us try to implement the same procedure for the

present case of powerlike band shape Eq.~5!. Restricting
ourselves to the lowest-order term in the momentum expan-
sion, one arrives again at Eq.~11! as long asa>3/2. This
suggests that fora>3/2 the eigenstates of the present model
should be localized in the spatial domain of the extensionj
}nD0. However, in contrast to the usual RBM model, we
expect this localization to be powerlike rather than exponen-
tial: uc(r )u2}r22a at r@j. This is quite evident due to the
possibility of direct hopping with the same power law. On a
more formal level, the appearance of power-law tails of wave
functions is a consequence of the breakdown of the momen-
tum expansion for the functionAq

212A0
21 in higher orders in

q2. The presence of power-law ‘‘tails’’ of the wave func-
tions, with an exponenta determined by the decay of hop-
ping elements, was found in numerical simulations in Ref.
@8#.

The most interesting region 1/2,a,3/2 requires a sepa-
rate consideration. In this case, Eq.~10! loses its validity in
view of the divergence of the coefficientB2. Instead, a close
inspection shows that

A0
2~Aq

212A0
21!'A02Aq

52E
0

`

dra2~r !~12cosqr !

5
2

uqu H E0buqu
dx~12cosx!

1~buqu!2aE
buqu

` dx

x2a ~12cosx!J
'cab

2auqu2a21 for 1/2,a,3/2, uqu!1/b,

~12!

whereca52*0
`(dx/x2a)(12cosx) is a numerical constant.

The corresponding long-wavelength part of the action

S0$Q%52
1

t
StrE ~dq!uqu2a21QqQ2q , ~13!

where*(dq)[*dq/2p[N21(q , cannot be reduced to the
local-in-space form in the coordinate representation any
longer. Here 1/t5 1

4(pn)2cab
2a}b2a21@1 plays the role of

coupling constant, justifying the perturbative and
renormalization-group treatment of the model described in
the following sections.

Let us mention that, considering the RBM model as a
tight-binding Hamiltonian, the corresponding classical mo-
tion described by the master equation on the same 1D lattice
is superdiffusive for 1/2,a,3/2: ^ur u&}t1/(2a21). As will be
discussed in Sec. VI, this influences the asymptotic behavior
of the spectral correlation function for the corresponding
quantum system.

III. PERTURBATIVE TREATMENT OF THE NONLINEAR
s MODEL: GENERAL FORMULAS

In this section we derive one-loop perturbative corrections
to the density-density correlation function and inverse par-
ticipation ratios. The analysis of these expressions for vari-
ous values of the power-law parametera will be presented in
Sec. V.

A. Density-density correlation function

The basic object characterizing the behavior of a particle
in a random medium is the density-density correlation func-
tion, which can be generally expressed in terms of thes
model @12#

K~r 1 ,r 2 ;v!52~pn!2E DQQ12,ab~r 1!

3kbbQ21,ba~r 2!e
2S$Q%. ~14!

Here the indicesp,p8 of the matrixQpp8,ab correspond to its
advanced-retarded block structure, whereasa,b discriminate
between bosonic and fermionic degrees of freedom. The ma-
trix kbb is equal to 1 for bosons and21 for fermions. In
order to calculate the correlation function~14! perturba-
tively, one needs to parametrize the matrixQ in terms of the
independent degrees of freedom. We find it convenient to
use the parametrization@12#

Q5L~W1A11W2!5LS 11W1
W2

2
2
W4

8
1••• D ,

~15!

whereW is block off diagonal in the advanced-retarded rep-
resentation. To get the perturbative expansion for
K(r 1 ,r 2 ;v), one has to substitute Eq.~15! into ~14! to sepa-
rate the part quadratic inW from the rest in the exponent and
to apply the Wick theorem~see Ref.@14# for the contraction
rules!. In the usual case, when the action is given by Eq.
~11!, the leading-order~tree level! result reads in momentum
space

K0~q,v!5
2pn

D0q
22 iv

. ~16!
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The perturbative quantum corrections do not modify the gen-
eral form ~16!, but change the value of the diffusion con-
stant. In particular, in one-loop order one gets Eq.~16! with
D0 replaced by@15#

D5D0H 12
1

pnV (
qi5pni /Li

1

D0q
22 ivJ . ~17!

This induces the standard weak-localization correction to the
conductivity.

Now we implement an analogous procedure for the non-
local s model of the type of Eqs.~8! and ~13!:

S$Q%5
1

t
Str(

r .r 8
U~r2r 8!Q~r !Q~r 8!2 i

pn

4 (
r
StrLQ~r !,

~18!

with U(r )}r22a as r→`, so that the Fourier transform of
U(r ) behaves at small momenta as

Ũ~q!52uqus, 1/2,s,2. ~19!

The exponents is related to the parametera of the RBM
model bys52a21. In leading order, we keep in the action
the terms quadratic inW only, which yields

K0~q,v!5
2pn

8~pnt !21uqus2 iv
, ~20!

corresponding to a superdiffusive behavior.
To calculate the one-loop correction toK0(q) ~we set

v50 for simplicity! we expand the kinetic term inS$Q% up
to fourth order inW:

(
r ,r 8

StrU~r2r 8!Q~r !Q~r 8!u fourth order

5(
r ,r 8

1
4StrW

2~r !W2~r 8!. ~21!

The contraction rules are given by Eqs.~8! and ~16! of Ref.
@14#, with the propagatorP(q) replaced by

P~q!5
t

8uqus
. ~22!

There is only one one-loop diagram contributing to the
self-energy part in the present parametrization; see Fig. 1.
Evaluating it, we find

dG1
~2!5

1

2E ~dk!
uq1kus

ukus
. ~23!

There is also a contribution toG (2) from the Jacobian of
transformation~15!, which is equal to@16#

dG2
~2!52 1

2 d~0![2 1
2 E ~dk!. ~24!

Combining Eqs.~23! and ~24!, we get

dG~2!5
1

2E ~dk!
uq1kus2ukus

ukus
. ~25!

Finally, we get the following expression for the density-
density correlation function up to one-loop order:

K21~q!5K0
21~q!2

~pn!2

2 E ~dk!
uq1kus2ukus

ukus
.

~26!

B. Inverse participation ratio

In order to characterize eigenfunction statistics quantita-
tively, it is convenient to introduce a set of moments
I q5(uc(r )u2q of the eigenfunction local intensityuc(r )u2
@17,18#. The quantityI 2 is known as the inverse participation
ratio ~IPR!. The whole set of momentsI q is a useful measure
of the eigenfunction structure. For completely ‘‘ergodic’’
eigenfunctions covering randomly but uniformly the whole
sample,̂ I q&5(2q21)!!/Nq21, as in the GOE. In contrast,
if eigenfunctions are localized in a domain of sizej, then
^I q&}1/j

q21. Finally, the multifractal structure of the wave
function manifests itself via the dependencêI q&
}1/Ndq(q21), with dq,1 being the set of fractal dimensions
@17,19#.

The method allowing one to calculate perturbative correc-
tions to the GOE-like results in the weak localization regime
was developed in@20,14#. It is straightforwardly applicable
to the present case of power-law RBM, provided the appro-
priate modification of the diffusion propagator entering the
contraction rules is made; see the text preceding Eq.~22!.
One finds

^I q&5H 11
1

N
q~q21!(

r
P~r ,r !J ~2q21!!!

Nq21 , ~27!

where P(r ,r 8)5(1/N)(qP(q)exp@iq(r2r8)# and P(q) is
given by Eq.~22!.

IV. RENORMALIZATION-GROUP TREATMENT

Our effective s model @Eq. ~18!# is actually of one-
dimensional nature. However, for the sake of generality, in
the present section we find it convenient to consider it to be
defined ind-dimensional space with arbitraryd. The form
~20! of the generalized diffusion propagator suggests that
d5s should play the role of the logarithmic dimension for
the problem. In the vicinity of this critical value it is natural
to carry out a renormalization-group~RG! treatment of the
model. We will follow the procedure developed for general
nonlinears models in @16#. We start from expressing the

FIG. 1. One-loop diagram contributing to the self-energy part of
the density-density correlation function. The solid line denotes the
Q-field propagator, whereas the dashed line represents the interac-
tion U(r2r 8).
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action in terms of the renormalized coupling constant
t5Z1

21tBmd2s, wheretB is the bare coupling constant,Z1 is
the renormalization constant, andm21 is the length scale
governing the renormalization.

S5
md2s

2tZ1
(
r ,r 8

U~ ur2r 8u!Str@2W~r !W~r 8!

1A11W2~r !A11W2~r 8!#2
ipnv

4 (
r
StrA11W2~r !.

~28!

~Note that theW-field renormalization is absent due to the
supersymmetric character of the problem, which is physi-
cally related to the particle number conservation@12#.! Ex-
panding the action in powers ofW(r ) and keeping terms up
to fourth order, we get

S5S01S11O~W6!,

S05
md2s

4tZ1
(
r ,r 8

U~ ur2r 8u!Str@W~r !2W~r 8!#2

2
ipnv

8 (
r
StrW2~r !,

S15
md2s

8tZ1
(
r ,r 8

U~ ur2r 8u!StrW2~r !W2~r 8!

1
ipnv

32 (
r
StrW4~r !. ~29!

We have restricted ourselves to fourth-order terms since they
are sufficient for obtaining the renormalized quadratic part of
the action in one-loop order. The calculation yields, after the
cancellation of an*(dk)}d(0) term with the contribution of
the Jacobian,

Squad5S01^S1&5
1

2E ~dq!StrWqW2qF 2
md2s

tZ1
Ũ~q!

2
1

2E ~dk!
Ũ~k!2Ũ~k1q!

2
md2s

tZ1
Ũ~k!2

ipnv

4
G . ~30!

According to the renormalization-group idea, one has to
chose the constantZ1(t)511at1••• so as to cancel the
divergence in the coefficient in front of the leadinguqus term.
This will be done in the next section.

V. ANALYSIS OF THE MODEL FOR DIFFERENT
VALUES OF THE EXPONENT s52a21

A. 1<s<2 „1<a<3/2…

To evaluate the one-loop correction~26! to the diffusion
propagator, we use the expansion

uq1kus

ukus
21

.H sq•k

k2
1

s

2

q2

k2
1sS s

2
21D S q•kk2 D 21•••, q!k

uqus

ukus
, q@k.

~31!

Thus the integral in Eq.~26! can be estimated as

I[E ~dk!F uq1kus

ukus
21G'E

k.q
~dk!sS 11

s22

d D q2

2k2

1E
k,q

~dk!
uqus

ukus
, ~32!

and we are interested in the particular case of the dimension
d51. For s.d51 the integral diverges at lowk and the
second term in Eq.~32! dominates. This gives

I;Ls21uqus, ~33!

whereL is the system size determining the infrared cutoff~in
the original RBM formulation it is just the matrix sizeN).
This leads to the following one-loop expression for the dif-
fusion correlator

K~q!5
~pn!2t̃

4uqus
, t̃215t212const3Ls21. ~34!

Now we turn to the renormalization-group analysis, as
described in Sec. IV. In one-loop order, the expression for
the renormalization constantZ1 is determined essentially by
the same integralI @Eq. ~32!#, with the RG scalem playing
the role of the infrared cutoff@analogous to that of the sys-
tem sizeL in Eq. ~34!#. This yields~in the minimal subtrac-
tion scheme!

Z1~ t !512
1

2p

t

s21
1O~ t2!. ~35!

It is easy to check that this results in a relation between the
bare and the renormalized coupling constant analogous to
Eq. ~34!:

1

t
m12s[

Z1
tB

5
1

tB
2
1

2

1

s21
m12s. ~36!

From Eq.~35! we get the expression for theb function

b~ t !5
]t

] lnm U
tB

5
~12s!t

11t] tlnZ1~ t !
52~s21!t2

t2

2p
1O~ t3!.

~37!

Both Eqs.~34! and ~37! show that the coupling constantt
increases with the system sizeL ~scalem), which is analo-
gous to the behavior found in the conventional scaling theory
of localization in d,2 dimensions@21,22#. The RG flow
reaches the strong-coupling regimet;1 at the scale
m;tB

1/(s21) . Remembering the relation of the bare cou-

54 3225TRANSITION FROM LOCALIZED TO EXTENDED . . .



pling constanttB and the indexs to the parameters of the
original PRBM model,tB

21}b2a21 ands}2a21, we con-
clude that the length scale

j;tB
21/~s21!;b~2a21!/~2a22! ~38!

plays the role of the localization length for the PRBM model.
This conclusion is also supported by an inspection of the

expression for the IPR@Eq. ~27!#. Evaluating the one-loop
perturbative correction in Eq.~27!, one gets

^I q&5
~2q21!!!

Nq21 H 11q~q21!
t

8ps z~s!Ns21J , ~39!

wherez(s) is Riemann’s zeta function;z(s).1/(s21) for
s close to unity. The correction term becomes comparable to
the leading ~GOE! contribution for the system size
N;t1/(s21), parametrically coinciding with the localization
lengthj. For largerN the perturbative expression~39! loses
its validity and the IPR is expected to saturate at a constant
value ^I q&;j12q for N@j.

In concluding this subsection, let us stress once more that
the localized eigenstates in the present model are expected to
have integrable power-law tailsuc2(r )u}r22a5r2s21 at
r@j.

B. 0<s<1„1/2<a<1…

We start again from considering the perturbative correc-
tions to the diffusion propagator~26!. The first term on the
right-hand side of Eq.~32! proportional to*dk/k2 is deter-
mined by the vicinity of its lower cutoff~i.e.,k;q), whereas
the second one is poroprtional to*dk/ks and thus deter-
mined by the vicinity of its upper cutoff~i.e., againk;q).
Therefore, the integral~32! is now dominated by the region
k;q and is proportional touqu. We get, therefore,

~pn!2K21~q!5
4uqus

t
2Csuqu, ~40!

with a numerical constantCs .
We see that the correction term is of higher order inuqu as

compared to the leading one. Thus it does not lead to a
renormalization of the coupling constantt. This is readily
seen also in the framework of the RG scheme, where the
one-loop integral in Eq.~30! does not give rise to terms of
the form uqus. One can check that this feature is not specific
to the one-loop RG calculation, but holds in higher orders as
well. An analogous conclusion was reached for the case of a
vector model with long-ranged interaction by Bre´zin et al.
@23#.

In our case this implies that the renormalization constant
Z1 is equal to unity and theb function is trivial:

b~ t !5~12s!t. ~41!

This means that the model does not possess a critical point
and, fors,1, all states are delocalized for any value of the
bare coupling constantt. This property should be contrasted
with the behavior of ad-dimensional conductor described by
the conventional local nonlinears model and undergoing an
Anderson transition at some critical couplingt5tc @22#.

Since all states of the model turn out to be delocalized,
one might think that their statistical properties are the same
as for GOE. This, however, is not quite true. In particular,
calculating thevarianceof the inverse participation ratioI 2
in the same way as it is done in Ref.@14# we get

d~ I !5
^I 2

2&2^I 2&
2

^I 2&
2 5

8

N2(
r ,r 8

P2~r ,r 8!

5
8

N2 (
q5pn/N;n51,2, . . .

P2~q!. ~42!

At s.1/2 the sum overq is convergent, yielding

d~ I !5
t2

8p2s

z~2s!

N222s . ~43!

Thus, in this regime the fluctuations of the IPR are much
stronger than for the GOE, whered(I )}1/N. Only for
s,1/2 (a,3/4) the IPR fluctuations acquire the GOE char-
acter.

Considering higher irreducible moments~cumulants! of
the IPR,̂ I 2

n& ir , one finds that the GOE behavior is restored at
s,sc

(n)[1/n. In this sense, the model is analogous to a
d-dimensional conductor atd52/s. Therefore, only when
s→0 ~correspondingly,a→1/2 in the original PRBM for-
mulation! all statistical properties become equivalent to those
typical for the GOE.

C. Critical regime: s51 „a51…

As we have seen, the cases51 separates the regions of
localized (s.1) and extended (s,1) states. It is then natu-
ral to expect some critical properties showing up just at
s51. Let us again start from considering the generalized
diffusion propagator@Eq. ~26!#. At s51 the one-loop cor-
rection yields

1

~pn!2
K21~q!54uqu@ t212 1

2 ln~ uquL !#. ~44!

As it was natural to expect for the critical point, the correc-
tion to the coupling constant is of logarithmic nature. How-
ever, Eq.~44! differs essentially from that typical for a 2D
disordered conductor

t215tB
212 ln~L/ l !, ~45!

where the bare coupling constanttB corresponds to scalel .
Comparing the two formulas, we see that in Eq.~44! the
mean free pathl is replaced by the inverse momentum
q21. Therefore, the correction to the bare coupling constant
is small for low momentaq;1/L and the correlatorK(q) is
not renormalized. This implies the absence of eigenstate lo-
calization, in contrast to the 2D diffusive conductor case,
where Eq.~45! results in an exponentially large localization
length j}exptB

21 . On a more formal level, the absence of
essential corrections to the low-q behavior ofK(q) is due to
the fact that the regionk.q does not give a logarithmic
contribution. This is intimately connected with the absence
of t renormalization ats,1.
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To study in more details the structure of critical eigen-
functions, let us consider the set of IPR,I q . The perturbative
correction@Eq. ~27!# is evaluated ats51 as

^I q&5H 11q~q21!
t

8p
ln~N/b!J ~2q21!!!

Nq21 , ~46!

where the microscopic scaleb @Eq. ~5!# enters as the ultra-
violet cutoff for thes model, the role usually played by the
mean free pathl . This formula is valid as long as the correc-
tion is small:q!@(t/8p)ln(N/b)#21/2. For largerq the pertur-
bation theory breaks down and one has to use the
renormalization-group approach. This procedure, pioneered
by Wegner@17# and developed by Altshuler, Kravtsov, and
Lerner @24#, requires the introduction of higher vertices of
the typezq*Str

q(QkL)dr in the action of the nonlinears
model and their subsequent renormalization. This results in
RG equations for the chargeszq that in the present case and
in one-loop order, read

dzq
dlnm21 5q~q21!

t

8p
zq , ~47!

wherem21 is the renormalization scale. Integrating Eq.~47!,
we find

^I q&5
~2q21!!!

Nq21 SNb D q~q21!~ t/8p!

. ~48!

Note that this formula is reduced to the perturbative expres-
sion @Eq. ~46!#, in the regimeq!@(t/8p)ln(N/b)#21/2.

The behavior described by Eq.~48! is characteristic for a
multifractal structure of wave functions, when

^I q&}N
2dq~q21!, ~49!

with dq being the set of fractal dimensions. We find, from
Eq. ~48!,

dq512q
t

8p
. ~50!

This form of the fractal dimensions is similar to that found in
2 and 21e dimensions for the usual diffusive conductor
@17,19,24#. The one-loop result~50! holds forq!8p/t.

The set of fractal dimensionsdq ~as well as spectral prop-
erties ats51; see Sec. VI! is parametrized by the coupling
constantt. Strictly speaking, ours-model derivation is jus-
tified for t!1 ~i.e., b@1). However, the opposite limiting
case can be also studied, following the ideas of Levitov@9#.
This corresponds to ad-dimensional Anderson insulator,
perturbed by a weak long-range hopping with an amplitude
decreasing with distance asr2s. The arguments of Levitov
@9# suggest that the states delocalize ats<d, carrying some
fractal properties ats5d. Our PRBM model in the limit
b!1 is just the 1D version of this problem. This shows that
the conclusion about localization~delocalization! of eigen-
states fors.1 ands,1, respectively, withs51 being a
critical point holds irrespective of the particular value of the
parameterb. Alternatively, the regime of the Anderson insu-
lator with weak power-law hopping can be described in the
framework of the nonlinears model@Eq. ~18!# by consider-

ing the limit t@1. Formally, the nonlinears model for ar-
bitrary t can be derived from a microscopic tight-binding
model by allowingn@1 ‘‘orbitals’’ per site @22#.

At any rate, the PRBM model@Eqs. ~1! and ~5!# with
arbitrary 0,b,` or thes model @Eq. ~18!# with arbitrary
coupling constant 0,t,` display ats51 a rich critical
behavior parametrized by the value ofb and t respectively.

VI. SPECTRAL PROPERTIES

Let us consider now the issue of spectral statistics of the
PRBM model. As is well known, a usual diffusive conductor
exhibits the Wigner-Dyson@random matrix theory~RMT!#
level statistics in the limit of infinite dimensionless conduc-
tance g52pnDLd22. At finite g@1, deviations appear
@25,20,26#. In the present section we would like to address
the analogous problem in the case of the PRBM model.

The basic quantity characterizing the spectral properties is
the two-level correlation function

R~s!5
1

^n&2
^n~E!n~E1v!&, ~51!

where s5v/D, D is the mean level spacing,n(E) is the
density of states at energyE, and ^ & denotes the ensemble
averaging. Following@20#, we find the leading correction to
the Wigner-Dyson formRWD(s) of the level correlation
function @Eq. ~51!# as

R~s!5F11 1
2C

d2

ds2
s2GRWD~s!, ~52!

where

C5
1

N2(
r ,r 8

P2~r ,r 8!5
1

N2 (
q5pn/N;n51,2, . . .

P2~q!

5H t2

64p2s N
2s22, s.1/2

const
t2

64p2sb122s N
21, s,1/2.

~53!

At s,1/2 the sum divergent at high momenta is cut off at
q;p/b, the procedure leaving undetermined a constant of
order of unity.

The correlation functionR(s) is close to its RMT value if
s,1 ~the region of delocalized states! or else ifs.1 and
the system sizeN is much less than the localization length
j @Eq. ~38!#. Under these conditions, Eq.~52! holds as long
as the correction term is small compared to the leading one.
This requirement produces the following restriction on the
frequencys5v/D:

s,sc;H t21N12s, s.1/2

t21b1/22sN1/2}~Nb!1/2, s,1/2.
~54!

At larger frequencies (s.sc), the form of the level correla-
tion function changes from the 1/s2 behavior typical for
RMT to a completely different one@25#. Extending the cal-
culation of Ref.@25# to the present case, we find
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R~s!5
D2

p2Re (
n50,1, . . .

1

F 8

pnt S pn

N D s

2 ivG2

}HN121/st1/ss1/s22, s.1/2 ~sÞ1!

t2N21b2s21}~Nb!21, s,1/2.
~55!

At last, let us consider the level statistics in the critical
regimes51. In this case the coefficient of proportionality in
the asymptotic expression~55! vanishes in view of analytic-
ity:

R~s!;
Dt

16p2E
2`

` dx

~x2 iv!2
50. ~56!

This is similar to what is known to happen in the case of a
2D diffusive conductor@27,28#. A more accurate consider-
ation requires taking into account the high-momentum cutoff
at q;b21. In full analogy with the 2D situation mentioned
@27,29,28#, we find then a linear term in the level number
variance:

^dN2~E!&.k^N~E!&,

k5E R~s!ds5
t

8p
. ~57!

The presence of the linear term~57! ~as well as the multi-
fractality of eigenfunctions; Sec. V! makes the cases51
similar to the situation on the mobility edge of a disordered

conductor ind.2 @29#. Let us finally mention that the value
of k @Eq. ~57!# is in agreement with the formula
k5(d2d2)/2d, suggested recently in@30#, where d2 is
given by Eq.~50! with q52, andd51 in the present case.

VII. NUMERICAL SIMULATIONS

We have performed numerical simulations of the PRBM
model for values ofaP@0,2# andb51. In Fig. 2 we present
typical eigenfunctions for four different regions ofa. In
agreement with the theoretical picture presented above, the
eigenstates corresponding toa50.375 anda50.875 are ex-
tended, whereas those corresponding toa51.25 and
a51.625 are localized. At the same time, one can notice that
the states witha50.875 anda51.25 exhibit a quite sparse
structure, as opposed to the other two cases. We believe that
this can be explained by the proximity of the former two
values ofa to the critical valuea51.0, where eigenstates
should show the multifractal behavior, see Sec. V.

In order to get a more quantitative insight into the prop-
erties of the eigenstates, we concentrated our attention on the
behavior of the mean value of the IPR,^I 2&, and on the
relative varianced5(^I 2

2&2^I 2&
2)/^I 2&

2. At any givena we
studied the dependence of the quantities^I 2& and d on the
matrix sizeN and approximated these dependences by the
power laws ^I 2&}1/N

n and d}1/Nm for N ranging from
100 to 2400. In Figs. 3 and 4 we plotted the values of the
exponentsn andm obtained in this way, versus the PRBM
parametera. The expected theoretical curves following from
the results of Sec. V are presented as well. We see from Fig.

FIG. 2. Typical eigenfunctions for the matrix sizeN5800 and four different values ofa: ~a! a50.375,~b! a50.875,~c! a51.250, and
~d! a51.625.

3228 54MIRLIN, FYODOROV, DITTES, QUEZADA, AND SELIGMAN



3 that the data show a crossover from the behavior typical for
extended states (n51) to that typical for localized states
(n50), centered approximately at the critical pointa51.
We attribute the deviations from the sharp step-like theoreti-
cal curven(a) to the finite-size effects, which are unusually
pronounced in the PRBM model due to the long-range nature
of the off-diagonal coupling. The data for the exponentm
~Fig. 4! also show a reasonable agreement with the expected
linear crossover,m54(12a) for 3/4,a,1; see Eq.~43!.

VIII. CONCLUSION

In this paper we have performed a detailed investigation
of the RBM model with a power-law decay of the matrix
elements@Eq. ~5!#. Physically, one can look at this model as
describing a particle in a 1D disordered system with a power-
law hopping term. As a theoretical tool, we have used a
mapping of the problem onto a supermatrix nonlinears
model @Eqs. ~18! and ~19!#. Depending on the value of the
power-law exponenta in Eq. ~5! @or, equivalently,
s52a21 in Eq. ~19!#, three different regimes are found.
Fora.1 (s.1) all eigenstates are localized with integrable
power-law tails. Fora,1 (s,1) the eigenstates are delo-
calized for any value of the bandwidthb of the PRBM model
@Eq. ~5!# and coupling constantt}b122a of thes model@Eq.
~19!#, respectively. These two regimes are separated by the
critical value a51 (s51), where the structure of eigen-
states is multifractal and energy levels show statistics inter-
mediate between Wigner-Dyson and Poisson statistics. These
critical properties are similar to those found on the mobility
edge of ad-dimensional disordered conductor. Ats51, we
find a family of critical points labeled by the value of the
coupling constantt of the nonlinears model, so that the
critical behavior is parametrized by the value oft. In particu-
lar, it determines the multifractal exponentsdq and the coef-
ficient k of the linear term in the level number variance,
which are given att!1 by Eqs.~50! and ~57!, respectively.

Turning our attention to the regime of localized states, we
find that it can be subdivided into two domains. In the region
a.3/2 the properties of the model are rather close to those
of a conventional quasi-1D conductor@3#. On the other hand,
for 1,a,3/2 the wave packet spreading on a short time
scale is superdiffusivê ur u&;t1/(2a21), which leads to a
modification of the Altshuler–Shklovskii ‘‘tail’’ of the spec-
tral correlation function@Eq. ~55!# and to an unusual scaling
of the localization lengthj}b2a21. The regime of extended
states,a,1, can be also subdivided into two domains. For
a,1/2, all statistical properties are identical to those of the
GOE ~which corresponds toa50). On the other hand, at
1/2,a,1 the model is quite similar to a diffusive conductor
in d5(a21/2)21 dimensions. This is reflected, in particular,
in the fluctuations of the IPR@see Eq.~43! and the discussion
following it# and in the large-frequency tail of the spectral
correlator@Eq. ~55!#.

Our conclusion about the existence of a set of critical
theories ata51, parametrized by the coupling constantt,
perfectly agrees with earlier results by Levitov@9#. He stud-
ied the effect of a weak power-law hopping on an Anderson
insulator, which corresponds to the limitt@1 in the
s-model formulation, and arrived at the conclusion of criti-
cality of the model ata equal to the spatial dimensiond. Let
us also note that our results are in accordance with the fact of
absence of localization effects in the quantum Fermi accel-
erator model@7#. As it was pointed out in@7# the evolution
equation for this model takes the form of a finite-difference
equation of the tight-binding type with a long-range hopping
term decaying in a power-law fashion@Eq. ~5!# with a51.
Our results show that this case corresponds to the critical
point with extended eigenstates and intermediate level statis-
tics, in agreement with the behavior found in Ref.@7#.

We have presented results of a direct numerical simula-
tion of the PRBM model. Our data are in reasonable agree-
ment with the above theoretical picture. However, a more
detailed numerical investigation of the structure of eigen-
states and of spectral statistics is certainly desirable. In par-
ticular, it would be very interesting to study the critical mani-

FIG. 4. Same as Fig. 3, but for the indexm, derived from the
N dependence of the varianced of the inverse participation ratio:
d[(^I 2

2&2^I 2&
2)/^I 2&

2}1/Nm. The dashed line corresponds to the
predicted linear crossover fromm51 ata,3/4 tom50 ata.1.

FIG. 3. Indexn characterizing the dependence of the inverse
participation ratio^I 2& on the matrix sizeN via ^I 2&}1/N

n, as a
function ofa. Points refer to the best-fit values obtained from ma-
trix sizes betweenN5100 andN51000 ~squares! or N52400
~circles!. The dashed line is the theoretical prediction for the tran-
sition from n51, at smalla, to n50, at largea.
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fold a51, where the multifractal properties of eigenstates
and intermediate level statistics are predicted by our theory.
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