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Control of chaos in noisy flows
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A nonlinear dynamical system in a chaotic state is very sensitive to errors. Inherent noise in physical systems
gives rise to difficulties for stabilizing chaotic systems onto desired unstable periodic orbits, particularly with
large eigenvalues. The idea of adjusting the system state more frequently to eliminate error deviations from a
desired orbit is utilized and given in variational form for flows. This control scheme acting on multiple sections
can cope with relatively large noise levels. A Duffing oscillator and a parametrically excited pendulum are used
in numerical studies. The relationship between controllable noise levels and the number of control sections is
discussed[S1063-651X96)05409-9

PACS numbd(s): 05.45+b

[. INTRODUCTION unstable periodic orbits, tiny errors introduced may “kick”
the system state out of its controllable region. Therefore, the

The control of chaos has attracted much attention followkey observation is that the control interval must be reduced
ing the seminal article of Ott, Grebogi, and YorkeGY) to decrease the time for errors to grow. Thus control must be
[1]. This method has the ability to stabilize a desired orbitmore frequently applied to adjust the system state eliminat-
chosen from the many unstable periodic orbits coexistingng error deviations from a desired orbit before the errors
with a chaotic attractor, without changing the global configu-grow too large. This idea was first used in the control of
ration of the system, which makes the OGY method differenthaos by Hbingeret al.[18]. Here this idea is linked with a
from previous methodf2—4]. In recent years, a number of one-step optimal control schenigl] and given in a varia-
different methods have been developBd 18 motivated by tional form. The relationship between the number of control
the OGY method, many of which have been physicallysections and controllable noise levels is investigated.
implemented; e.g., for driven bean49], lasers[20,21],
electronic circuit§22], chemical reactiong23], communica- Il. CONTROL ON MULTIPLE SECTIONS
tions[24], and even for biological systeni&5,2§.

A nonlinear system in the chaotic state is very sensitive to In general, a continuous-time nonlinear dynamical system
initial conditions, particularly in chaotic systems with large may be written as
Lyapunov exponents, s¢&4,17], such that a tiny error may .
lead to failure of a control process with errors amplified ex- x=f(x,p), xeR", peR", ()
ponentially with time. Linearization of a nonlinear system in
control, inaccuracy of experimental measurement, and #herex is a vector of state variables ama set of the
noisy environment all introduce errors into a control processparameters, such that at settipg p*, the systen{2) under-
Considering the stabilization of an unstable periodic orhitgoes a chaotic motion. There are typically an infinite number
embedded within an attractor, the growth, givendsy), of ~ Of unstable periodic orbits embedded within the chaotic
an errore(0) to the unstable periodic orbit is dominated by motion [1]. An unstable periodic orbit satisfiex*(t)

the unstable eigenvalugs of the orbit and the time, i.e., ~ =X"(t+T), whereT is a recurrent period of the orbit. The
motivation here is thax*(t) can be viewed as an unstable
e(7)~e(0)exp(\ 7). (1)  periodK orbit havingK fixed pointsé; (k=1,2,..K) in the

space> '®eIl. HereI'® is one of the “stroboscopic”

Figure 1 demonstrates a numerical example of the expansicifctions sampled in the phase spHceith a 7 time interval;
of an error near an unstable periodic orbit in a parametricallyp€e Fig. 28). Thus the following relations must hold:
excited penduluni14]. Heree(7) is defined by a distance
from the unstable periodic orbit. The numerical computation & =X*(1), t=to+kr, k=1,2,.K, Kr=T, (3
shows that the errog(7), at the timer=3X 27, is about 160
times larger than the initial erra@x(0)=0.01 in only one re- where&; e I'® andx*(t) ¢ T® for t#ty+kr, andt, is ini-
current timeT (within which an orbit starts from an initial tial time; see Fig. &). In the full spacdl, there exists a map
point and returns back to the same point, HEre3x27) of  F that satisfies the relations below foiKaperiodic orbit,
the unstable period-3 orbit. This feature of rapid enlargement
of errors in chaotic systems gives rise to additional difficul- &1=F(& .p*), & =F(& .p¥) 4
ties during control.

A number of present method4,5,6,9—-16 modify con-  and for any mapping poirg 11,
trol parameter®nceeach Poincareeturn time. For the con-
trol of systems with large Lyapunov exponent or high-order &1=F(&,pY). 5)
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FIG. 1. A numerical example of an unstable oscillating period-3
orbit of a parametrically excited pendulum is illustratéd. The
periodic orbit in the phase portrait starts from the initial point at
(—2.512 660 4, 0.065 017 Inarked by*. An error of (0.01, 0.0
occurring at the initial point leads to a large deviatidotted curve
from the unstable periodic orbisolid curve. (b) The small error

increases exponentially with time

Let x(t;xo;p*) be a solution of(2) at timet with initial
conditions(ty,Xq,p*). Hereg corresponds to the chaotic time
seriesx(t;xy;p*) on the spacdl. When ¢ falls within a
neighborhood() of one of the fixed points€y , a one-step
optimal control schemgl1] can be applied to stabilizé , ;
onto the fixed pointyg, ; by perturbing the parameterdur-
ing the interval fromi to i+1.

5pi=ak5§i (k: 1,2,...K),

SE=&—&

ay=— (D F(& .p*)DF(& .p*)) 'DyF(& .p%)

X DgF(& p*), (6)
whereDF(& ,p*) is the Jacobian of the PoincaneapF,
andD;F(&¢ ,p*) denotes the differential of the madpwith
respect to the parametgr The superscripl denotes the
transpose of a matrix as usual.
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To apply(6), a variational method can be used to compute
the discrete-time serigs, & 11, the mapF(§), the Jacobian
D.F(& ,p*), and the matribD F(£&; ,p*). Letx(t;xo;p*) be
a solution of(2) so that

X(t;%0;P) =f(X(t;%0;p*),p*),  X(tgiXo;P*)=Xo. (7)
Differentiate (7) with respect tax, to obtain
Dy X(t;X0;P*) = Dyf (X(t;X0; p* ), P* )Dy X(; X0 %),
Dy X(to;Xo:P*)=1. ®

Let X(t;Xo;p*) =Dy X(t;Xo;p*) and f(x,p*) denote
f(x(t;%g;p*),p*) then Eq.(8) becomes

X(t:%03P*) =Dy (X, P*)X(1:X03P*),  X(toi%o;p*) =1
9
Differentiate(7) with respect tgo* to obtain
D« X(t;Xg;p*) = Dyf(X(t; X; P* ), p* )Dps X(t; X0 ; P* )
+ Dpf(X(t;%0;0%),p*) (10

with the initial condition Dg«X(tg;Xg;p*)=0. Let
U(t;Xg;p*) =DpxX(t;Xo;p*) so that
U(t;Xo;p*) = Dyf(X,p* )U(t; X0 p*)
+Dpf(x,p*),  U(tg;xo;p*)=0. (11)

Putting Eqs(7), (9), and(11) together forms a set of coupled
differential equations given by

X(t;%0;P*) f(x,p*)

X(t;Xo;p*) ¢ = Duf (X, p* ) X(t;X0;p*) :

U(t;Xo;p*) D,f(x,p* )U(t;Xo;p*) + Dpf(X,p*)
X(to;%o;P*) Xo
X(tg;Xo;P*) p =1 | (12
U(tg;Xo;P*) 0

The continuous time series(t;Xy;p*), X(t;xq;p*), and
U(t;xo;p*) can be calculated by integrating?2) from the
initial conditionx(ty;Xq;p*) =X Il. Thus the mapping point
&, map F(&,p*), Jacobian D:F(& ,p*), and matrix
DpF (& ,p*). & €ll, can be written as follows:

&=x(im%0;p*), (13
F(&.p*)=x(7;&:p*), (14
DF(&i,p*)=X(7;&;p%), (15
DpF(&i,p*)=U(7;& ;p*). (16)

When x,ex*(t) and xo=¢&F eI'Mell, then xo=¢% is a
fixed point on the section™ such that the fixed points
&, F(& .p%), DF(& p*), andD,F(£ ,p*) can, respec-
tively, be determined by13), (14), (15), and (16). In the
numerical procedure, the coupled differential Etp) is in-
tegrated with arinterval from a fixed poing; on the section
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FIG. 2. Three “stroboscopic” sections set within a peribef an unstable periodic orhif* (t) with 7=T/3. (a) The periodic orbit* (t)
(thick curve successively intersects the sectidit® at pointséy , (k=1,2,3. Around & , a valid linearized region is marked I6y. A small
errore(0) may cause a large deviatigdenoted by the thin curydrom x*(t) att=T, where theg(T) places the system state outsidebut
not att=r. (b) Three fixed point€ , & , &% in the phase spadd indicate a period-3 orbit in the sense of a period being

'@, After a 7 interval of integration, the trajectory x=y,

x(t; £ ;p*) intersects with the sectioh**?) at the fixed

point &, ; and the quantities ii14), (15), and (16) can be y=—cy+0.5(1—x?)+b coq wt),
sequentially obtained. Therefore, the feedback con(Bol

can be applied at eachinterval on the spacél. t=1. (17)

As the number of control sectionté in (3) increase, the
control time interval decreases within an orbit periadrhus
the variational algorithm can apply the perturbat@nmore
often (K timeg than once each periob, such that the influ-
ence of the errors is diminished in eaglinterval (<T). A
nontrivial benefit is that control input is renewed frequently
to correct the state of the system onto a desired odffit),
resulting in an increase in the ability to stabilize highly un-
stable periodic orbits even in the presence of relatively larg
noise inputs.

Figure 3 shows a chaotic attractor of the Duffing oscillator
when parameters are set @t=0.15, b=0.15, andw=0.8.
The mapping points are stroboscopically sampled at an inter-
val of 27r/w (the driving period from a single chaotic trajec-
tory in phase space. An unstable period-5 orbit is indicated
by five fixed points marked by the symbe] which is em-
bedded within the attractor. The forcing amplitugés cho-
8en as a control parameter.

In the absence of noise, a chaotic motion of the Duffing
oscillator can be stabilized onto the unstable period-5 orbit
(the unstable eigenvalue here is 238 only setting one
control section(i.e., K=1) in each recurrent timéT =10x/

To apply the new control scheme, the well-known Duff- w) of this orbit. Figure 4 demonstrates the control process
ing oscillator is considered, which can be written in the formplotting the trajectory just before and just after the control in

Ill. NUMERICAL SIMULATIONS
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FIG. 3. A chaotic attractor of the Duffing oscillator described in -0.2
Eq.(17), c=0.15,b=0.15, andw=0.8, is plotted by 2000 mapping -0.47
points, which are stroboscopically sampled at intervals sfa2 -0.6
from a single chaotic trajectory in phase space. Five fixed points of 800 350 400 450 500 550 600
an unstable period-5 orbit that is embedded within the attractor are
indicated by the symbot. The locations of the fixed points are 05
& =(—0.859 167 580, 0.192 828 460), £5 =(—0.477 363 565, '
0.345571 833), ¢&;=(1.06332187,—0.0323014069), &
=(1.027 517 16, 0.409 679 492), &£ =(—0.729 448 553,
—0.316 140 592). y o
x andy againstt. The stabilized system state follows the
unstable period-5 orbit that can be viewed in the phase por-
trait; see Fig. &). 05
To examine the efficiency of the new control scheme, first 1.5 ) 0.5 0 05 y 15
we consider a simple case regarding the effect of a constant X

:I[lrigr.bét\}\)//&%a![heexigzli?n:anﬁir(;%et?oﬁ;tbrg srr:g\rlvat::g trﬁ(laaﬁzrr:_ FIG. 4. A chaotic motion of the Duffing oscillator is stabilized
- . e . onto the unstable period-5 orbitvith unstable eigenvalue 23.3
Bg:ilg doé Cc;)rrt])ti:?lsseeeCtII:?gSSm lt:hoer Ssti?:gl'izci?/onhg:(:h;nugrs;‘t;bligaftert:392. The stabilization is carried out in the absence of noise

| h iabl . using control oncdi.e., K=1) in each recurrent timél0n/w) of
added only to the variably once every recurrent time this orbit. (a) The controlled trajectory ix againstt; (b) the con-

T=10m/w of the periodic orbit. For the chosen number of | ieq trajectory iny against; (c) the phase portrait of the unstable
sectionsK, we increase the value of the error until the CON-period-5 orbit.

trol fails, giving the maximum controllable error. In Fig. 5,
the maximum controllable errors are indicated by the point
O corresponding to the number of control sectionKass
varied. As can be seen, fir=1, the maximum controllable

error was found to be 0.0008. Initially the ability to cope 0.3
with errors in the control is enhanced as the numikeof Controllable errors
control sections increases. Afté&=6, the curve tends to 0.25]

flatten off and the maximum controllable error is up to about
0.26 in this specific stabilization. The one-step optimal
schemg11] is based on linearization, and consequently the 0.15}
error at this level may place the system state on the margin of

0.21

the valid linearized neighborhood of the orbit. In this con- 0.1F

text, a further increase in the number of control sections will

achieve no benefit. The maximal controllable error is re- 0.05

stricted by the size of the linearized neighborhood of the o

orbit. % 2 4 6 8 10
To further illustrate the effectiveness of control on mul- K

tiple sections, we investigate a complicated situation of con-

trol in the presence of noise. Assume that noise is acting like F|G. 5. An example of the relationship between the controllable
a sequence of impulses whose amplitude and impulse freerrors and the numbét of control-sections in the stabilization of
quency are both normally distributed. A time series of noisean unstable period-5 orbit. The symb®l indicates the maximum
will thus be input into the variableg andy at irregular controllable error corresponding to the numbeKobf control sec-
intervals. We will study the case of stabilizing a chaotic statdions.
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FIG. 7. Stabilization of the chaotic motion of the Duffing oscil-

lator onto a unstable period-5 orbit in the presence of noise using 12

15 . . . . control sectiongK =12). The control is switched on aftér=392. A
mapping of the variable sampled each recurrent ting&0n/w) of
1 Chagtic bursts the periodic orbit shows a successful control process. The dense
N points parallel to the horizontal axis indicate that the system state
05 : 1 stays close to the periodic orbit.
x O

trol using the settingk =5 cannot suppress chaos completely
05.. < | since the noise impulses can still move the system state away
- from the stabilized periodic orbit at some time.
Using the same conditions as above, but with the setting
. changed toK=12, the system state is stabilized onto the
5500 1000 1200 2000 2500 3000 3500 4000 4500 period-5 orbit successfully, see Fig. 7, without significant
t chaotic bursts. In numerical simulations, the caseK sf,
7, 8, 9, and 10 were also tried, indicating that chaotic bursts
FIG. 6. Stabilization of the chaotic motion of the Duffing oscil- cannot be completely excluded but decr_ease( ascreases.
lator onto an unstable period-5 orbit in the presence of noise using The n?W method has also_been applied to the parametri-
five control sections(K=5). The control is switched on after Cally excited pendulum described by
t=392.(a) In the time series of the variable the chaotic trajectory
is stabilized onto the periodic orbit, but the control is unsuccessful
att=1350 andt=1520, where the system state is “kicked” by the
noise off the periodic state into the chaotic state.A mapping of ~ YWhen the parameters are setcat0.1, p=2, andw=2, the
the variablex sampled each recurrent tini&0m/w) of the periodic ~ SyStem behaves chaotically with many unstable periodic or-
orbit shows a longer time scale of the control process. The densgits embedded within the chaotic motion; some possess large
points along the horizontal indicate that the system state stays opigenvalueg100’s, 1000'$; see[14]. Here the parametes
the periodic orbit. Duringt=1350—2200 the separated mapping iS used as a control parameter.
points apart from the dense points indicate bursts of chaotic mo-

0+ cb+(1+p coswt)sing=0. (18

tions.
0.05
onto the unstable period-5 orbit. The system state is dis- 0.04 \ _,\,,f\‘
turbed by noise to the level of approximately 7% of the size ' N avi *.\
of the periodic orbit(the maximum amplitude of noise is 0.03} 7“ £ = Y
bounded inx within 0.1 and iny within 0.033. P ,' v SN
For such levels of noise, the stabilization, in general, fails 0.02 i *
whenK <5. Figure 6a) shows the caséK =5) in which the b
control is switched on aftar=392, and the chaotic trajectory 0.01f o
is stabilized onto the period-5 orbit, but the control is unsuc- o
cessful att=1350 andt=1520, where the system state % . 5 10 15 20 25
moves off from the periodic state into the chaotic state. A K

mapping series of the varialbkesampled each recurrent time

(107/w) shows a longer time scale of the control process in |G, 8. The relationship betwegn(the controllable noise level
Fig. 6(b). The dense points lining up along the horizontal gndk (the number of control sectiopsvith the restriction of the
axis indicate that the system state stays on the periodic orbigarameter perturbation set |dts|<0.5. This result is based on the
However, the control loses robustness somewhere duringpntrol of the period-4 orbit of the parametrically excited pendu-
t=1350-2200 in which the mapping points separated fromum, where the pointémarked by the symbok) indicate the maxi-
the dense point line indicate bursts of chaotic motion. Conmum controllable noise levels.
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parameter perturbation is boundgib|<0.5, which will be

18 set to zero ifldw| exceeds this value. As can be seen, when
1 K =1, the controllable noise levelis less than 0.000K =2,
05 p=0.0005,K=3, p=0.004, and so on. For the orbit de-
scribed, the highest noise levpt0.044 can be controlled
6 O with K=15, which is about four times that of the achievable
05 level for K=4. Selecting the proper number of control sec-
4 tions can greatly enhance the ability to cope with noise. Note
that the controllable noise level, in general, decreases as the
) 2 0 1 number of sections increases after-15. One possible rea-

oa

@ son is that when the number of sections increases, the time
for control is shortened, while directing a trajectory onto the
desired orbit requires larger perturbations if the time interval
for control is less. When the required perturbation exceeds its
bounded value, the perturbation will be set to zewhich is
ol ] not the required quantity for the correct conjrdlhus incor-
rect control inputs may result in failure of the control at
certain levels of noise. In other numerical studiest re-
ported herg the pattern of this relationship betwegandK
s 2200 5650 3800 3000 is roughly similar when the perturbation is limited [6w|

! <1.0, but the controllable noise level is higher. Using differ-

ent segments of a noise time seribst with the same levgl
4 produces some differences, but the relationship between
L : andK remains qualitatively similar.

In Fig. 9, an example of stabilizing the unstable period-4
orbit is shown where the noise levplis 0.03, using 12
control sectiongdK=12) with a restriction on the perturba-
tions of |5w|<0.5. In the phase space, the orbit is “fuzzy”
due to the effects of noise, see FigaP Figure 9b) demon-
strates the required parameter perturbations, which is re-
newed every control interval= /3. The orbit is sampled on
the 12 control sections and the mapping points are plotted in

0.5

3w

(o)

© 0 500 1000 1500 2000 2500 3000 Fig. 9(c), which indicates a longer time scale for the stabili-
zation.
FIG. 9. (a) The phase portrait of the controlled period-4 orbit IV. CONCLUSION
whose largest eigenvaluén magnitude is —562.3, which is )
“fuzzy” due to the effects of noise withK=12, p=0.03, |sw| In chaotic systems, an error can be expanded at an expo-
<0.5); (b) the parameter perturbations required to stabilize the penential rate with time such that small errors or noise inputs
riodic orbit; (c) the mapping points on 12 control sections. can easily affect a control process of stabilizing unstable pe-

riodic orbits. The idea of reducing the time for errors to grow

In the presence of noise, which is added to both variableby increasing control sections is powerful to cope with this
(the angulam® and the angular velocity), the stabilization of issue, particularly when the orbits possess large eigenvalues.
an oscillating unstable period-4 orbit, whose largest ampli-This paper links the concept of multiple sections with the
tude of the eigenvalue is562.3, is investigated. A relation- one-step optimal schenjd1] given in a variational formu-
ship between the controllable noise levpland the number lation applicable to flows. The relationship between the num-
K of control sections is shown in Fig. 8. The points markedber of control sections and controllable noise levels is inves-
by X joined by lines indicate the maximum controllable tigated. Numerical simulations show that the proposed
noise levels corresponding to the number of sectlonth all  scheme can significantly enhance the ability to cope with
simulations, the initial condition of the system state is thenoise in the stabilization of unstable periodic orbits, even
same starting from the poiit-2.474 21, 0.085 205and the those that have large eigenvalues.
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