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Escape over a fluctuating barrier: Limits of small and large correlation times
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We investigate the problem of diffusion across a randomly fluctuating barrier in the presence of thermal
noise. The barrier fluctuations are induced by an Ornstein-Uhlenbeck noise the s@eoigtrhich is assumed
to depend on the noise correlation timeln the vicinity of the limits of zero and infinite we calculate the
exact formulas for the first two terms of the expansion in powers @f the mean first-passage tifiFPT)
over the top of the barrier. The results are strongly conditioned by the form of tlependence of. The
main conclusion is that the nonmonotonidependence of the MFPT is generic, while the monotonicity of the
MFPT occurs only in some specific cases. Wheimcreases from zero, for a class of barrier noises With
increasing faster than linearly one should observe “resonant activation,” i.e., a minimum of the MFPT as a
function of 7. The appearance of a maximum, called “inhibition of activation,” is also possible provided that
the noise variancB increases faster than linearly as a function efitvthe vicinity of the limit 1/— 0. Both
kinds of extrema may also appear simultaneously. These effects depend neither on the shape of the barrier nor
on its disturbance. IQ(7) [or D(1/7)] varies linearly or slower as (1/7) increases from zero, then the
peculiarities of the perturbed barrier become essential and any typedependence of the MFPT, also a
monotonic one, is possible. The specific analogy between the properties of the MFRT-fbrand for
T— is stressed.S1063-651X96)02909-1

PACS numbg(s): 05.40:+j, 02.50—r, 82.20—w

I. INTRODUCTION The classical Kramers theof—6] deals with a diffusion
induced by an idealized uncorrelated noise. As the main re-
In recent years the stochastic dynamics community hasult one obtains the Arrhenius-like formula-exp@AU/q)
become increasingly interested in noise-induced resonancéosr the dependence of the escape tifen the barrier height
like effects in nonlinear systems. The best known and the\U and the noise strengtlp. A more realistic treatment of
most intensively studied phenomenon of this kindtischas-  diffusion due to an exponentially correlated noise had not
tic resonancd1], a cooperative effect of nonlinearity, peri- been investigated prior to the eighties. The general conclu-
odicity, and stochasticity, resulting in an enhancement okion of any of the numerous theori¢g,8] states that the
small coherent signals by noise. The conventional model ofioise memory slows the escape process down. In the case of
stochastic resonand@] concerns diffusion over a barrier a complex system whose dynamics is governed by a wide
inside a symmetric double-well potential driven by a smallvariety of time scales, it may happen that one or more of
asymmetric periodic signal which changes alternately thehose time scales are comparable with the duration of the
depths of the wells. Quite recently Doering and Gad[®la diffusion over the barrier. It is therefore reasonable to expect
have discovered another resonancelike behavior for diffusiothat during the barrier crossing event the barrier itself does
over a potential barrier with a randomly fluctuating height.not remain static — it will vary, being modulated by some
The mean escape tin€ over the barrier has exhibited a relevant degree of freedom, often in a stochastic fashion.
minimum as a function of the correlation timeof the bar-  This may happen for some processes in complex systems
rier fluctuations. The minimal value df has been of the like chemical reactions between large molecyl@sor for
order of 7 which has suggested a resonancelike character gfarametrically driven systems like dye lasgfs Some prob-
the phenomenon, hence the effect has been cadlednant lems of the escape process in the presence of two noise
activation (RA). sourcegadditive and multiplicativehave been considered in
Both phenomena are in fact some variants of one of th¢10,11]. It seems that a systematic research of diffusion over
most fundamental problems in noisy dynamics, namely, the fluctuating potential barrier was initialized by Stein, Doer-
diffusive escape over a potential barrier. The foundations oing et al.[12,13 leading to the discovery of RA3].
its theory were laid by Kramergt] half a century ago and The toy model studied if8] consists of a piecewise linear
since that time many modifications and generalizations of théarrier the slope of which is randomly switching between
problem have been formulate@ee, e.g.[5]) leading to  two possible values. A simplified version of the problem has
some interesting new phenomena such as the resonanceliiso been considered within the rate equation framework
behavior mentioned above. The ubiquity of noise-assistefll4—18. A more physical case deals with diffusion over a
barrier crossing in physics, chemistry, biology, and othersmooth potential barrier the shape of which varies randomly
branches of science or technology is such that one may exlue to the fluctuations of a continuous parameter. Such a
pect many applications of any new effect associated with itgeneral model has been mentioned by Reimpt® and
discussed more carefully by Hggi et al. [20—-23 and Re-
imann [24,25. Quite recently the first experimental results
*Electronic address: jiwanisz@phys.uni.torun.pl on an electronic analogue circuit have been announced by
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Marchesoniet al. [26]. All those papers demonstrate the MFPT are given. In the two subsections we calculate the
great complexity of the problem and formulate many operexact formulas for the MFPT, and its first-order correction,
guestions. It is the aim of this article to discuss some offor both limits of the correlation time. A simplified version
them. of those results is given in Sec. IV within the weak noise
In the papers cited above the barrier fluctuations are supPproximation, which allows one to analyze the effect of the
posed to be exponentially correlated. In calculations they arghape of the barrier and of its perturbation on the escape
represented by two widely used kinds of noise, namely, &rocess. A discussion of the dependence of the MFPT is
dichotomous noisgDN) or an Ornstein-Uhlenbeck noise Presented in Sec. V. We find a relation between the proper-
(OUN). Both of them are parametrized by two quantit{e, ties of exponentially correlated fluctuations of the barrier and
one of which is the correlation time, the control parameter the possibility of the appearance of extremaZ&gf). The
of the prob|em_ RA can appear in the presence of any Ofna.in conclusion is that for almost any kind of eXponentia”y
those noises, however, it strongly depends on the choice ¢Prrelated Gaussian noise one observes a generic nonmono-
the secondgz-independent parameter. E.g., if this parameteftonicity of 7, either with a minimum, or with a maximum, or
is chosen to be the noise variance then RA occurs; if it is th@€ven with both extrema simultaneously. Some simple ex-
noise Strength' RA is abseﬁlglza_ Moreover, Reimann ampIeS are given in Sec. VI while in Sec. VIl we discuss the
[19] has shown that it is possible to obtain also the oppositéesults and draw some conclusions.
effect, namely, a maximum df{ 7) for a finite 7. The analy-
sis of Hanggi [20] proves, that RA can occur generically [l. EXPONENTIALLY CORRELATED NOISE
whenever the colored noise intensity increases sufficiently
fast with increasingr, e.g., for a linear increase in the case
when the noise variance is constas¢e Eq.(2.3) below].
The discovery of RA caused some astonishmii|

Let us consider a stationary Markovian Gaussian process
z(t) of vanishing mean and variand2. According to the
Doob’s theoren}28] this is necessarily an OUN which pos-

since there existed a conviction about a monotanitepen- sesses an exponentially decreasing correlation function
dence of the escape time, which had arisen after the investi- It|
gation of diffusion in the presence of OUN,8]. We show, C(t):=(z(t")z(t'+1))=D exp( -—
that the reason for this confusion is some arbitrariness in T

defining the OUN, namely, in the choice of the second relyith the correlation timer. This process is governed by the

evant parameter of this noise. following linear stochastic differential equation:
Because of its non-Markovian character, the problem may

be treated exactly only in some special cases, e.g., for a dz 1 2Q
piecewise linear barrier disturbed by OI8,14]. In general G ;Z+ = n(t), (2.2
one needs some approximatidii,20,22,2% However, it is

not necessary to investigate the whole range 66 antici- it 4(t) being a Gaussian white noise of zero mean and the
pate the appearance of RA. It suffices to check the depensy relation function (n(t)(t'))=5(t—t'). The noise

dence of the escape timé& on the correlation time for gyengthQ is related to the variand® through the formula
7—0. As follows from the study of the escape process in-

duced by OUN, an increase iAwith increasingr seems to D=Q/7. (2.3
be a natural tendency. Hence the negative value of the first-
order correction off for infinitesimally smallr suggests the The process(t) may also be treated as a superposition of
occurrence of RA18,19,24,2% Such an approach is applied harmonic oscillations with random amplitude and phass.
in this paper. Its power spectrum

We study the escape process calculating the mean first-
passage timel\/IFPD over the top of the barrier f_or a particle S(w):= ijw dtC(t)exp( —iwt) = 9
initially prepared in the bottom of the potential well. The 27) o T
non-Markovian character of the one-dimensional problem is
avoided by embedding it in a two-dimensional Markovianis then the measure of the contribution of the oscillation of
process. In general, such a multidimensional problem is unfrequencye to the total noise(t), while the inverse of the
solvable analytically. However, since we are interested in theorrelation time(the width of the spectruingives the range
form of 7{7) in the very vicinity of the white noise limit, the of the most essential oscillations.
appropriate expansion results in some simple differential The procesg(t) is completely characterized by two pa-
equations which yield the exact formulas by means oframeters. One of them is the correlation timevhich is the
quadratures. Besides the white noise limit we study, also, isrucial parameter in our considerations. The choice of the
the same way the other limit—o, so we are able to predict second parameter is somewhat arbitrary and depends on the
any nonmonotonic behavior of MFPT associated either withdetails of the problem. Describing the properties of OUN we
a minimum(RA) or a maximum[we call this effectinhibi- have used either the noise stren@h(2.2) and(2.4)] or the
tion of activation(IA)] of the escape timé&{r). noise varianc® (2.1). Those two parameters seem to be the

The outline of the paper is as follows. In Sec. Il we ana-simplest, natural quantities which determine, together with
lyze the relations between different quantities which charac, all the properties og(t).
terize any OUN and we specify a class of noises which we Let us take a closer look at the behavior of the functions
use to disturb the barrier. Net®ec. Ill) the dynamics of the C(t) and S(w) when 7 reaches its limiting values 0 or.
problem is formulated and the general equations for th&Keeping eithelQ or D constant one gets

: (2.1

T2 29
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Q=const D=const analysis in Sec. Ill thar=0 or a<1, respectively. The
latter inequalities have a simple explanation according to the

7—0 C(t)—Qd(1) C(t)— D for =0 discussion which follows Eq(2.5). In the limit 7—0, a
0 for t#0 negative value ofr would mean that the variand is infi-
S(w)—Ql S(w)—0 nitely large not only because the noisedscorrelated, but
(2.9 also due to the infinite value of its strength This would
T C(1)—0 C(H—Db imply that the intensity of any spectral component is infinite,
Q/m for w=0 hence, the total power would be “doubly” infinite. An
S(w)— 0 for w0 S(w)—Dé(w). analogous behavior whem—o is observed in the case

a>1.

An analysis of the properties a{t) with Q(r) given by
In the limit 7—0, if Q is kept constantz(t) becomess  (2.6) shows thatz(t) disappears unless=0 or a=1 for
correlated and its variancB is infinite — z(t) takes all 7—0 or 7—, respectively. Thus in both limits of the
values between minus and plus infinity with equal probabil-only nonvanishing members of the class of Gaussian station-
ity. Further, all the frequencies contribute with the same fi-ary noises(2.2) are those which converge to CSN or CVN,
nite intensityQ/, so the total power is infinite. These un- respectively. Further, for a noise witha#0 (a#1) any
physical features reflect the extreme irregularitg.g., slight increase of- (1/7) from 0 means that the noise starts
nondifferentiability of the Gaussian white noisg28]. If ~ to have an effect on the system with which it is coupled.
D =const the properties af(t) are quite different. The pos- Because any characteristic time constant of the system is
sible values of(t) lie in a finite interval. Although the pro- finite, in the neighborhood of=0 an increase of induces
cess is also memoryless and thus its spectrum is flat, the totle same effect as an increase in the strength of the white
power is finite, i.e., the intensity of any individual frequency noise. Similarly, for sufficiently large a decrease of im-
vanishes. Consequently, the limit-0 is in fact a noiseless plies the same changes as an increase of the variance of an
one[28]. infinitely long-correlated noise. Thus for the noises with

In the limit 7— o0 the power spectrum consists of a single «>0 (7—0) or a<1 (7—) it is enough to know the
S(w) Component_ For constam the intensity of this com- influence of zero- or |nf|n|tely Iong-correlated noises on the
ponent is infinitely large, but the total power is finite, s6s  System to predict the role of the finite memoryaft).
a time-independent number randomly distributed within a In order to make Eq(2.2), which describes the dynamics
finite interval. If Q is constant then the amplitudg0) is  of barrier fluctuations, independent of the specific form of
finite and the total power vanishes. Consequebtly0 and Q, we use the scaling
this is a noiseless case t (freezing out of colored noise
23), Heel (reezing 2(t)=\2Q (1), 2.7
The above analysis shows some analogy between the . . . . . .

properties ofz(t) in both limits of 7. The correlation func- and consider in the followlng a Gaussian stationary noise
tion C(t) for 7—0 (=) behaves like the noise spectrum y(t) of zero mean and variance equal to 1/2, which is gov-

S(w) for 7—oo (0). Thesame concerns the role & and erned by the equation
D. Let us also notice, that depending on the choice of the

constant parameté or D, in any limit one obtains either a d_y =— v+t 2.8
. T oe : . y 7(t). (2.9
singular noise with some nonphysical properiigginite to- dt T Jr
tal power or infinite intensity of one spectral componemnt
a completely noiseless case. The noise strengtl) appears explicitly in the fluctuating part

In some large systems, when one represents the influened the potential in Eq(3.1) which describes the escape pro-
of the irrelevant degrees of freedom on the relevant part ofess.
the system by an OUN, the relation between the parameters
of this noise may be much more complex, with neit@enor IIl. MEAN FIRST-PASSAGE TIME
D being independent of. In this paper we consider a gen- ) ) o
eral case of such a relation. Because we study the activation L€t us consider an overdamped motion of a particle in a
process in the presence of extremely fast or extremely slowotential which consists of two parts: a static dix) and a
barrier fluctuations, it suffices to specify thelependence of time-dependent disturbancgt)V(x). The potentialU(x)

the second noise parameter in the limits of small and largfas a local minimum atx, and a local maximum at
7 only. In the following it is assumed that as—0 or  Xo>Xa, and for the sake of convenience there are no other

7—, the noise strength takes the form extrema forx<<x,. Consequently there is a potential barrier
of heightAU: =U(x,) —U(x,) with one metastable well on
Q(7)=7%(Qo+ Q1+ ---), 0<Qgy<> (2.6) its left-hand side (lhs). Similarly we denote
AV:=V(x,)—V(xy;) and we restrict ourselves to the case
where the parametef@; and the exponents, 8 are gener- AV=0 [the negative sign could be absorbed inft)]. Fur-
ally different in both limits ofr. If only Qq is different from  ther, it is assumed that the perturbation does not change the
zero one recognizes the above mentioned constant-strengbositions of the extrema of the total potential, so
noise (CSN) and constant-variance noig€VN) for «a=0  V'(x,)=V’'(xp)=0. To ensure the physical sense of the
and @=1, respectively. The form of expansid@.6) yields  problem we also suppose that the disturbance is not very
B=0 for 7—0 or B<0 for 7—oo, while it follows from the large so that the barrier is always present and the character of



3176 JAN IWANISZEWSKI 54

the extrema is preserved. The time-dependent farfijrof ~ kovian one. The standard technigL@] yields an equation
the disturbance describes random fluctuations of the barridor the MFPTT(X,y) over this separatrix

and is realized by the OURR.2). The particle undergoes also

thermal fluctuations characterized by a Gaussian white noise —1=L"(x,y)T(x,y), (3.6
J2g&(t) of vanishing mean, strength, and correlation ) . ) ) ) -~
(£()E(t))=8(t—t'). Finally, we assume thag(t) and with the absorbing barrier at=x,, imposing the condition
7(t) in (2.2) are uncorrelated. The dynamics of the particle

is thus governed by the following Langevin equation: T(X,y)=0. (3.7
dx The form of the operatot, suggests an expansion of
FTiaie — 277 1Q(n)V' (x)y(t) + V2q&(), T(x,y) into a series of the Hermite polynomiats,(y) [30]

(3. o
where the scaled noisgt) (2.7) is used instead a(t). T(x,y)=r]§=:0 T (X; T HA(Y), (3.8

The particle is initially located at the minimury and the
quantity of interest is its mean escape tifhever the poten-  with the boundary conditions
tial barrier. Among the standard approacti$ to such a
problem we choose the first-passage tifR®T) technique Tha(Xp;7)=0. (3.9
with 7 being the MFPT over the barrier top &f. For ex-
tremely short and for extremely long correlations of barrierThe exponentg,, different in both limits of 7, give the
fluctuations this approach results in some exact equatiorleading dependence on the correlation time of the expansion

which are solvable by means of quadratures. coefficients in(3.8). After averaging3.8) over the Gaussian
If the disturbance is absent, the MFPT for a static barriedistribution ofy one obtains7= 7PTy(x; 7). Since the es-
reads[6] cape time should be well defined when the barrier fluctua-
tions disappeaftsay Qy,=0), sopy=0 for both —0 and

T,

1 (%
Ts(Xa):a du

xa V(U )

dv‘I’ s(v), (3.2

A. Small 7 limit
where . . . .
Inserting (3.8) into (3.6) and using the properties of the

U(x) Hermite polynomials one obtains an infinite set of equations
‘I’S(X)=exr< ~q ) (33 for T,(x;7). The analysis of the dominant terms for small
7 gives =0 andp,=n(a+1)/2. Thus we get the set of
The presence of correlated fluctuations of the barrier imequationsthe dots stands for the higher-order termsrjn
plies the main complication of the problem, namely, its being

non-Markovian. We omit this difficulty by considering an | o + wt B Q1
equivalent two-dimensional Markovian procesgt),y(t)] 1=Ly Tot 7V2Qoly Tyt 7 20, LyTat--sy
governed by(3.1) and (2.8) for which the formalism of the (3.10a

Fokker-Planck equation is applicable. The Fokker-Planck
operator associated wii(3.1) and(2.8) reads

1
0=-—nTy+ =v2QoL: Ty 1+ 7L5 T+ 74 (n+1)
L(xy)=7"Lo(y)+ V27 Q(DYLi(X) +La(x), (34 gVetobt Tn-a ¥ 7hg Tk r

where X \2QoL  Toya+ 7 ; \/_L o+
g 14
Lo(y)= y 2 gy?’ (3.53 for n=1,2,...,(3.10b
Ly(x)= (;iXV’(x), (3.5 which may be solved perturbatively
, Ta(X;7)=Tho(X)+eTp(X)+ -+, (3.11
La(x)= ;XU'(X)JFQW- (850  with the perturbation parameter being dependent on the

values ofa and B. A simple manipulation leads to the fol-

In the two-dimensional space the escape takes place whé@wing equations for zeroth- and first-order termsTef
the particle crosses the separatrix which bounds the region of
attraction of the potential minimum. Sindé’(x,)=0 the for @=0:
separatrix is simply a straight line=x, . Hence we are sure
that there is no ambiguit29] in the definition of the escape Lo Too=—1, (3.123
moment — any event of passing the positignin the one-
dimensional non-Markovian formulation is equivalent to £g To1=—Qil, T, e=7F, for 0<B<1 andQ;+0,
crossing the separatrix=x,, in the two-dimensional Mar- (3.12b
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12

LoTo1=—QoLy LoLi Too—Qil:*Too, &=,
0T01= QoL LoLi Too=Qil;“Too, &=7 AO_J quu <
for B=1 and Q;#0, (3.129
+2[™d " d \IfJ d (U V,) ikl
LiToi=— QoL LiLiToo, e=7, for f>1 or Q u\/—\If RN W G
=0; (3.129 1 [1{UV' +qV'2
J du\/_q, 7wdv\/_ Sl |v
f >0
or « 1 U,V/_qv// qV// 2 qv// 2
. 2\ 6 | PT\e] e )
LiToo=—1, (3.12¢ (3170
12
L3 Tor=—Qoli*Top, e=7" (3.2 __ beduii " G (o),
w NGV UG 2 G
Ly is the Fokker-Planck operator of the total problem in the 1V'2 u 1’2
white noise limit7—0 (e.g.,[7]) +§E +f dw G2 } (3.179

32 and

+WG(X), (3.13
Qy for a=0 and(B=1 or Q;=0),
(a,B) [

a 1
ﬁo(X)=&(U’(X)—§G’(X)

. e . otherwise,
with the diffusion function

Q; for =0 and 0<KB<1 and Q;#0,

v(a,B)={ Qo for >0,

G(x) depends orw through the noise strengiQ, namely, 0 otherwise. (3.179
Q(0)=Qq for @=0, while Q(0) vanishes fora>0. Thus '

the barrier fluctuations modlfy the diffusion function only for The index*‘0”’ of A° andB? indicates the zere-limit.

G(x)=q+Q(7=0)V'?(x). (3.19

a=0 and this manifests itself in an increase G{x). If In B® one easily recognizes the first-order derivative of
a>0 due to the disappearance z{t) (Sec. I) there is no T, (3.19 with respect to the colored noise paramegy.
effect of V(x) on the escape event. SinceU’(x)=0 for x,<x=<x, all the terms in the square

Equations(3.12 are solvable by means of quadraturesprackets in(3.179 are positive and° is negative. As for
with the boundary conditions similar t8.9). The zeroth- A0 the first and the third terms are positive, nevertheless the
order term, i.e., the exact result in the white noise limit, read%,gn of the second one is not clear. Only the second term

survives in the small noise limiisee Sec. IV, so a careful

analysis of its sign is required. We return to this point further
u

Xp 1 1 1 .
T :J du dov V(v in Sec. IV.
00~ ), M o Y)Y em Y s
. B. Large 7 limit
The caser— may be treated in a similar way. The
where analysis of the dominant terms for largémplies, that now
a<1 andp,=n(a—1)/2. Consequently one obtains
Y= ex;{ f ax UG( ))> @16 —1=1]To+ 7" 12QoLy Tyt r* A2 % LiTo+,
< 2Qo 160
3.18

It follows from these formulas that the MFPT decreases 1
when it is affected by barrier fluctuations€0). The first- 0=L Tt =\20uL T — 7 ATt 721
order term reads 2 QobaTo-177 T

. 10Q
To1= p( @, B)A%+ v(a, B)BY, (3.173 X (N+1)V2QoL{ Ty 1+ 785 J2_<120L To 1t

where for n=1,2,....(3.18b
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It may be shown, however, that far=1 in order to calcu- T,=u(B)A”+ v(B)B~, (3.24a

late the zeroth-order terriy, of the MFPT one needs to

solve an infinite set of coupled equations for the zeroth-ordewhere

terms of all the expansion coefficients,(x;7) (p,=0 for 1 1

any n). This follows from the fact, that for very long- A°°=——4f dug o dv\I’S(v)f qu’
Xa S -

1
correlation times the noise variabjét) fluctuates adiabati- Yy(u')

cally slowly in comparison to any other time scales of the
problem. The influence of on the dynamics of the system u ' _ "N /
should be treated parametrically rather than perturbatively. % f_mdv YDV =VO)IIVU) = V()]
Consequently one gets the zeroth-order approximation of the
MFPT by averaging over the MFPT’s calculated fr¢él)

for fixedy. In the remaining case< 1 the noisey enters the
higher-order corrections only, so one may apply the expan-

Xexy{%)Q[V(U)—V(U)JFV(U’)—V(U/)]2)’

sion (3.9). (3.24h
We begin witha=1. The aim is to find the first two terms 1 (% 1 u
of the expansion B*(a=1)= 2—§J dum _de‘I’s(U)
T(X,Y)=To(X,y) +eTy(X,y) +- - - (3.19 o
0
[compare(3.11)]. A simple calculation results in the follow- x[V(u)—V(v)]zex;{z—(f[V(u)—V(v)]z),
ing equations: (3.249
LiTo=—1, (3208  and
Q Qp for B <—1 or Q;=0
+ = — + = B -
£aTa 2Q, LiyTo, =7, H 0 otherwise
for —1<B<0 and Q;#0, (3.20h Q, for —1<B<0 and Q;#0,
v(B)= . (3.249
0 otherwise.
Q _
LiTi=—L§To— 2 —L{yTy, e=711 The index ‘o’ of A* andB” indicates the infiniter limit.
V2Qo As before,B” is the first-order derivative of, with respect

to Qg and it is always positive. The sign &f* is not clear
and may depend on the shape\i) (see Sec. IV.

If <1 the expansion into the Hermite polynomi&Bs8)
gives the following set of equations for the perturbative so-
lution (3.11):

for B=—1 and Q,#0, (3.200

LiTi=—LiTy, e=71 for B<—1 or Q,=0,
(3.200

with the zeroth-order(for the infinite correlation time
Fokker-Planck operator

L.=Lo+2QqL,y. (3.21) L; To1=—v2QoL1 Ty, (3.25h

The solution 0f(3.209 reads

Ly Too=—1, (3.253

1
L3 Ti0= = 5V2QoLi Too, =7  (3.250

Xp

q P(u)

p(J_

Tora )= ¢ | “dug o [ qwwi

In the limit 7— the escape tim&j g is not affected by the
barrier fluctuations(see Sec. )l and it is given by(3.2),
while its first-order correctio , for finite 7 reads

To1(Xa) =QoB*(a<1)

(v)]y) (3.22

The parametrically treated noigeappears in an exponential

form, so the averaging procedure over a Gaussian distribu- — &fxbdu fu do W (v)[V(u)—V(v)]?
tion is straightforward. One finds U °
- 1bed d v (3.26
O qly,  Wsu) - oWs(v) This expression is evidently positive.
% ex;{%[v(u)_v(v)f)_ (3.23 IV. WEAK NOISE APPROXIMATION
q

In this section we approximate the general formulas de-
Similarly one calculates the averaged first-order térm rived in Sec. Ill by means of the saddle point method, valid
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for the weak noise limit whem and Q, are much smaller
than the height of the potential barriatJ. This is a typical

3179

the signs ofV'(x) andV"’(x) are the same and the integral
(4.49 is positive. The sign ol, depends on the relation

approximation exploited while investigating diffusion over a between the contributions of those two regions. It seems that
potential barrier. Nevertheless, we must stress that here thgpically region | dominates since the absolute values of
small noise limit is taken as the succeeding approximationV’(x) andV"’(x) are greater in | than in Il, and also since

The preceding one is of course the limit>0 or 7—o. The

the region | always exists while the region Il may be very

formulas for the MFPT and for its correction obtained in Sec.small or may even be absefs.g., for a cosinelike distur-
Il are exact just for those limiting values of correlation time, bance V(x) ~cos§) one obtainsV’ (x)V"' (x)~ — sirf(x)].
while the approximation below is made for very small but Consequently,<0, soA°>0.

finite g and Qq. In this connection we consider the limits

71g—0 and 7/Qy—0 for 7—0, orq/7—0 andQy/7—0
for r—o. We do not investigate the other limits,
g/ 7—0 for 7—0 (see, e.g9.[31,7,8), which possibly gives a
different + dependence of [32].

There are two ways to increase the contribution of region
Il. The first one is to enlarge this region by an appropriate

like choice ofV(x). The second possibility is to choose the po-

tential U(x) in such a way, that it increases mainly within
region Il andU’(x) reaches there its comparatively sharp

For the white noise limit the saddle point method approxi-maximum. The barrier in the potential of this kind is rather a

mates the formulag3.2), (3.15, (3.17h, (3.179, respec-
tively

T AU
T~ e p( + —) (4.1)
\/|U”(Xa)U”(Xb)| X q

T U’ (x)
NECASEEN]] p( f dXG(X>)
(4.2

X UV’ ! VU
AO%Z{ b ( )q }TOO, (4.39

To,o*

BO’N\’—[ du? T (43b)
Xa

steep one with a flat bottom or a flat top. On the other hand,
the disturbance reaches its maximal value in region I, so it
acts mainly on the flat parts &f (x).

As an example let us consider a sixth-order-polynomial
symmetric potential ~ U(x)=w[1/6x5+ 1/4(p— 1)x*
—1/2px?]. For O<p=<w and w=12/(1+3p) it possesses
two wells with the minima ak=*1 and the height of the
barrierAU =1. This potential is much flatter than the mostly
considered bistable quartic ori{@3]. The disturbance is
given by a Lorentz-like functioW(x) = g/(g+ x?) which for
smallg is concentrated on the flat top of the barfig4]. The
long wings of this function guarantee the last required prop-

erty, namely, the positiveness of the prodet(x)Vm(x).
For p=0.02 andg=0.1 one getd,~+0.56, and so it is
possible to obtain a negative value Af, too.

One must notice, however, that the potential perturbation
for the discussed case must be rather small becdis#:

Let us notice a great simplification of the expression forR increases thehy becomes more importariij) the fluctua-
A°, although its sign is still unknown — it depends on thetions of the potential cannot suppress the barrier between

form of U(x) andV(x).

X, andx,. In our example we found thdg(t)| should be

To discuss this problem let us integrate by parts the rightless than 0.0118this is understood as the limitation for the

hand side of4.33. This yields

~2q(11=12)Top, (4.49
where
Xp U/V/ZVIIZ
|1:2Qof dW—rG ' (4.4b
Xa
and
Xb U/V/V///
Xa

central part of the Gaussian distribution, say a condition for
its variance.

The weak noise approximation for an infinitely long cor-
relation time gives fora<1l the expression4.1) for the
zeroth-order term and

To1=QoB"(a< 1)“%2(AV)2TS (4.5

for its first-order correctior(3.26 [35]. The casen=1 re-
quires a much more sophisticated analysis due to the appear-
ance of the terms witlv(x) in the exponents of the exact
formulas. In order to exploit the saddle point method in
(3.23 and (3.249 one has to find a maximum of the two-

Although the integral ; is always positive, nevertheless, it \5riable function

may be neglected as compared jovhen the strength of the
correlated noise(t) is much smaller then the strength of

&(t), ie., forR:i=Qq/q<1.

d,(u,v)=U(u)—U(v)+ iR[V(U)—V(v)]?% (4.6

The sign of the second integrig! depends on the forms of |t is located at the pointu,v)=(xy,X,), as one expects,

the potentialU(x) and its disturbanc&/(x). In the whole
interval of integratiorld’ (x)=0. In the vicinity of the points
whereV’(x) reaches its extrema, the sign \t'(x) is op-
posite to the sign o¥’(x) and the integra{4.4¢ over those

regions (of type |) is negative. Between the extrema of

V' (x) there possibly exist some regiofaf type Il) where

only if the matrix of second derivatives of the function
®,(u,v) is non-negatively defined at this point, i.e., if
U"(xp) + RIV(Xp) = V(Xa) V" (%) <O. (4.7

In this case one gets the formuligs]
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V"(Xb) V//(Xa) -1/2
T0~(’1+ RAV—U"(Xb)‘1+RAV—U"(X3)
X ex Z%OZ(AV)Z)TS, (4.8
o 1 2
B (azl)%Z_qZ(AV) TO- (49)

In [24,25 Reimann has specified three types of distur-

bancesV(x). Type | is a monotonic function with a maxi-
mum atx=Xx,, so it heightens or lowers the barrier. Type Il
is defined by the equalitAV=0 and it possesses a maxi-
mum inside the intervalx; ,X,); this results in broadening or
narrowing the barrier. The third mixed type ®f(x) pos-
sesses at least one extremumig k) and different values
atx, andx,, soAV#0. Such a disturbance changes simul-
taneously the height and the width of the barrier. The condi
tion (4.7) is always fulfilled for the disturbance of type | or
II, but it may be violated for the mixed Il type. Namely,
sinceV'(xp)=0 there is a minimum o¥(x) at x=x, and
V"(x,)>0. If V(xy,) is sufficiently large, the Ihs a#4.7) may
become positive. Consequently the maximumddiu,v) is
moved away from the pointxg,X,) to a new position at the
point (U,v) = (Umax:Umax)» WhereXa=<u max=Umax=Xp -

If the position of the maximum o ,(u,v) is known the
approximation of the formulag.23 and(3.249 is straight-

forward. We do not write here the corresponding expression

(comparg] 25]), but make only a remark. In the small noise
limit the exponential term in(4.8) decides on the MFPT
duration. Because the maximum &f, is moved away from
the point ,,X,), it follows that ®5(Umax:Vmax
=d,(Xp,Xz)=AU. Consequently, the MFPT for type Il po-
tential is of the order offg, the MFPT for type | is greater
and that for type Ill is greategassuming thaA V is the same
as for type }J. This means that very long-correlated barrier

fluctuations slow down the escape process if they disturb th
height of the barrier. On the other hand they do not modify

the escape timéin the zeroth-order terjnif they alter the
barrier width only. However, if the height and the width are
disturbed simultaneously the escape time reaches its great
value.

The application of the saddle point method to the formula
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function®, is symmetric with respect to the replacement of
the variablesu andu’. This implies, that the maximum lies
either at the point withu=u,,,=U’=U/,,, Or at the point
U=Umna# U =U;, as well as at the pointu=u/,,,
#U' =Upnax. The same property concerns the varialbdes
andv'. Hence, there is either one maximum at the point
(Umax:Umax:Umax:Umax)» OF @ couple or even two couples of
maxima placed symmetrically with respect to the line
u=u’ orfandv=v'. In the case of a single maximum the
saddle point method results in a negati&g, because the
term [V(u)—=V(v)][V(u')—=V(v')] in (3.24h is positive.

If there are two maxima atlya® Unax @Nd Umax=Umax
(for simplicity we suppose that the maxima are far enough
from each otherthe approximation yields a sum of two
identical terms which include products of the type
[V(umax)_v(vmax)][v(ur,‘nw)_V(Umax)]- If, €.9., V(Uma)
<V(Umad<V(Ujad, such a product is negative and
A”>0. Unfortunately we did not succeed in finding any ex-
ample illustrating such a case. It seems, however, that this
would take place only for very “exotic’U(x) and V(x),
while for the “ordinary” potentialsA™ should be negative.

V. MFPT AS A FUNCTION
OF THE CORRELATION TIME

In the previous sections we have derived the expressions
gor the MFPT and for its first-order correction in both limits
of zero and infinite correlation time. Now, as mentioned in
the Introduction, we are in a position to analyze th@epen-
dence of7 and to discuss the effect of barrier fluctuations on
the escape process, i.e., to find whetler) is monotonic or
not. We must stress, however, that the forni76f) may be
very complicated, even with several extrema. This cannot be
deduced only from the behavior @ 7) in the vicinity of the
limiting values of 7, particularly because we do not specify
g'le form of Q(7) for all 7.
~In order to simplify the notation of Sec. lll, below we use
T, and 7} to denote the MFPT and its first-order correction,
respectively. The indek=0,~ designates one of the limits

&b 7

A. Comparison of the MFPT for #=0 and 7=

(3.24b is much more complicated. Because of the quadruple | o ;s first compare the values of MFPT in both limits of

integral a maximum of the four variable function
D 4(u,v)=U(u)—U(v)+Uu")—-U(v")
+3RIV(U)—V(v)+V(u)—V(v")]?
(4.10

7 to find the “natural” expected tendency in the relation
betweenT and 7. It follows from (3.15 that for 7=0 and
a>0 the MFPT is equal to that of the stable barrier, which is
a result of the disappearance of barrier fluctuations as
7—0. If =0 the potential disturbance does not disappear in
the memoryless limit resulting in an increase of the diffusion

must be found. Similarly as before the expected position ofunction G(x) and hence in a decrease of the MFPT. This

the maximum is ¢,v,u’,v") = (Xp,Xa,Xy ,Xa), Which results
in

A%~ — alz(AV)zexp[ 2%3(AV)2}T3- (41D

S0 A” is negative[36].

property has been explained by Steinal. [13] as follows.
During the finite time interval needed for crossing the barrier
there are some infinitesimally short<0) periods during
which a random perturbation lowers the barrier below its
unperturbed height. If until that moment the particle “sur-
mounts” the barrier up to this level it gets free to evolve to
the other side of the barrier. Hence, the average time of the

In some cases the maximum may be moved from thigprocess is smaller than that for the unperturbed barrier. The

point. A general analysis of such a possibility is very diffi-
cult, so we shall only discuss this topic qualitatively. The

general relation for the whole class of nois@s6) in the
uncorrelated noise limit readsompare[20])
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TI<T,. (5.1)  perturbation in the region between the steep and flat parts of
the barrier. This problem needs further study.

For the other limitr—oo, if <1 the MFPT is equal to Finally, if 8=1 both termg3.17h and(3.179 contribute
Ts (a noiseless cagewhile, as follows from(3.23, for  to 79. It follows from the preceding discussion that they
a=1 the nondisappearing barrier fluctuations prolong thecooperate or compete in the determination of the sign of
escape process. This fact is recognized in the literature tog;, so both an increase or a decreasd @fre possible.
[12]. It ensues from the averaging over the barrier ngise |rrespectively from the value af one can distinguish two
(Sec. llL.B). The quantityTo(x,y) (3.22 to be averaged mechanisms of the influence of the correlated barrier fluctua-
represents the MFPT over a p.erturbat.ed barrier with a fixegons on the escape rate. The first one, describeB%yon-
value ofy. Becausey appears in3.22) in an exponent the  pacts the acceleration or slowing down of the escape process
longer times assouateq with the higher bqrners d'ommate iYith an increase or a decrease of the strer@th) of the
the averaged expression. The general inequality for th8isturbance noise, respectively. This behavior is independent
MFPT reads for this limit of the shape of the barrier and its perturbation. However, if

T.<7T* (5.2) Q(7) does not vary sufficiently rapidly wherm increases
s-ror ' (=0 andB=1) the details of the properties &f(x) and
From (5.1) and(5.2) one hascompare[25] for CVN) V(x) decide on ther dependence of.
TI<T;. (5.3 C. The dependence of the MFPT on larger

In consequence the natural tendency is that the escape time isThe discussion of the other limit—c proceeds quite

not decreased by the exponentially correlated barrier noise. fimilarly, however, as mentioned in Sec. I, it is more con-
either «=0 for 7=0 or a=1 for 7=, one expects an VENient to interpret the properties @fin terms of the vari-

increase of the MFPT with. If a0 for r=0 anda#1 for  anceD. The casex<\1 is clear. It follows from(3.26 that
r=0, the MFPT is the same for both extreme valuesrof 7:>0 — the longer the barrier fluctuations are correlated
and it is equal to that of a static barri@;. Nevertheless, the weaker they impede the activation process. This is a con-
since the dynamics does depend on the correlation tithe ~ Sequence of the vanishing aft) as r—cc. Even for very

MFPT cannot be a constant function oind so at least one long but finite 7 the barrier does fluctuate and the escape
extremum of7{r) occurs. time over the heightened barrier contributes more substan-

tially to the MFPT (see Sec. V.A. As 7—x, the closer to
1 is the value ofw, the slower is the decrease bBfand the
weaker is the decrease Bf

The behavior of the MFPT in the very vicinity of the In the casea=1 two termsA” and B* appear in the
limiting values of 7 is determined by the first-order term formuyla(3.244 for T7 . For 8% — 1 one of them dominates,
T} . Examine the limitr— O first. The casex>0 is clear. It \yhile for B=—1 they both essentially contribute @ . If
follows from (3.17) that 73<0. The correlations of barrier 0>p>—1 then 7;=7°Q;B” and for increasingr the
fluctuations reduce the time of diffusion across the barrierp\EpT  decreases(increases for Q,>0 (Q,<0). For
This results from the nonexistence of barrier fluctuations forg _ 1 the termA™ is the essential one and, as follows from

7=0. Because forr close to zero any time scale of the gec. |v, for not specially sophisticated cases it is negative, so
system is much greater thanthe barrier noise(t) may be  717) increases whiler—s .

considered as an effectively white of). The only conse- Quite similarly as in the case of—0, irrespective of the
quence of an increase afis thus an increase in the strength \,51ue of « one can notice two ways of the influence of the
Q(r) yielding an increase in the diffusion functi@(x) and  stochastic disturbance on the considered phenomenon, how-
a decrease iff. Sincee =7 in (3.11) the smaller is the value  gyer the analysis in terms of * is now more convenient. If

of a the stronger is the reduction of the MFPT. D(7 1) varies faster than linearly the behavior @fr 1)

The casex=0 is much more intricate. If for sma#t the reflects an increase or a decrease of the variance. For much
strength Q(7) increases faster than linearly, i.e., if gmaller changes db(7 1) (a=1 andB<-—1) the details
0<B<1, [37] then s7{=7#Q;B’. Since B°<0, for in-  of the shapes ob)(x) andV(x) decide about the properties
creasingr the MFPT decreases f@,>0 and increases for of the MFPT.

Q1<0. If Q(7) varies more slowly than linearlyd>1) It follows from the above discussion that a monotonic
then e 79=7Q,A°. The shapes obJ(x) and V(x) become  form of 7{~) is possible only in a very specific case. Namely,
essential. We have analyzed this point in the weak noisgor the zeros limit the barrier noisez(t) cannot vanish
approximation finding that usuallﬂ is positive and the (a=0) and eitherA°>0 for 8>1, orQ,;<0 for 0<B<1,
MFPT increases withr similarly as for diffusion driven by a or A°+Q;B%>0 for B=1. In the infinites limit the noise
colored noise. However, for some forms &f(x) and z(t) must survive too &=1), and either A*<0 for
V(X), T‘f may become negative. As mentioned in Sec. IVB<—1, or Q;<0 for 0>8>-1, or A*+Q,B*<0 for

this is possible for a steep barrier with a flat bottom or a flat3= —1. Let us notice, nevertheless, that these are only the
top, when a disturbance small enough acts on this flat partsecessary conditions. Some extremaZ6f), impossible to

of potential only. Due to the special relation between theforesee by the present approach, might occur because of the
derivatives ofU(x) andV(x) it seems that the acceleration specific properties of the system for finite In the case of

of the escape process comes out as an effect of a correlatady other relation between the barrier noise parameters and

B. The dependence of the MFPT on smalt
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the termsA’" and B', the MFPT either initially decreases in tentials for whichA*>0, so7{r) should exhibit both a mini-
the vicinity of 7=0, or finally decreases as—~. Due t0  mum and a maximum. Such a case cannot appear in Re-

(5.3 this implies a nonmonotonic behavior &f7). imann’s approach[25], in which under very general
conditions forU(x) andV(x) the MFPT monotonically in-
VI. EXAMPLES creases withr. However, the so called “kinetic equation”

gqu. (4.2 in [25]] being the basis of the consideration does

In the preceding section we have discussed the general ” om to be svstematic. because the losskiaie used
features of7 for a class of noises with the strength given by ystematic, o . A
there has been taken just in the limit>c without any cor-

2.6). Let us illustrate the possible cases with some ex- . . . R
gmgles P rections for finiter. If one regards this correction it will be

an open question whether the MFPT remains increasing in
. any case.
A. Noise of a constant strength CSN
This kind of noise is mostly used to mimic a stochastic C. Noise vanishing for both limits of =

signal with a finite memory and it is this noise which is
usually called an Ornstein-Uhlenbeck one. For anyts
strength is constan@(7)=Qq, so «a=0 and Q;=0. The
limiting expressions for the MFPT are

Now we consider an intermediate case, namely, a noise
also withQ,=0, but with 0<a<1, saya=0.5. Since both
the noise strength for—0 as well as the variance for
T—o vanish, barrier fluctuations modify the dynamics only

T=T9+ 1Q,A° for 7—0, when the correlation time is finite. The formulas for the
MFPT for both limits ofr read
T=T+7 1QuyB*(a<1) for r—o, (6.1 T=To+ 72Q,8° for 7—0,
with 78 given by(3.15. The quantityB” is always positive, T=To+ 7 Y2QuB*(a<1) for 7. 6.3

so asT— the MFPT decreases towards its limiting value

Ts. The sign ofA” depends otJ(x) andV(x). Usually itis  Since B<0 andB*>0, in both limits of small and large
positive and the MFPT increases withIn this casef(7) is  correlation time7{r) decreases with increasing Both lim-
surely a nonmonotonic function afwith a maximum higher iting values of the MFPT are the same so there are two
than the value of the escape time for the static baffier  extrema in the form off(7) — a minimum for the smaller
Thus IA occurs. . and a maximum for the greater value nfBoth phenomena

It follows from Sec. IV thatA® may also be negative. I Ra and IA appear and this feature is completely independent

such a casef(7) initially decreases, reaches a minimum, of the shapes of the barrier and its disturbance.
then it increases to its maximum and finally it decreases to-

wardsTg. The nonmonotonicity manifests itself in the exist-
ence of two extrema and both RA and IA occur.

The small+ limit of the CSN has also been examined by ~ As the fourth example we take a noise which does not
Steinet al. [13]. They have found a linear increase of the vanish in any of the limits of. We choose a noise strength
mean exit time for increasing, however with some numeri- 0f the form Q(7)=Qy(1+ 7). For 7—0 the noise param-
cal integration as a final step in the theoretical analysis. Suchters ar€Q;=Qy>0, a=0, =1, while for 7—co they are:

a methodology could be the reason for the absence of th@1=Qo>0, @=1, B=—1. The expressions for the MFPT
possibility of 7 decreasing which, as we have shown, occursre as follows:
only for some special types of potentials.

D. Nonvanishing noise in any of the limits ofr

T=TJ+ 7Qo(A°+B% for 7—0,
B. Noise of a constant variance CVN

A CVN is defined byQ(7) = 7Q for any r, soa=1 and
Q,=0. The expressions for the MFPT are as follows: with 78 given by(3.15 and7{ by (3.23. Depending on the
case, one expects a variety of behaviors76f). For the
T=Ts+7QoB% for 70, special kinds of potentials mentioned in Sec. IV, when
4 . A%<0 andA®>0 both kinds of extrema appear. However,
T=To+ 7 QA" for 7—o0, 6.2 this is also possible for “normal” potentials for which
A°>0 and A”<0, namely, when A°<—-Q,B° and
with 75 given by (3.23. SinceB® is negative, the MFPT A”>—(Q/B”. If one of these inequalities is false, either a
initially decreases. It follows from Sec. IV thaf” is usually maximum or a minimum appears. On|ijO> —QOBO and
negative and7(r) increases up tdf; when r—o. This A”<-Q,B*, one may expect a monotonic increase of
means that one minimum Gf(7) does exist and RA takes 7(7), though this is not yet a sufficient condition.
place[21,22,24—-2% Let us notice, that a dichotomous noise
also possesses a constant variance and the appearance of RA
in the presence of DN disturbanf®,14,17,2] is absolutely
consistent with the present results. The non-Markovian character of the diffusional escape
Considering the long limit for =1 in Sec. IV we have over a fluctuating barrier, when those fluctuations are corre-
not been able to exclude an existence of some “exotic” podated, implies that an exact analysis of the global problem is

T=To+ 7 1Q[A*+B*(a=1)] for r—=, (6.4

VIl. DISCUSSION
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impossible. One may investigate rigorously two limiting strengths. Ifg is sufficiently small there is no possibility for
cases, namely, those with infinitely short and infinitely longthe RA to appear. Besides those exceptions, Sifi¢g) van-
correlated fluctuations. It follows from the previous sections,ishes atx, andx, the white noise(t) is essential only for
that this suffices to find many interesting aspects of the sulthe initialization of the evolution from the bottom of the well
ject. The main result of our considerations is that the nonas well as for a successful surmount at the very top of the
monotonicr dependence of is generic, while the expected barrier. The value ofj governs the time scale of the process
strictly monotonic increase appears for very specific kinds ofather, than decides about the way in which barrier fluctua-
Ornstein-Uhlenbeck-like noisée.g., example D in Sec. ¥I  tions change the rate of the escape.

This is a consequence of the disappearance of the barrier In the present paper the escape process has been charac-
noise z(t) in one or in both limits ofr for most of the terized by the mean tim& of the first arrival at the barrier

top. In order to get the escape time one must be sure that the
gscape event really takes place and the particle will not re-
turn to the initial well immediately. Thus one has to multiply
Z_by the inverse of the probability of leaving the barrier top
Ih the required direction outside the potential well. For a
symmetric barrier this probability equals 1/2. In an unsym-
. . metrical case it is conditioned by the details of the problem
Fpr most of the cases of the Ggussmn nakty the be- and possibly depends also en It seems reasonable, how-
havior of 7(7) for small 7 is determined only by the proper- o\ er that ther dependence of the activation process intro-
ties of z_(t) qnd depends neither on the shape of the ba”'eauced in such a way plays a secondary role, if any, because
nor on its disturbance. Nevertheless, there are two cases jfjs related to the relaxation from an unstable state rather
which those shapes play an important role. First, it is the casgan to the escape over the barrier. The most crucidé-
discussed in Sec. IV when not too strong fluctuations of thgyendence of the escape time, which is observed for both
flat part of the barrier may accelerate the escape event. Thmmetric and unsymmetrical barriers, comes from the
second case appears fer=0 and=1 when the two con- dependence of the MFPT over the top of the barrier, being
tributions A° and B? to the first-order correction of MFPT considered in this paper.
(3.17a are of opposite signs. Quite similarly, far-c, the Further, we have used the assumption that the positions of
dependence df(7) on 7 is usually related only to the prop- the extrema of the total fluctuating potential are fixed. This
erties ofz(t). The forms ofU(x) andV(x) become impor- has allowed for a direct application of the FPT technique
tant merely fore=1 andB=1, i.e., when both term&™ and  with both the initial pointx, and the threshold,, being well
B” contribute to77 defined. The omission of this restrictioiv’'(x,)#0 or
In Sec. Il we have noticed an analogy between the propv’(x,)# 0] would involve a necessity of averaging over an
erties of the Gaussian correlated noise in both limitsrof ensemble of initial conditions as well as a more complicated
This may be extended to the properties of the MFPT for thorm of the separatrix. Nevertheless, the exact formulas of
escape over a fluctuating barrier. The possibility of the ocSec. Il suggest that even then most of our conclusions
currence of a minimum of(7) depends on the behavior of would remain valid. One should possibly expect more diffi-
the noise strengtl(7) in the zeror limit while the appear-  culties while analyzing the signs @€ andA”. Also, if the
ance of a maximum results from the properties of the noiséntegration interval in(3.179 or (4.3b is extended outside
varianceD () for an infinitely larger. It seems that this the interval &,,x,) then the presence dfi’(u) in those
symmetry is disturbed only for the special forms of poten-formulas yields some trouble in determining the sigrB8f
tials discussed in Sec. IV. This case has no counterpart in thBesides one must notice that this generalization concerns the
infinite-7 limit, however the sign 0f3.24h remains an open variation of the distance between the extrema of the global
question and one cannot exclude some analogy in this caspotential rather than the modifications of the height of the
too. barrier. This implies that the effect of the potential fluctua-
In [20] Hanggi has found that RA appears whenevertions would appear in the prefactor of the formula for the
Q(7) increases sufficiently rapidly with increasing Our  escape time and not in its exponent.
results state precisely the character of thidependence of Our calculations for the limiting values afdo not allow
the noise strength. Namely, RA occurs(if: Q(0)=0 which  us to conclude anything about the place and size of the ex-
means that for any>0 the strengthQ(7) is greater than trema of7. To this end one needs an approximation which
Q(0), (i) Q(0)#0 andQ(7) increases faster than linearly deals with finite values of. Such approach has been pro-
[37] (=0 and 0<B<1 with Q;>0). If the increase of posed by Madureir&t al. [22] with a good agreement be-
Q(7) is slower then RA usually does not occur unlesstween theory and numerics. We must notice, however, that
U(x) andV(x) have some special properties. their generalized unified colored noise theory seems not to be
In the above conclusions we do not mention the existenceorrectly formulated in the limit of large. Namely, it states
of the thermal nois&(t). In fact the character of the de-  that if barrier fluctuations are generated by CSN then the
pendence of the MFPT is influenced by the white noiseescape time increases upfgas~— oo, while we prove here
strengthg in two special cases, only. The first one is the casdéhat T should be approached from above. This inconsistency
of competition between the tern# andB' when their exact appears because j&2] some terms of the order af ! re-
values are important. The second one is the case of the spkted to the barrier noise have been omitted in the large-
cial shapes ot (x) andV(x) discussed in Sec. IV, for which Markovian approximation of the proble(see the discussion
the sign of A° depends on the rati® of the two noise at the beginning of Sed/ A of [22]).

members of the clas®.6) of Gaussian noise®.2), among
others for the mostly used CSN and CVN. The existence o
either a minimum or a maximurfor both of them of 7(7)
indicates the occurrence of the phenomenon of resonant a
tivation or inhibition of activation[38] (or both of them,
respectively.
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Finally let us notice that the existing numerid@5,23  and has been excluded in the present model. This point needs
and experimentdl26] data do not confirm so far the appear- further studies.
ance of the maximum of. The possible explanation of this
fact seems to be the choice of the perturbating potential in ACKNOWEEDGIMENT
the cited references, namely (x) =x. Such a disturbance The author would like to express his gratitude to Profes-
dramatically changes the position of the potential minimumsor S. T. Dembiski for critically reading the manuscript.
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