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Defects in self-organized criticality: A directed coupled map lattice model
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We study a directed coupled map lattice modedlin2 dimensions, with two degrees of freedom associated
with each lattice site. The two freedoms are coupled at a fractioflattice bonds acting as quenched random
defects. The system is drivdby adding “energy,” say in one of the degrees of freedom at the top of the
lattice, and the relaxation rules depend on the local difference between the two variables at a lattice site. In the
case of conservative dynamics, at any concentration of defects the system reaches a self-organized critical state
with universal critical exponents close to the mean-field valyesl, 7,=2/3, andr,= 1/2, for the integrated
distributions of avalanche durations) ( size ), and released energyn), respectively. The probability
distributions follow the general scaling forB(X,L) =L~ *P(XL~Px), wherea~1 is the scaling exponent for
the distribution of avalanche lengths,stands fort, s, or n, andDy is the (independently determingdractal
dimension with respect t&X. The distribution of current through the system is, however, nonuniversal, and
does not show any apparent scaling form. In the case of nonconservative dynamics—obtained by incomplete
energy transfer at the defect bonds—the system is driven out of the critical state. In the scaling region close to
c=0 the probability distributions exhibit the general scaling foR(X,c,L)=X""xP[X/&x(c),XL~Px],
wherery= a/Dy and the corresponding coherence lengjtfc) depends on the concentration of defect bonds
¢ aséy(c)~c Px, [S1063-651X96)01609-1

PACS numbes): 05.40:+j, 64.60.Ht, 68.35.Rh

[. INTRODUCTION law in the dynamics is neither a sufficient nor a necessary
condition for the critical state to appear.

Critical behavior in the vicinity of a second-order phase We explore some aspects of these questions in the present
transition is known to be sensitive to the presence ofvork, where we introduce and study tvo-degree-of-
guenched random defedtk]. Quenched disorder can cause afreedom(or two-color directed coupled map lattice model
change of the universality class of the critical behavior, inon a two-dimensional square lattice. In our system there are
the case of weak disorder, or lead to a variety of new phetwo variables associated with each lattice site, and these two
nomena, as in random-field systef?§. The case of strong freedoms are practically independent in the evolution, except
disorder, represented for example, by the presence of randoat a random fractiorc of the lattice bonds, which act as
bonds in a spin system, can lead to a multiplicity of meta-quenched random defects. This mod&rmed modeB in
stable states and frustration, as in spin glag3gs earlier work[7]) provides a simple example of a situation

In contrast to conventional critical phenomena in systemsvherein quenched disorder acts differently from annealed
that are tuned to a critical point by varying one or moredisorder[8]. Similar models have also been studied in the
external parameters, much recent wptk has examined the context of signal transmission in a neural netwf@k
behavior of extended open dynamical systésasndpile cel- The system is driven—by adding “energy,” say—to one
lular automata being a good examplhat tend to self- of the degrees of freedom at a random site at the top of the
organize into metastable states with long-range spatial anlattice. Instabilities can be caused when the difference be-
temporal correlations. Sucself-organized criticalitSOQ  tween the two variables at a site exceeds a threshold value, in
in a system that is not tuned to a critical point can be exwhich case a relaxation occurs, and the total energy accumu-
pected to be somewhat more robust and less sensitive tated in both states at an unstable site is transferred to the
perturbations. forward neighboring sites, creating an avalanche. Partition-

The question of relevance of such perturbations in SOC igng of the energy between the states at neighboring sites
of considerable interest. A dynamic renormalization groupdepends on the kind of borndefect or normal connecting
study of spatially continuous mod€lS], which are believed these sites with the unstable neighlgeee Sec. Il for details
to describe some aspects of self-organization found in celluef the dynamics Avalanches can be characterized through
lar automata, shows that loss of translational invariance duthe usual indicators such as duratigulefined as the number
to quenched disorder is a relevant perturbation for SOCof steps the instability progresses toward the lower boundary
Similar considerations apply to the role of conservation lawsf the lattice, and sizs, the number of lattice sites affected.
in the evolution rules of such systems. Various examplesn addition, we also monitor the total energy released in an
studied so faf6] reveal, however, that having a conservationavalanche(or the number of relaxations, as well as the

total number of particles leaving the system at the lower
boundary, i.e., the outflow curredt
*Electronic address: bosiljka.tadic@ijs.si Both conservative and nonconservative situations are pos-
TElectronic address: rama@jnuniv.ernet.in sible by altering the energy transfer at defect bonds. The
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present numerical simulations, combined with a scalingher h; or h, of the forward neighbors regardless of the

analysis of the results, help in determining the conditiongarity of the connecting bonds—the dynamics is conserva-

under which the coupled map latti€€EML) reaches a SOC tive. If A\<1, some amount of energy is lost along the nega-

state, and also the universality class to which the critical statéve bonds and the dynamics is nonconservative. This case is

belongs. When the dynamics is conservative, i.e., the totatonsidered in Sec. IV below.

energy that is removed from one site appears at its neighbors, The system is driven by adding an energy unit at random

the system self-organizes into a critical state with universasites at the input at the tofpe., along the row=1),

scaling exponents. On the contrary, if the energy transfer is

incomplete at defect bonds, our results suggest that the sys- hi(1,j)—hy(1j)+1, %)

tem is subcritical, with a finite coherence length that depends ) o

on the defect concentratian We determine a scaling func- @nd allowed to proceed following the rules embodied in Egs.

tion for the distribution of size and duration of avalanches. (1)—(4) until there are no further instabilities. This consti-
The case of site defects in a critical-height sandpile aufutes an avalanche. Starting from an initially random con-

tomaton has been examined in previous WigtkL0J, where figuration, the system eventually reaches a SOC @?&t@]

we showed that the presence of nonconserving defects cavhen there are avalan(_:hes of all duration an_d size scales.

lead to a loss of SOC. Site defectsither annealed or These can be characterized through the following four quan-

quenchell introduce a coherence length in the problem,ttes. . .

which diverges as the concentration of defects vanishes; the (@ The length/" is the total distance that an avalanche

relevant exponents can be derived exaddy], since the PropagatesP(/)~/~* is the probability distribution of

directed Abelian sandpile with defects can be viewed as &valanches of |9D9U’f- . . .

random branching process. (b) The sizes is the number of sites at which relaxation
In Sec. Il we introduce the model and define the scalingPccurs in one avalanch@(s)~s" s is the distribution of

forms of various distributions. Results are given in Sec. lllavalanches of size or greater.

for conservative dynamics and in Sec. IV for the case of (€) In sandpile automata a distinction can be made be-

nonconservative dynamics, followed by a short summary anéveen the number of particles toppled and the number of

discussion of the results in Sec. V. sites involved in an avalanch&3]. The number of particles
that topple at one unstable site in our model is
Il. DYNAMICAL MODEL AND SCALING n(i,j)=hy(i,j)+hy(i,j) in the conservative cadef. Egs.

(1)—(4)], and this quantity varies from site to site. Therefore

The coupled-map lattice studied here is patterned on thehe total number of relaxations,n, defined as
two-dimensional directed Abelian sandpile cellular automan=x;n(i,j), is not simply proportional to the sizs,
ton [12], which is a simple example of an exactly solvable which is defined as=23 1, where the sum in both cases
system exhibiting SOC. We associate two dynamical variruns over all sites involved in an avalanche. This introduces
ables @;,h;), which for convenience can be termed ener-the distribution of avalanche®(n)~n~" of the number of
gies, with each lattice site of a two-dimensional directedrelaxations=n.
square lattice of linear size. The relaxation process at lat-  (d) The duration of an avalanchg, is described by the
tice site (,j) is determined by the actual values of distribution P(t)~t~ (™). From finite-size scaling argu-

(h1,hy), as follows. If the absolute value of thifference  ments[14] in the SOC state these distributions should obey
betweenh,; andh, exceeds a critical valud,, i.e., the following general scaling form:

[hy(i,j)—hy(i,j)|=dq, (N P(X,L)=L"*P(XL Px), (6)

then the sitei(j) becomes unstable and bdth andh; are  \yhereq is the above-defined exponent of the distribution of
reset to zero, lengthsP(/), andX represents, n, or t. Correspondingly,
Dy stands for the appropriate fractal dimension, which is

h(i,))—0,  hy(i.j)—0. @ gefined via the following relations:
We taked.=2 in our simulations. The lattice sites are con- (s),~/Ps @
nected by bonds that can be either positive or negative, and o0
these affect the subsequent relaxation rules differefiti{e — /Pn ®)
consider the situation when most bonds are positive, and a () ~7"r,
fraction ¢ of negative bonds are distributed at random andand
act as defectg Along positive bonds,
(), ~7", €)

hi(i+1j.)—hi(i+1j.)+[h(i,))+ho(i,))1/2, (3)

where() , denotes an average over all avalanches of selected
length/ (i.e., avalanches that exactly terminate on ttth
ha(i+1j2)—ha(i+1j) +[Nhy(i,)) +ha(i,))]/2. (4)  row).

Note thatD; is the dynamic exponenfusually denoted
j+=j*[1-(—1)']/2 and (+1,j.) label the two down- z). In the present directed model, since avalanches propagate
stream neighbors ofi {j). As can be seen, for=1 the total only in the forward direction, the duration is equivalent to
energyh, +h, disappearing from sitei (j) reappears in ei- the length. The dynamic exponent is thus exactly 1, and

and along negative bonds,
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m=a. This need not be the case when the relaxation rules [ll. CONSERVATIVE DYNAMICS
are more complek7]. Furthermore, all the exponents are not

independent, since the scaling relatigs For A=1 in Eg. (4), the dynamics is conservative. The

system reaches the SOC state, which we characterize through
the quantities enumerated in Sec. Il. It is sufficient to con-
a=Dgrs=D,7,= 71D, (10 sider the disorder regime af<0.5 owing to the symmetry
c—1-c,h;—h,. Whenc=0 this model reduces to a di-
rected Abelian sandpile automaton in thedegree of free-
are valid for the exponents of integrated distributions as dedom, and the empty state in the other degree of freedom,
fined above. h,=0 at all sites. For nonzerg, the SOC state is more
In the present work we consider quenched disorder; i.edlifficult to describe. We study the histogram of total energy
our numerical results are averaged over several sample lgeer site, defined aE=h;+h, after a relaxation event, for
tices, each prepared by distributing defect bonds with conbothc=0 and a few values af#0. In the case=0 it takes
centrationc. We keep the lattice configuration fixed for a nonzero values at the interd, 1], however, forc# 0 much
large number of Monte Carlo stepahich is equal to num- larger values of energies occur, although with smaller prob-
ber of events and consider both cases of conservative andhbility compared to those betwe&=0 andE=1. Spread-
nonconservative transfer at defect bonds. In order to miniing of the distribution in the presence of defect boresO
mize effects of boundaries, we chose so-called free boundndicates that the critical state is realized via multiplicity of
aries in the perpendicular direction. This is achieved by useonfigurations of the dynamic variablég and h,, which
ing a lattice of size XL and initializing avalanches depends ort.
between the sitek/2+1 and 3./2 at top. According to the We observe, however, that the concentration of defect
above dynamic rules, only escape of energy is possible at tHsondsc+#0 doesnot appear to affect the critical exponents
bottom of the lattice between sites 1 and. Results of our characterizing the SOC state in this model. The distribution
numerical studies are presented in Secs. Il and IV. of lengths of the relaxation cluste®(/), size D(s), and
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number of relaxation®(n) for two different concentrations insL™
of defect bond€=0.1 andc=0.5 are shown in Fig. 1. The
exponents are numerically determinédlith the statistical FIG. 3. Double-logarithmic plot of the integrated distribution of
error barg to be «=1.051+0.044, 7,=0.650+0.028, and size of avalancheB(s,L) vs sizes for several different values of
7,=0.509+ 0.004, independentof defect concentratiorc, lattice sizelL (above, and the corresponding finite-size scaling plot
suggesting that this model has universal criticality. according to Eq(6) (below).
In Fig. 1(d) the distributions for length and size of ava-
lanchesPy(/) and Dy(s) are shown for the case=0. The distribution of outflow curren(J,L), which is the

Slopes of these curves, corresponding to the above definadirrent that flows over the lower boundary of the system,
exponents ¥« and 1+ 7, respectively, are estimated as rather than having a power-law dependencel pfulfills the
1.998+0.019 and 1.580.04. For 7, we find the value finite-size scaling fornj14]
0.528+0.022.

In Fig. 2 we present results for the time averaged size G(J,L)=L"PGIL™?), (1)
(s) and relaxed energie&g) in avalanches of a fixefse-
lected length /. According to Eqs.(7) and (8), slopes of whereB8=2¢ in the stationary state. In Fig. 5 we show the
these curves determine the mass-to-scale rdfrastal di-  distribution G(J,c,L) for (a) fixed concentration of defect
mensiony D, and D,, which are determined to be bondsc=0.5 and various lattice sizes, afin) for fixed lat-
D¢=1.615+0.007 andD,,=1.997+ 0.008. Plotted are the re- tice sizeL =192 and various concentrations of defext§he
sults forc=0.5, but it was checked that the values of thedistribution G(J,c,L) for finite concentrationc of defect
exponents remain concentration independent. bonds is rather localized, as opposed to the case, where

In order to fully characterize the self-organized critical the distribution is broad. We find no apparent finite-size scal-
state, we have determined the various exponents and the cang for G(J,c,L) for nonzero values of.
responding scaling functions. The results of the finite-size We end this section with a comment on numerical values
scaling fit according to Eq6) are shown in Figs. 3 and 4, of the critical exponents. Our results suggest that the values
where we use&=1.04,D,=1.62, andD,=2. of the exponents for avalanche duration and for the number

In contrast to many sandpile models, where the number obf relaxations are close to those in the mean-field SOC
topplings (corresponding to in our mode) is expected to [16,17—in our notation, X r,~2, and 1 7,~3/2 [18].
scale with a fractal exponefit5], we find that the relaxation The mean-field universality clag46] is obtained in self-
rules(1)—(4) lead to a rather classical expondht=2. The organizing sandpile models whef® there is a frontlike
distributions of the size of relaxation clustéd$s,L) and the  spreading of avalanches with noninteracting sites at the front,
distribution of the number of relaxatior@d(n,L) satisfy the and(ii) a global constraint exists, which maps the dynamic
finite-size scaling form6) with the above determined expo- model to acritical branching process. Although our model
nents. has somewhat more complex evolution rules, the exponents
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FIG. 4. Same as Fig. 3 but for the integrated distribution of FIG. 5. Double-logarithmic plot of the distribution of outflow
number of relaxation®(n,L) vs n for three different values of currentG(J,c,L) vs currentd for fixed concentration of defect
lattice sizeL (top), and the corresponding finite-size-scaling plot bonds c=0.5 and various lattice sizek (top), and for fixed
according to Eq(6) (bottom). L =192 and various concentrationsas indicatedbottom).

appear to be in the same universality cldd®ote that in our  seen that the power law is lost and the results depend on the
model, compared to the sandpile automata, there is one mom@ncentration of defect bonds(the remaining lines in Fig.
independent exponent, i.e.ilr~5/3) 6).
We further study the effects of concentration of defect
IV. THE CASE OF NONCONSERVATIVE DEFECTS bonds on the distributions of size and durationlength of
the relaxation clusters. In Figs(af and 7b) these distribu-
When\#1 in Eq. (4) the model becomes nonconserva-tions are shown fot. =128 and for few values of. The

tive at defects bonds. By studying the probability distribu-following general scaling form is appropriate for the case of
tions of durationP(t,c,L) and sizeD(s,c,L) of avalanches |attice disordef10]:

for various concentrations of nonconserving defect bands

we find that SOC behavior is lost as soon as energy conser- P(X,c,L)=/*PP(/ X,/ e,/ L), (13
vation is lost.
One quantity that proves to be useful in characterizing thevhere);, i=X,c,P, are the scaling exponents for the vari-

present situation is the average number of relaxationgblesX, concentration of defect bonds and the generalized
(n(#)), which occur in all kinds of clusters up to length  scaling function itself P, respectively. By chosing
(which is different from the average number of relaxations in/ " L~1 we have
clusters of selected length, which was considered ghdwe
the case of conservative dynamics this quantity exhibits a P(X,c,L)=L""P(LMX,L*ec,1), (14)
power law[7]

which is appropriate for the finite-size scaling analysis. The

(n(/))~/Pnt=m), (120  scaling function on the right-hand side of Ef4) is numeri-
cally determined from the data for various valuesLoand
independent of the degree of disorder. c. As the analysis in Sec. lll shows, in the case of conserva-

Numerical results are obtained by fixing=0.9 and vary-  tive defects this scaling function is independent ®rand
ing c. Shown in Fig. 6 are results for the average number otlepends o as
topplings{n(#)), for the conservative cagepen circlegas
well as forA <1 and different values of, where it can be P(X,c,L)=L*P(L**X). (15
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[This is exactly Eq.(6), where the scaling exponents are

BOSILIKA TADIC AND RAMAKRISHNA RAMASWAMY

54

may conclude that the numerical value of the scaling expo-
nent\. in the expressiorgy(c)=c~Px/*c is A ,=1, within
numerical error. That is, defects that violate the conservation
law of the dynamics areelevantperturbations for the SOC
state. Owing to the facto/LPx in the scaling functiorf17),
we restrict the fits to rather large concentratiorsee Figs.
7(a) and 7b)] in order to satisfy the relatiog/L<<1. It is
interesting to note that the scaling region where Eky)
applies is restricted to a finite range of values efc* in the
vicinity of the pointc=0. For instance, the curves corre-
sponding toc=0.5 in Figs. T7a) and {b) do not obey the
scaling form (17), indicating thatc*<0.5. In the limit
c¢=0 the dynamics becomes conservative and true SOC re-
appeargcf. Fig. 1(d)].

Similar scaling fits were introduced earlier in REE0] in
a simple critical height model with site defects. Here we
demonstrate that in the case of more complicated relaxation
rules with nonconservative bond defects, the coherence
lengths have the same general dependence on the concentra-
tion of defects, namelyéy(c)~c~Px, where, in principle,
the values of the exponenf@y depend on the dynamic
model. Exact expressions for the coherence lengths in the
case of the directed Abelian sandpile model with site defects
have been obtained by mapping the model to a random
branching procesfl1].

V. SUMMARY AND DISCUSSION

In this work we have further explored the role of defects
in models of self-organized criticality. In the case of sand-

identified as\ p= — & and\ y= — Dy..] This implies that the piles with random site defec{d0], the dynamics is altered
scaling exponent of the conservative defects in the expregocally at defect sites. The situation of defects having a more

sion (14) is A.<0, and thus, these types of defects are irre
evant for SOC[This conclusion is also supported by the fact

that numerical values of the exponents used in the scaling fid

in Sec. Il satisfy the theoretical scaling relatiofi®).] On

|_global influence is also of interest, and we achieve this in the

present two-color random bond model. Our coupled map lat-
ice has two degrees of freedom associated with each lattice

site. Disorder is present in the form of quenched random

the contrary, when the defects violate the conservation law dpond defects, which can be both conserving=(1) or non-

the dynamic rules, the results are quite different. The distri
butions|cf. Figs. 1a) and 7b)] depend explicitly orc, and
the finite-size scaling fit15) is inappropriate(Even fitting to

conserving K #1). There is a preferred direction of trans-
port, which serves to simplify the dynamical evolution rules,
leading to a minimal model with quenched random bonds.

this functional form gives poor results, the badness of the fiff "€ évolution rules of the model are motivated by the signal

depending orc.) In order to study these effects in a more
guantitative way, we fi. and chose another variable in the
general scaling forni13), namely,/*xX=1, leading to

P(X,c,L)=X" M xp(1 X re/rxc, XWMxL),  (16)
which could be also written as
P(X,c,L)=X""xP[X/&x(c),X/LPx]. (17)

with identification A\y=—Dy, 7x=Ap/Ayx(=a/Dy), and
£x(c)=cMxhe=c"Px/*e, Here £4(c) is the corresponding

transmission in airectedneural network, where quenched
disorder is known to play an important role. Preliminary
studied[7,8] have indicated that annealed and quenched ran-
dom disorder can behave differently, and our model is one of
the simplest examples. Similar self-organizing coupled-map
lattice models have been studied to some extent in the litera-
ture as models of more realistic sandpilé9], abstract ex-
amples of adaptive self-organizing systel@6], vector-state
models[21], and as nondirected neural netwofkg.

With conservation =1, in the limit of no disorder,
c=0, the model becomes an Abelian CML with single dy-
namic variable(energyh=h;), and reaches a SOC state in

coherence length, which, as is evident in Fig. 6, varies withwhich the distributionD(h;) is nonzero at the interval

the concentration of defect bondsBY fitting the numerical
data in Figs. 7a) and 7b) to the scaling forn{17) we deter-
mine thec dependence ofyx(c), which appears to be most
satisfactorily described & = 1/c and&,=c~Ps, for the dis-
tributions of length and size, respectively,=«, 75, and

[0,1], andh,=0 everywhere. For nonzero concentration of
defect bonds¢+#0), an additional stath, is generated at a
fraction c of lattice sites, which affects the propagation of
avalanches. The SOC state is again reached under the condi-
tion that the total energgconsisting oth, +h,) accumulated

D, being the exponent determined in Sec. lll. The results arat an unstable site is completely transferred to its neighbors.

shown in Figs. &) and 7d). With this result in hand, we

Conservation oh; by itself appears to be insufficient. The
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critical state has a more complex structure, evidenced by aot conserved whiléh; remains conservedwe study the
spread in the distribution of the values bf and h,, the significance of the conservation on the SOC state. Similar to
width of the distribution being a strong function of as is  the case of sandpile automata with site defects, the self-
shown in Fig. 8. However, the critic@ixponentharacter-  organizing CML is driven out of the critical stafef. Fig. 7),
izing the SOC state appear to inelependentwithin numeri-  with the concentration of defect bondglaying the role of a
cal uncertainty of the concentration of defects By redis-  control parameter. It should be stressed that in our model the
tribution of energies, the system adjusts to the presence ddick of particle conservation is linked to the quenched defect
defects and thus maintains its criticality. Numerical values ofstructure: with the present rules, it is not possible to have a
these exponents suggest that bothO and c>0 models nonconservative model that does not also have defects. This
belong to the mean-field SOC universality cl§$6,17. In enables the quantitative analysis of the subcritical state in
particular, exponents for the distributions of the duraijon  terms of varied coherence lenggk(c), as done in Sec. IV.
length of relaxation clusters and the number of relaxationslt is interesting to note that the distributions in Fig&)7and
are close to the exact valuestkr~2 and 1+ 7,~3/2, re-  7(b) do not depend on the degree of nonconservdtidrich
spectively. Due to the more complex dynamical rules in ouris indexed by the paramet&rin Eq. (4); see also Ref.7]],
CML model whenc#0, we can distinguish between and  but only on the spatial distribution of defect bon@sdexed
the exponent of the distribution of size of avalanchgs by the parametec). It is very possible that a cellular au-
which are equivalent in Abelian sandpile modgls]; the  tomaton with otherwise nonconservative dynangtbere are
present results suggest that ¥~ 5/3. by now several examples in the literature whereby one can
By modifying the relaxation rules in a way such as toimplement nonconservative evolution rules and reach a SOC
permit incomplete energy transfer at defect bo(ids, h, is  state[6]) becomes subcritical upon introduction of conserva-
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ence lengths are tuned by the concentration of defect bonds
according to the general lagy(c)~c~Px. In the case of site
defects, the sandpile automaton can be mapped onto a ran-
dom branching process, and the exact expression for the
&(c) has been derivesee Ref[11] for detailg. We suggest

that the scaling form(17) together with the expression
£y(c)~c~Px for the coherence lengths applies for the prob-
ability distributions in a wider class ofubcritical self-
organizing systems.

In contrast to spatially continuous models in which disor-
der is always a relevant perturbati@l, our numerical re-
sults suggest that the present coupled-map lattice model self-
organizes into a universality class of the mean-field SOC,
which is robust to quenched random bonds, as long as the
dynamics is conservative. The conservative defects influence
the distribution of energies per site in the critical state and
alter the nonuniversal quantities, such as outflow current,
whereas the universal properties, i.e., critical exponents and
scaling functions, are not affected. However, a question re-
mains as to whether other types of defects, such as those
studied in discrete sandpile automata in R¢%22], com-
bined with different dynamic rules, may lead to continuous
tuning of the universality class with a parameter in CML
models.
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