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Inductive instability in conductors with a moving front of electric conductivity jump
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It is shown that motion of the boundary separating regions with different electric conductivities can cause a
decrease of the inductance of the conductor. Since the effective damping resistance of the conductor is a sum
of the Ohmic resistance and the time derivative of the inductance, the damping resistance can become negative
at a certain velocity of the boundary motion. This work studies the effect of the spontaneous excitation of the
electric current in heterogeneous conductors due to the rapid decrease of their inductance. Excitation of the
instability in various geometries is analyzed using a quasistationary theory, and the velocity of the boundary
motion which is required for the excitation of the instability is determined. In the case of an expanding
homogeneous cylindrical conductor, an exact analytical solution of Maxwell equations describing spontaneous
excitation of the electric current is derived. The exact expression for the threshold velocity coincides with the
predictions of the quasistationary theof$1063-651X96)12909-3

PACS numbd(s): 41.20.Bt, 41.20.Gz

I. INTRODUCTION Sec. Il we derive an exact analytical solution of the Max-
well equations describing the spontaneous excitation of the
Various physical processes in naturally occurring phe-€lectric current in the expanding cylindrical conductor.
nomena, or encountered in technological applications, are

accompanied by motion of the boundary separating regiong conNDITIONS EOR NEGATIVE VALUE OF A DAMPING

with different magnitudes of electric conductivity. Such a RegISTANCE IN HETEROGENEOUS CONDUCTORS
situation occurs during propagation of ionization and recom-

bination waves[1], melting and evaporation of current-  In an analysis of the feasibility of the spontaneous exci-
carrying conductor$2,3], melting of metallic resonators in tation of the electric current in heterogeneous conductors
the electromagnetic fieldg;pinch systems, star oscillations Wwith strong spatial dispersion of conductivity, we use Ohm’s
in astrophysics, etc. law generalized for the case of a conductor with a varying
In all these phenomena the velocity of motion of theinductance(see Ref[4], Chap. 7, Sec. 61

boundary separating regions with different electric conduc-

tivity can be quite high. Since the effective damping resis- LI+1(R+L)=Us,, (1)
tance of the conductor is a sum of the Ohmic resistance and

the time derivative of the inductance, it becomes negative %hereu is an external voltagd, is the magnitude of the
a certain velocity of the boundary motion. The goal_ of.th|s lectric f:urrent and. is the indhctance of the conductor.
study is to analyze the effect of the spontaneous excitation onsider the cz,ase of a free conductor. ile.=0. Then the

1 @ .

the_electrlc current n h_eterogeneous conductors due to th(.eondition for the instability with respect to the spontaneous
rapid decrease of their inductance.

i ) . excitation of the electric current reads
The physical mechanism for the generation of the electro-

magnetic field is quite transparent. If the motion of the . .
boundary is caused by the ponderomotive forces arising due sgr(l)=sgn(l) or R+L<O. 2
to the electric current, such motion causes the increase of the
inductance and of the effective damping resistance. How- Obviously, condition(2) is satisfied only at high rates of
ever, when the motion of the boundary is caused by an exhe inductance chandg|. In heterogeneous conductors, the
ternal sourcéheating, ionization, phase transitions, gtthis  large magnitude ofi.| can be achieved by the fast motion of
motion may cause a decrease of the inductance of the cothe boundary between regions with different electric conduc-
ductor. Then, due to Faraday’s effect, the magnitude of théivities.
electric current can increase with time. Evidently, in the lat- We now determine the velocity of motion of the boundary
ter case the external source works against the ponderomotivehich allows us to satisfy conditiof2). In this section, in
forces which are generated in the conductor. the analysis of the excitation of the instability, we use the
The paper is organized as follows. In Sec. I, excitation ofadiabatic approximation, i.e., we neglect the skin effect.
the instability in various geometries is analyzed using a qua- Consider first the case of a thin layered stab; <z<b;
sistationary theory when the inductance of the conductor igonsisting of two parallel layers with electric conductivities
considered to be a function of the boundary position only. Inof the internal and external layets, and o, respectively
(see Fig. 1L Assume that during motion of the boundary the
conductor preserves its initial symmetry with respect to the
*Electronic address: elperin@menix.bgu.ac.il z=0 plane. Then the time variation of the conductivity dur-
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Az In calculations of the distributions of the magnetic field and
electric current, we used the approximation of a thin infinite
slab. Then using Eq93)—(5) after some algebra, we find
that

. . 27T b1b3
/j' Li=Lo[1+f(s)], Lo=3c2 T,
S,
2b, - S(1-s)[k+(2— k)S]
—— e e I
<
b, wherebs is a length of the slab in the direction of the electric

current, k=(o,/oy), ands=(s/b,).
FIG. 1. A thin layered slab consisting of two parallel layers with  Equation(6) is the first nonvanishing term in the expan-
electric conductivitiesr; and o. sion of the internal inductance of the slab with respect to
small parametersb(/b;)<1 and b,/b,)<<1. Equation(6)
ing the motion of the boundary between two regions withshows that the internal inductante does not vary mono-
different conductivities can be described by the followingtonically, and that it passes through the extremum. When the
formula: boundaries are located g0 ands=1, Eq.(6) recovers the
value of the inductance for the homogeneous slab. According
o=0.0[s(t)—|z|]+ 0,0[|z|—s(t)], o=0 at|z|>b,, to Egs.(2) and (6) the condition for the excitation of the
instability can be written as follows:
where

2 of > 1 — (1 ;
L =0 3275 S 2by0° o=oqstk(1-s)]. (7)
0(x)= O, 0 . . . . .
» X<0, Therefore the magnitude of the velocity which is required for

o the excitation of the instability depends upon the location of
ands(t) is the distance between the right or left interface ancthe boundary between regions with different electric conduc-
a planez=0. tivities, and upon the electrical conductivities of both re-

In the adiabatic approximation the inductance of the congions. The values of this velocity in several limiting cases
ductor is a function of the location of the boundary only, andare presented below:
it can be represented as a s L .+L;, whereL, is an

inductance associated with a magnetic field outside the con- s S 3c
ductor, andL; is associated with a magnetic field inside the s<k<l, f(s)= PR E<  4mbyoy’ ®
conductor. During the motion of the internal boundary which
separates regions with different electric conductivities, the ) 3k S CSs
magnitude of the external magnetic flux at a given magnitude =~ S"<k<s<l, f(§)=2——, —<————, 9
of the total electric current does not change, provided that e
the symmetry of the problem is preserved. Therefore, in or- é 3c
der to analyze the effects of the inductance change, we may k<s?, s<1, f(s)=2(1-s), _>W ,
consider only the internal inductante which is determined C ©OmD11S (10)
by the following equation:
. k(1l—-s)<1l, 1-s<1, f(s)=2(1-s)(1—«k),
Lil* J o 3 S 3
2 gz O @ S ¢ (11)

E>87Tb10'1(1_ K)

where integration is performed over the volume of the slab:  The inductance of the conductor attains maximunr 1)
or minimum (x>1) values at some position of the boundary
I—b fbl 7(z)dz @ between regions with different electric conductivities.

2 —b1J ' Therefore a negative damping resistance can occur during
propagation of the boundary toward the surface of the con-
ductor, or during its propagation in the opposite direction.
Assume that at the position of the boundaty, the induc-
tance attains the maximum magnitude. Thens{dj <s* the
negative damping resistance can occur when the boundary
moves inwards. In the opposite case, i.e., wh@)>s* (t),
the negative damping resistance can occur when the bound-

andb, is the width of the slab in the direction normal to that
of the electric current. .

In the adiabatic approximation the magnetic fiéldand
the density of an electric currentare determined by the
following equations:

4 > ary moves outwards.

> m > > ) )

rotH=—j, rot 1 0, divj=0 5) ~ Thus the general condition for the occurrence of the nega
c o tive damping resistance, at some stage of the stratification of
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the conductor, is the motion of the boundary separating re- Py
gions with different electric conductivities causing the reduc-

tion of the inductance. The estimate of the absolute value of ) 9

the threshold velocity when the damping resistance becomes 3
negative reads

S

3c |
—_—= .
C 47Tb1ma.)(0'1,0'2)

(12

In the stratified conductor which comprises a layer with a
high electric conductivityyr~10°-10'" s™* andb~10" cm,
|§|=2X (10°~1CP)10 " cmi/s.

The above model was presented in order to demonstrate
the possibility of the occurrence of negative damping resis-
tance in conductors with moving boundaries separating re-
gions with different electric conductivities. Nevertheless it F|G. 2. Cylindrical conductor consisting of two concentric cy-
must be noted that such a situation can occur during shockndrical layers with electric conductivities; and .
compression of metal conductors.

In derivations of the asymptotic relatiof®—(11), it was  with electric conductivity o;, and an external layer
assumed that the electric conductivity of the internal layer iso- <p<p, with electric conductivityo, (see Fig. 2 In the
larger than the electric conductivity of the external layer, i.e.case of a moving boundap(t), condition(2) yields
o>0,. However Egs(6) and (7) allow us to analyze the

opposite situation which is not discussed here. 2 of . 1
Consider now the applicability of the equations of mag- o2 @ PF>m'
netostaticg5), which yield Eq.(6) and the asymptotic Eqgs.
(8)—(11). Equations of magnetostati¢S) and a quasistation- The equation forf (y) was derived using a magnetostatic

ary circuit equatior(1) can be applied when the characteris- approximation in our previous studg],
tic diffusion time of a magnetic field;, into a slab with a

thicknessb,, f(y)=&(y)yly In(y)+a(1-y)],

Amob? where é&=1/(a—y), o=0o,[y+«(1-Yy)], a=«/(xk—1), and
=gz A3 y=(pElp}).
In the rangex<y<1, f(y)=In(y), and the condition for
satisfies the conditiom,<r, where 7 is the characteristic the excitation of the instability reads
time of the excitation of the instability. Since during excita-

2

tion of the instability|L|=>R, Eq. (1) allows us to estimate ¢ (14)
the time of the excitation of the instability, PF 2mpe(H)oy
L by In the rangey<x<l1, f(y)=—(y/«), o=k, and the
T EN ; condition for the excitation of the instability reads
C2
According to Eqs(12) and(13), =,,, and, therefore, equa- PE<—5— . (15)
tions of magnetostaticés) and the quasistationary circuit 2mpe(t)oy

equation(1) are not applicable. Therefore it is of interest to Thus the problem is quite similar to that of the thin slab
analyze the problem using Maxwell equations with appropri-" " . S
y P g q bprop hich was analyzed above. Since in this case the character-

ate boundary conditions, and to compare the solution witl i i f th itati Foth instabilit
that obtained using the approximate theory. However, thetc  Ume °~ € gxcéa'on 0 € Instability
solution of Maxwell equations with a moving internal 7~ (pel pp) <7y=(47m0o1p/C%), and the magnetostatistics

boundary is quite involved. Nevertheless, in some specia‘f"quaﬂonS are not applicable as in _the case of a slap. .
cases, e.gx=0, an exact analytical solution of the Maxwell In ordey to §plve the proble_m using Maxwell equations, it
equati,ons can, be determined. The conditien0 corre-  Mustbe simplified. Therefore in Sec. il we consider the case

sponds to the case of the expanding homogeneous conducﬁph ‘T%ZO' Ilnbthls gase the moving boundary coincides with
surrounded by an ideal dielectric. This exact analytical solu- € external boundary.

tion can be derived in several geometries, e.g., for an infinite

thin slab and for a homogeneous long cylinder. In this study ll. EXCITATION OF ELECTRIC CURRENT
we consider only the expanding homogeneous cylindrical IN' A RAPIDLY EXPANDING
conductor, and apply the results to an analysis of the electric CYLINDRICAL CONDUCTOR

explosion of conductors.

Consider first the conditions for the negative damping re- Consider a cylindrical conductor with the initial radius
sistance of a stratified cylindrical conductor consisting ofpr(0)=p, and length. Neglect the edge effects, i.e., assume
two concentric cylindrical layers, an internal layexp<pg  the axial symmetry of the problem. Then Maxwell equations
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determining the dynamics of electrié and magneticﬁ

oD
fields read PM=f1)=1 f(O=7, =0 (24)
x=0
1 J 4 JOH o . .
(pH,)= hil 0'( E,+ M) (16) Self-similarity conditions(22) and (23), which express the
pap ¢ ¢ absence of the explicit dependence on time, and (Ed)
JE, 1M, . with boundary conditior(21), yield
dp ¢ o’ pe(D1 (1)
(D10 =CONnstENA, (25)
whereH , andE, are the axial and longitudinal components cpr(DI ()

of the magnetic and electric fields, respectively, aifd,t)
is a radial component of the velocity. Since in the problemth
considered all other components of the electric and magnet
fields vanish, hereafter we omit indices near these fields i
the equations. pe(t)
Assume also that the material density distribution is ho- I(t)= I(O)( ) (26)
mogeneous over the cross section of the conductor. Then its
density y«(t) varies with time asy(t)=y,[p3/p 2(t)], and
continuity equationy+div(yo)=0 yields

The condition\=const is necessary for the existence of
e solution as given by Eq$22) and (23). This condition
elds the electric current behavior in a self-similar case:

Thus conditiong22) and(23) yield a power law dependence
of the electric current upon the instantaneous radius of the

pep conductor. Eliminating the electric field in Egél6) and

v(p,t)=—. (17), we arrive at the following equation:
PF
_ , , , #?f 1af 1 4
Equationg(16) a_n_d(l?) must be supplied with the following v + Lo 2 f=Nvf, »= o2 PEPED, (27)
boundary conditions:
JE which implies the second condition for the self-similarity:
—| =H|,—,=0, (18 )
Pl ,—0 lo=o ) PEPE= CONSL.
2 | Provided that functiorf(x) is known, functiond(x) can be
E(pe(t))+ 2 In( (t)) 0. (19 determined from Eq(17), which can be rewritten usin@7)
as
Boundary condition(18) follows from the symmetry of the 1
problem, while boundary conditiof19) is derived using Eq. pd’(x)= X (xf )’ —f. (28)

(17) and the condition of the continuity of the electric field at
the conductors’s surfadesee, e.g., Ref5]). The total elec-

tric currentl is determined by the following formula: Solutions of Eqs(27) and(28) satisfying condition$24) can

be represented as follows:

() or pH
|(t)=27mfpF (E( ')+ p—p—)p’dp'. (20 11(B%)
0 pr C f( )_ (ﬁ)
Hereafter in Eq(19) we neglect the inductance change in
comparison with the initial inductance. Then Efj9) can be _ i lo(B)~1o(X) 1 X11(BX)
; d(x)=1 + , (29
rewritten as Ap pBl1(B) N pli(B)

where B=(»\)¥2 and 1,(8x) and I1,(B8x) are modified
(22 Bessel functions:

21 |
E(pe()=— P, P= m(%

* 2n+k
We seek the solution of the boundary value probig®)— L (BX) = 2 & " 1 (30)
(20) in the following form: 2 n'(n+k)!
p Substituting Eq.(29) into Eq. (20) yields the dispersion
E(p.) =E(pe(t))®(X), x= pe(t) (22)  equation for determining parametef):
and v(1=pM)1a(B)— Blo(B)=0. (3D
H(p,t)=H(pe(t)f(x), (23 In the vicinity of the threshold of the instability excitation,

A<1, and, consequentlyd<1. Then Eqs(30) and(31) yield
where the magnetic field at the surface of the conductor
H(pe(t))=[21(t)/cpg(t)]. Functions®(x) andf(x) satisfy v—2
the following conditions: vp
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Thus the condition for the excitation of instabilitg>2 co-  of deviations from the self-similar regime. Ponderomotive
incides with condition(14) derived in the adiabatic approxi- forces cause such changes in the geometry that result in an
mation. Therefore the adiabatic approximation can be used atcrease of inductance with time, but not its decrease. In
least for the qualitative analysis. Wher 2, the electric cur- some circumstances the effect of the ponderomotive forces
rent decays, and distributions of the electric and magnetican prevail. Thus, e.g., corrugation of the moving boundary

fields correspond to the skin effeet]. separating regions with different electric conductivity can
Poynting vectorS in this problem is determined by the damp the inductive instability.
following formula[6]: It must be noted that the magnetohydrodynamic instabili-
ties occurring in the expanding conductors were extensively
2 C o studied in the padisee, e.g.[8]). However in the traditional
S=—-—EHNn, ) - .
A approach to an analysis of magnetohydrodynamic instabili-

L _ ties, the electric current is considered to be a giiexterna)
wheren is the external unit vector normal to the conductor'syariable. To the best of our knowledge, the inductance insta-
surface. Whenv>2, the Pointing vector is directed outside pjlity analyzed in this study was not investigated before.
the conductor, and the electromagnetic field outside the con-

ductor increases. Whemn<2 the Poynting vector is directed
outside the conductor, and the electromagnetic field outside

the conductor decays. It is shown that during fast motion of boundary separating

The main goal of this study is to analyze the general efregions with different electric conductivities in the heteroge-
fects occurring during the fast variation of the spatial disperneous conductor, the conductor becomes unstable with re-
sion of the electric conductivity in the conductors. However,spect to the spontaneous excitation of the electric current.
it is of interest to determine the range of parameters when th&he cause for this effect is the decrease of the inductance
instability is excited in the case when an expansion of theluring the motion of the boundary. Since the effective damp-
conductor is caused by fast heating.Afis a volumetric ing resistance of the conductor is a sum of the Ohmic resis-
expansion coefficient, the velocity of expansion caused fotance and the time derivative of the inductance, it becomes
homogeneous heating: is given by the following formula: negative at a certain velocity of the boundary motion. The

5 threshold velocity for the excitation of the instability was
. _ﬁPFT : determined using both the quasistationary theory and the ex-

PEm— 2 ~BpeT. act analytical solution of the Maxwell equations. Although

the effect was considered only for several model examples,
Thus according to Eq.7) the characteristic heating rate there are reasons to believe that it has a general character.

It is also of interest to investigate the excitation of the
inductive instability in systems encountered in geophysics
< and astrophysics, where, due to the large sizes, the instability

2mp2af’ can occur at relatively low velocities of the interface motion.

It is also conceivable that the inductive instability can cause

For a metal conductor with radius=~10"* cm, g~10"* polarization and charge separation in finite size systems.
K™% andT>(10°-10'Y) K s™. Such heating rates can occur

in conductors with very high density of electric current, e.g.,
during an electric explosion of conductdid.

Relatively slow(power law excitation of the inductive This work was partially supported by the Israel Ministry
instability does not constitute the major difficulty for experi- of Science and Arts, and the Ministry of Absorption. The
mental observation of the effect, since the real excitation ratauthors are indebted to Dr. N. Kleeorin and Dr. |. Rutkevich
may be different from that determined in this study becauséor stimulating discussions.

Ill. CONCLUSIONS
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