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It is shown that motion of the boundary separating regions with different electric conductivities can cause a
decrease of the inductance of the conductor. Since the effective damping resistance of the conductor is a sum
of the Ohmic resistance and the time derivative of the inductance, the damping resistance can become negative
at a certain velocity of the boundary motion. This work studies the effect of the spontaneous excitation of the
electric current in heterogeneous conductors due to the rapid decrease of their inductance. Excitation of the
instability in various geometries is analyzed using a quasistationary theory, and the velocity of the boundary
motion which is required for the excitation of the instability is determined. In the case of an expanding
homogeneous cylindrical conductor, an exact analytical solution of Maxwell equations describing spontaneous
excitation of the electric current is derived. The exact expression for the threshold velocity coincides with the
predictions of the quasistationary theory.@S1063-651X~96!12909-3#

PACS number~s!: 41.20.Bt, 41.20.Gz

I. INTRODUCTION

Various physical processes in naturally occurring phe-
nomena, or encountered in technological applications, are
accompanied by motion of the boundary separating regions
with different magnitudes of electric conductivity. Such a
situation occurs during propagation of ionization and recom-
bination waves@1#, melting and evaporation of current-
carrying conductors@2,3#, melting of metallic resonators in
the electromagnetic fields,z-pinch systems, star oscillations
in astrophysics, etc.

In all these phenomena the velocity of motion of the
boundary separating regions with different electric conduc-
tivity can be quite high. Since the effective damping resis-
tance of the conductor is a sum of the Ohmic resistance and
the time derivative of the inductance, it becomes negative at
a certain velocity of the boundary motion. The goal of this
study is to analyze the effect of the spontaneous excitation of
the electric current in heterogeneous conductors due to the
rapid decrease of their inductance.

The physical mechanism for the generation of the electro-
magnetic field is quite transparent. If the motion of the
boundary is caused by the ponderomotive forces arising due
to the electric current, such motion causes the increase of the
inductance and of the effective damping resistance. How-
ever, when the motion of the boundary is caused by an ex-
ternal source~heating, ionization, phase transitions, etc.!, this
motion may cause a decrease of the inductance of the con-
ductor. Then, due to Faraday’s effect, the magnitude of the
electric current can increase with time. Evidently, in the lat-
ter case the external source works against the ponderomotive
forces which are generated in the conductor.

The paper is organized as follows. In Sec. II, excitation of
the instability in various geometries is analyzed using a qua-
sistationary theory when the inductance of the conductor is
considered to be a function of the boundary position only. In

Sec. III we derive an exact analytical solution of the Max-
well equations describing the spontaneous excitation of the
electric current in the expanding cylindrical conductor.

II. CONDITIONS FOR NEGATIVE VALUE OF A DAMPING
RESISTANCE IN HETEROGENEOUS CONDUCTORS

In an analysis of the feasibility of the spontaneous exci-
tation of the electric current in heterogeneous conductors
with strong spatial dispersion of conductivity, we use Ohm’s
law generalized for the case of a conductor with a varying
inductance~see Ref.@4#, Chap. 7, Sec. 61!:

Lİ1I ~R1L̇ !5Ue , ~1!

whereUe is an external voltage,I is the magnitude of the
electric current, andL is the inductance of the conductor.
Consider the case of a free conductor, i.e.,Ue50. Then the
condition for the instability with respect to the spontaneous
excitation of the electric current reads

sgn~ İ !5sgn~ I ! or R1L̇,0. ~2!

Obviously, condition~2! is satisfied only at high rates of
the inductance changeuL̇u. In heterogeneous conductors, the
large magnitude ofuL̇u can be achieved by the fast motion of
the boundary between regions with different electric conduc-
tivities.

We now determine the velocity of motion of the boundary
which allows us to satisfy condition~2!. In this section, in
the analysis of the excitation of the instability, we use the
adiabatic approximation, i.e., we neglect the skin effect.

Consider first the case of a thin layered slab2b1,z,b1
consisting of two parallel layers with electric conductivities
of the internal and external layerss1 and s2, respectively
~see Fig. 1!. Assume that during motion of the boundary the
conductor preserves its initial symmetry with respect to the
z50 plane. Then the time variation of the conductivity dur-*Electronic address: elperin@menix.bgu.ac.il
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ing the motion of the boundary between two regions with
different conductivities can be described by the following
formula:

s5s1u@ s̄~ t !2uzu#1s2u@ uzu2 s̄~ t !#, s50 at uzu.b1 ,

where

u~x!5 H1,0, x>0
x,0,

ands̄(t) is the distance between the right or left interface and
a planez50.

In the adiabatic approximation the inductance of the con-
ductor is a function of the location of the boundary only, and
it can be represented as a sumL5Le1Li , whereLe is an
inductance associated with a magnetic field outside the con-
ductor, andLi is associated with a magnetic field inside the
conductor. During the motion of the internal boundary which
separates regions with different electric conductivities, the
magnitude of the external magnetic flux at a given magnitude
of the total electric currentI does not change, provided that
the symmetry of the problem is preserved. Therefore, in or-
der to analyze the effects of the inductance change, we may
consider only the internal inductanceLi which is determined
by the following equation:

LiI
2

2
5E HW 2

8p
drW ~3!

where integration is performed over the volume of the slab:

I5b2E
2b1

b1
jW~z!dz, ~4!

andb2 is the width of the slab in the direction normal to that
of the electric current.

In the adiabatic approximation the magnetic fieldHW and
the density of an electric currentjW are determined by the
following equations:

rot HW 5
4p

c
jW, rot

jW

s
50, div jW50 ~5!

In calculations of the distributions of the magnetic field and
electric current, we used the approximation of a thin infinite
slab. Then using Eqs.~3!–~5! after some algebra, we find
that

Li5L0@11 f ~s!#, L05
2p

3c2
b1b3
b2

,

f ~s!5~12k!
s~12s!@k1~22k!s#

@s1k~12s!#2
, ~6!

whereb3 is a length of the slab in the direction of the electric
current,k5~s2/s1!, ands5( s̄/b1).

Equation~6! is the first nonvanishing term in the expan-
sion of the internal inductance of the slab with respect to
small parameters (b1/b3)!1 and (b1/b2)!1. Equation~6!
shows that the internal inductanceLi does not vary mono-
tonically, and that it passes through the extremum. When the
boundaries are located ats50 ands51, Eq.~6! recovers the
value of the inductance for the homogeneous slab. According
to Eqs. ~2! and ~6! the condition for the excitation of the
instability can be written as follows:

2p

3c2
] f

]s
sG,2

1

2b1s̄
, s̄5s1@s1k~12s!#. ~7!

Therefore the magnitude of the velocity which is required for
the excitation of the instability depends upon the location of
the boundary between regions with different electric conduc-
tivities, and upon the electrical conductivities of both re-
gions. The values of this velocity in several limiting cases
are presented below:

s!k!1, f ~s!5
s

k
,

sG

c
,2

3c

4pb1s1
, ~8!

s2!k!s!1, f ~s!522
3k

s
,

sG

c
,2

cs

4pb1s1k
, ~9!

k!s2, s!1, f ~s!52~12s!,
sG

c
.

3c

8pb1s1s
,

~10!

k~12s!!1, 12s!1, f ~s!52~12s!~12k!,

sG

c
.

3c

8pb1s1~12k!
. ~11!

The inductance of the conductor attains maximum~k,1!
or minimum~k.1! values at some position of the boundary
between regions with different electric conductivitiess* .
Therefore a negative damping resistance can occur during
propagation of the boundary toward the surface of the con-
ductor, or during its propagation in the opposite direction.
Assume that at the position of the boundarys* , the induc-
tance attains the maximum magnitude. Then fors(t),s* the
negative damping resistance can occur when the boundary
moves inwards. In the opposite case, i.e., whens(t).s* (t),
the negative damping resistance can occur when the bound-
ary moves outwards.

Thus the general condition for the occurrence of the nega-
tive damping resistance, at some stage of the stratification of

FIG. 1. A thin layered slab consisting of two parallel layers with
electric conductivitiess1 ands2.
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the conductor, is the motion of the boundary separating re-
gions with different electric conductivities causing the reduc-
tion of the inductance. The estimate of the absolute value of
the threshold velocity when the damping resistance becomes
negative reads

usG u
c

>
3c

4pb1max~s1 ,s2!
. ~12!

In the stratified conductor which comprises a layer with a
high electric conductivitys;1015–1017 s21 andb;10n cm,
usG u>23(103–105)102n cm/s.

The above model was presented in order to demonstrate
the possibility of the occurrence of negative damping resis-
tance in conductors with moving boundaries separating re-
gions with different electric conductivities. Nevertheless it
must be noted that such a situation can occur during shock
compression of metal conductors.

In derivations of the asymptotic relations~8!–~11!, it was
assumed that the electric conductivity of the internal layer is
larger than the electric conductivity of the external layer, i.e.,
s1.s2. However Eqs.~6! and ~7! allow us to analyze the
opposite situation which is not discussed here.

Consider now the applicability of the equations of mag-
netostatics~5!, which yield Eq.~6! and the asymptotic Eqs.
~8!–~11!. Equations of magnetostatics~5! and a quasistation-
ary circuit equation~1! can be applied when the characteris-
tic diffusion time of a magnetic fieldtm into a slab with a
thicknessb1,

tm5
4psb1

2

c2
, ~13!

satisfies the conditiontm!t, where t is the characteristic
time of the excitation of the instability. Since during excita-
tion of the instabilityuL̇u>R, Eq. ~1! allows us to estimate
the time of the excitation of the instability,

t;
L

L̇
;
b1

ṡ
.

According to Eqs.~12! and~13!, t>tm , and, therefore, equa-
tions of magnetostatics~5! and the quasistationary circuit
equation~1! are not applicable. Therefore it is of interest to
analyze the problem using Maxwell equations with appropri-
ate boundary conditions, and to compare the solution with
that obtained using the approximate theory. However, the
solution of Maxwell equations with a moving internal
boundary is quite involved. Nevertheless, in some special
cases, e.g.,k50, an exact analytical solution of the Maxwell
equations can be determined. The conditionk50 corre-
sponds to the case of the expanding homogeneous conductor
surrounded by an ideal dielectric. This exact analytical solu-
tion can be derived in several geometries, e.g., for an infinite
thin slab and for a homogeneous long cylinder. In this study
we consider only the expanding homogeneous cylindrical
conductor, and apply the results to an analysis of the electric
explosion of conductors.

Consider first the conditions for the negative damping re-
sistance of a stratified cylindrical conductor consisting of
two concentric cylindrical layers, an internal layer 0,r,rF

with electric conductivity s1, and an external layer
rF,r,r0 with electric conductivitys2 ~see Fig. 2!. In the
case of a moving boundaryrF(t), condition~2! yields

2

c2
] f

]y
ṙF.

1

2ps̄rF~ t !
.

The equation forf (y) was derived using a magnetostatic
approximation in our previous study@2#,

f ~y!5j2~y!y@y ln~y!1ā~12y!#,

where j51/(ā2y), s̄5s1[y1k(12y)], ā5k/~k21!, and
y5(r F

2/r 0
2).

In the rangek!y!1, f (y)5ln(y), and the condition for
the excitation of the instability reads

ṙF.
c2

2prF~ t !s1
. ~14!

In the rangey!k!1, f (y)52(y/k), s̄5s1k, and the
condition for the excitation of the instability reads

ṙF,2
c2

2prF~ t !s1
. ~15!

Thus the problem is quite similar to that of the thin slab
which was analyzed above. Since in this case the character-
istic time of the excitation of the instability
t;(rF/ ṙF),tm>(4ps1r 0

2/c2), and the magnetostatistics
equations are not applicable as in the case of a slab.

In order to solve the problem using Maxwell equations, it
must be simplified. Therefore in Sec. III we consider the case
with s250. In this case the moving boundary coincides with
the external boundary.

III. EXCITATION OF ELECTRIC CURRENT
IN A RAPIDLY EXPANDING
CYLINDRICAL CONDUCTOR

Consider a cylindrical conductor with the initial radius
rF~0![r0 and lengthl . Neglect the edge effects, i.e., assume
the axial symmetry of the problem. Then Maxwell equations

FIG. 2. Cylindrical conductor consisting of two concentric cy-
lindrical layers with electric conductivitiess1 ands2.
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determining the dynamics of electricEW and magneticHW

fields read

1

r

]

]r
~rHw!5

4p

c
sSEz1

v~r,t !Hw

c D , ~16!

]Ez

]r
5
1

c

]Hw

]t
, ~17!

whereHw andEz are the axial and longitudinal components
of the magnetic and electric fields, respectively, andv(r,t)
is a radial component of the velocity. Since in the problem
considered all other components of the electric and magnetic
fields vanish, hereafter we omit indices near these fields in
the equations.

Assume also that the material density distribution is ho-
mogeneous over the cross section of the conductor. Then its
densityg(t) varies with time asg(t)5g0[r 0

2/r F
2(t)], and

continuity equationġ1div(gvW )50 yields

v~r,t !5
ṙFr

rF
.

Equations~16! and~17! must be supplied with the following
boundary conditions:

]E

]rU
r50

5Hur5050, ~18!

E„rF~ t !…1
2İ

c2
lnS l

rF~ t ! D50. ~19!

Boundary condition~18! follows from the symmetry of the
problem, while boundary condition~19! is derived using Eq.
~17! and the condition of the continuity of the electric field at
the conductors’s surface~see, e.g., Ref.@5#!. The total elec-
tric currentI is determined by the following formula:

I ~ t !52psE
0

rF~ t !SE~r8,t !1
ṙF
rF

rH

c D r8dr8. ~20!

Hereafter in Eq.~19! we neglect the inductance change in
comparison with the initial inductance. Then Eq.~19! can be
rewritten as

E„rF~ t !…52
2İ

c2
p, p5 lnS l

r0
D . ~21!

We seek the solution of the boundary value problem~16!–
~20! in the following form:

E~r,t !5E„rF~ t !…F~x!, x5
r

rF~ t !
~22!

and

H~r,t !5H„rF~ t !…f ~x!, ~23!

where the magnetic field at the surface of the conductor
H„rF(t)…5@2I (t)/crF(t)#. FunctionsF(x) and f (x) satisfy
the following conditions:

F~1!5 f ~1!51, f ~0!5
]F

]x U
x50

50. ~24!

Self-similarity conditions~22! and ~23!, which express the
absence of the explicit dependence on time, and Eq.~17!
with boundary condition~21!, yield

rF~ t ! İ ~ t !

cṙF~ t !I ~ t !
5const5l, ~25!

The conditionl5const is necessary for the existence of
the solution as given by Eqs.~22! and ~23!. This condition
yields the electric current behavior in a self-similar case:

I ~ t !5I ~0!S rF~ t !

r0
D l

. ~26!

Thus conditions~22! and~23! yield a power law dependence
of the electric current upon the instantaneous radius of the
conductor. Eliminating the electric field in Eqs.~16! and
~17!, we arrive at the following equation:

]2f

]x2
1
1

x

] f

]x
2

1

x2
f5ln f , n5

4p

c2
ṙFrFs, ~27!

which implies the second condition for the self-similarity:

ṙFrF5const.

Provided that functionf (x) is known, functionF(x) can be
determined from Eq.~17!, which can be rewritten using~27!
as

pF8~x!5
1

l
~x f !82 f . ~28!

Solutions of Eqs.~27! and~28! satisfying conditions~24! can
be represented as follows:

f ~x!5
I 1~bx!

I 1~b!
,

F~x!512
1

lp
1
I 0~b!2I 0~bx!

pbI 1~b!
1
1

l

xI1~bx!

pI1~b!
, ~29!

where b5~nl!1/2, and I 0(bx) and I 1(bx) are modified
Bessel functions:

I k~bx!5 (
n50

` S bx

2 D 2n1k 1

n! ~n1k!!
~30!

Substituting Eq.~29! into Eq. ~20! yields the dispersion
equation for determining parameterl~n!:

n~12pl!I 1~b!2bI 0~b!50. ~31!

In the vicinity of the threshold of the instability excitation,
l!1, and, consequently,b!1. Then Eqs.~30! and~31! yield

l5
n22

np
.
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Thus the condition for the excitation of instabilityn.2 co-
incides with condition~14! derived in the adiabatic approxi-
mation. Therefore the adiabatic approximation can be used at
least for the qualitative analysis. Whenn,2, the electric cur-
rent decays, and distributions of the electric and magnetic
fields correspond to the skin effect@4#.

Poynting vectorSW in this problem is determined by the
following formula @6#:

SW 52
c

4p
EHnW ,

wherenW is the external unit vector normal to the conductor’s
surface. Whenn.2, the Pointing vector is directed outside
the conductor, and the electromagnetic field outside the con-
ductor increases. Whenn,2 the Poynting vector is directed
outside the conductor, and the electromagnetic field outside
the conductor decays.

The main goal of this study is to analyze the general ef-
fects occurring during the fast variation of the spatial disper-
sion of the electric conductivity in the conductors. However,
it is of interest to determine the range of parameters when the
instability is excited in the case when an expansion of the
conductor is caused by fast heating. Ifb is a volumetric
expansion coefficient, the velocity of expansion caused for
homogeneous heatingṙF is given by the following formula:

ṙF5
brF

3 Ṫ

r0
2 ;brFṪ.

Thus according to Eq.~7! the characteristic heating rate

Ṫ.
c2

2prF
2sb

.

For a metal conductor with radiusrF;1021 cm, b;1024

K21, andṪ.~109–1011! K s21. Such heating rates can occur
in conductors with very high density of electric current, e.g.,
during an electric explosion of conductors@7#.

Relatively slow ~power law! excitation of the inductive
instability does not constitute the major difficulty for experi-
mental observation of the effect, since the real excitation rate
may be different from that determined in this study because

of deviations from the self-similar regime. Ponderomotive
forces cause such changes in the geometry that result in an
increase of inductance with time, but not its decrease. In
some circumstances the effect of the ponderomotive forces
can prevail. Thus, e.g., corrugation of the moving boundary
separating regions with different electric conductivity can
damp the inductive instability.

It must be noted that the magnetohydrodynamic instabili-
ties occurring in the expanding conductors were extensively
studied in the past~see, e.g.,@8#!. However in the traditional
approach to an analysis of magnetohydrodynamic instabili-
ties, the electric current is considered to be a given~external!
variable. To the best of our knowledge, the inductance insta-
bility analyzed in this study was not investigated before.

III. CONCLUSIONS

It is shown that during fast motion of boundary separating
regions with different electric conductivities in the heteroge-
neous conductor, the conductor becomes unstable with re-
spect to the spontaneous excitation of the electric current.
The cause for this effect is the decrease of the inductance
during the motion of the boundary. Since the effective damp-
ing resistance of the conductor is a sum of the Ohmic resis-
tance and the time derivative of the inductance, it becomes
negative at a certain velocity of the boundary motion. The
threshold velocity for the excitation of the instability was
determined using both the quasistationary theory and the ex-
act analytical solution of the Maxwell equations. Although
the effect was considered only for several model examples,
there are reasons to believe that it has a general character.

It is also of interest to investigate the excitation of the
inductive instability in systems encountered in geophysics
and astrophysics, where, due to the large sizes, the instability
can occur at relatively low velocities of the interface motion.
It is also conceivable that the inductive instability can cause
polarization and charge separation in finite size systems.
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