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We derive the exact bright and dark soliton solutions of a set of coupled nonlinear Schro¨dinger equations
with higher-order linear and nonlinear dispersion terms included, for a specific set of parameters by using the
Hirota bilinear approach, so as to get some ideas about the role of these terms for coupled soliton dynamics.
Further, by considering the additional nonlinear effects resulting from the delayed nonlinear response, we have
noted corresponding changes in the above soliton solutions.@S1063-651X~96!01509-7#

PACS number~s!: 42.81.Dp, 42.65.Tg, 03.40.Kf

I. INTRODUCTION

The dynamics of a nonlinear short-optical pulse envelope
in a fiber is described by

iqz2
k9

2
qtt1buqu2q2

ik-
6

qttt1 ig~ uqu2q! t50, ~1!

which becomes the nonlinear Schro¨dinger ~NLS! equation
when terms proportional tok- and g are negligible@1–3#.
However, in some regions, the role ofk- and g becomes
important. In particular, to describe the effects of pulse
broadening in the frequency region wherek9 is close to zero,
one needs to takek- to be non-negligible@4,5#. The last term
proportional tog becomes important for short-pulse propa-
gation over long distances@6,7#. In Eq. ~1! q represents the
complex envelope amplitude,t and z are the time and dis-
tance along the direction of propagation,k9 is the second
derivative of the axial wave numberk with respect to the
angular frequencyv at the central frequencyv0 and de-
scribes group velocity dispersion~GVD!, k-5]3k/]v3 atv0
describes third order dispersion,b5n2v0/cAeff is the effec-
tive nonlinear coefficient wheren2 is the Kerr coefficient,
andc is the velocity of light,Aeff is the effective core area of
the fiber andg52b/v0 describes nonlinear dispersion.

There are several ways to generalize the system~1! to a
set of coupled equations depending on the physical situation
that is being modeled@1–3,8,9#. A fairly general form of
coupled equations can be written from~1! as

iq1z2
k9

2
q1tt1b@~auq1u21buq2u2!q1#2

ik-
6

q1ttt

1 ig@~auq1u21buq2u2!q1# t50, ~2a!

iq2z2
k9

2
q2tt1b@~buq1u21auq2u2!q2#2

ik-
6

q2ttt

1 ig@~buq1u21auq2u2!q2# t50, ~2b!

whereq1 andq2 represent the complex envelope amplitudes
anda andb are numerical factors that depend on the physi-
cal situation. Fork-50 the system~2! reduces to the coupled
hybrid nonlinear Schro¨dinger equations and it has been re-
cently derived by Hisakado, Iizuka, and Wadati@10# from
the Maxwell equations in order to investigate the effects of

birefringence on pulse propagation in the femtosecond range.
They have also given an inverse scattering formulation for
the system~2! with a5b andk-50 @11#. Further, it is inter-
esting to note that the system~2! also becomes the well-
known integrable model proposed by Manakov@12# for the
parametric choicesa5b and k-5g50 and its bright and
dark soliton solutions have been well studied recently
@13,14# to explain many physical phenomena such as the
birefringence property, soliton trapping, and daughter wave
~‘‘shadow’’! formation in optical fibers. Recently in Ref.
@15#, we have obtained exact bright and darkN-soliton solu-
tions for a system similar to~2!, but which does not include
the term proportional tog in ~2! and takes into account linear
cross coupling systematically. However, as discussed earlier,
under some physical situations, the role ofk- andg becomes
important and hence studies of~2! are quite important. By
considering these facts, even though in general the system
~2! may not be integrable, in this paper, using the Hirota
technique@16,17#, we obtain exact bright and dark soliton
solutions of~2!, under the conditionsa5b and k9g5bk-,
so as to get some ideas of the role ofk- andg in coupled
soliton dynamics. Further, changes in these soliton solutions
are noted when the additional nonlinear effects due to the
delayed nonlinear response is considered in~2!.

The plan of the paper is as follows. In Sec. II, we rewrite
the system~2! in a Hirota bilinear form after using a suitable
transformation and parametric condition. Sections III and IV
are devoted to the derivation of exact bright and dark soliton
solutions by using the Hirota technique and also to a discus-
sion of their features. The effect of an additional higher-order
nonlinear term in~2! is focused upon in Sec. V. Section VI is
reserved as a conclusion.

II. HIROTA BILINEARIZATION

In order to construct soliton solutions of the system~2!, it
is rather convenient to introduce the transformation of vari-
ables

q1~Z,T!5r1~Z,T!exp$ i @~k9/k-!T2~k93/6k-2!Z#%,
~3a!

q2~Z,T!5r2~Z,T!exp$ i @~k9/k-!T2~k93/6k-2!Z#%,
~3b!

where the new variablesZ andT are defined as
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Z5z, T5t1
k92

2k-
z. ~4!

Using ~3! in ~2!, we obtain, under the specific condition
k9g5bk- the following form of coupled envelope equations
corresponding to the system~2!:

r1Z2
k-
6

r1TTT1g@~aur1u21bur2u2!r1#T50, ~5a!

r2Z2
k-
6

r2TTT1g@~bur1u21aur2u2!r2#T50, ~5b!

where r1 and r2 are complex functions ofZ and T. The
reason for considering this specific choice here is that only
for this case are we able to obtain suitable bilinear equations
giving rise toN-soliton solutions of the system~2!. For the
caser250, Eq.~5! reduces to the well-known complex modi-

fied Korteweg–de Vries equation, which arises naturally in
the study of anharmonic lattices@18#. This shows that under
appropriate conditions the optical solitons in fibers may have
the same features as those of solitons in anharmonic lattices.
It is also interesting to note that the system~5! can be ob-
tained directly from~2! for the parametric choicek95b50
instead of using~3! in ~2!. Therefore by solving~5! one can
obtain some ideas of the role ofk- andg.

Next we wish to apply the following form of Hirota bi-
linear transformation to~5! in order to construct the bright
and dark soliton solutions,

r15
g

f
, r25

h

f
, ~6!

whereg(Z,T), h(Z,T) are complex functions andf (Z,T) is
a real function.

Using ~6! and the Hirota bilinear operators

DT
mDZ

ng~Z,T!• f ~Z,T!5S ]

]T
2

]

]T8 DmS ]

]Z
2

]

]Z8 D ng~Z,T! f ~Z8,T8!U
Z5Z8,T5T8

, ~7!

where the centered dot stands for ordered multiplication by the preceding operators. Equations~5! can be rewritten as

f 2F SDZ2
k-
6

DT
3Dg• f G1F k-6 DT

2 f • f1g~agg*1bhh* !G@3DTg• f #1g f @agDTg* •g1bhDTh* •g1bh*DTh•g#50,

~8a!

f 2F SDZ2
k-
6

DT
3Dh• f G1Fk-6 DT

2 f • f1g~bgg*1ahh* !G@3DTh• f #1g f @ahDTh* •h1bgDTg* •h1bg*DTg•h#50.

~8b!

III. EXACT BRIGHT SOLITON SOLUTIONS

For finding the exact brightN-soliton solutions Eqs.~8!
can be decoupled under the conditiona5b as

A1g• f50, A1h• f50, A2f • f52g~gg*1hh* !,

A3g•h5A3g* •h5A3g•h*5A3g•g*5A3h•h*50,
~9a!

where the bilinear operatorsA1, A2, andA3 are defined as

A15SDZ2
k-
6

DT
3D , A25

k-
6

DT
2, A35DT . ~9b!

Hereafter, we takea5b51, without loss of generality. It can
be noted that the last five equations in~9a! actually corre-
spond to two independent equations, say
A3g•h5A3g* •h50, from which the remaining three fol-
low. Next we proceed in the standard way@16,17# to con-
struct soliton solutions.

A. One-soliton solution

In order to find the one-soliton solution, we assume

g5xg1 , h5xh1 , f511x2f 2 , ~10!

wherex is an arbitrary parameter. Substituting~10! into ~9!
and then collecting the terms with like powers ofx, we ob-
tain

A1g1•150, A1h1•150 ~x!, ~11!

A2~1• f 21 f 2•1!1g~g1g1*1h1h1* !50,

A3g1•h15A3g1* •h15A3g1•h1*5A3g1•g1*5A3h1•h1*

50 ~x2!, ~12!

A1g1• f 250, A1h1• f 250 ~x3!, ~13!

and

A2f 2• f 250 ~x4!. ~14!

One can easily check that the solution, which is consistent
with the system~11!–~14!, is
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g15exp~h11h0!, h15exp~h11e0!,

f 25
c1
P1
2 exp~2h1!, ~15!

where

h15P1S T1
k-
6

P1
2ZD ,

c15
23g@exp~h01h0* !1exp~e01e0* !#

4k-
, ~16!

and in whichh0 ande0 are complex constants in general and
all other parameters are real. Using~15! in ~10! and then in
~6!, after absorbingx, the bright one-soliton solution can be
easily worked out to be

r15P1e1 sechFP1S T1
k-
6

P1
2ZD1d0G , ~17a!

r25P1e2 sechFP1S T1
k-
6

P1
2ZD1d0G , ~17b!

where

e15Fexp~2h0!

4c1
G1/2, e25Fexp~2e0!

4c1
G1/2, ~18!

d05
1
2 ln~c1 /P1

2!, ~19!

and from~16! and ~18!, we also have

ue1u21ue2u25
2k-
3g

, ~20!

It is obvious from ~19! and ~20! and the condition
k9g5bk- that k9 and b must have opposite signs, which
naturally corresponds to the anomalous GVD region@19#.
The bright one-soliton solution~17! appearing in the anoma-
lous GVD region shows that the velocity of the soliton is
proportional to the third-order dispersion and to the square of
its pulse width. The explicit expression forq1 andq2 can be
obtained by substituting~17! into the transformation~3!. We
can also verify that if we takee250 andr1 as a real function

of Z andT, our result reduces to the case of the single ex-
tended NLS equation@20#. Further it is obvious from the
resultant expressions forq1, q2 and~20! that the intensity of
q1, which is proportional to the ratiok-/g in the absence of
q2, is distributed amongq1 andq2 when both are present.

B. Two-soliton solutions

Next in order to find the two-soliton solutions, we can
assume

g5xg11x3g3 , h5xh11x3h3 , f511x2f 21x4f 4 ,
~21!

and proceed as before to obtain

g15exp~h11h0!1exp~h21h0!,

h15exp~h11e0!1exp~h21e0!,

f 25c1Fexp~2h1!

P1
2 1

8 exp~h11h2!

~P11P2!
2 1

exp~2h2!

P2
2 G ,

g35
c1~P12P2!

2

~P11P2!
2 Fexp~2h11h21h0!

P1
2

1
exp~h112h21h0!

P2
2 G ,

h35
c1~P12P2!

2

~P11P2!
2 Fexp~2h11h21e0!

P1
2

1
exp~h112h21h0!

P2
2 G ,

f 45F c1
2~P12P2!

4

P1
2P2

2~P11P2!
4Gexp~2h112h2!, ~22!

where

h j5Pj S T1
k-
6

Pj
2ZD , j51,2. ~23!

HereP1 andP2 are real parameters. Using~22! in ~21! and
then in ~6!, we obtain the explicit form of the two-soliton
solutions as

r15
2e1~P11P2!@P2 cosh~h11d2!1P1 cosh~h21d3!#

uP12P2u$cosh~h11h21d4!1@~P11P2!
2/~P12P2!

2#cosh~h12h21d02d1!2c2%
, ~24a!

r25
2e2~P11P2!@P2 cosh~h11d2!1P1 cosh~h21d3!#

uP12P2u$cosh~h11h21d4!1@~P11P2!
2/~P12P2!

2#cosh~h12h21d02d1!2c2%
, ~24b!
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where

d15
1
2 ln~c1 /P2

2!, d2~g!5
1
2 lnF c1~P12P2!

2

P1~2!
2 ~P11P2!

2G ,
d45

1
2 lnF c1

2~P12P2!
4

P1
2P2

2~P11P2!
4G , c25

8P1P2

~P12P2!
2 , ~24c!

and wheree1 ande2 are defined as in~18!.
In order to appreciate that the above solution is indeed the

two-soliton solution, we rewrite~24! in terms of the new
variablej15T1(k-/6)P 1

2Z and we allow the variableZ @for
a fixed sign of~P 2

22P1
2!# to go to6`. Now we obtain in

this limit

r1>P1e1 sechFP1S T1
k-
6

P1
2ZD7d8G , ~25a!

r2>P1e2 sechFP1S T1
k-
6

P1
2ZD7d8G , ~25b!

where the phase factor

d85 1
2 lnF ~P11P2!

2

~P12P2!
2G . ~25c!

It is obvious from the one-soliton solution~25! that except
for the phase shift of magnitude 2d8, the form of the solu-
tions in the limits1` and2` are the same. The presence of
another set of one-soliton solutions in~24! with a similar
behavior can also be shown by allowing the variableZ to go
to 6` after introducing the new variable
j25T1(k-/6)P 2

2Z. Now we have asZ→6`,

r1>P2e1 sechFP2S T1
k-
6

P2
2ZD6d8G , ~26a!

r2>P2e2 sechFP2S T1
k-
6

P2
2ZD6d8G . ~26b!

It is thus clear that the two solitons undergo elastic colli-
sions. Finally the expression forq1 andq2 can be obtained
explicitly after using~24! in the transformation~3!.

C. Multisoliton solutions

Proceeding further one can generalize the expression for
g, h, and f corresponding to theN-soliton solutions as

g~Z,T!5 (
m50,1

M1~m!expS (
j51

2N

m jh j1 (
1< i, j

2N

m im jf i j D ,
~27a!

h~Z,T!5 (
m50,1

M2~m!expS (
j51

2N

m jh j1 (
1< i, j

2N

m im jf i j D ,
~27b!

f ~Z,T!5 (
m50,1

M3~m!expS (
j51

2N

m jh j1 (
1< i, j

2N

m im jf i j D ,
~27c!

where

h j5Pj S T1
k-
6

Pj
2ZD , j51,2,...,N,

h j1N5h j , Pj1N5Pj for j51,2,...,N,

exp~f i j !55
4c1

~Pi1Pj !
2

for i51,2,...,N,
j5N11,...,2N,

~Pi2Pj !
2

4c1

for i51,2,...,N,
j51,2,...,N,

i5N11,...,2N

j5N11,...,2N,

and

M1~m!5H exp~h0! when 11(
i51

N

m i1N5(
i51

N

m i

0 otherwise,

M2~m!5H exp~e0! when 11(
i51

N

m i1N5(
i51

N

m i

0 otherwise,

M3~m!5H 1 when (
i51

N

m i1N5(
i51

N

m i

0 otherwise.

~28!

It can be shown by substituting~27! into ~6! and then into~3!
that the above conclusions are also valid for the higher-order
solitons of (q1,q2!.

IV. DARK SOLITONS

Now in order to construct the exact dark solitons, Eqs.~8!
can be decoupled into a different set of bilinear equations for
a5b as

B1g• f50, B1h• f50, B2f • f52g~gg*1hh* !,
~29!

A3g•h5A3g* •h5A3g•h*5A3g•g*5A3h•h*50,

where the bilinear operatorsB1 andB2 are defined as

B15SDZ2
k-
6

DT
313lDTD , B25S k-6 DT

22l D ,
A35DT , ~30!

in which l is a constant to be determined. Without loss of
generality again we choosea5b51 hereafter.

Next for obtaining the dark one-soliton solution, we as-
sume

g5t1~11xg1!, h5t2~11xh1!, f511x f 1 ,
~31!
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wheret1 andt2 are complex constants andg1, h1, andf 1 are
real functions ofZ and T. Substituting~31! into ~29! and
collecting the coefficients of the different powers ofx, we
get

ut1u21ut2u25
l

g
~x0!, ~32!

B1~1• f 11g1•1!50, B2~1• f 11h1•1!50,

B2~1• f 11 f 1•1!12g~ ut1u2g11ut2u2h1!50,

A3~1•h11g1•1!50 ~x1!, ~33!

B1g1• f 150, B1h1• f 150,

B2f 1• f 11g~ ut1u2g1
21ut2u2h1

2!50, A3g1•h150 ~x2!.
~34!

One can easily check that the system~32!–~34! admits the
following solutions:

g15h152 f 152exp@m1~T2lZ!1j1
~0!#, ~35!

where

l5
k-
12

m1
25g~ ut1u21ut2u2!. ~36!

It is obvious from~36! and the conditionk9g5bk- that k9
andb have identical sign, which naturally corresponds to the
normal GVD region@21# where dark solitons exist. Herem1

andj1
~0! are real constants. Now using~36! in ~31! and then

in ~6!, the dark one-soliton solution can be derived as

r15t1 exp~6 ip!tanhH 12 Fm1S T2
k-
12

m1
2ZD1j1

~0!G J ,
~37a!

r25t2 exp~6 ip!tanhH 12 Fm1S T2
k-
12

m1
2ZD1j1

~0!G J ,
~37b!

where the amplitude parameterst1 andt2 are connected with
the ratiok-/g by the relation~36! and which is useful for
identifying the contribution ofk- andg in the intensity dis-
tribution among (q1 ,q2).

From ~37! it is interesting to note that as in the bright
soliton case, the velocity of the dark soliton is also propor-
tional to the third-order dispersion and to the square of its
width. By using~37! in the transformation~3!, one can de-
rive the explicit expressions for (q1 ,q2). Finally, we have
not yet been able to obtain darkN-soliton solutions and work
is in progress along these lines.

V. EXACT BRIGHT AND DARK SOLITONS
WITH THE ADDITIONAL HIGHER-ORDER

NONLINEAR TERM

By considering the nonlinear effects resulting from the
delayed nonlinear response@22#, the coupled NLS system~2!
is replaced by

iq1z2
k9

2
q1tt1b@~auq1u21buq2u2!q1#2

ik-
6

q1ttt1 ig@~auq1u21buq2u2!q1# t1 igs~auq1u21buq2u2! tq150, ~38a!

iq2z2
k9

2
q2tt1b@~buq1u21auq2u2!q2#2

ik-
6

q2ttt1 ig@~buq1u21auq2u2!q2# t1 igs~buq1u21auq2u2! tq250. ~38b!

We find that the resulting system~38! still has exact solutions under the earlier conditions, namely,k9g5k-b and a5b,
providedgs is real. So in the following we do not take into account the self-induced Raman effect corresponding to the
imaginary part ofgs @22# but consider only the effect due to the real part. Using the same transformations~3! and~4! in ~38!,
we obtain the following equations under the same earlier conditionk9g5k-b:

r1Z2
k-
6

r1TTT1~g1gs!~aur1u21bur2u2!Tr11g~aur1u21bur2u2!r1T50, ~39a!

r2Z2
k-
6

r2TTT1~g1gs!~bur1u21aur2u2!Tr21g~bur1u21aur2u2!r2T50. ~39b!

In the absence ofgs , Eq. ~39! reduces to the system~5!. Therefore by solving~39! one can find the effect ofgs on the coupled
soliton solutions of the system~2! as derived in Secs. III and IV under the conditiona5b andk9g5k-b. For this purpose,
Eqs.~39! are rewritten using~6! and ~7! as

f 2F SDZ2
k-
6

DT
3Dg• f G1F k-6 DT

2 f • f1a~agg*1bhh* !G@3DTg• f #

1~g1gs! f @agDTg* •g1bhDTh* •g1bh*DTh•g#50, ~40a!
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f 2F SDZ2
k-
6

DT
3Dh• f G1Fk-6 DT

2 f • f1a~bgg*1ahh* !G@3DTh• f #1~g1gs! f @ahDTh* •h1bgDTg* •h1bg*DTg•h#50,

~40b!

where

a5g1 2
3gs . ~41!

As in Secs. III and IV, in order to construct exact bright
and dark soliton solutions of Eq.~38!, Eq. ~40! can be de-
coupled into two different ways, under the conditiona5b:

Bright solitons:

SDZ2
k-
6

DT
3Dg• f50, SDZ2

k-
6

DT
gDh• f50, ~42!

k-
6

DT
2 f • f1a~gg*1hh* !50, ~43!

DTg•h5DTg* •h5DTg•h*5DTg•g*5DTh•h*50.
~44!

Dark solitons:

SDZ2
k-
6

DT
313lDTDg• f50,

SDZ2
k-
6

DT
313lDTDh• f50, ~45!

k-
6

DT
2 f • f2l f 252a~gg*1hh* !, ~46!

DTg•h5DTg* •h5DTg•h*5DTg•g*5DTh•h*50.
~47!

It is interesting to note that the set of Hirota bilinear forms
~42!–~44! and ~45!–~47! is the same as the previous equa-
tions ~9! and ~29! for the bright and dark solitons, respec-
tively, except thata in the latter equations has been replaced
by g. Therefore by making the corresponding replacement in
the bright and dark soliton solutions of the system~2! as
reported in Secs. III and IV, one can note the following
changes in the solutions due to the additional termgs .

~i! The coupling equation~20! in the bright soliton case
now changes into

ue1u21ue2u25
2k-

3~g1 2
3gs!

. ~48!

The parametric restriction

k9g5k-b ~49!

is the same whethergs is present in~38! or not. Now from
~48! and ~49!, one can argue that eitherk- and g may be
allowed to take identical signs@with this restriction, Eq.~49!
allowsk9 andb to take the same signs only, which naturally
corresponds to the normal dispersion region where dark soli-

tons exist@21## or k- andg can be allowed to take opposite
signs @with this choice, Eq.~49! restricts the parametersk9
andb to take opposite signs, which naturally corresponds to
the anomalous dispersion region where bright solitons exist
@19## by leaving the parametergs to take any value suitable
to Eq. ~48!. It is now clear that bright solitons with some
particular values ofgs can propagate in both the anomalous
and normal dispersion regions. The same arguments can also
be made for the dark soliton case by using Eq.~49! and the
resultant equation obtained from~36! after including the ef-
fect of gs as

ut1u21ut2u25
k-m1

2

12~g1 2
3gs!

. ~50!

Thus we note the interesting possibility that both the exact
bright and dark solitons of the coupled system~38! can
propagate in both the anomalous and normal dispersion re-
gions for some particular choices ofgs under the conditions
a5b andk9g5k-b.

~ii ! Due to the additional effect ofgs in ~2!, the expres-
sions~18! for e1 ande2, which appear in the amplitudes of
the bright soliton solutions, change into

e15F 2k- exp~2h0!

3~g1 2
3gs!@exp~h01h0* !1exp~e01e0* !#

G1/2,
~51a!

e25F 2k- exp~2e0!

3~g1 2
3gs!@exp~h01h0* !1exp~e01e0* !#

G1/2.
~51b!

In the case of dark soliton, the amplitude parameterst1 and
t2 are connected by the new equation~50!, which reduces to
the previous case Eq.~36! if gs50.

~iii ! The phase factor in the bright soliton case also
changes into a new form. For example, the Eq.~19! for the
phase factord0 in the bright one-soliton solution now be-
comes, due to the presence ofgs ,

d05
1
2 lnF23~g1 2

3gs!@exp~h01h0* !1exp~e01e0* !#

4k-P1
2 G .

~52!

Figure 1 shows the changes in the intensity profile
uq1u

21uq2u
2 of the bright one-soliton due to the additional

effectgs , while Fig. 2 shows the same in the absence ofgs .
Similarly, figures can be drawn for the dark soliton solutions.

VI. CONCLUSION

Using the Hirota technique, we have obtained exact bright
and dark soliton solutions of the coupled system~2! under
the conditionsa5b andk9g5bk- so as to get some ideas
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about the role ofk- andg on the coupled soliton dynamics.
The results show that the velocity of a soliton is proportional
to k- and to the square of its pulse width. Also we have
pointed out that the intensity of a single complex envelope
amplitude~sayq1!, which is proportional to the ratiok-/g in
the absence of second envelope, is distributed among
(q1 ,q2) while both are present. The dynamics of the bright
two-soliton solutions is also studied in detail for confirming
its typical behavior. We expect that the simplest form of
coupled solitons of the system~2! could be observed experi-

mentally in a properly tailored optical fiber. Finally, we have
noted some interesting changes in both the bright and dark
soliton solutions of the system~2! when the additional non-
linear termgs comes to play.
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FIG. 1. Intensity profileuq1u
21uq2u

2 of the bright one-soliton
solution with gs50.006, while all other parametric values are the
same as in Fig. 2. Note the change in amplitude and small shift in
the position of the soliton.

FIG. 2. Intensity profileuq1u
21uq2u

2 of the bright one-soliton
solution with the parametric choicesk-50.03, g520.01,
exp(h01h0* )50.8, exp(e01e0* )51.2, andP150.7.
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