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Exact soliton solutions to coupled nonlinear Schrdinger equations with higher-order effects
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We derive the exact bright and dark soliton solutions of a set of coupled nonlineardBg®oequations
with higher-order linear and nonlinear dispersion terms included, for a specific set of parameters by using the
Hirota bilinear approach, so as to get some ideas about the role of these terms for coupled soliton dynamics.
Further, by considering the additional nonlinear effects resulting from the delayed nonlinear response, we have
noted corresponding changes in the above soliton solutj@if63-651X%96)01509-7

PACS numbeps): 42.81.Dp, 42.65.Tg, 03.40.Kf

[. INTRODUCTION birefringence on pulse propagation in the femtosecond range.
They have also given an inverse scattering formulation for
The dynamics of a nonlinear short-optical pulse envelopéhe systen{2) with a=b andk”=0[11]. Further, it is inter-
in a fiber is described by esting to note that the systef®) also becomes the well-
known integrable model proposed by ManaKd?2] for the
parametric choices=b and k”=y=0 and its bright and
dark soliton solutions have been well studied recently
) [13,14 to explain many physical phenomena such as the
which becomes the nonlinear Sctioger (NLS) equation  pirefringence property, soliton trapping, and daughter wave
when terms proportional t&"” and y are negligible[1-3].  (“shadow”) formation in optical fibers. Recently in Ref.
However, in some regions, the role k' and y becomes [15], we have obtained exact bright and dafsoliton solu-
important. In particular, to describe the effects of pulsetions for a system similar (), but which does not include
broadening in the frequency region whéfeis close to zero, the term proportional tevin (2) and takes into account linear
one needs to také” to be non-negligibl¢4,5]. The lastterm  cross coupling systematically. However, as discussed earlier,
proportional toy becomes important for short-pulse propa- under some physical situations, the rol&k#fandy becomes
gation over long distancds$,7]. In Eqg. (1) q represents the jmportant and hence studies () are quite important. By
complex envelope amplitudé,andz are the time and dis- considering these facts, even though in general the system
tance along the direction of propagatidif, is the second (2) may not be integrable, in this paper, using the Hirota
derivative of the axial wave numbér with respect to the  technique[16,17), we obtain exact bright and dark soliton
angular frequencyw at the central frequencw, and de-  solutions of(2), under the conditiona=b andk”y=gk”,
scribes group velocity dispersid@VD), k" = #°k/dow’ atw,  so as to get some ideas of the roleksf and y in coupled
describes third order dispersiofi=n,wo/CAgy is the effec-  soliton dynamics. Further, changes in these soliton solutions
tive nonlinear coefficient where, is the Kerr coefficient, are noted when the additional nonlinear effects due to the
andc is the velocity of light, A is the effective core area of delayed nonlinear response is considerein
the fiber andy=2p/w, describes nonlinear dispersion. The plan of the paper is as follows. In Sec. Il, we rewrite
There are several ways to generalize the systBnto a  the systen(2) in a Hirota bilinear form after using a suitable
set of coupled equations depending on the physical situatioftansformation and parametric condition. Sections Ill and IV
that is being modeled1-3,8,9. A fairly general form of  are devoted to the derivation of exact bright and dark soliton

" i

id,~ 2 Gu+ Bldl*a— = dwtiv(lal®a)=0, (1)

coupled equations can be written frad) as solutions by using the Hirota technique and also to a discus-
" o sion of their features. The effect of an additional higher-order
i01,— = Qo+ BL(al 1|2+ b2 2)d1]— —— Garee nonlinear term in(2) is focused upon in Sec. V. Section V1 is
2 6 reserved as a conclusion.

+ixl(alaul*+blazl)q ] =0, (23 IIl. HIROTA BILINEARIZATION

n Lm

, K : _ _
102~ Qour+ BL(D| ]2+ 2| G2]2) ga]— & Oau In order to construct soliton solutions of the syste)) it

is rather convenient to introduce the transformation of vari-
ables

+i7[(blay|?+alg?)a21:=0, (2b)
— : "ILNT (L3 m2
whereq, andq, represent the complex envelope amplitudes Ax(Z,T)=pa(Z, T)expliL(K7k"™)T = (K"™/6k )Z]}'(3a)

anda andb are numerical factors that depend on the physi-

cal situation. Fok” =0 the systent2) reduces to the coupled U2(Z,T) = po(Z, T)expli[ (K"/K") T — (K"3/6k"2) Z]},
hybrid nonlinear Schinger equations and it has been re- (3b)
cently derived by Hisakado, lizuka, and WadEtd] from

the Maxwell equations in order to investigate the effects ofwhere the new variablez and T are defined as
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k"2 fied Korteweg—de Vries equation, which arises naturally in
Z=z, T=t+ 5z (4)  the study of anharmonic lattic§&8]. This shows that under

appropriate conditions the optical solitons in fibers may have

Using (3) in (2), we obtain, under the specific condition the same features as those of solitons in anharmonic lattices.
k”y= k" the following form of coupled envelope equations It is also interesting to note that the systé can be ob-
corresponding to the syste(@): tained directly from(2) for the parametric choick”=8=0
instead of usind3) in (2). Therefore by solvind5) one can
obtain some ideas of the role kf’ and y.

Next we wish to apply the following form of Hirota bi-
linear transformation td5) in order to construct the bright

k" and dark soliton solutions,

p2z= g PerrTt Y (blp?+alp,|?)po]r=0, (5b)

7

P1z— g pirrr+ Y (@l p1|*+blpal?)pi1r=0, (5

_9 h
Pl—?

where p; and p, are complex functions oZ and T. The P27y ©)
reason for considering this specific choice here is that only

for this case are we able to obtain suitable bilinear equationghereg(Z,T), h(Z,T) are complex functions ant{Z,T) is
giving rise toN-soliton solutions of the systef2). For the  a real function.

casep,=0, Eq.(5) reduces to the well-known complex modi-  Using (6) and the Hirota bilinear operators

: (7)

z=2"T=T"

. g a\™a o\ .
DTDZg(Z,T)~f(Z,T)= ﬁ_ﬁ ﬁ_ﬁ g(Z,T)f(Z T

where the centered dot stands for ordered multiplication by the preceding operators. Eqiata@amsbe rewritten as

f2 (DZ—Eoi)g-f +| 5 Dif-f+¥(agg* +bhh*)|[3D1g-f]+ yf[agDrg* -g+bhDrh* - g+bh* Drh-g]=0,

' o ' (83
2- K" 3 | [k 2 o x - * * *
f?|Dz— 5 D7 |h-f|+| 5 Dif-f+y(bgg" +ahh*)|[3Drh- f]+ yf[ahDsh* -h+bgDrg* -h+bg* Drg-h]=0.

' o ' (8b)

[ll. EXACT BRIGHT SOLITON SOLUTIONS

For finding the exact brighN-soliton solutions Eqs(8)
can be decoupled under the conditas b as

A19-f=0, A;h-f=0, Af-f=—vy(gg*+hh*),

Agg'h:Agg* 'h:Agg'h*:A3g'g*:A3h'h*:0,
(9a)

where the bilinear operatotd,, A,, and.A; are defined as

"

k/!/
Alz(Dz—goi), A= D3, A;=Dr. (9b

A. One-soliton solution

In order to find the one-soliton solution, we assume

g=x91, h=xh;, f=1+x%,, (10
wherey is an arbitrary parameter. Substituti@) into (9)
and then collecting the terms with like powers yafwe ob-
tain

Algl-1=0, A1h11=0

(X)), (11)

Ay(1-fo+f,-1)+ (9,05 +h;hT)=0,

Az01-h1=A307 -hy=A30;-hT = A30,- 97 = Agh;-hT

Hereafter, we taka=b=1, without loss of generality. It can and

be noted that the last five equations(Bg) actually corre-
spond to two independent equations,

low. Next we proceed in the standard wgh6,17] to con-
struct soliton solutions.

say
Asg-h=459* -h=0, from which the remaining three fol-

=0 (x?), (12
A19:-1,=0, Ajh;-f,=0 (x?), (13
Aofaf2=0 (xH. (14

One can easily check that the solution, which is consistent

with the systen(11)—(14), is
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of Z and T, our result reduces to the case of the single ex-
tended NLS equatiofi20]. Further it is obvious from the
(o resultant expressions foy, g, and(20) that the intensity of

gi=exp(71+ 19), hy=exp(7;+ &),

fa= 52 exp(2m), (19 g,, which is proportional to the ratik”/y in the absence of
! g,, is distributed among}; andq, when both are present.
where
B. Two-soliton solutions
w4 5 Next in order to find the two-soliton solutions, we can
=P T+ & PiZ|, assume
g=x91+x%0s, h=xhi+x>hs, f=1+)*F,+x,,

—3ylexp(not 75) +expleot €5)]
C1= & ’

(16) (21

and proceed as before to obtain
and in whichz, and ¢, are complex constants in general and
all other parameters are real. Usifih) in (10) and then in

(6), after absorbingy, the bright one-soliton solution can be

easily worked out to be

n

g1=exp( 71+ 7o) + expl 72+ 10),

hy=exp( 71+ €o) + expl 72+ €),

p1=Pie; sec?ii Py T+ PiZ|+d| (179 —cy exp(22771) L Bexdmt 7272) N exp(im)}’
P1 (P1+ PZ) Pz
pr=Pie, sec+ Pi| T+ PiZ|+5|, (17 _Ca(P1—P2)? [eXp(271+ 72+ 170)
PP+ Py PZ
where N exp( 71+ 272+ 7o)
P3 ’
exp(27,) Y2 exp(2¢y) | M2 2
“=|""c | v+ €| | (18
' ! _¢1(P1—Py)? [exp(2m; + 7+ €o)
3™ 2 2
(P1+Py) P
8o=1 In(c,/P?), (19) e !
exp( 71+ 292+ 170)
and from(16) and(18), we also have p2 )
2
—m ) 4
€1+ €l =2, (20 { ci(P1—Py)
3y =| g lexp( 271+ 27,), (22)
© | PIPA(PL+Py)” P27+ 2m,
It is obvious from (19) and (20) and the condition
k”y=BK"” thatk” and 8 must have opposite signs, which Where
naturally corresponds to the anomalous GVD regjia8].
The bright one-soliton solutiofl7) appearing in the anoma- " .
lous GVD region shows that the velocity of the soliton is n=Pj| T+ 5 PiZ), 1=12. (23

proportional to the third-order dispersion and to the square of

its pulse width. The explicit expression fq; andg, can be  Here P; and P, are real parameters. Usirig2) in (21) and
obtained by substitutingl7) into the transformatio3). We  then in (6), we obtain the explicit form of the two-soliton
can also verify that if we take,=0 andp, as a real function solutions as

_ 2€1(P1+P)[P; costin; + 5,) + Py costin,+ 53) ]
P |P1—Pyl{cosh 1+ na+ 84) +[(P1+P2)?/(P1—P3)?]cost 5, — 52+ 85— 81) — Ca} '

(243

B 2€5(P1+P)[P; costin; + ;) + Py cost{n,+ 53) ]
P2 |P1—Pyl{cosh 1+ 7o+ 84) +[(P1+P2)?/(P1— P,)?]cost 57, — 52+ 83— 81) — Co} '

(24b
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where where
Cl(Pl_ P2)2 m
81=3%In(c,/P%), & Iin—o——="-|, =P 2 p2 i =
1=7 In(c1/P3),  zg=2 P2, (P11 Py) 7=Pj| T+ 5 P{Z|, j=12,..N,
2 4 .
ci(P1—Py) } 8PP, mien=7m, Pisn=P; for j=12,...N
S8,=1 n——»———|, Ch=——>, (240 i+NT 77j s j+N j 2,... N,
S T R T R
_ . [ 4c, for i=12,...N,
and wheree; and e, are defined as i018). o m j=N+1,...,N,
In order to appreciate that the above solution is indeed the ) _
two-soliton solution, we rewritg24) in terms of the new ) (Pi—Py) for i=12,...N,
variable&, =T+ (k”'/6)P 2Z and we allow the variabl2 [for expl ij) = 4c, i=12,...N,
a fixed sign of(P5—P3%)] to go to . Now we obtain in o
e i=N+1,.., N
this limit
j=N+1,....N,
n \
p1=Pie; sec+ P T+ 5 Piz) Fo, (258 g
m N N
pZEPlEZ Sec+ F)1 T+ -y PiZ) - 5,:|1 (25b) eX[i 7]0) When 1+ 2 /'Li+N:2 ,LLi
6 Mi(u)= =1 i=1
where the phase factor 0 otherwise,
N N
(P1+Py)?
8=3In—=——=|. 250 ex when 1+ N= i
AU (250 M) = | SXPE) 2, pion=2 b

It is obvious from the one-soliton solutiai25) that except
for the phase shift of magnitudes2 the form of the solu-

tions in the limits+o and —« are the same. The presence of

another set of one-soliton solutions (84) with a similar
behavior can also be shown by allowing the variabl® go
to *xoo after introducing the new
&,=T+(K"/6)P3Z. Now we have ag — =+,

"

T+5 sz) + 5'}, (263

plE P2€1 Sec+ P2

"

variable

0 otherwise,

N N
1 when 241 /~Li+N:i21 Mi

0 otherwise.

Ms(p)= (28)

It can be shown by substitutin@7) into (6) and then intq3)
that the above conclusions are also valid for the higher-order
solitons of @4,0y)-

IV. DARK SOLITONS

T+

p2=P€; sec+ P2 sz) = 5’} (26D Now in order to construct the exact dark solitons, Egs.
can be decoupled into a different set of bilinear equations for
It is thus clear that the two solitons undergo elastic colli-a=b as

sions. Finally the expression far, andq, can be obtained

explicitly after using(24) in the transformatior{3).

6

B,g-f=0, Bih-f=0, B,f-f=—y(gg*+hh*),
(29

C. Multisoliton solutions Asg-h=A30* -h=A39-h* = A;9-g* = A3h-h* =0,

Proceeding further one can generalize the expression for . .
g, h, andf corresponding to th&l-soliton solutions as Where the bilinear operatot$; and; are defined as

2N 2N m m
_ _ - N3 —|——p2_
02 T)= 3 Muwexd 3wt 3 iy Bl—(DZ g DTT3\Dr). B (e D7=AJ,
u=0, = <
(273
Az=Dr, (30
2N 2N
hZ,T)= 2 My(mexp > ujm+ > ,LLi,uj¢ij>, in which \ is a constant to be determined. Without loss of
p=01 =1 1=i<] (7 generality again we choose=b=1 hereafter.

Next for obtaining the dark one-soliton solution, we as-

2N 2N sume

f(z,T)= 2, Ms(M)eXI{z mjmyt 2 ik bi
n=0,1 j=1 1<i<j

(279

(31)

9=71(1+x91),
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wherer; and r, are complex constants agd, h,, andf, are
real functions ofZ and T. Substituting(31) into (29) and
collecting the coefficients of the different powers xafwe
get

A
|72+ == (X9, (32
By(1-f1+9:-1)=0, By(1-f;+h;-1)=0,
By(1-f1+f1-1)+2y(| 71?91+ 7,/ *h1) =0,
As(1-hy+g,-1)=0 (xb), (33

Big;-f1=0, B;h;-f;=0,
Byt f1+ (| 71|%03+|2?h)) =0, Asg;-hy;=0 (XE)-)
34

One can easily check that the systéB®2)—(34) admits the
following solutions:

g1=h;=—f;=—exgdmy(T-AZ)+ ], (35

where

"
2

A:Em1:7(|7'1|2+|7'2|2)- (36)

It is obvious from(36) and the conditiork” y= gk that k"

2953

and £° are real constants. Now usiig6) in (31) and then
in (6), the dark one-soliton solution can be derived as

1 [ m 1
p1=7 eXp( =i W)tan)’{ > ml<T_ - miz + 5(10) ,
' (373
) 1 [ m , (0)-
po=Ty eXp(Ei)tan > m,| T— - mezZ |+ &2,
’ (37b

where the amplitude parametersand , are connected with
the ratiok”/y by the relation(36) and which is useful for
identifying the contribution ok and y in the intensity dis-
tribution among ¢4,9,).

From (37) it is interesting to note that as in the bright
soliton case, the velocity of the dark soliton is also propor-
tional to the third-order dispersion and to the square of its
width. By using(37) in the transformatior{3), one can de-
rive the explicit expressions forg(,q,). Finally, we have
not yet been able to obtain dakkksoliton solutions and work
is in progress along these lines.

V. EXACT BRIGHT AND DARK SOLITONS
WITH THE ADDITIONAL HIGHER-ORDER
NONLINEAR TERM

By considering the nonlinear effects resulting from the

and g have identical sign, which naturally corresponds to thedelayed nonlinear respong22], the coupled NLS systel(2)

normal GVD regior{21] where dark solitons exist. Hera;

”n NV

is replaced by

i01,~ 5 Gt BL(AlA1] >+ bl A2 ) 1]~ == Queti v (Alas *+blaz ) sl vs(al a1 +blg2]*)q2 =0, (383

" NVl

. K } ,
1027~ > Oz + BL(D| a1 ]2+ 2] q2]?) g2 — r o +1¥L(D|as|?+ala2]?) g2l +i vs(blds|?+ alg2]?)q2=0.

(38b

We find that the resulting syste(88) still has exact solutions under the earlier conditions, namély=k"” g anda=b,

provided vy, is real. So in the following we do not take into account the self-induced Raman effect corresponding to the

imaginary part ofy, [22] but consider only the effect due to the real part. Using the same transforme8jcarsd (4) in (38),
we obtain the following equations under the same earlier conditiorn=k" 8

k!”

Pz~ pirrr+ (v + vs)(alp1|?+b|pal®)rp1+ ¥(@lpa| >+ blpal?) p1r=0,

k!N

P2z~ parrrt (v + ) (blp1|?+a|ps|®) 12+ ¥(blpa|®+alpa|?) por=0.

(393

(39b

In the absence of;, Eq.(39) reduces to the syste(B). Therefore by solving39) one can find the effect of; on the coupled
soliton solutions of the systeii2) as derived in Secs. Ill and IV under the conditias b andk”y=k" 8. For this purpose,

Egs.(39) are rewritten using6) and(7) as

"

+

fz[(Dz——Di g-f

6

6

+(y+ s f[agDrg* - g+bhDrh* - g+bh*D+h-g]=0,

— D2f-f+ a(agg* +bhh*)|[3D1g-f]

(403



2954 R. RADHAKRISHNAN AND M. LAKSHMANAN 54

"

fZHDZ——D%)h-f

5 + 3 D2f-f+a(bgg* +ahh*)|[3D1h- f]+(y+ ys) f[ahDth* -h+bgD:g* -h+bg*D1g-h]=0,
(40b
|
where tons exisf{21]] or k” and y can be allowed to take opposite
) signs[with this choice, Eq(49) restricts the parameteks
a=7y+3Ys. (41) and g to take opposite signs, which naturally corresponds to

the anomalous dispersion region where bright solitons exist
[19]] by leaving the parametey, to take any value suitable

to Eq. (48). It is now clear that bright solitons with some
particular values ofy, can propagate in both the anomalous
Bright solitons: and normal dispersion regions. The same arguments can also
be made for the dark soliton case by using E$) and the
resultant equation obtained fro(@6) after including the ef-

As in Secs. lll and 1V, in order to construct exact bright
and dark soliton solutions of E@38), Eq. (40) can be de-
coupled into two different ways, under the conditias b:

(Dz—— D$)9~f=0, (DZ—— D%)h~f=0, (42)

6 6 fect of v, as
m " i
— D2f-f+a(gg* +hh*)=0, 43 | 7|24l =——. (50)
6 DT (99 ) (43 12(y+ 20
Dtg-h=D.g* -h=D+g-h*=D+g-g*=D+h-h*=0. Thus we note the interesting possibility that both the exact

(44) bright and dark solitons of the coupled systdB8) can
propagate in both the anomalous and normal dispersion re-
gions for some particular choices ¢f under the conditions
a=b andk”y=k"B.

(Dz— - D$+ 3>\DT)9- f=0, (i) Due to the additional effect ofs in (2), the expres-
6 sions(18) for €; and e,, which appear in the amplitudes of
the bright soliton solutions, change into

Dark solitons:

"

(DZ— & D$+3>\DT)h.f=o, (45) K" exp270) 1172
Gl: y
K" _3('y+§'ys)[eX[X770+773)+exp(60+63)]_
€D$f.f—xf2=—a(gg*+hh*), (46) (51a
D-g-h=D-g* -h=D+g-h* =D-g-g* =D-h-h* =0 K expl2e) |
t9-n=D+1g"-h=Dg-n"=0D1g-g" =D7h-n"=0. €= .
(47) | 3(y+5ys)lexp no+ 75) +expleo+ €5)])
(51b

It is interesting to note that the set of Hirota bilinear forms
(42)—(44) and (45)—(47) is the same as the previous equa-In the case of dark soliton, the amplitude parameterand
tions (9) and (29) for the bright and dark solitons, respec- 7 are connected by the new equati@®), which reduces to
tively, except thakx in the latter equations has been replacedthe previous case E¢36) if ys=0.
by . Therefore by making the corresponding replacement in (iii) The phase factor in the bright soliton case also
the bright and dark soliton solutions of the systétn as  changes into a new form. For example, the B for the
reported in Secs. Il and IV, one can note the following Phase factorg, in the bright one-soliton solution now be-
changes in the solutions due to the additional tegm comes, due to the presencef,

(i) The coupling equatiori20) in the bright soliton case

now changes into —3(y+5ys)lexp not 75) +explegt €5)]

=1
e 50 2 In 4k//lpi .
|€1|2+|52|2=3—2)- (48) (52
+ £
(r+57s Figure 1 shows the changes in the intensity profile
The parametric restriction |q1|2+|q2|2 of the brlght one-soliton due to the additional
effect ys, while Fig. 2 shows the same in the absenceof
K"y=K"pB (49 Similarly, figures can be drawn for the dark soliton solutions.
is the same whethey;, is present in(3.8) or not. Now from VI. CONCLUSION
(48) and (49), one can argue that eith&"” and y may be
allowed to take identical sigrjsvith this restriction, Eq(49) Using the Hirota technique, we have obtained exact bright

allowsk” and 8 to take the same signs only, which naturally and dark soliton solutions of the coupled systéy under
corresponds to the normal dispersion region where dark solthe conditionsa=b andk”y= gk so as to get some ideas
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FIG. 1. Intensity profile/q,|2+|qg,|? of the bright one-soliton FIG. 2. Intensity profile|q;|2+|q,|? of the bright one-soliton
solution with ys=0.006, while all other parametric values are the ¢qiution  with the parametric  choice&”=0.03, y=—0.01,
same as in Fig. 2. Note the change in amplitude and small shift i "éxp(n +7%)=0.8, expgy+et)=1.2, andP,=0.7.
the position of the soliton.

mentally in a properly tailored optical fiber. Finally, we have
about the role ok™ andy on the coupled soliton dynamics. not_ed some interesting changes in both the b_r?ght and dark
The results show that the velocity of a soliton is proportionals.OIIton solutions of the systex2) when the additional non-
to k" and to the square of its pulse width. Also we have“near termy, comes to play.
pointed out that the intensity of a single complex envelope
amplitude(sayq,), which is proportional to the ratik™/y in
the absence of second envelope, is distributed among R.R. would like to thank the Council of Scientific and
(d4,92) while both are present. The dynamics of the brightindustrial Research, India, for financial support. The work of
two-soliton solutions is also studied in detail for confirming M.L. forms part of the Department of Atomic Energy, Na-
its typical behavior. We expect that the simplest form oftional Board for Higher Mathematics and Department of Sci-
coupled solitons of the syste(#) could be observed experi- ence and Technology research projects.
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