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This paper deals with systems of two coupled real scalar fields in bidimensional spacetime. We show that
when the potential that specifies the system presents a particular form, we are led to first-order equations that
solve the second-order equations of motion for static fields. The first-order equations can be seen as a dynami-
cal system, and the static classical solutions present minimum energy, and are classically stable. We consider
explicit examples to illustrate the general procedure. In particular, we introduce a specific system that can be
used to model ferroelectric crystals.@S1063-651X~96!01009-4#

PACS number~s!: 03.50.Kk, 11.10.Lm

I. INTRODUCTION

This paper deals with solitons in nonlinear systems of
coupled real scalar fields. This is important in physics since
there are many systems that are described via nonlinear cou-
pling of their relevant degrees of freedom, and usually lead
to defect or soliton solutions. In the standard route to solitons
one starts by examining a specific system, and after working
out the relevant physical contents, one gets to a set of
coupled nonlinear differential equations. Due to the basic
principles envoked to extract the physical contents, the equa-
tions one gets are in general second-order differential equa-
tions.

In this paper we shall follow a different approach, e.g., we
shall work to implement a method to solve sets of coupled
nonlinear differential equations. In this way, to get to specific
nonlinear systems one is just left to the work of mapping sets
of coupled nonlinear differential equations to the particular
systems one is interested in. To implement this idea we shall
take advantage of a method that is well known to particle
physicists. In this case we start by writing a Lagrangian den-
sity corresponding to some set of real scalar fields in bidi-
mensional spacetime. The motivation from field theory is
evident, and we believe we can get from this picture to ap-
plications in condensed matter systems. This idea originated
from the investigations already presented in some recent
works @1,2#, and here we want to go further to generalize the
method introduced there.

The investigation will be done by examining systems of
coupled real scalar fields in bidimensional spacetime. For
simplicity, we consider the case of two fields, namely,f and
x. Systems of this kind are usually described by a Lagrang-
ian density that contains a potentialU5U(f,x), in general
a nonlinear function of the real scalar fields. It is this non-
linearity that enlarges the scope of the problem, since it can
be mapped to many interesting systems in nonlinear science.

In field theory, systems of coupled scalar fields have in-
trinsec interest@3#, and can be easily extended to incorporate
a very interesting idea@4# in which topological solitons have
internal structure. This idea was explored in another paper
@5#, in which we considered the presence of topological de-

fects inside domain walls. In other branches of physics there
may also be applications, and this we shall further explore in
the present paper.

This paper is organized as follows. In Sec. II we introduce
a Lagrangian density, which represents a general class of
systems, to develop a method of searching for soliton solu-
tions. In Sec. III we present a proof of classical or linear
stability of solitons that one can find in this class of systems.
To illustrate the general procedure, in Sec. IV we investigate
specific systems, in order to consider explicit applications. In
Sec. V, we present some comments and conclusions.

II. A CLASS OF SYSTEMS OF COUPLED FIELDS

A general Lagrangian density describing a relativistic sys-
tem of two coupled real scalar fields in bidimensional space-
time is given by

L5 1
2 ]af]af1 1

2 ]ax]ax2U~f,x!, ~1!

whereU5U(f,x) is the potential, which specifies the par-
ticular system one is interested in. Our notation is common:
we are using natural units, in which\5c51, and the metric
tensor gab is diagonal, withg0052g1151. This system
leads to the following set of equations of motion:

]2f

]t2
2

]2f

]x2
1

]U

]f
50 ~2!

and

]2x

]t2
2

]2x

]x2
1

]U

]x
50. ~3!

In the standard way of searching for soliton solutions one
considers static field configurations, and sof5f(x) and
x5x(x). In this case, the equations of motion become

d2f

dx2
5

]U

]f
, ~4!

and
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d2x

dx2
5

]U

]x
. ~5!

In the above system, the potentialU(f,x) in general is a
nonlinear function of the fields, and so the equations of mo-
tion ~4! and ~5! constitute a nonlinear system of coupled
second-order differential equations. Here we face a math-
ematical difficulty and it seems to be interesting to introduce
a method to avoid this intrinsic barrier. We think we can
make an important step toward circumventing this problem.
To do this, however, we must constrain the potential in some
specific way@1,2#, as we are going to show, and this will
certainly restrict our investigation. This is the price one has
to pay, although we get a large class of systems, which can
be investigated in a simpler way.

As stated in the Introduction, we shall go further to gen-
eralize our former investigations@1,2#. To do this, we con-
sider the potential in the form

U~f,x!5 1
2V

2~f,x!1 1
2W

2~f,x!, ~6!

in which the functionsV(f,x) andW(f,x) are in principle
arbitrary but continuous twice differentiable functions of the
fieldsf andx. In this case, the equations of motion describ-
ing static field configurations become

d2f

dx2
5V

]V

]f
1W

]W

]f
~7!

and

d2x

dx2
5V

]V

]x
1W

]W

]x
. ~8!

This does not seem to give a good answer to the above men-
tioned problem, but this is not so, as we are now going to
show.

Here we follow the procedure introduced in@1,2#—see
also Ref.@6#. In this case one investigates the energy corre-
sponding to static field configurations. For the system given
by ~1! and ~6! the energy-momentum tensor can be easily
obtained: its explicit components are, for static field configu-
rations,

T005
1

2 H S df

dx D
2

1S dx

dxD
2

1V21W2J ~9!

and

T115
1

2 H S df

dx D
2

1S dx

dxD
2

2V22W2J , ~10!

andT015T1050. We use~9! to write the energy as

E5
1

2E2`

`

dxH S df

dx D
2

1S dx

dxD
2

1V21W2J . ~11!

This expression for the energy can be rewritten in the form
E5E81E9, whereE8 is given by

E85
1

2E2`

`

dxH S df

dx
2VD 21S dx

dx
2WD 2J , ~12!

andE9 reads

E95E
2`

`

dxHVdf

dx
1W

dx

dx J . ~13!

We now introduce a general functionH5H(f,x) to
write a new quantityEM in the following form:

EM5E
2`

`

dx
dH

dx
5H„f~`!,x~`!…2H„f~2`!,x~2`!….

~14!

We use the chain rule to get

dH

dx
5

]H

]f

df

dx
1

]H

]x

dx

dx
. ~15!

Then, if we introduce the conditions

]H

]f
5V,

]H

]x
5W, ~16!

we obtainE95EM in an obvious way. Moreover, from~12!,
~13!, and ~16! we recognize thatEM is the minimum value
for the energy, which is achieved when we impose the con-
ditions

df

dx
5V ~17!

and

dx

dx
5W, ~18!

since in this case the contributionE8 given in ~12! is zero.
Here we also notice thatT1150, as shown by~10!.

The above equations~17! and ~18! are first-order equa-
tions, and we can use them to verify that

d2f

dx2
5V

]V

]f
1W

]V

]x
~19!

and

d2x

dx2
5V

]W

]f
1W

]W

]x
. ~20!

We now compare~7! to ~19!, and ~8! to ~20!, to easily see
that we can make the first-order equations~17! and ~18! to
solve the second-order equations of motion~7! and~8!, when
we impose the condition

]V

]x
5

]W

]f
. ~21!

Here we note that the above condition~21! is just the condi-
tion for the existence of a continuously twice differentiable
functionH5H(f,x) satisfying~16!. Therefore, for the gen-
eral system~1!, when the potential has the specific form~6!,
the second-order differential equations of motion~7! and~8!
are solved by the first-order differential equations~17! and
~18!, if one imposes condition~21!.
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We believe that this is an important step since now in-
stead of working with the second-order equations of motion,
we have to deal with first-order differential equations. In this
case we can think of the set of first-order equations as de-
scribing a dynamical system, and so we can use all the math-
ematical tools available to dynamical systems to deal with it.
Furthermore, the energy corresponding to static field con-
figurations is bounded from below, and gets to its minimum
value given by~14!, where the functionH(f,x) can be ob-
tained from conditions~16!. Here we recognize that each
functionH(f,x) defines a specific system, and so we have a
general class of systems of coupled real scalar fields.

This same functionH(f,x) can be used to define topo-
logical sectors. Here we follow@7# and introduce the topo-
logical current

JT
a5eab]bH~f,x!, ~22!

which is trivially conserved, thanks to the asymmetry of the
Levi-Civita tensor:e0152e1051 ande005e1150. The cor-
responding topological charge is given by

QT5E
2`

`

dxJT
05H„f~`!,x~`!…2H„f~2`!,x~2`!….

~23!

In this case the topological charge is equal to the energy of
the static field configurations. The vacuum sector, which is
identified by time and space independent field configura-
tions, has zero topological charge. We use the topological
charge, which is conserved, to introduce topological sectors:
different nonvanishing topological charges define different
topological sectors. We then have a general classification
scheme for the topological solutions.

The issue concerning topological solitons will be further
considered in the next section, where we investigate explicit
examples. Before working with explicit systems, however,
let us show that soliton solutions in systems of the above
general class are classically stable.

III. CLASSICAL STABILITY

In this section we deal with classical or linear stability@2#
of soliton solutions one can find in the general class of sys-
tems considered in Sec. II. To investigate classical or linear
stability @8#, firstly we considerf5f(x) andx5x(x) as a
pair of solutions to the first-order equations~17! and ~18!.
We then write

f~x,t !5f~x!1h~x,t ! ~24!

and

x~x,t !5x~x!1z~x,t !, ~25!

whereh(x,t) andz(x,t) are fluctuations about the classical
solutions. We now substitute the abovef(t,x) and x(t,x)
into the equations of motion~2! and ~3! to get, up to first-
order in the fluctuations,

S2S h

z
D 52

]2

]t2 S h

z
D , ~26!

whereS2 is a second-order Schro¨dinger-like differential op-
erator, given by

S252
d2

dx2
1SUff Uxf

Ufx Uxx
D , ~27!

where we are using the notationUff5]2U/]f2,
Uxf5]2U/]x]f, and so on. By assumption, the classical
solutions are time independent, and so we can separate space
and time in~26!. In the case restricted to single harmonics,
for instance, we can writeh(x,t)5h(x)cos(wt) and
z(x,t)5z(x)cos(wt). In this case we have to change
2(]2/]t2)→w2 in ~26!.

We focus our attention on the time-independent operator
S2, and now we can write, forU(f,x) given by ~6!,

Uff5VVff1Vf
21WWff1Wf

2 , ~28!

Ufx5VfVx1VVfx1WfWx1WWfx , ~29!

Uxx5VVxx1Vx
21WWxx1Wx

2 , ~30!

and

Uxf5VfVx1VVxf1WfWx1WWxf . ~31!

Here we notice that the second-order differential operator
S2 is self-adjoint since by Schwarz’s theorem we have

Vfx5Vxf , Wfx5Wxf . ~32!

However, for classical stability to apply we must show that
S2 is positive semidefinite@8#.

We follow this reasoning, and we use the first-order dif-
ferential equations~17! and ~18! to introduce the operators

S1
656

d

dx
1S Vf Vx

Wf Wx
D . ~33!

We now recall condition~21! to see that the above operators
S1

6 are adjoint of each other. Moreover, the very condition
Vx5Wf allows one to write the second-order differential
operatorS2 in terms of the first-order differential operators
S1

6 in the following form:

S25S1
1S1

2 . ~34!

We then conclude that the second-order differential operator
S2 is self-adjoint and non-negative, and this fact assures clas-
sical or linear stability of all soliton solutions the general
class of systems we have introduced in the former section
can comprise.

From the above investigation we can rather naturally in-
troduce another second-order differential operatorS̄2 given
by

S̄25S1
2S1

1 . ~35!

Evidently, this new operator is also self-adjoint and non-
negative. Moreover, the spectrum ofS̄2 is equal to the spec-
trum of S2, except for the zero eigenvalue ofS2. This is so
because the equation

54 2945SOLITONS IN A CLASS OF SYSTEMS OF TWO . . .



S1
2S1

1S1
25S1

2S25S̄2S1
2 ~36!

is always true, unlessS1
2 presents a null eingenvector, to

give the zero eigenvalue forS2. We notice that this is indeed
the case here, since the fluctuationsh(x)5df/dx5V and
z(x)5dx/dx5W constitute the null eigenvector ofS1

2 .
This result is just a consequence of the fact that the class of
systems we are investigating engenders translational invari-
ance.

IV. APPLICATIONS

The investigations introduced in the former sections are
done on general grounds, and can be generalized to the case
of three or more fields straightforwardly. In the present sec-
tion we shall investigate some examples, in order to illustrate
the general procedure. In Sec. IV A we investigate a system
with the motivation of showing how one can map systems of
coupled scalar fields in macroscopic chains. In Sec. IV B we
introduce another system to illustrate the improved version
of our method, as developed in Sec. II.

A. Interactions up to the fourth power

In Ref. @1# we investigated several systems, and presented
explicit soliton solutions. As a particularly interesting system
introduced there, let us write

V1~f,x!5l~f22a2!1 1
2mx2 ~37!

and

W1~f,x!5mfx. ~38!

The potential that specifies the above system is given by

U1~f,x!5 1
2l2~f22a2!21 1

2lm~f22a2!x21 1
8m2x4

1 1
2m2f2x2 ~39!

and the functionH(f,x) introduced in~16! is written as

H1~f,x!5lf~ 1
3f22a2!1 1

2mfx2. ~40!

Here we notice that whenm50, the two fields decouple
and thef field presents two minimum states atf25a2. This
system was already investigated in@1# and there are soliton
solutions. Some of the soliton solutions are the pairx50 and

f~x!5atanh~lax!, ~41!

and also the pair

f~x!5atanh~max! ~42!

and

x~x!56a@2~l/m21!#1/2sech~max!, ~43!

with l/m.1.
The above system can describe the continuum version of

the following macroscopic chain: let us have a system rep-
resented by•••X•••X•••, where••• stand for the binding
between atoms or group of atomsX. We suppose thatX has

an internal degree of freedom that can assume two distinct
minimum values. We represent such a system as

•••↗•••↗•••↗•••↗•••↗•••

•••↖•••↖•••↖•••↖•••↖•••

and these are the two possible~degenerate! minimum energy
states of the system. In this representation, arrows refer to the
internal degree of freedom ofX, which can be described by
the angle between the arrow and the direction perpendicular
to the chain. We map this degree of freedom to the scalar
field f of our system, and the two minimum energy states
are described byf25a2.

We now freeze the degree of freedom for motion parallel
to the chain. In this case we can map the fieldx to the degree
of freedom that allows deviation ofX from its equilibrium
position, in the direction perpendicular to the chain. In this
case, a defect in this chain can be roughly represented by

•••↖•••↖•••↑•••↗•••↗••• .

For simplicity, here we are drawing a defect in the absence
of interaction between the two degrees of freedom, with
m50. This situation is represented by the pair of solutions
x50 andf given by ~41!. Of course, when interaction be-
tweenf andx is turned on, we havemÞ0, and the vertical
positions ofX deviate from the equilibrium position, as one
can easily realize. Such a situation is described by the pair of
solutions given by~42! and ~43!.

Here we notice that the system of coupled real scalar
fields defined by~37! and ~38! can be used to map the con-
tinuum version of the above model of macroscopic chain.
This result is very interesting because this specific macro-
scopic chain can be used to model ferroelectric crystals@9#.
In this case the internal degree of freedom ofX represents
the microscopic electric dipole associated with a molecular
group such as the NaNO2 group.

B. Interactions up to the sixth power

In the present subsection we shall investigate another ex-
plicit model, to illustrate the general procedure. Our main
point here is to present an investigation that follows the im-
proved version of our method, as developed in Sec. II. With
this specific motivation, let us now chooseV andW in the
following form:

V2~f,x!5f~lf21mx22la2! ~44!

and

W2~f,x!5x~lx21mf22la2!. ~45!

For simplicity we considera real, andl and m real and
positive parameters, with 0,m,l. The potential that speci-
fies the above system is given by

U2~f,x!5 1
2f2~lf21mx22la2!2

1 1
2x2~lx21mf22la2!2 ~46!

and the functionH(f,x) introduced in~16! is written as
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H2~f,x!5 1
2lf2~ 1

2f22a2!1 1
2lx2~ 1

2x22a2!1 1
2mf2x2.

~47!

The above choice of parameters is one among several
possibilities, and makes the system to present theZ4 symme-
try, for 0,m,l. Evidently, other choices are allowed, but
we have chosen the above one to introduce an illustrative
example of the general procedure. By the way, here we note
that the limitm→0 decouples the two fields, and the limit
m→l introduces a continuum symmetry, namely the U~1!
symmetry.

We now use~44! and ~45! to write the first-order equa-
tions ~17! and ~18! in the form

df

dx
5f~lf21mx22la2! ~48!

and

dx

dx
5x~lx21mf22la2!. ~49!

We deal with this system of first-order differential equations
as a dynamical system. The singular points are the zeros of
V andW, and so they are the minima of the potential. There
are nine singular points, namely, (0,0), (6a,0), (0,6a), and
(6a/A11m/l,6a/A11m/l). The last four points are ob-
tained from the equations

f21
m

l
x25a2

and

x21
m

l
f25a2,

which are equations of ellipses in the (f,x) plane. The so-
lutions are the four intersection points of the two ellipses,
which lie on the linesf25x2. We note that in the limit
m→l these two ellipses collapse into a single circle, and the
solutions are now the whole circle, thus indicating the pres-
ence of the continuum U~1! symmetry, as stated in the
former paragraph.

The nine singular points in this system are classified as
stable (0,0), unstable (6a/A11m/l,6a/A11m/l), and
saddle@(6a,0),(0,6a)# points. In accordance with the pro-
cedure we have introduced at the very end of Sec. II, here we
can identify some topological sectors. The first sector, sector
1, is the sector that connects the points (0,0) and (a,0). It
topological charge (QT5E) is given by

QT
15E15

1
4la4. ~50!

The second sector, sector 2, connects (0,0) to
(a/A11m/l). It has the following topological charge

QT
25E25

1

4
la4S 2

11
m

l
D . ~51!

We note thatE1,E2, and the limitm→l makesE2→E1. In
this case these two sectors collapse into a single one, and this
is a consequence of the fact that in the limitm→l we are
lead to the continuum U~1! symmetry.

To find explicit soliton solutions we consider each one of
the above two sectors separately. The simplest case is sector
1, which connects (a,0) to (0,0). In this case we setx50 to
get

df

dx
5lf~f22a2!. ~52!

and so thef field supportsf6 kink solutions@7#. The ex-
plicit solutions arex50 and

f~x!5221/2a@12tanhla2~x1 x̄!#1/2, ~53!

wherex̄ is an arbitrary point, which identifies the ‘‘center’’
of the solution. Next, in sector 2, which connects
(a/A11m/l,a/A11m/l) to (0,0), we setx5f to get

df

dx
5lf@~11m/l!f22a2#. ~54!

In this case the explicit solutions are

f~x!5x~x!5
221/2a

A11m/l
@12tanhla2~x1 x̄!#1/2. ~55!

We can identify another topological sector, connecting the
points (a,0) and (a/A11m/l,a/A11m/l). In this case the
corresponding topological charge is

QT
35E35

1

4
la4S 12m/l

11m/l D , ~56!

and so it is the lower charge available, satisfying
0,E3,E1. Here we note thatE3→0 whenm→l, which is
the limit that leads to the continuum U~1! symmetry. This
result is in agreement with the Goldstone theorem, which
states that no energy is spent to link two points on the circle,
for m5l. We have being unable to find explicit analytical
solutions in this third sector.

To introduce another model, let us write the following
new functions

V35x~lx213mf21n! ~57!

and

W35f~mf213lx21n!, ~58!

wherel, m , andn are real parameters. In this case we are
led to another system, specified by

df

dx
5x~lx213mf21n! ~59!

and

dx

dx
5f~mf213lx21n!. ~60!
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The investigation of this new system follows the one we
have just done, and so we omit it here.

We notice, however, that the above system of equations
very much resembles the first-order equations recently pro-
posed to model systems of diatomic chains@10,11#. To be
explicit, we recall that the first-order equations presented in
@10# are given by, using our notation,

df

dx
5x~x213f21a! ~61!

and

dx

dx
52f~f213x21b!, ~62!

wherea512w/w1 andb512w/w2, with frequencies de-
fined in @10#. In this case one can easily check that the above
system of equations cannot be introduced by any function
H5H(f,x), and so it is not of the class we are investigating
in here. This is also interesting, at least to show that the
investigation of classical stability of the solutions found in
@10# has to follow another route, not the one we have intro-
duced in Sec. III.

V. COMMENTS AND CONCLUSIONS

To summarize we recall that we have investigated a gen-
eral class of systems of coupled real scalar fields. This class
of systems is defined by

L5
1

2
]af]af1

1

2
]ax]ax2

1

2 S ]H

]f D 22 1

2 S ]H

]x D 2,
whereH5H(f,x) is a smooth function of the fieldsf and
x. In this case, the second-order equations of motion corre-
sponding to static field configurations are solved by the fol-
lowing first-order equations

df

dx
5

]H

]f

and

dx

dx
5

]H

]x
.

The above set of first-order differential equations can be seen
as a dynamical system, and so we can take advantage of all
the mathematical tools available to dynamical systems to
deal with it. We have also shown that the energy correspond-
ing to static configurations in this class of systems gets to its
lower bound, and that all soliton solutions the system can
comprise are classically stable. This is interesting since soli-
tons we can find in systems belonging to this class will cer-
tainly play some important role in understanding general
properties of the respective systems.

In Sec. IV we have investigated some specific systems.
The first one, which contains interactions up to the fourth
power in the coupled fields, was already introduced in@1#.
Here we have shown how to map that system in a macro-
scopic chain that can model ferroelectric crystals. The sec-
ond example contains interactions up to the sixth power, and
was introduced with the motivation of showing how to deal
with issues that naturally appear in the improved version of
our method of searching for soliton solutions in systems of
coupled fields, as presented in Sec. II.

Some of the soliton solutions we have found in the second
example resemble the solutions introduced in@12#, describ-
ing ionic and orientational defects in hydrogen-bonded net-
works, and the twiston found in@13# for polyethelene. In
these works, however, the systems intestigated present peri-
odic interactions among the relevant degrees of freedom con-
sidered there. Here we realize that a natural extension of our
method concerns investigating systems that present periodic
interactions between the two coupled scalar fields. This will
certainly enlarge the scope of the method, since periodic in-
teractions seem to be most appropriate to model periodic
structures one usually finds in condensed matter, and in or-
ganic and biological systems. This and other related issues
are presently under consideration.
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