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Solitons in a class of systems of two coupled real scalar fields
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This paper deals with systems of two coupled real scalar fields in bidimensional spacetime. We show that
when the potential that specifies the system presents a particular form, we are led to first-order equations that
solve the second-order equations of motion for static fields. The first-order equations can be seen as a dynami-
cal system, and the static classical solutions present minimum energy, and are classically stable. We consider
explicit examples to illustrate the general procedure. In particular, we introduce a specific system that can be
used to model ferroelectric crysta[§1063-651X96)01009-4

PACS numbd(s): 03.50.Kk, 11.10.Lm

[. INTRODUCTION fects inside domain walls. In other branches of physics there
may also be applications, and this we shall further explore in
This paper deals with solitons in nonlinear systems ofthe present paper.
coupled real scalar fields. This is important in physics since This paper is organized as follows. In Sec. Il we introduce
there are many systems that are described via nonlinear co@-Lagrangian density, which represents a general class of
pling of their relevant degrees of freedom, and usually leadystems, to develop a method of searching for soliton solu-
to defect or soliton solutions. In the standard route to solitondions. In Sec. Il we present a proof of classical or linear
one starts by examining a Specific system, and after Workn’]%—tabnny of solitons that one can find in this class of SyStemS.
out the relevant physical contents, one gets to a set of© illustrate the general procedure, in Sec. IV we investigate
coupled nonlinear differential equations. Due to the basi@Pecific systems, in order to consider explicit applications. In
principles envoked to extract the physical contents, the equa3€c. V, we present some comments and conclusions.
tions one gets are in general second-order differential equa-
tions. Il. A CLASS OF SYSTEMS OF COUPLED FIELDS
In this paper we shall follow a different approach, e.g., we
shall work to implement a method to solve sets of couple
nonlinear differential equations. In this way, to get to specific
nonlinear systems one is just left to the work of mapping setd
of coupled nonlinear differential equations to the particular _1 @y 1 @
systemps one is interested in. To imqplement this ideg we shall £=320.90"¢+20ax"x ~U(:x), @)
take advantage of a method that is well known to pal’tiClQNhereU:U(d)’X) is the potentiaL which Specifies the par-
physicists. In this case we start by writing a Lagrangian dentjcular system one is interested in. Our notation is common:
S|ty Corresponding to some set Of real Scalar fleldS in b|dlwe are using natural unitsl in whidh=c= 1' and the metric
mensional spacetime. The motivation from field theory istensor g*# is diagonal, withg®=—g''=1. This system
evident, and we believe we can get from this picture to apteads to the following set of equations of motion:
plications in condensed matter systems. This idea originated
from the investigations already presented in some recent PP ?¢p U
works[1,2], and here we want to go further to generalize the 2 ax2 + Id = @)
method introduced there.
The investigation will be done by examining systems ofand
coupled real scalar fields in bidimensional spacetime. For

A general Lagrangian density describing a relativistic sys-
em of two coupled real scalar fields in bidimensional space-
me is given by

simplicity, we consider the case of two fields, namelyand X B #x U -0 3
x. Systems of this kind are usually described by a Lagrang- Ed a_xf+ ax @)

ian density that contains a potentlal=U(¢,x), in general
a nonlinear function of the real scalar fields. It is this non-In the standard way of searching for soliton solutions one
linearity that enlarges the scope of the problem, since it casonsiders static field configurations, and &e ¢(x) and
be mapped to many interesting systems in nonlinear sciencg= x(x). In this case, the equations of motion become
In field theory, systems of coupled scalar fields have in-
trinsec interesf3], and can be easily extended to incorporate d?¢ _du
a very interesting idep4] in which topological solitons have dxz ¢’ ()
internal structure. This idea was explored in another paper
[5], in which we considered the presence of topological deand
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d?y duU andE” reads
& ax © - [ d dx
. _ E"=f dx[V—+W—]. (13)
In the above system, the potentid( ¢, ) in general is a . dx dx

nonlinear function of the fields, and so the equations of mo- _ )
tion (4) and (5) constitute a nonlinear system of coupled We now introduce a general functioH=H(¢,x) to
second-order differential equations. Here we face a mathdrite a new quantityEy, in the following form:

ematical difficulty and it seems to be interesting to introduce = dH

a method to avoid this intrinsic barrier. We think we can EM:f dXd—:H(d)(oo),X(oo))—H(¢(—oo),X(—oo))_
make an important step toward circumventing this problem. —o X

To do this, however, we must constrain the potential in some (14
specific way[1,2], as we are going to show, and this will .

certainly restrict our investigation. This is the price one hasWe use the chain rule to get
to pay, although we get a large class of systems, which can dH dH dé oH dy

be investigated in a simpler way. _— =t — . (15
As stated in the Introduction, we shall go further to gen- dx  d¢ dx ~ dx dx
eralize our former investigatiorfd,2]. To do this, we con-  Than if we introduce the conditions
sider the potential in the form '
12 Las2 oH oH
U(d,x)=2V(d,x)+ Wb, x), (6) ﬁzv' a=w, (16)

in which the functions/(¢, x) andW(¢, x) are in principle o . .
arbitrary but continuous twice differentiable functions of the W& OPtainE”=Ey in an obvious way. Moreover, frort1.2),

fields ¢ andy. In this case, the equations of motion describ-(13)' and(16) we rgcognize .thaE'V' Is the mif‘im“m value
ing static field configurations become for the energy, which is achieved when we impose the con-

ditions
d? oV IW
—¢—v—+w— 7 do _

dx? "¢ dp -V (17)
d
an and
d’x aV+WaW o 4
ae Vo oy © Se-w, 19

This does not seem to give a good answer to the above meg.—nce in this case the contributic® given in (12) is zero
tioned problem, but this is not so, as we are now going t ! ! ; louticti given | IS z€r0.

show “Here we also notice thalt;,=0, as shown by10).
Here we follow the procedure introduced [ih,2]—see " The a(kj)ove equatlon{ﬁhL?) atnd (1@ atrhe tfwst-order equa-
also Ref.[6]. In this case one investigates the energy correlONS, and we can use them 1o verity tha

sponding to static field configurations. For the system given ) oV Py,
by (1) and (6) the energy-momentum tensor can be easily d—=V—+W— (19
obtained: its explicit components are, for static field configu- X I X
rations, and
1{({dg\? [dx\> . 2
=_{| = A X oW oW
Too 2[(dx) +(dx VAW ©) =Yg W 20
and We now comparg?) to (19), and(8) to (20), to easily see
1(/dep\2 [dy)2 that we can make the first-order equatid®) and (18) to
== X} vz w2 solve the second-order equations of moti@nand(8), when
Tt + Ve-Wer, (10 i "
2[\dx dx we impose the condition
andTy;=T1,=0. We useg9) to write the energy as N IW
— = (21
- 2 2 Ix d¢
1 do¢ dyx
Ez—f axi | =—=| +|==] +V2+W2;. (11 o .
2] dx dx Here we note that the above conditi®1) is just the condi-

_ _ _ _ tion for the existence of a continuously twice differentiable
This expression for the energy can be rewritten in the formfunctionH=H(¢, x) satisfying(16). Therefore, for the gen-
E=E’'+E", whereE’ is given by eral systen(1), when the potential has the specific fo(6),

. ’ 2 the second-order differential equations of mot{@nhand(8)
,_l d_d’_ d_X_ are solved by the first-order differential equatiqis) and
E dx V| + W| ¢, (12 ) ) "
o (18), if one imposes conditio21).

) dx dx
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We believe that this is an important step since now in-whereS, is a second-order Schiimger-like differential op-
stead of working with the second-order equations of motionerator, given by
we have to deal with first-order differential equations. In this
case we can think of the set of first-order equations as de- d? Usep Uy
scribing a dynamical system, and so we can use all the math- == dx@ + U u../’

. . . L. bx

ematical tools available to dynamical systems to deal with it.
Furthermore, the energy corresponding to static field conwhere we are using the notatiorlJ¢¢=c72U/c7¢2,
figurations is bounded from below, and gets to its minimumUX¢:(92U/aX§¢>, and so on. By assumption, the classical
value given by(14), where the functioH (¢, x) can be ob- solutions are time independent, and so we can separate space
tained from conditiong16). Here we recognize that each and time in(26). In the case restricted to single harmonics,
functionH( ¢, x) defines a specific system, and so we have dor instance, we can writen(x,t)= n(x)cosvt) and

(27)

XX

general class of systems of coupled real scalar fields. Z(x,t)=¢(x)cost). In this case we have to change
This same functiorH(¢,x) can be used to define topo- — (3% at%)—w? in (26).

logical sectors. Here we folloy7] and introduce the topo- We focus our attention on the time-independent operator

logical current S,, and now we can write, fod (¢, x) given by (6),
Ir=e€"agH(¢,x), (22 U =V Vgt Vgt WW W5, (28)

which is trivially conserved, thanks to the asymmetry of the Uygy=VgV,+VVy + W W, + WW,, , (29

Levi-Civita tensor:e”’= — €1°=1 ande®= ¢!'=0. The cor-

responding topological charge is given by Uxx:VVxx"'V)z("' WW, , + W)Z(, (30)

and

Qr= flde‘%=H(¢<oo>,x(oc))—H(¢<—oo),x<—oo>).

In this case the topological charge is equal to the energy dfeéré we notice that the second—qrder differential operator
the static field configurations. The vacuum sector, which is>2 IS Self-adjoint since by Schwarz's theorem we have
identified by time and space independent field configura- V. =V W, =W (32)
tions, has zero topological charge. We use the topological ox— Vxée ox— xes

charge, which is conserved, to introduce topological sectors;,\vever. for classical stability to apply we must show that
different nonvanishing topological charges define differentSz is positive semidefinités].

topological sectors. We then have a general classification We follow this reasoning, and we use the first-order dif-

scheme_ for the topolqgical solutipns. . ) ferential equation$17) and (18) to introduce the operators
The issue concerning topological solitons will be further

considered in the next section, where we investigate explicit d vV, V

. . .. + ¢ X
examples. Before working with explicit systems, however, Si= id——l- ) (33
let us show that soliton solutions in systems of the above X AWy Wy

general class are classically stable. We now recall conditior{21) to see that the above operators

S, are adjoint of each other. Moreover, the very condition
Ill. CLASSICAL STABILITY V,=W, allows one to write the second-order differential

In this section we deal with classical or linear stabi[i#} oBeratorSZ in terms of the first-order differential operators
of soliton solutions one can find in the general class of sysS; in the following form:
tems considered in Sec. Il. To investigate classical or linear e
stability [8], firstly we considerp= ¢(x) and y= x(x) as a $=5,S; . (34)
pair of solutions to the first-order equatiofts7) and (18).

We then write We then conclude that the second-order differential operator

S, is self-adjoint and non-negative, and this fact assures clas-

d(X,1)= H(X)+ 7(x,t) (24) sical or linear stability of all soliton solutions the general
class of systems we have introduced in the former section
and can comprise.
From the above investigation we can rather naturally in-
X(X,1) = x(X)+{(x,1), (25 troduce another second-order differential oper&@pmiven
where 7(x,t) and {(x,t) are fluctuations about the classical by
solutions. We now substitute the abowy#t,x) and x(t,x) gz S Sr. (35)
into the equations of motiof2) and (3) to get, up to first-
order in the fluctuations, Evidently, this new operator is also self-adjoint and non-

) negative. Moreover, the spectrum $f is equal to the spec-
S, m__ 3_ Y (26) trum of S,, except for the zero eigenvalue 8§. This is so
l a2\ ¢’ because the equation
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STStsT=95" 52258’ (3¢)  an internal degree of freedom that can assume two distinct
111 1 1
minimum values. We represent such a system as

is always true, unles§; presents a null eingenvector, to
give the zero eigenvalue f&,. We notice that this is indeed S e S S
the case here, since the fluctuationé&)=d¢/dx=V and
{(x)=dx/dx=W constitute the null eigenvector d®, . NN NN
This result is just a consequence of the fact that the class of . .
. o . . and these are the two possiljtlegenerateminimum energy
systems we are investigating engenders translational invari- ; .
ance states of the system. In this representation, arrows refer to the
' internal degree of freedom &, which can be described by
the angle between the arrow and the direction perpendicular

to the chain. We map this degree of freedom to the scalar

The investigations introduced in the former sections ardield ¢ of our system, and the two minimum energy states
done on general grounds, and can be generalized to the ca@ described byp*=a’. _
of three or more fields straightforwardly. In the present sec- We now freeze the degree of freedom for motion parallel
tion we shall investigate some examples, in order to illustratd0 the chain. In this case we can map the fielth the degree
the general procedure. In Sec. IV A we investigate a systerfif freedom that allows deviation of from its equilibrium
with the motivation of Showing how one can map systems oposition, in the direction perpendicular to the chain. In this
coupled scalar fields in macroscopic chains. In Sec. IV B wease, a defect in this chain can be roughly represented by
introduce another system to illustrate the improved version

IV. APPLICATIONS

of our method, as developed in Sec. II. TN S
_ For simplicity, here we are drawing a defect in the absence
A. Interactions up to the fourth power of interaction between the two degrees of freedom, with

explicit soliton solutions. As a particularly interesting systemx =0 and¢ given by (41). Of course, when interaction be-
introduced there, let us write tween¢ andy is turned on, we havg #0, and the vertical

positions ofX deviate from the equilibrium position, as one
Vi(d,x)=Np%>—a?) + 3 ux? (37) can easily realize. Such a situation is described by the pair of
solutions given by42) and (43).
and Here we notice that the system of coupled real scalar
fields defined by37) and (38) can be used to map the con-
Wi, x)=undx. (38 tinuum version of the above model of macroscopic chain.
This result is very interesting because this specific macro-

The potential that specifies the above system is given by scopic chain can be used to model ferroelectric cry48ils

U1(,x)=3NA(p?—a?)2+ I u(p?—ad) x2+ S u2x* In thig case the intern_al d.egree of frt_aedom)@fepresents
L 22 the microscopic electric dipole associated with a molecular
+Iu X (39  group such as the NaN@roup.

and the functiorH (¢, x) introduced in(16) is written as B. Interactions up to the sixth power
Hi(¢,x)=No(53p?—a?)+ s udx>. (40) In the present subsection we shall investigate another ex-
plicit model, to illustrate the general procedure. Our main
Here we notice that whep =0, the two fields decouple point here is to present an investigation that follows the im-
and theg field presents two minimum states@f=a?. This  proved version of our method, as developed in Sec. Il. With
system was already investigated[i] and there are soliton this specific motivation, let us now chooseandW in the
solutions. Some of the soliton solutions are the yair0 and  following form:

¢(x)=atanh(Aax), (41) Va(,x)= d(Np*+ ux*—ra®) (44)
and also the pair and
¢(x)=atank pax) (42 Wy( ¢, x)=x(\ x>+ pgp®—Na?). (45)
and For simplicity we considela real, and\ and u real and
1/ positive parameters, with<Ou<\. The potential that speci-
x(x)==a[2(\ u—1)]"*secti pax), (43 fies the above system is given by
with N/ u>1. U =1 h2(N b2+ ux2—ra2)2
The above system can describe the continuum version of 20 X)=2° (N ux )
the following macroscopic chain: let us have a system rep- + 32N X2+ ndp?—ra?)? (46)

resented by - - X.--X.--, where- .. stand for the binding
between atoms or group of ators We suppose that has  and the functiorH (¢, x) introduced in(16) is written as



Ho(¢,x) = 3N (3% —a%) + 3N x*(3x°—ad) + %mbz)((z-?)
4
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We note thaE;<E,, and the limitu—\ makesE,—E;. In
this case these two sectors collapse into a single one, and this
is a consequence of the fact that in the limit>\ we are

The above choice of parameters is one among sever4gad to the continuum (1) symmetry.

possibilities, and makes the system to presenZthgymme-

To find explicit soliton solutions we consider each one of

try, for 0<u<N\. Evidently, other choices are allowed, but the above two sectors separately. The simplest case is sector
we have chosen the above one to introduce an illustrativd, Which connectsd,0) to (0,0). In this case we sgt=0 to
example of the general procedure. By the way, here we notget

that the limit x— 0 decouples the two fields, and the limit
pm— N\ introduces a continuum symmetry, namely th&lJ
symmetry.

We now use(44) and (45) to write the first-order equa-
tions (17) and (18) in the form

d

d—f=¢<x¢2+ux2—xa2) (48)
and

dx 2 2 2

Ix XX+ pg—ra’). (49

dé

ax (52)

Np(p*—a’).
and so theg field supportsg® kink solutions[7]. The ex-
plicit solutions arey=0 and

d(x)=2"Y%a[1—tanha’(x+x)]*?, (53

wherex is an arbitrary point, which identifies the “center”
of the solution. Next, in sector 2, which connects
(a/ 1+ u/N,al\1+ p/\) to (0,0), we sely= ¢ to get

d
d—f=x¢[<1+m>¢2—a2].

(59

We deal with this system of first-order differential equations
as a dynamical system. The singular points are the zeros g this case the explicit solutions are
V andW, and so they are the minima of the potential. There

are nine singular points, namely, (0,0} 4,0), (0,+a), and
(xa/\1+u/\,+=al/\J1+ u/\). The last four points are ob-
tained from the equations

b2+ ﬁxzzaz
A
and
e %qsz:az,

which are equations of ellipses in the(y) plane. The so-

—1/2

d(X)=x(x)= /A[l—tanmaz(x+x_)]1’2. (55)

vi+pu

We can identify another topological sector, connecting the
points @,0) and @/\1+ u/\,a/\/1+ u/\). In this case the
corresponding topological charge is

1 1—pul/N
3_E Ty 44
Qi=Es=7\a 15 i) (56)
and so it is the lower charge available, satisfying

0<E3;<Ej;. Here we note thaE;— 0 whenu— N\, which is
the limit that leads to the continuum(l) symmetry. This

lutions are the four intersection points of the two ellipses,result is in agreement with the Goldstone theorem, which

which lie on the lines¢?= 2. We note that in the limit

states that no energy is spent to link two points on the circle,

n—\ these two ellipses collapse into a single circle, and thdor =X. We have being unable to find explicit analytical
solutions are now the whole circle, thus indicating the pressolutions in this third sector.

ence of the continuum (@) symmetry, as stated in the
former paragraph.

To introduce another model, let us write the following
new functions

The nine singular points in this system are classified as

stable (0,0), unstable{a/\1+ u/\,*aly1+ u/\), and
saddlg (*a,0),(0+a)] points. In accordance with the pro-

Vi=x(\x*+3ud*+v) (57)

cedure we have introduced at the very end of Sec. Il, here wend

can identify some topological sectors. The first sector, sector

1, is the sector that connects the points (0,0) aa@®)( It
topological charge@+=E) is given by

W3=¢p(udp?+ 3\ x*+v), (58)

where\, u , andv are real parameters. In this case we are
led to another system, specified by

Qr=E;=7\a’. (50)
d
The second sector, sector 2, connects (0,0) to d—(ﬁ =x(Ax?+3ud®+v) (59
(a/V1+ u/N). It has the following topological charge
, 1 2 and
Qr=Ex= Aa"[ — (51)
4 )% dx ) )
1+x &=¢(,u,¢ +3Nx+ ). (60)
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The investigation of this new system follows the one weThe above set of first-order differential equations can be seen

have just done, and so we omit it here. as a dynamical system, and so we can take advantage of all
We notice, however, that the above system of equationthe mathematical tools available to dynamical systems to

very much resembles the first-order equations recently prodeal with it. We have also shown that the energy correspond-

posed to model systems of diatomic chaja®,11. To be ing to static configurations in this class of systems gets to its

explicit, we recall that the first-order equations presented inower bound, and that all soliton solutions the system can

[10] are given by, using our notation, comprise are classically stable. This is interesting since soli-
de tons we can find in systems belonging to this class will cer-
&ZX(X2+3¢2+3) (61  tainly play some important role in understanding general

properties of the respective systems.

and In Sec. IV we have investigated some specific systems.

The first one, which contains interactions up to the fourth
d_X: — $(2+3x%+b), (62)  Ppower in the coupled fields, was already introducedlih
dx Here we have shown how to map that system in a macro-

scopic chain that can model ferroelectric crystals. The sec-

fined in[10]. In this case one can easily check that the abové)nd example contains interactions up to the sixth power, and

system of equations cannot be introduced by any functiof/@s introduced with the motivation of showing how to deal
H=H(¢,x), and so it is not of the class we are investigatingw'th issues that naturally appear in the improved version of

in here. This is also interesting, at least to show that th&ur method of searching for soliton solutions in systems of

investigation of classical stability of the solutions found in coupled fields, as presented in Sec. IlI. _
[10] has to follow another route, not the one we have intro- Some of the soliton solutions we have found in the second

wherea=1-w/w,; andb=1-w/w,, with frequencies de-

duced in Sec. Il example resemble the solutions introduced 1], describ-
ing ionic and orientational defects in hydrogen-bonded net-
V. COMMENTS AND CONCLUSIONS works, and the twiston found ifil3] for polyethelene. In

these works, however, the systems intestigated present peri-
To summarize we recall that we have investigated a genggic interactions among the relevant degrees of freedom con-
eral class of systems of coupled real scalar fields. This clasggered there. Here we realize that a natural extension of our
of systems is defined by method concerns investigating systems that present periodic
1 1 1/oH\2 1/6H\2 interactions between the two coupled scalar fields. This will
L=50a¢d "+ 5daxd X~ 5(%) - E) : certainly enlarge the scope of the method, since periodic in-
teractions seem to be most appropriate to model periodic
whereH=H(¢,x) is a smooth function of the field$ and  structures one usually finds in condensed matter, and in or-
x- In this case, the second-order equations of motion correganic and biological systems. This and other related issues
sponding to static field configurations are solved by the fol-are presently under consideration.
lowing first-order equations

2

d¢ oH
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