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Optical solitons with power-law asymptotics
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It is shown that self-guided optical beams with power-law asymptotics algepraic optical solitonscan
be regarded as a special case of sech-type solit@ensolitons with exponentially decaying asymptoticsthe
limit where the beam propagation constant coincides with the threshold for linear wave propagation. This leads
to the conjecture that algebraic optical solitons shouldnberently unstablelue to interactions with linear
waves, even in cases when the corresponding family of sech-type solitons is stable. This conjecture is verified
numerically for a wide class of optical solitons described by the generalized nonlinead®gemequation
with two competing nonlinearitie$S1063-651X96)11908-5

PACS numbes): 42.65.Tg, 42.60.Jf, 42.65.Jx

[. INTRODUCTION braic soliton evolves into a sech-type soliton. The instability
becomes exponentially growing and manifests itself even
There is growing interest in the subject of self-guidedmore strongly when the algebraic solitons belong to an un-
nonlinear wavegspatial solitonsin uniform nonlinear me- stable branch of the sech-type solitons.
dia [1-9]. Since the appearance of the classical paper by The paper is organized as follows. Section Il presents our
Chiao et al. [1], attention has concentrated mainly on themodel, which leads to the generalized NLS equation with
(self-focusing or self-defocusing<err medium. However, WO power-law nonlinearities. The different types of bright
practical materials often display physical effects, such asoliton .solutions_ tolthis equation, including_the special case
saturation, which can only be described by more generalize@f nonlinear periodic waves, are analyzed in Sec. lIl. Then,
models of the nonlinear refractive index. For such non-Kerdn Sec. IV, we discuss algebraic solitons and their properties.
materials theoretical predictions of new nonlinear effects, inin particular, we demonstrate that algebraic solitons can be
cluding multistability[2] and nonlinear switching and steer- regarded as a special limit of sech-type solitons, a property
ing [8], are very important. In particular, it has been shownwhich wasnot noted in Ref[9]. This limit corresponds ex-
recently[9] that, for certain forms of the generalized nonlin- actly to a threshold between solitary waves and continuous
ear Schrdinger(NLS) equation with two nonlinear terms of Waves. Such an observation allows us to understand the char-
opposite sign, e.g., cubic-quintic nonlinearity, there existacter of the instability of algebraic solitons and also to pre-
Weak|y-|oca|izedso|itary waves, i'e_, So|itary waves with dict their behavior in collisions. Some general discussions
power-law asymptotiCS, the So_ca”a‘gebraic solitons about the link between algebraic solitons and QUIded modes
We note that the existence of different types of solitaryof graded-index planar waveguides are presented in Sec. V,
waves with power-law asymptotics has been already estatstnd in Sec. VI we make some concluding remarks.
lished from other models of nonlinear physics, €.640-18.
In their application to nonlinear optics, such weakly- Il. MODEL
localized solitary waves are often treated as a class of sepa-
rate solutions contrasting with the sech-type solitons, i.e
solitons with exponentially decaying tailsee, e.g.[9] and

discussions therejn S .
) refractive index of the unperturbed medium, amg(|E|“)

The main objective of our paper is threefold. First, wed bes th ation in the index d he field | .
show that the existence of algebraic optical solitons is a ge2€SCrDes the variation in the index due to the field intensity

neric property of the generalized NLS models with two non-|,E|’ whereg isd? positive constant. For (srmalldfield _intehnsi-
linear terms of opposite sign but arbitrary power and we findi€S: We expandh, as a power series ifE|“, and retain the
these solutions in an explicit form. Second, we demonstratflrSt two terms,
that the algebraic solitons appear as the special limit of more _ - 20

, . n,~alE|?+b|E|*?, 1)
general, sech-type solitons when the propagation constant
coincides exactly with the threshold for periodic wave propawyherea andb are constants. In the case of nonlinear satu-
gation. Third, we point out that the origin of this kind of ration we must haveab<0. Then, within the weak-

algebraic solitons automatically implies that they should beguidance approximation, solutions of the governing Max-
inherently unstablebut, as we show here, the character of\ye|'s equation can be presented in the form

this instability depends on the power of the nonlinearity. As

we demonstrate numerically, if the amplitude of the alge- E(X,Z;t)=&(X,Z)e'Po? 1oty ¢ ¢, 2
braic soliton is decreased initially by a small amount, then

the perturbation grows, and finally the algebraic soliton dewhere c.c. denotes complex conjugatejs the source fre-
cays into diffractive linear waves. Otherwise, if the ampli- quency, andBy=2mny/\ is the plane-wave propagation
tude of the algebraic soliton is initially increased, the alge-constant for the uniform background medium, in terms of the

We consider the propagation of a monochromatic scalar
‘Electric fieldE in a medium with an intensity-dependent re-
fractive index,n=ny+n ,(|E|?), whereng is the uniform
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TABLE I. Classification of the soliton solution®) and results of the corresponding stability analysis.

a<0 a>0
B=B_ B=B,
o<1, stable o<2, stable
y>0 1<o<2, stable fora>Q{? 2<o0<4, stable forQ<Q®
o>2, unstable o>4, unstable
B=B,
v<0 Bright solitons do not exist Stable solitons exist for

Q<Q =a?(1+0)!|y|(2+0)?

source wavelength =27c/w, ¢ being the free-space speed change of variablé=v ~?. As a result, we obtain the soliton
of light. We have assumed a two-dimensional model, so thagolutionug(x,z;(2) in the following form:
the Z-axis is parallel to the direction of propagation, and the

X-axis is in the transverse direction. Yo
The function&(X,Z) describes the wave envelope; in the Ug(Xx,z;Q)= m ez, (6)
absence of nonlinear and diffraction effeétswould be a
constant. If we substitute E@2) into the two-dimensional,
scalar wave equation where A, D, andB are real parameters defined by the ex-
pressions
> + > +k?n?|E=0 ©)
2T 52 =0,
axXe 9z A (2+Z)BQ, D=0y, @
then setBy=kng, and retain only the first-order longitudinal
derivative of the envelope function, since it is assumed to be 5 2 _1
slowly varying inZ, we obtain the normalize(dimension- B=B.=-+|1+ (2+0) e ®)
les9 generalized NLS equation, - (1+0) a?

2 2u+ “u+ylul*’u=0 4

The arbitrary constanf) characterizes the nonlinearity-
induced shift of the propagation constant from its unper-
turbed valuekn, corresponding to the homogeneous linear
where u(x,z) denotes the normalized field envelope corre-medium.

sponding ta€(X,Z), z andx are normalized coordinates, and  Solution (6) describes self-guided nonlinear waves in the
a and y are constants proportional eoandb, respectively. medium with the generalized nonlinear refractive indéx
This equation covers all cases considered previously, includvhich depends on the values Qf, «, andy. We note that if
ing, in particular,c=1 (quadratic-cubic nonlinearity[9], a andy are both nonzero, E@4) can be normalized in such
o=2 (cubic-quintic nonlinearity[4,6,9,14, and general in- a way that only the signs of the coefficiendisand y are

teger values ofr [19]. important. Thus, in analyzing the qualitative behavior of the
different types of these solitons, it is sufficient to investigate
IIl. SOLITON SOLUTIONS the casesa=*+1 and y=+*1. The analysis of these four

cases is summarized in Table I. It follows from Table | that
Spatially localized solutiongbright solitong of Eq. (4),  the solution(6) for bright solitons exists provided at least
which describe self-guiding, exponentially-decaying modesne of the parameters and y is positive, i.e., at least one of
in a medium with the generalized nonlinearity of Et), can  the nonlinearities is focusing. If the leading nonlineatitg.,
be derived in an explicit analytic form. We look for the so- nonlinearity with higher poweiis positive, the bright soliton
lution in the formu(x,z) =v(x)exp({2), () being constant, solution exists fo)>0. In each case, the soliton solution
and for the real function(x) we obtain from Eq.(4) an  (6) exists only for one of two possible valuesBfi.e., either

v

ordinary differential equation which has the first integfat  for B=B. or for B=B_.
convenience, we assunme>0), An important property of solitary waves is their stability
to perturbations, as only stable self-guided waves can be re-
(dv>2 2 2a 42 Y 20+1) alized experimentally and used in practical applications. To
—| =] Qv°— 7Tt ——— v+ C : - ; ;
dx (o+2) (oc+1) ' analyze the linear stability of the soliton soluti¢), we
(5) employ the general stability criterion for spatially localized
solutions of the generalized NLS equations first formulated
whereC is a constant. It is implicit that the bright soliton by Vakhitov and Kolokolov[20] and verified in numerous
solutions must satisfy the conditions=0 anddv/dx=0 for  cases. According to this criterion, a localized mode is un-
|X| =0, in which caseC=0. Consequently, E¢5) can be stable provideddP/dQ)<0, where P is the total beam
further integrated by reduction to a standard integral with thegpower,
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P)= [ luxz 0l ©

and(} is the nonlinear-induced shift of the propagation con- 5 g
stant in Eq.(6). Figures 1a)—1(c) plot the dependence of
P on Q for the three case$a) «, y>0, (b) «>0 and
y<0, and(c) <0 andy>0, respectively. Besides the re-
sults which have been discussed in the literat{foz ex- _
ample, the existence of the blow-up instability fer-2 and 1.0 “s 2} UNSTABLE
v>0), we report some additional features in the soliton sta- G STABLE

bility analysis.

(i) Normally, asQ— + 0, the soliton poweP— 0, but for ]
a=-—1 andy=+1, the power remains finite 88— +0 2.0 2‘3 3.0
[see Fig. {c)]. As we show below, this explains the origin of 0.0 . - : L]
algebraic solitons. 0.0 0.5 1.0 1.5 2.0

(i) For y>0, the soliton stability in the regiono<4 Propagation Constant 2
(for >0) and in the region £ <2 (for «<0) depends
on the parametef). The stability criterion is determined by (b)
the slope of the functioP(2). Thus the solitons are un-
stable for Q>0 [a>0, see Fig. (@] or for
0<0<0® [a<0, see Fig. (o)], but are stable otherwise.
The insets in Figs. (B) and Xc) show the dependence of the 3
threshold value{H) and Q{?) on the nonlinearity power
o. These results arise from the competition between the two
power-law nonlinearities in Eq4), which is especially im-
portant for the caseve=—1 and y=+1, i.e., “defocusing
+focusing” nonlinearity. All results of the stability analysis
for the soliton solution(6) are also summarized in Table I.

It is known that a necessary condition for solitons to exist
is the absence of resonances between a soliton and linear 7
waves(see, e.g., Ref21]). For the case considered here, this olt : L
means that solitons can only exist fOr>0, which ensures 0.00 0.05 0.10 0.15 0.20 0.25
thatD in Eq.(7) is real, whereas linednonlocalized waves Propagation Constant Q
with fields «exp(Qz—igx) satisfying the dispersion relation
Q= —g? exist only forQ2<0. Accordingly, if a soliton emits
radiation due to an initial perturbatidtransition radiatioj ( c )
interaction between the soliton and radiatiom@resonant
The other necessary condition for soliton robustness in con-
servative systems is the existenceafamily of localized
solutions, which, in our case, is characterized by the free
parameter). Indeed, as we show below, after emitting ra-
diation, an asymptotic soliton has a renormalized amplitude
and, generally speaking, this situation resembles the case of
the integrable NLS equatiofsee, e.g., Ref22)).

Below we are primarily interested in the case<O,
y>0 where algebraic solitons occur. To display the solu-
tions described by Eqs(6)-(8) for the casea=-—1,
y=+1, we plot the maximum amplitude

1.5

Power P

Power P
N

0=0.6 1

STABLE

NSTABLE

|ug(0)|=[A/(1+B)]¥ as a function of the propagation 3 s . e
constant() in Fig. 2. Spatially localized solutions, i.e., soli- 0.0 0.2 0.4 0.6 0.8 1.0
tary waves with exponentially decaying tails, or sech-type Propagation Constant 0

solitons, exist for any¥)l>0, whereas the regioQ <0 cor-

responds to periodic waves with the asymptotic behavior g 1. pependence of the soliton powRron the propagation
~exp6(222—|qx) and satisfying the dispersion relation constant) for different cases described by the solutits): (a)
O=-q~ a=+1 andy=+1, (b) a=+1 andy=-1, and(c) a=—1 and

An interesting feature of the solution of E@6), for  y=+1. Numbers next to the curves indicate the corresponding
a<0, >0, is that it can also describe a special class oOlalue ofs. The insets ifa) and(c) show the corresponding depen-
nonlinear periodic waveslf the solution (6) is continued dence of the threshold valug3{" and Q{? of the propagation
analytically into the regior{)<0, whereD is pure imagi- constant{) which separate stable and unstable solitons. Solid
nary, then coshiD|x)—cos(D|x), and the solution(6) de- circles denote points wheP/dQ=0.
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FIG. 2. Maximum amplitude of the soliton solutio{®) for FIG. 4. Transformation of the sech-type solit(8) into the al-

o0=1 (e=—1, y=+1) as a function of the nonlinearity-induced gebraic soliton(10) for ) —+0 ando=0.5. Numbers next to the
shift of the propagation constaf. The cas€)=0 corresponds to curves indicate the corresponding valueglofand the ordinate has
algebraic solitong10). a logarithmic scale.

scribes a periodic wave. This periodic wave exists forcorresponding toan algebraic soliton which varies as

—|0,|<Q<0, wherglQ,|=[a®(1+0)/y(2+0)?]. INFig.  u,(x)~|x| % for |x|— . This solution is a generalization

2 we show the dependence of the maximum wave amplitudgf two particular solutions found in Ref9] for o=1 and

for the periodic solution in the regiod <0, while Fig. 3  5=2. Algebraic solitons are also associated with other equa-

plots the profiles of the the periodic solutions at the maxi-tions as a special limit of more general soliton familisse,

mum as() varies. ForQ— —0, the periodr=27/|D| be-  e.g., Ref[13)).

comes unbounded, and the solution resembles a periodic To show how the sech-type solit¢6) transforms into the

train of well-separated solitons. A | increases, the period algebraic soliton a§l— +0, we plot in Fig. 4 the profile of

7 decreases, and the difference between the minimum an#le soliton of Eq(6) for different values of). Note that for

maximum amplitudes vanishes, as is evident from Fig. 3. the “defocusingtfocusing” nonlinearity(i.e., «<0, y>0)
considered here, the center of the algebraic soliton lies in the

IV. ALGEBRAIC SOLITONS AND THEIR PROPERTIES region of the focusing nonlinearity, while the soliton tails
_ _ correspond to the region of the defocusing nonlinearity, as is
A. Algebraic solitons clear from Fig. 5. This may be a necessary condition for the

In the limit caseQ — +0, for <0, it may be verified €Xistence of such weakly-localized self-guided waves.
that the soliton solutiori6) reduces to Hayata and Koshibg9] claim that the solitary waves de-
scribed by Eq(10) for c=1 ando=2 are stable because

U(x)= lim ug(x,z;Q) “...they remain unchanged even after propagation over suf-
Q—+0 ficiently long times that attain ten soliton units.” This is not
o surprising because these solutions are exact, and conclusions
=|— 2(2+(2r)(1+0)/|2a| 5 , (10) about stability should be made only on analyzing the effect
o (1+ o)X +(2+0) (vl ) of small perturbations. As algebraic solitons correspond to
1.47 ' : - ]
: ] 1.5 NE
1.2F ] S
1.0'_ h 1.0 é
[ ] <
= 0.8F qg=- 2
:i 1=-0.22222 05 g
2 06 2
@
0.4 0.0 ¢
©
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-0.54
0.0 ) ) L -10 -5 0 5 10
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Coordinate z
FIG. 5. The profile of the algebraic solitofl0) for ¢=0.5
FIG. 3. Characteristic profiles of the periodic solutions for (solid curve and the corresponding profile of the effective refrac-
(<0 near the maximum amplitude. tive indexn?(x) defined by Eq(14) (dashed curve
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FIG. 6. (a),(b) Evolution of the perturbed algebraic solitét0) for o= 0.9 for two types of the perturbed input profilés logarithmic
scalg: u(x,0)=(1.1)u,(x), u(x,0)=(0.9)u,(x), whereu,(x) is given by Eq.(10). (c) Corresponding dynamics of the maximum beam
intensity for the two scenarios. Note that in cdaethe beam profile oscillates around an effective “sech-type” solitdh.Same as case
(c) but for o= 1.2. Switching to gstablg sech-type soliton of larger amplitude is observed.

the threshold for linear wave propagation, as follows fromwhere the perturbation|§|<1) is chosen in the form of a
the amplitude dependence of Fig. 2, they would be expectesicaled soliton.
to be unstable due to interactions with infinitely-periodic lin-  We found aqualitative differencébetween the dynamics
ear waves. Further, as shown above, the algebraic solitons @d the initially perturbed algebraic soliton fer<1, where
not have an internal parameter, i.e., they do not form a famthe sech-type solitons asways stablefor o>2, where all
ily of localized solutions characterized by an arbitrary pa-sech-type solitons aralways unstableand for the interme-
rameter, which is another indirect indication that they arediate region, ¥ o0<2, where the algebraic soliton is a limit
likely to be unstable. This conclusion has been confirmed byase of an unstable branch of the sech-type solitons. In the
the numerical simulations in Figs(6—6(d), where we ob- first case, wherr<1, a perturbation withs>0 in Eq. (11)
serve that the algebraic solitons are unstable in all three maileads to a slow transformation of the algebraic soliton into a
regions of the nonlinearity power. However the character sech-type soliton, and is accompanied by the corresponding
of this instability is different for different values af. shift of the propagation constant to the dom&in-0. This
process is shown in Fig. (&, where the formation of
exponentially-decaying tails of the sech-type soliton is
B. Numerical perturbation analysis clearly seen with the help of the logarithmic scale. The shift
To investigate the stability of the algebraic solitons, weOf the propagation constant is proportional to the amplitude
solve Eq.(4) numerically, taking the initial condition at Of the initial perturbation applied, so that a larger perturba-
z=0 as a superposition of the exact solution, Bd), and a  tion (10%) was used to make the soliton transformation more

small perturbationdefined by visible. _
To confirm that the pulse so formed belongs to the family
Up(X,0)=(1+ S)uy(X), (11)  of the sech-type soliton solutions, E@), we plot the nu-
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merical value of the soliton amplitudealculated through
the numerical data for the propagation constasta function (a)
of z for the upper curve shown in Fig(®, using Eqs(6)—

(8), together with the values of the soliton amplitude deter- \
mined directly from the numerical data. One can see that the AN
two dependencieésolid curve and circlesalmost coincide, \\
thereby justifying our conclusion that fér>0 the algebraic 290 g\\

soliton transforms into the sech-type soliton described by Eq. /FA\\

(6) for 0>0. / \’VJ

Without perturbation, the algebraic soliton does not o / J
change, corresponding to straight lines in Fig)6This was =" / %@
observed by Hayata and Koship@l. However, if an initial //w NN
perturbation is applied such that< 0 in Eq.(11), the soli- > =
ton amplitude decreases while the propagation congtant -
becomesegative The latter result corresponds to diffractive
linear waves for the solution family shown in Fig. 2. If the
propagation distance is large enough, the algebraic soliton (b)
diffracts andcompletely disappearss shown in Figs. )
and Gc) (lower curve.

For the case whengo<2, the algebraic soliton belongs
to a branch of the unstable sech-like solitons as follows in
Fig. 1(c) (dP/dQ2<0). As a result, an initially perturbed
algebraic soliton with§>0 [see Eq.(11)] undergoes a
switching to a stable branch of the sech-type solitons. This
transformation does not depend on the perturbation ampli-
tude, and is accompanied by the large-amplitude oscillations
shown in Fig. &d). However, the stable branch of sech-type
solitons disappears fer>2, so that instead of switching the
algebraic soliton collapses after a finite time. We note that,
because of the exponentially growing perturbations, for
o=1 much smaller initial perturbations are required to ob- o . . .
serve the instability effects over the same distance, as fol- FIG. 7. (a) Destructive interactions bet_ween_ two algebraic soli-
lows from Fig. Gc). For negative perturbatiorige., 5<0 in tons of the mode{4) for = 1. For comparison, ib) we show the

Eqg.(11)], the algebraic soliton always diffracts for any value Eﬂlt“fsg:?)ieiwoe en two sech-type solitons under the same conditions
of o. e

20
20

C. Soliton collisions

An important property of algebraic solitons, namely thatsolitons always corresponds to a nonlocal interaction in the
they correspond to the th_reshold for linear wave p_ropagatior_‘(,1+1)_dimensiona| model, which produces the power-law
allows us to make a conjecture, and also to confirm numerlasymptotic property of the localized solutions. This nonlo-
cally interesting features of these solitons when they coIIideca"ty of the linear part of the equation appears to be due to

Consider, for example, the collision of two solitons which y,q gitferent physical properties of the system, such as those
are initially well-separated and whose tails weakly overlapIn the Benjamin-Ono equatidil0,11], where algebraic soli-
one another. If the relative phase of the two solitons is non

. . Lo tfons exist agamiliesof localized solutions. As a result, these
zero, not an integer multiple af, some energy redistribution

. . li I I ispl lasti llisi
after the soliton collision can usually be observed. FurtherSO ftons are st'ab © a_nd aso .d'Sp ay elastic co ISI.(BEBE',
) : . . i e.g.,[11]). Similar soliton solutions are also known in some
the final amplitudes of the asymptotic solitons will differ

: ; . 2+1)-dimensional models, such as the Kadomtsev-
slightly from one anothef22]. For algebraic solitons, such a ( : - ) ’ ) .
collision must produce a decay of one of the solitons, be-Pet\”‘"’lShVIII equation23]. Thesecondype of algebraic soli-

cause a soliton with an amplitude below the threshold ampli:[OnS has been described above for the particular casédEq.

tude for an algebraic soliton will diffract. In Fig.(3, we but similar types of solitons are known from other models,

display such an inelastic interaction between two algebraig'g",,theli_'o;]ca[nlesdléje;'r\]/atxein'\“‘rs ec#atlfo?hlz,lﬂ T‘i?dn
solitons. For comparison Fig.(5) plots the corresponding gap - SOltons [15,19. The main property of these Sofitons,

interaction between two sech-type solitons under the sam\é’h":h.OIOeS not depend on th_e integrability of the corre-
conditions. Ssponding nonlinear equations, is that the algebraic solitons

appear as a special limit of the sech-type solitons, when the
propagation constambincides exactlyvith the threshold for
linear wave propagation. All solitons of this second type are

We can also make some general remarks about the clasxpected to be at leasteakly unstableeven if the corre-
sification of different types of algebraic solitons, previously sponding family of the sech-type solitons is found to be
reported using different models. THiest type of algebraic stable.

D. Classification of algebraic solitons
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V. GRADED-INDEX PLANAR WAVEGUIDES shape shown by the dashed curve in Fig. 5, and the guided-
mode field decreases algebraicalfy;-|x| %7, as |x|—=.

'sl'his kind of slowly decaying guided modes has been re-

An interesting link to our results can be made with the
theory of guided modes of graded-index planar waveguide

[24]. Equation(4) and its stationary solutions can be written ge;élé/vc:)lscussed in Ref25] (cf. Fig. 1 of Ref.[25] with Fig.
as '
2) = h(x)e'?, 12
u(x,2)=9(x) (12 VI. CONCLUSIONS
d?y We have d d that self-guided nonli
1TR2(x) — B2 = e have demonstrated that self-guided nonlinear waves
dx? [n"() = B719=0, (13 with power-law asymptotics, i.e., algebraic optical solitons,

can be explained as a special limit of exponentially-decaying
(sech-typé¢ nonlinear waves, when the propagation constant
coincides with the threshold for linear wave propagation.
This unique property of algebraic solitary waves differenti-
ates them from other types of nonlinear waves with hyper-
bolic secant and power-law asymptotics. Furthermore, this

describing propagation of TE modes in a linear dielectricSpeCiaI condition for the existence of algebraic solitons indi-
waveguide with the graded refractive index profile definedc@€s their inherent instability, even in the case when the

bv n(x) and propagation consta 241 According to corresponding family of sech-type solitons_ is s'gable. We
Iir)llea(r v)vaveguFi)depthgeorﬁ=0 corrr;go[nd]s to the trar?sition have demonstrated the property of algebraic solitons for a

between propagatingwavelike modes, withQ>0, and rather general example of the nonlinear Sclmger equation

nonpropagatingevanescentmodes, with()<0. Thus, the with two power-law competing nonlinearities.
algebraic solutions given i) also provide the solution for
the field (x) of the linear modes of the graded-index wave-
guide. In particular, the solution given by E@L0) for
Q=0 and a<0 corresponds to linear bounded modes ex- Yu. Kivshar acknowledges useful discussions with D.
actly at the delineation between propagating and evanesceRelinovsky. The authors are members of the Australian Pho-
modes. In this case, the graded-index profile has a specitdnics Cooperative Research Centre.

where the effective index profiley(x), and the effective
propagation constang, are defined by

n2(x)=al¢(x) 17+ M p(x) 1% B=Q.

In this form, Eq.(14) coincides with the governing equation

(14
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