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It is shown that self-guided optical beams with power-law asymptotics, i.e.,algebraic optical solitons, can
be regarded as a special case of sech-type solitons~i.e. solitons with exponentially decaying asymptotics! in the
limit where the beam propagation constant coincides with the threshold for linear wave propagation. This leads
to the conjecture that algebraic optical solitons should beinherently unstabledue to interactions with linear
waves, even in cases when the corresponding family of sech-type solitons is stable. This conjecture is verified
numerically for a wide class of optical solitons described by the generalized nonlinear Schro¨dinger equation
with two competing nonlinearities.@S1063-651X~96!11908-5#

PACS number~s!: 42.65.Tg, 42.60.Jf, 42.65.Jx

I. INTRODUCTION

There is growing interest in the subject of self-guided
nonlinear waves~spatial solitons! in uniform nonlinear me-
dia @1–9#. Since the appearance of the classical paper by
Chiao et al. @1#, attention has concentrated mainly on the
~self-focusing or self-defocusing! Kerr medium. However,
practical materials often display physical effects, such as
saturation, which can only be described by more generalized
models of the nonlinear refractive index. For such non-Kerr
materials theoretical predictions of new nonlinear effects, in-
cluding multistability@2# and nonlinear switching and steer-
ing @8#, are very important. In particular, it has been shown
recently@9# that, for certain forms of the generalized nonlin-
ear Schro¨dinger~NLS! equation with two nonlinear terms of
opposite sign, e.g., cubic-quintic nonlinearity, there exist
weakly-localizedsolitary waves, i.e., solitary waves with
power-law asymptotics, the so-calledalgebraic solitons.

We note that the existence of different types of solitary
waves with power-law asymptotics has been already estab-
lished from other models of nonlinear physics, e.g.,@10–18#.
In their application to nonlinear optics, such weakly-
localized solitary waves are often treated as a class of sepa-
rate solutions contrasting with the sech-type solitons, i.e.,
solitons with exponentially decaying tails~see, e.g.,@9# and
discussions therein!.

The main objective of our paper is threefold. First, we
show that the existence of algebraic optical solitons is a ge-
neric property of the generalized NLS models with two non-
linear terms of opposite sign but arbitrary power and we find
these solutions in an explicit form. Second, we demonstrate
that the algebraic solitons appear as the special limit of more
general, sech-type solitons when the propagation constant
coincides exactly with the threshold for periodic wave propa-
gation. Third, we point out that the origin of this kind of
algebraic solitons automatically implies that they should be
inherently unstable, but, as we show here, the character of
this instability depends on the power of the nonlinearity. As
we demonstrate numerically, if the amplitude of the alge-
braic soliton is decreased initially by a small amount, then
the perturbation grows, and finally the algebraic soliton de-
cays into diffractive linear waves. Otherwise, if the ampli-
tude of the algebraic soliton is initially increased, the alge-

braic soliton evolves into a sech-type soliton. The instability
becomes exponentially growing and manifests itself even
more strongly when the algebraic solitons belong to an un-
stable branch of the sech-type solitons.

The paper is organized as follows. Section II presents our
model, which leads to the generalized NLS equation with
two power-law nonlinearities. The different types of bright
soliton solutions to this equation, including the special case
of nonlinear periodic waves, are analyzed in Sec. III. Then,
in Sec. IV, we discuss algebraic solitons and their properties.
In particular, we demonstrate that algebraic solitons can be
regarded as a special limit of sech-type solitons, a property
which wasnot noted in Ref.@9#. This limit corresponds ex-
actly to a threshold between solitary waves and continuous
waves. Such an observation allows us to understand the char-
acter of the instability of algebraic solitons and also to pre-
dict their behavior in collisions. Some general discussions
about the link between algebraic solitons and guided modes
of graded-index planar waveguides are presented in Sec. V,
and in Sec. VI we make some concluding remarks.

II. MODEL

We consider the propagation of a monochromatic scalar
electric fieldE in a medium with an intensity-dependent re-
fractive index,n5n01n nl(uEus), wheren0 is the uniform
refractive index of the unperturbed medium, andnnl(uEus)
describes the variation in the index due to the field intensity
uEu, wheres is a positive constant. For small field intensi-
ties, we expandnnl as a power series inuEus, and retain the
first two terms,

nnl'auEus1buEu2s, ~1!

wherea andb are constants. In the case of nonlinear satu-
ration, we must haveab,0. Then, within the weak-
guidance approximation, solutions of the governing Max-
well’s equation can be presented in the form

E~X,Z;t !5E~X,Z!eib0Z2 ivt1c.c., ~2!

where c.c. denotes complex conjugate,v is the source fre-
quency, andb052pn0 /l is the plane-wave propagation
constant for the uniform background medium, in terms of the
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source wavelengthl52pc/v, c being the free-space speed
of light. We have assumed a two-dimensional model, so that
theZ-axis is parallel to the direction of propagation, and the
X-axis is in the transverse direction.

The functionE(X,Z) describes the wave envelope; in the
absence of nonlinear and diffraction effectsE would be a
constant. If we substitute Eq.~2! into the two-dimensional,
scalar wave equation

S ]2

]X2 1
]2

]Z2
1k2n2DE50, ~3!

then setb05kn0, and retain only the first-order longitudinal
derivative of the envelope function, since it is assumed to be
slowly varying inZ, we obtain the normalized~dimension-
less! generalized NLS equation,

i
]u

]z
1

]2u

]x2
1auuusu1guuu2su50, ~4!

whereu(x,z) denotes the normalized field envelope corre-
sponding toE(X,Z), z andx are normalized coordinates, and
a andg are constants proportional toa andb, respectively.
This equation covers all cases considered previously, includ-
ing, in particular,s51 ~quadratic-cubic nonlinearity! @9#,
s52 ~cubic-quintic nonlinearity! @4,6,9,14#, and general in-
teger values ofs @19#.

III. SOLITON SOLUTIONS

Spatially localized solutions~bright solitons! of Eq. ~4!,
which describe self-guiding, exponentially-decaying modes
in a medium with the generalized nonlinearity of Eq.~1!, can
be derived in an explicit analytic form. We look for the so-
lution in the formu(x,z)5v(x)exp(iVz), V being constant,
and for the real functionv(x) we obtain from Eq.~4! an
ordinary differential equation which has the first integral~for
convenience, we assumev.0),

S dvdxD
2

5FVv22
2a

~s12!
vs122

g

~s11!
v2~s11!1CG ,

~5!

whereC is a constant. It is implicit that the bright soliton
solutions must satisfy the conditionsv50 anddv/dx50 for
uxu→`, in which caseC50. Consequently, Eq.~5! can be
further integrated by reduction to a standard integral with the

change of variablej5v2s. As a result, we obtain the soliton
solutionus(x,z;V) in the following form:

us~x,z;V!5F A

cosh~Dx!1BG1/seiVz, ~6!

whereA, D, andB are real parameters defined by the ex-
pressions

A5
~21s!BV

a
, D5sAV, ~7!

B[B656F11
~21s!2

~11s!

g

a2VG21/2

. ~8!

The arbitrary constantV characterizes the nonlinearity-
induced shift of the propagation constant from its unper-
turbed valuekn0 corresponding to the homogeneous linear
medium.

Solution ~6! describes self-guided nonlinear waves in the
medium with the generalized nonlinear refractive index~1!
which depends on the values ofV, a, andg. We note that if
a andg are both nonzero, Eq.~4! can be normalized in such
a way that only the signs of the coefficientsa and g are
important. Thus, in analyzing the qualitative behavior of the
different types of these solitons, it is sufficient to investigate
the casesa561 and g561. The analysis of these four
cases is summarized in Table I. It follows from Table I that
the solution~6! for bright solitons exists provided at least
one of the parametersa andg is positive, i.e., at least one of
the nonlinearities is focusing. If the leading nonlinearity~i.e.,
nonlinearity with higher power! is positive, the bright soliton
solution exists forV.0. In each case, the soliton solution
~6! exists only for one of two possible values ofB, i.e., either
for B5B1 or for B5B2 .

An important property of solitary waves is their stability
to perturbations, as only stable self-guided waves can be re-
alized experimentally and used in practical applications. To
analyze the linear stability of the soliton solution~6!, we
employ the general stability criterion for spatially localized
solutions of the generalized NLS equations first formulated
by Vakhitov and Kolokolov@20# and verified in numerous
cases. According to this criterion, a localized mode is un-
stable provideddP/dV,0, where P is the total beam
power,

TABLE I. Classification of the soliton solutions~6! and results of the corresponding stability analysis.

a,0 a.0

B5B2 B5B1

s<1, stable s<2, stable
g.0 1,s,2, stable forV.V th

(2) 2,s,4, stable forV,V th
(1)

s.2, unstable s.4, unstable

B5B1

g,0 Bright solitons do not exist Stable solitons exist for
V,V cr[a2(11s)/ugu(21s)2
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P~V!5E
2`

1`

uus~x,z;V!u2dx, ~9!

andV is the nonlinear-induced shift of the propagation con-
stant in Eq.~6!. Figures 1~a!–1~c! plot the dependence of
P on V for the three cases~a! a, g.0, ~b! a.0 and
g,0, and~c! a,0 andg.0, respectively. Besides the re-
sults which have been discussed in the literature~for ex-
ample, the existence of the blow-up instability fors.2 and
g.0), we report some additional features in the soliton sta-
bility analysis.

~i! Normally, asV→10, the soliton powerP→0, but for
a521 andg511, the power remains finite asV→10
@see Fig. 1~c!#. As we show below, this explains the origin of
algebraic solitons.

~ii ! For g.0, the soliton stability in the region 2,s,4
~for a.0) and in the region 1,s,2 ~for a,0) depends
on the parameterV. The stability criterion is determined by
the slope of the functionP(V). Thus the solitons are un-
stable for V.V th

(1) @a.0, see Fig. 1~a!# or for
0,V,V th

(2) @a,0, see Fig. 1~c!#, but are stable otherwise.
The insets in Figs. 1~a! and 1~c! show the dependence of the
threshold valuesV th

(1) and V th
(2) on the nonlinearity power

s. These results arise from the competition between the two
power-law nonlinearities in Eq.~4!, which is especially im-
portant for the casea521 andg511, i.e., ‘‘defocusing
1focusing’’ nonlinearity. All results of the stability analysis
for the soliton solution~6! are also summarized in Table I.

It is known that a necessary condition for solitons to exist
is the absence of resonances between a soliton and linear
waves~see, e.g., Ref.@21#!. For the case considered here, this
means that solitons can only exist forV.0, which ensures
thatD in Eq. ~7! is real, whereas linear~nonlocalized! waves
with fields}exp(iVz2iqx) satisfying the dispersion relation
V52q2 exist only forV,0. Accordingly, if a soliton emits
radiation due to an initial perturbation~transition radiation!,
interaction between the soliton and radiation isnonresonant.
The other necessary condition for soliton robustness in con-
servative systems is the existence ofa family of localized
solutions, which, in our case, is characterized by the free
parameterV. Indeed, as we show below, after emitting ra-
diation, an asymptotic soliton has a renormalized amplitude
and, generally speaking, this situation resembles the case of
the integrable NLS equation~see, e.g., Ref.@22#!.

Below we are primarily interested in the casea,0,
g.0 where algebraic solitons occur. To display the solu-
tions described by Eqs.~6!–~8! for the casea521,
g511, we plot the maximum amplitude
uus(0)u5@A/(11B)#1/s as a function of the propagation
constantV in Fig. 2. Spatially localized solutions, i.e., soli-
tary waves with exponentially decaying tails, or sech-type
solitons, exist for anyV.0, whereas the regionV,0 cor-
responds to periodic waves with the asymptotic behavior
;exp(iVz2iqx) and satisfying the dispersion relation
V52q2.

An interesting feature of the solution of Eq.~6!, for
a,0, g.0, is that it can also describe a special class of
nonlinear periodic waves. If the solution ~6! is continued
analytically into the regionV,0, whereD is pure imagi-
nary, then cosh(iuDux)→cos(uDux), and the solution~6! de-

FIG. 1. Dependence of the soliton powerP on the propagation
constantV for different cases described by the solution~6!: ~a!
a511 andg511, ~b! a511 andg521, and~c! a521 and
g511. Numbers next to the curves indicate the corresponding
value ofs. The insets in~a! and~c! show the corresponding depen-
dence of the threshold valuesV th

(1) and V th
(2) of the propagation

constantV which separate stable and unstable solitons. Solid
circles denote points wheredP/dV50.
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scribes a periodic wave. This periodic wave exists for
2uV!u,V,0, whereuV!u5@a2(11s)/g(21s)2#. In Fig.
2 we show the dependence of the maximum wave amplitude
for the periodic solution in the regionV,0, while Fig. 3
plots the profiles of the the periodic solutions at the maxi-
mum asV varies. ForV→20, the periodt52p/uDu be-
comes unbounded, and the solution resembles a periodic
train of well-separated solitons. AsuVu increases, the period
t decreases, and the difference between the minimum and
maximum amplitudes vanishes, as is evident from Fig. 3.

IV. ALGEBRAIC SOLITONS AND THEIR PROPERTIES

A. Algebraic solitons

In the limit caseV→10, for a,0, it may be verified
that the soliton solution~6! reduces to

ua~x![ lim
V→10

us~x,z;V!

5F 2~21s!~11s!/uau
s2~11s!x21~21s!2~g/a2!G

1/s

, ~10!

corresponding toan algebraic soliton, which varies as
ua(x);uxu22/s for uxu→`. This solution is a generalization
of two particular solutions found in Ref.@9# for s51 and
s52. Algebraic solitons are also associated with other equa-
tions as a special limit of more general soliton families~see,
e.g., Ref.@13#!.

To show how the sech-type soliton~6! transforms into the
algebraic soliton asV→10, we plot in Fig. 4 the profile of
the soliton of Eq.~6! for different values ofV. Note that for
the ‘‘defocusing1focusing’’ nonlinearity~i.e., a,0, g.0)
considered here, the center of the algebraic soliton lies in the
region of the focusing nonlinearity, while the soliton tails
correspond to the region of the defocusing nonlinearity, as is
clear from Fig. 5. This may be a necessary condition for the
existence of such weakly-localized self-guided waves.

Hayata and Koshiba@9# claim that the solitary waves de-
scribed by Eq.~10! for s51 ands52 are stable because
‘‘ . . . they remain unchanged even after propagation over suf-
ficiently long times that attain ten soliton units.’’ This is not
surprising because these solutions are exact, and conclusions
about stability should be made only on analyzing the effect
of small perturbations. As algebraic solitons correspond to

FIG. 2. Maximum amplitude of the soliton solution~6! for
s51 (a521, g511) as a function of the nonlinearity-induced
shift of the propagation constantV. The caseV50 corresponds to
algebraic solitons~10!.

FIG. 3. Characteristic profiles of the periodic solutions for
V,0 near the maximum amplitude.

FIG. 4. Transformation of the sech-type soliton~6! into the al-
gebraic soliton~10! for V→10 ands50.5. Numbers next to the
curves indicate the corresponding values ofV, and the ordinate has
a logarithmic scale.

FIG. 5. The profile of the algebraic soliton~10! for s50.5
~solid curve! and the corresponding profile of the effective refrac-
tive indexn2(x) defined by Eq.~14! ~dashed curve!.
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the threshold for linear wave propagation, as follows from
the amplitude dependence of Fig. 2, they would be expected
to be unstable due to interactions with infinitely-periodic lin-
ear waves. Further, as shown above, the algebraic solitons do
not have an internal parameter, i.e., they do not form a fam-
ily of localized solutions characterized by an arbitrary pa-
rameter, which is another indirect indication that they are
likely to be unstable. This conclusion has been confirmed by
the numerical simulations in Figs. 6~a!–6~d!, where we ob-
serve that the algebraic solitons are unstable in all three main
regions of the nonlinearity powers. However the character
of this instability is different for different values ofs.

B. Numerical perturbation analysis

To investigate the stability of the algebraic solitons, we
solve Eq. ~4! numerically, taking the initial condition at
z50 as a superposition of the exact solution, Eq.~10!, and a
small perturbationdefined by

u0~x,0!5~11d!ua~x!, ~11!

where the perturbation (udu!1) is chosen in the form of a
scaled soliton.

We found aqualitative differencebetween the dynamics
of the initially perturbed algebraic soliton fors,1, where
the sech-type solitons arealways stable, for s.2, where all
sech-type solitons arealways unstable, and for the interme-
diate region, 1<s<2, where the algebraic soliton is a limit
case of an unstable branch of the sech-type solitons. In the
first case, whens,1, a perturbation withd.0 in Eq. ~11!
leads to a slow transformation of the algebraic soliton into a
sech-type soliton, and is accompanied by the corresponding
shift of the propagation constant to the domainV.0. This
process is shown in Fig. 6~a!, where the formation of
exponentially-decaying tails of the sech-type soliton is
clearly seen with the help of the logarithmic scale. The shift
of the propagation constant is proportional to the amplitude
of the initial perturbation applied, so that a larger perturba-
tion ~10%! was used to make the soliton transformation more
visible.

To confirm that the pulse so formed belongs to the family
of the sech-type soliton solutions, Eq.~6!, we plot the nu-

FIG. 6. ~a!,~b! Evolution of the perturbed algebraic soliton~10! for s50.9 for two types of the perturbed input profiles~in logarithmic
scale!: u(x,0)5(1.1)ua(x), u(x,0)5(0.9)ua(x), whereua(x) is given by Eq.~10!. ~c! Corresponding dynamics of the maximum beam
intensity for the two scenarios. Note that in case~a! the beam profile oscillates around an effective ‘‘sech-type’’ soliton.~d! Same as case
~c! but for s51.2. Switching to a~stable! sech-type soliton of larger amplitude is observed.
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merical value of the soliton amplitude~calculated through
the numerical data for the propagation constant! as a function
of z for the upper curve shown in Fig. 6~c!, using Eqs.~6!–
~8!, together with the values of the soliton amplitude deter-
mined directly from the numerical data. One can see that the
two dependencies~solid curve and circles! almost coincide,
thereby justifying our conclusion that ford.0 the algebraic
soliton transforms into the sech-type soliton described by Eq.
~6! for V.0.

Without perturbation, the algebraic soliton does not
change, corresponding to straight lines in Fig. 6~c!. This was
observed by Hayata and Koshiba@9#. However, if an initial
perturbation is applied such that,d,0 in Eq. ~11!, the soli-
ton amplitude decreases while the propagation constantV
becomesnegative. The latter result corresponds to diffractive
linear waves for the solution family shown in Fig. 2. If the
propagation distance is large enough, the algebraic soliton
diffracts andcompletely disappears, as shown in Figs. 6~b!
and 6~c! ~lower curve!.

For the case when 1<s<2, the algebraic soliton belongs
to a branch of the unstable sech-like solitons as follows in
Fig. 1~c! (dP/dV,0). As a result, an initially perturbed
algebraic soliton withd.0 @see Eq. ~11!# undergoes a
switching to a stable branch of the sech-type solitons. This
transformation does not depend on the perturbation ampli-
tude, and is accompanied by the large-amplitude oscillations
shown in Fig. 6~d!. However, the stable branch of sech-type
solitons disappears fors.2, so that instead of switching the
algebraic soliton collapses after a finite time. We note that,
because of the exponentially growing perturbations, for
s>1 much smaller initial perturbations are required to ob-
serve the instability effects over the same distance, as fol-
lows from Fig. 6~c!. For negative perturbations@i.e.,d,0 in
Eq. ~11!#, the algebraic soliton always diffracts for any value
of s.

C. Soliton collisions

An important property of algebraic solitons, namely that
they correspond to the threshold for linear wave propagation,
allows us to make a conjecture, and also to confirm numeri-
cally interesting features of these solitons when they collide.
Consider, for example, the collision of two solitons which
are initially well-separated and whose tails weakly overlap
one another. If the relative phase of the two solitons is non-
zero, not an integer multiple ofp, some energy redistribution
after the soliton collision can usually be observed. Further,
the final amplitudes of the asymptotic solitons will differ
slightly from one another@22#. For algebraic solitons, such a
collision must produce a decay of one of the solitons, be-
cause a soliton with an amplitude below the threshold ampli-
tude for an algebraic soliton will diffract. In Fig. 7~a!, we
display such an inelastic interaction between two algebraic
solitons. For comparison Fig. 7~b! plots the corresponding
interaction between two sech-type solitons under the same
conditions.

D. Classification of algebraic solitons

We can also make some general remarks about the clas-
sification of different types of algebraic solitons, previously
reported using different models. Thefirst type of algebraic

solitons always corresponds to a nonlocal interaction in the
~111!-dimensional model, which produces the power-law
asymptotic property of the localized solutions. This nonlo-
cality of the linear part of the equation appears to be due to
the different physical properties of the system, such as those
in the Benjamin-Ono equation@10,11#, where algebraic soli-
tons exist asfamiliesof localized solutions. As a result, these
solitons are stable and also display elastic collisions~see,
e.g.,@11#!. Similar soliton solutions are also known in some
~211!-dimensional models, such as the Kadomtsev-
Petviashvili equation@23#. Thesecondtype of algebraic soli-
tons has been described above for the particular case, Eq.~4!,
but similar types of solitons are known from other models,
e.g., the so-called ‘‘derivative NLS equation’’@12,13# and
‘‘gap’’ solitons @15,16#. The main property of these solitons,
which does not depend on the integrability of the corre-
sponding nonlinear equations, is that the algebraic solitons
appear as a special limit of the sech-type solitons, when the
propagation constantcoincides exactlywith the threshold for
linear wave propagation. All solitons of this second type are
expected to be at leastweakly unstable, even if the corre-
sponding family of the sech-type solitons is found to be
stable.

FIG. 7. ~a! Destructive interactions between two algebraic soli-
tons of the model~4! for s51. For comparison, in~b! we show the
collision between two sech-type solitons under the same conditions
but for V51.0.
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V. GRADED-INDEX PLANAR WAVEGUIDES

An interesting link to our results can be made with the
theory of guided modes of graded-index planar waveguides
@24#. Equation~4! and its stationary solutions can be written
as

u~x,z!5c~x!eiVz, ~12!

d2c

dx2
1@n2~x!2b2#c50, ~13!

where the effective index profile,n(x), and the effective
propagation constant,b, are defined by

n2~x!5a@c~x!#s1g@c~x!#2s; b5AV. ~14!

In this form, Eq.~14! coincides with the governing equation
describing propagation of TE modes in a linear dielectric
waveguide with the graded refractive index profile defined
by n(x) and propagation constantAV @24#. According to
linear waveguide theory,V50 corresponds to the transition
between propagating~wavelike! modes, withV.0, and
nonpropagating~evanescent! modes, withV,0. Thus, the
algebraic solutions given in~4! also provide the solution for
the fieldc(x) of the linear modes of the graded-index wave-
guide. In particular, the solution given by Eq.~10! for
V50 anda,0 corresponds to linear bounded modes ex-
actly at the delineation between propagating and evanescent
modes. In this case, the graded-index profile has a special

shape shown by the dashed curve in Fig. 5, and the guided-
mode field decreases algebraically,F;uxu22/s, as uxu→`.
This kind of slowly decaying guided modes has been re-
cently discussed in Ref.@25# ~cf. Fig. 1 of Ref.@25# with Fig.
5 above!.

VI. CONCLUSIONS

We have demonstrated that self-guided nonlinear waves
with power-law asymptotics, i.e., algebraic optical solitons,
can be explained as a special limit of exponentially-decaying
~sech-type! nonlinear waves, when the propagation constant
coincides with the threshold for linear wave propagation.
This unique property of algebraic solitary waves differenti-
ates them from other types of nonlinear waves with hyper-
bolic secant and power-law asymptotics. Furthermore, this
special condition for the existence of algebraic solitons indi-
cates their inherent instability, even in the case when the
corresponding family of sech-type solitons is stable. We
have demonstrated the property of algebraic solitons for a
rather general example of the nonlinear Schro¨dinger equation
with two power-law competing nonlinearities.
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