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Perturbation analysis of weakly discrete kinks

S. Flach and K. Kladko
Max-Planck-Institut fu Physik komplexer Systeme, Bayreuther Strasse 40 H.16, D-01187 Dresden, Germany
(Received 22 December 1905

We present a perturbation theory of static kink solutions of discrete Klein-Gordon chains. The unperturbed
solutions correspond to the kinks of the adjoint partial differential equation. The perturbation theory is based
on a reformulation of the discrete chain problem into a partial differential equation with spatially modulated
mass density. The first-order corrections to the kink solutions are obtained analytically and are shown to agree
with exact numerical results. We use these findings to reconsider the problem of calculating the Peierls-
Nabarro barrier[S1063-651X96)08308-0

PACS numbe(s): 03.20:+i, 03.40~t, 63.20.Ry

I. INTRODUCTION heteroclinic point. One can then consider different sequences
of heteroclinic pointg(let us call them heteroclinic orbjts
) . e "Il of these orbits will be exponentially attracted to the two
Qerstandmg the .effects of dls.creten(.ass on solltonhke_soluﬁxed points for sufficiently large absolute values ofEx-
tlons.[1—9]. In this work we will restrict ourselves to kink actly two of these orbits correspond to kink solutions, and
solutions. Kinks connect two ground states of a chosen sysye thus related to their counterparts of the differential equa-
tem. Let us consider a nonlinear Klein-Gordon equation  tjon (1.2). However these two orbits have different energies
5 ) (in contrast to the differential equation cas&@he energy
Q_CEJF ﬂ_o (1. difference is called a Peierls-Nabarro barrier.
o2 x> ab ' Let us note that there exist also choices of the difference
operator such that the invariant manifolds still overlag].
To allow for kink solutions the potentil(z) has to have at In that nongeneric case static kink solutions exist, which can
least two degenerate minima. Throughout this paper we wilbe positioned at any place on the lattice. However, the dif-
consider only static solutions, i.e., the fiedel will not be  ference operators are rather unphysical, and we will not con-
time dependent. Then Eql.1) is reduced to an ordinary Sider these nongeneric cases here.

In recent years there has been considerable effort in u

differential equation So far different methods have been developed in order to
understand the effect of discreteness in principle. A recent
2D gV approach is due to T. Munakata who used the method of

_CW-’-(?T{):O' (1.2 constraint[10]. Up to now all these methods have not

yielded analytical solutions. To obtain say a kink profile nu-
merical tools are used. In this paper we will demonstrate that
a simple method known as the time-averaging method is

corresponds to a heteroplinic orbit. This orbit connects thE‘capable of finding analytical expressions for kink shapes in a
two hyperbolic fixed pointsthe ground statgsin phase |, a.defined perturbation approach.

space._The invariant manifolds of th_ese fixed points overlap, |, the limit C— o the two kink-type heteroclinic orbits of
according to the continuous translational symmetrylol), (1 3) approach their counterparts (.2). This is due to the
or due to the existence of an integral of motion(df2). fact, that large values of imply slow variations of these
There exist different possibilities to modify the spatial solutions as compared to the lattice spacing. Consequently it
differentials in(1.2) into differences. The most common way is tempting to use a perturbation approach, which links the
is to represent the differences in terms of interaction forcekink solutions of(1.2) with the adjoint solutions of1.3). In
between neighboring particle§ andX,_; this paper we will present a first-order perturbation calcula-
tion for the heteroclinic orbits of1.3). In Sec. Il the differ-
ence equatiofl.3) is transformed into a differential equation
with spatially modulated densities. This differential equation
is analyzed in Sec. Il with the help of separation into slow
) , , and fast variables, such that analytical expressions for the
HereX;=®(x=1), andl is an integer(without loss of gen- ink solutions of(1.3) (in the first-order perturbation thedry
erality the periodicity of the discrete chain is assumed to bge gptained. In Sec. IV we apply our method to two model
equal to ong Equation(1.3) is a two-dimensional symplec- cases and derive explicit expressions for the kink solutions.

tic map, similar to the standard map. In general the invariangection V is devoted to a discussion of the calculation of the
manifolds of different fixed points do not overlap anymore. pejerls-Nabarro energy.

Instead they generally intersect in heteroclinic points at non-
zero angles. The iteration of a heteroclinic point is again a Il. REFORMULATION OF THE PROBLEM

The phase space ¢f.2) is two dimensional. A kink solution

oV
—C(X( 41+ X 1= 2X) + — -0. (1.3
2

Let us consider the following differential equation:
*Electronic address: flach@idefix.mpipks-dresden.mpg.de CD —p(x)V'(P)=0. (2.1
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FIG. 1. Discrete kink shape deviations from the kink solution of

the adjoint differential equation versus lattice sitdor the sine
Gordon chain withC=10. Circles—exact resutt, ; crosses—first-
order perturbation resuty,. (a) «=0.5; (b) «=0.

Here A , means(partia) derivative of A with respect tox,
andV' is the derivative of the potentidl(z).
If we choosep(x)=1, we obtain(1.2). If we choose

p<x>=|:2_m S(x—1) (2.2

we obtain(1.3) [12]. This is easy to see by the following
reasons. First we note tha® ,,[I<x<(I+1)]=0 or
® [I<x<(I+1)]=const. Thus it follows
P(I+1)—D(1)= ,(1+0.5). (2.3
By integrating(2.1) from x=1-0.5 tox=1+0.5 and using
(2.2) we obtain
Cl[P ,(I1+0.5 =D ,(I-0.5—-V'(®(l)]=0. (2.9
Combining (2.3) and (2.4 we arrive at Eq.(1.3), where
®(1)=X,. In other words, the field(x) is given by straight
lines connecting its values at integer1, the field® , is
given by a function with finite steps at intege#1 and con-

stant elsewhere, and ,, is a sum overs functions, with
weights given by(2.1) using(2.2).
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FIG. 2. The normalized deviatioA of the first-order perturba-
tion result ¢, from the exactd, versus C. Circles—a=0.5,
crosses—a=0.5.

It is clear that one can make a continuous transition from
(2.2 to (2.3 by varyingp(x) from p(x)=1 to (2.2).
We rewrite(2.2) into

+oo *

p(X)=|Z 5(x—|)=1+2k21 cog2mkx). (2.5

Thus we finally arrive at the following equation:

)

CP . —|1+2> cog2mkx) [V (®)=0. (2.6
k=1

Note that(2.6) is still an exact reformulation of1.3).

lll. PERTURBATION APPROACH

Let us introduce new coordinatex=+/CT and
Q=2m/C. Then(2.6) becomes

©

P 11— 1+2k21 cogkQT) [V (®)=0. (3.1

In the limit of large values ofC the cosine terms irf3.1)
rapidly oscillate due to the increasefin Thus we can apply
standard perturbation treatments using the separation of the
field ® into slow ®(® and fasté, parts[13]

O=0O+ > &. (3.2
k=1

Inserting(3.2) into (3.1) and linearizing with respect to the
variables¢, we obtain

D'+ k21 &=

1+ 2;1 cos(kQT)}

X

V'<<I>(S>>+V"<<I><S>>k§l gk]

(3.3
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FIG. 3. Same as in Fig. 1 but for thk* chain andC=15.

For the fast variables the leading order contribution yields

& rr=2CcogkQT)V' (DY), (3.9
2
E=— WCOS{kQT)V’(@(S)). (3.5

Averaging (3.3) over the periods of oscillation of the fast
variables and usin¢3.5) and=;_,1/k*=7?/6 it follows

PE =V (D), (3.6)

1
Ver(2)=V(2)— %[V’(Z)]Z- (3.7

Note that Eq.(3.6) is a simple differential equation, which

will be integrated for two examples in the following section.

Since we are interested in the solution(8f1) at integer
points, the arguments() T=27n with n being an integer in
(3.5). The final solution of(3.1) to first order in 1C is then
given by

D()=dO(1)— iv'(<1><3>) (3.9
1c . .

Actually (3.8) contains also(incomplete terms of order
1/C?. One can expand the solution in powers o€ 1and
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FIG. 4. Same as in Fig. 2 but for thie* chain.

IV. TWO EXAMPLES
A. Sine Gordon case

Let us consider

V(z)=1-cog2z). 4.1
The kink solution of(1.2) is given by
& O (x+ a)=4 arctarie'°). 4.2

Let us consider the slow pa®(® of the first-order pertur-
bation. The effective potentidB.7) is given by

Vig(z)=sin(z)— %sin(Zz). 4.3

Consequentlyb® is the solution of the double sine Gordon
equation and can be found [id4] (note that there is an error
in Eq. (3.7) of [14]—the sign of the power1/2 has to be

changed tot 1/2) or can be simply calculated by integration:

1 1/2
PO (x+a)=27-2 arctar{ ( 1- E)
1 1/2 X
Xcosec%(l—@ \/_E ] x=0,
(4.9
1 1/2
OO (x+a)=-2 arctar{ ( 1- E)
1 1/2 X
xcosecH 1- @) \/_E ,  X=0.
(4.9

Here « is an integration constant. Using E(.8) and ex-
panding in 1€ we finally obtain the following first-order

extract the first-order term after solving along the given pathperturbation correction for the discrete sine Gordon chain:
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10 ‘ ‘ . ‘ ‘ B. ®* case
. The second example is given by
" e V(2)=1Z-1)2 48
06 | ; The kink solution 0f(1.2) is given by
24
04 M ] D(x+ a)=tan>-( L) (4.9
0z ¢ ] The effective potential3.7) reads
0.0 : - ‘ ‘ ‘ 1, 5 yia
0 10 20 3Co 40 50 60 Vei(2)= Z(Z -1 1- 5Cl- (4.10

Thus the slow par®(® is the solution of thab® differential

FIG. 5. The ratidR of the approximatedty over the exact one equation. It can be easily integrated us[is]

as a function ofC. Open circles—zero order result for sine Gordon

chain; filled circles—first order perturbation result for sine Gordon 1/2

. e 1 X
chain; open squares—zero order result f&* chain; filled tan _
squares—iirst-order perturbation result f&* chain. Lines are 6C J2C

guides to the eye. PO (x+a)= 2

1 R / 1 x
1— %sec 1- ER
(4.11

Using (3.8) we finally obtain the first-order perturbation re-
sult

1 X+ o
O(H=P%(x+a)+ —secv(—

6C Jc

(4.9

1
O(1)=d (x+a)— mqﬁ)(w )

Since the invariant manifolds of the two relevant fixed points
of (1.3) do not overlap, but only intersect at finite angles, we
have to choose the right values of. Clearly they are

a=0 anda=0.5, which correspond to a kink centered on a
lattice site and between two lattice sites respectively. Thes
two possible kink solutions are known to exist for the map

X[DO(x+ a)PO(x+a)—1]. (4.12

As in the sine Gordon case we calculdieand ¢, and plot
he results forC=15 in Fig. 3. The normalized deviation

(C) is plotted in Fig. 4. Clearly the perturbation theory
gives the correct result.

(1.3 [1-10.

In order to test our result we compute the exact kink so-
lutions of (1.3) with (4.2) for different values ofC. We use V. THE PEIERLS-NABARRO BARRIER PROBLEM
the steepest gradient methauinimization of the potential REVISITED

energy and work in quadruple precision. The result will be ¢ gpsigering the success of the presented perturbation ap-
denoted asK,. The deviationsd; from Its adjoint solution  55ch with respect to the kink solutions, it is tempting to
(4.2) of (1.2) is then given b)dI:XI:(D (1). The perturba- e this result for calculating the Peierls-Nabarro barrier
tion approach yieldss(l)=®(l) —®*(1) and is defined by g \yhich is given by the energy difference of the two dif-
the second term on the right-hand side@®). In Fig. 1 we  ferent kink solutions. However, as it was showr{16], one

plot d, and ¢, for C=10 for both kink solutions =0 and 55 1o expect that the leading order asymptoticE gf con-

a=0.5). Clearly the perturbation result fits well to the exactising contributions from all orders of the perturbation series
one. In order to be more precise, we calculate the normalizeg,, ihe kink solutions for large values @. This is already

squared deviatiod of the perturbation result from the exact ;jegr by noting that the zero-order resfile., replacing the
one exact kink solution of the lattice by its counterpart of the
adjoint differential equation yields a nonzeroEY,. As
> (di— ¢))? shown in[16], these contributions are not enough to fit the
= s @ (4.7 exact numbers. Clearly at least the first-order perturbation
I=—o™l result for the discrete kink has to be taken into account
(yielding E)). But then it follows that contributions have to
Now we can evaluate for different values ofC and see, be expected throughout all higher orders of perturbation
whether it is monotonously decreasing with increasthg theory[16]. Since we have calculated the first-order correc-
The results for both kink solutions are shown in Fig. 2. Notions to the kink shape, we can test these predictions.
doubt the perturbation theory gives the correct first-order re- Let us introduceRY=ES)/Epy and RO=EQ)/Epy,
sult. which measure the ratio of the first-order energy difference
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(zero order, respectivelyver the exact one. In Fig. 5 these Here W(y) denotes the nearest neighbor interaction on the
results are plotted for the two examples considered in théiscrete chain = X,—X,_;), which could well be anhar-
preceding section. ClearR") is much closer to unity than monic. In the examples considered above we used only har-
R, but still there exist discrepancies, which even growmonic interactions

with increasingC. This circumstance implies that the contri-

butions from higher orders of the presented perturbation 1

theory inEpy gain more weight with increasing. W(y) = ECyZ

VI. CONCLUDING REMARKS so that the second derivative {6.1) simply yieldsC.

We have derived first-order corrections to the kink shape Using our results we have tested predictions fifdi@] on
of a discrete chain. We used the methods of slow and faghe Peierls-Nabarro barrier dependence @nit is worth-
variables. The resulting differential equations can be intewhile to note that for the sine Gordon chain there exists an
grated explicitly, as demonstrated for two examples. Notedlternative splitting angle approach for the barrier problem
that the presented method can be generalized to the case[df7]. Those results confirm our findings on the problems of
anharmonic interactions as well as to time-dependent solugonventional perturbation approach for the barrier value

tions. The generalization d2.1) gives cited.
P2W We thank S. Aubry, P. Fulde, R. S. MacKay, C. Simo, O.
> S(Xx—D® y— — d .+ S(x—1)V'(®)=0. Usatenko, and C. R. Willis for valuable discussions, and C.
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%y y=o Simo for providing us with numerical details on the splitting

(6.2) angle approach.

[1] M. Peyrard and M. Remoissenet, Phys. Rev.2B 2886 [10] T. Munakata, Phys. Rev. A5, 1230(1992.

(1982. [11] J. M. Speight and R. S. Ward, Nonlinearity 475 (1994).
[2] Y. Ishimori and T. Munakata, J. Phys. Soc. Jii, 3367 [12] R. S. Sagdeev, D. A. Usikov, and G. M. Zaslavskanlinear
(1982. Physics: from the Pendulum to Turbulence and Chédar-
[3] J. A. Combs and S. Yip, Phys. Rev.2B, 6873(1983. wood Academic, Chur, Switzerland, 1988
[4] V. L. Pokrovsky, J. Phys42, 761(198)). [13] L. D. Landau and E. M. LifshitzTheoretische Mechanik, Le-
[5] N. Theodorakopoulos, W. Widerlich, and R. Klein, Solid hrbuch der Theoretischen PhysiKAkademie, Berlin, 1991
State Commun33, 213 (1980. [14] C. A. Condat, R. A. Guyer, and M. D. Miller, Phys. Rev28B,
[6] M. Remoissenet, Phys. Rev. 3, 2386(1986. 474 (1983.
[7] C. R. Willis, M. El-Batanouny, and P. Stancioff, Phys. Rev. B [15] I. S. Gradshtein and I. M. Ryzhikiable of Integrals, Series,
33, 1904(1986. and ProductsAcademic, New York, 1994
[8] P. Stancioff, C. R. Willis, M. El-Batanouny, and S. Burdick, [16] S. Flach and C. R. Willis, Phys. Rev. &, 4447 (1993.
Phys. Rev. B33, 1912(1986. [17] V. F. Lazutkin, I. G. Schachmannski, and M. B. Tabanov,

[9] C. R. Willis and R. Boesch, Phys. Rev.H, 4570(1990. Physica D40, 235(1989.



