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Equation of state and correlation functions of strongly coupled plasma mixtures:
Density functional theory and analytic models
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A recent free-energy model for charged-Yukawa mixtures, based on an extension of the Coulomb “linear-
mixing rule” to Yukawa charges, enables us to obtain a very accurate equation of state of bulk dense-plasma
mixtures. A self-consistent density functional theory for pair correlations predicts the energy to better than a
few parts in 18 when compared with the best available simulations for both Yukawa and Coulomb plasmas.
The simulations results for the tiny deviations from “linear mixing” are accurately represented by the
hypernetted-chain approximation, as well as by an analytic variational hard-sphere (mbubdl, ironically,
both provide only two figures of accuracy for the potential enerdye self-consistent density functional
theory provides the most accurate presently available “first principles” description for the structure and
equation of state of the bulk Coulomb and Yukawa mixtures, and can be applied also to inhomogeneous
plasmas[S1063-651X%96)00708-9

PACS numbg(s): 52.25.Fi, 05.20-y, 61.20.Ja

I. INTRODUCTION the Yukawa systerfi9—12] employed the standard minimal-
image method with a cutoff radius for particle interactions,
Many quite disparate systems with screened Coulomb inwhich is justified for short range potentials resulting from
teractions, of importance in condensed matter physics, cagtronger screening. An additional treatment of the Ewald
be described with the Yukawa interparticle potent&ls'/r ~ method for simulating Yukawa systems was presented re-
as a reference ponﬁﬂ_] Systems Wlth repu'sive Yukawa po_ Cently[32] which hlghllghtS certain gel:]eral properties of the
tentials[2—4] provide models for, e.g., dense stellar materi-m‘?th.Od’ and enables instant adaptauon of well documented
als [5-6], inertially confined plasmag5—6], and “meso- existing codes for Coulomb interactions. _
scopic plasmas” of charge stabilized colloidal suspensionf A recent free-energy model for charged-Yukawa mixtures
such as latex spheres in waf@-12]. Because the shape of 23] enables us to obtain, to very_hlgh accuracy, the equation
the potential varies continuously with the screening Iength,Of state of bulk dense-plasma mixtures. The excess free en-

the Yukawa form for the interaction is useful for testing gen—grggoiig:eel mé)ﬁg;ir:ss?gv?g ggrr?noz\(la?]rtagﬁkcgvcgoseszg%?oas
eral ideas about phase transitigdf]. Screened binary ionic pprop y 9 P y '

it o5 licable t trophvsical bl ~ an extension of the Coulomb “linear mixing rule” to
mix yres[ —5 are applicable 1o astrophysical problems -y, a4 charges. In view of the high accuracy of this ap-
volving phase separation of elemertesg., in white dwarf

. . i ; i . proximation, deviations from the Coulomb or Yukawa
star interior$ [13,14 and to inertial-confinement experi-

. ; “mixing rules” can be meaningfully determined only by
ments in plasma physics. These problems reqUie-17  gjmylations which are accurate to roughly one part i 10

very accurate equations of state for the mixture. Accuratgj e  provideaboutfive significant figures for the potential
free energy of the mixture is also required, through the zer@nergy. An additional self-consistent density functional
separation theorem, for calculating enhancement factors faheory for the structure provides between three to five figures
nuclear reaction rates in very dense stellar intefi®8, and  of accuracy for the energy when compared with the recent
in relation to fundamental liquid state thedd9]. There isa ultrahigh accuracy simulationg33,34] for both the one-
growing interest in this important reference system in concomponent and binary Coulomb plasma mixtures. The simu-
densed matter physics, and systems of particles interactirigtions results for the tiny deviations from “linear mixing”
through the repulsive Yukawa pair potential have been thare accurately representE®b]| by the hypernetted-chain ap-
object of intensive investigations in recent years, using simuproximation, and by an analytic variational hard-sphere
lations [9—-12,20—22 and additional theoretical methods model, which, ironically, provide only two figures of accu-
[23-26. racy for the potential energy. In turn, the density functional
In simulations for weak screening, near the Coulombtheory, with all its exceptional high accuracy, cannot provide
limit, it is important to use the “Ewald” potential27-29  correctly the deviations from the “mixing rules”, and the
which takes into account the contributions from outside theeason for this will be discussed. However, by combining the
simulation box. Indeed, the Ewald potential has already beeresults of the density functional theory with those of the
used in earlier works on the Yukaw&0] and other[31] analytic variational model or the hypernetted-chain equation
screened-Coulomb potentials. Earlier simulation studies ofor the deviations from the “mixing rules,” the most accu-
rate simulation results for the structure and equation of state
of the Coulomb and Yukawa systems can be reproduced with
*Benjamin Meaker Visiting Professor. On sabbatical leave fromunprecedented high accuracy. Preliminary accounts of parts
the Nuclear Research Center Negev, Beer-Sheva, Israel. of the present work were given befdr@5,36.
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IIl. COULOMB AND YUKAWA “MIXING RULES” 2t3
= =
We consider classical binary mixturés=1,2) consisting Q) el (t—1)+e (t+1)] =1
of N; positively chargedZ;e>0, Z,=Z,, point particles i ) i .
interacting through the Yukawa pair potentials has the following physical meaning: The Yukawa intermo-
lecular potential has the special propdr®g] that the poten-
i (1) e-ar tial outsidg a spherically symmgtric unifo_rm distribution of
kB—T:ZiZjF - (1) chargez; inside a sphere of radius , retains the Yukawa

form, but the charge is renormalized by the factdB(a#\;),
i.e., ®(r=\,)=2Z/Q(a\;)e” */r. The Gauss-Newton theo-
$em for the Coulomb potentidh=0) is manifestly satisfied
by Q(0)=1, \;=(Z/(Z))*"® and in this Coulomb limit the
Yukawa mixing rule corresponds to the “linear-mixing
rule” [15] approximation for unscreened plasmas

Measuring distances in units of the total Wigner-Seitz radiu
a=(3/4mn)¥® where n=N/V=(N;+N,)/V is the total
number density, defind’=e?*/akgT as the conventional
plasma coupling parameter, wheéfds the temperature. The
inverse screening length can be density and temperature
dependent. For a one-component Yukawa system, with Umix(X,Z1,Z2,T,a=0)=(1—x)u(I';,a=0)
Z;=1, the potential energy, in units &fksT, is a function
of two variables: u=U/NkgT=u(l",a). For the mix- +xu(l',,a=0), (5
ture it depends also on the charges and on the relative
concentrations  X=X,=Ny/N=1-—X4, Uni/NkgT  where(i=1,2)
=Umix(X,Z1,2Z5,T, ). 53

An accurate scaling law, which relates the configurational I=2"%2z)"r. (6)
free energy of the mixture to that of the one-component sys- o ] ) o
tem, is important because of its physics content and becaudd!® Yukawa mixing rule has a simple physical meaning in
it facilitates the representation of a large body of data forthe context of the Thomas-Fermi model for the equation of
mixtures of, e.g., different charges and compositions, in #tate of mixtures of elements, as discussef28].
concise form. A widely used approximation for unscreened This Yukawa mixing rule(sometimes referred to as the
plasma mixtures is the empirical lifear mixing rul¢’ ~ “nonlinear”-mixing rule, due to the nonlinearity of the
[15,16). It states thate.g) the energy of the plasma mixture €duations for determining thig) should be verified eventu-
at constant temperatue and charge density’ can be ex- ally by simulations but, similarly to the past experience with
pressed, to a high degree of accuracy, as a linear interpolf€ Coulomb linear rule, it is expected that a good indication
tion between the energies of the respective pure phases. THY its general validity can be obtained within the
linear rule for unscreeneld.7] and moderately screenég] hypernetted—chaln approximation. From such extensive cal-
binary ionic mixtures, is based on the “ion-sphere” model, culations [23] for binary mixtures it was found that the
which provides an Onsager tyjp&7] exact lower bound for Yuk_awa mixing rule holds to an accuracy of about 0.1% for
the potential energy of the mixture, as first proven by Lieb® wide range of values for the phy§|cally relevant parameters,
and Narnhofef38]. The linear-mixing rule was first verified Namely, values of=3, charge ratio&,/Z,<30, and effec-
by extensive hypernetted-chain calculations, which provide #ve couplingsl'e=(X;x;I';)e”“<200. This high accuracy
very useful tool for developing such theor{&15,16, and it ~ increases with increasinby, and is expected to hold for
was only later validated by the heavy simulatijf$which ~ €ven more extreme values of the charge rati¢Z, and
were required. screening parameter. The linear-mixing rule can be applied

A nontrivial generalization of the linear-mixing rule to @lso for Yukawa mixtures, i.e., usin@?=Z;/(Z), but it is
Yukawa interactions was achieved recently. For the case d}verall much less accurate than the full solution of the non-
binary Yukawa mixtures the approximate scaling law has thdinéar equations4). From the physics point of view, the

form [23] Yukawa mixing rule for screened plasmas is a significant
improvement over the linear rule, and its improvement over
Uni(X,Z1,Z2,T, @)= (1—=x)u(T1,aq) + XU(T5, ), the linear-mixing rule becomes more significantasr I
increase.
where(i=1,2) Ill. DEVIATIONS FROM THE “MIXING RULES”

With the increasing possible accuracy attainable by the
simulations it became possible to consider the relatively very
small deviations from the linear-mixing approximation
which, however, turn out to have very important conse-
guences for the predicted phase diagr@@®40. Due to the
extremely long runs required, there are relatively few results

N3= ZiQ(ahy) i=12. (4 of that high accuracy33,34], and limited to only Coulomb
' (1-x)Z,Q(aNg) +XZ,Q(ak,) o mixtures. Thus, even though the theory is general and applies
to both Coulomb and Yukawa charges, the numerical com-
The plasma is weakly, moderately, or strongly coupled acparisons with simulations for mixtures in this paper concen-
cording to whethel o=x,1";+x,I',<<1, ~1, or >1, re- trate on unscreened plasmas. For unscreened plasmas, the
spectively. The function linear-mixing (LM) “rule” takes the form,

FII(ZIZ/)\I)F, o= o\ (3)

and where the\; are obtained from the solution of the fol-
lowing set ofnonlinear coupled algebraic equations
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U (&,%,T1)=(1—x)uCCAT ;) + xuCH T, =T, £53), TABLE I. Deviations from “linear mixing” for binary ionic
7) mixtures (BIM), as calculated by Monte CarldMC) simulations
[33], [34], by the variational modgVAR), and by the hypernetted-
where ¢=Z,/Z,=1 is the charge ratio, and chain approximatiofHNC). The entries marked by a star employ
uCA)=u(a=0T) represents the internal energy for the the BIM simulations of Ogata and co-worke#0].
unscreened one-component plas(@CP. Sinceu,, is al-
ready a good approximation for the potential energy of thedz T1 X
binary ionic mixture(BIM).uB”\.’I the analysis ofu®™ CUS= 3 10 001 000068000018 000075  0.000 74
to!”n_arlly)’/ proceeds by considering the “deviations from linear 3 19 002 0001040.00018  0.001 49 0.001 04
mixing

AUBIM,MC AUBIM,VAR AUBIM,HNC

10 0.05 0.002060.00021 0.00354  0.00320
AUBM— (BM_ ® 10 0.10 *0.006+0.001 0.00621  0.005 83
LM 10 0.20 *0.010+0.0011 0.0108 0.0094
BIM 10 0.50 *0.012+0.0021 0.0139 0.0107

In view of the fact thatAu is relatively very small,
very highly accurate equations of state flooth the one-
component plasmdOCP and the binary ionic mixtures

15 0.01 0.000 380.000 22 0.000 74 0.000 78
15 0.05 0.002 250.000 25 0.003 49 0.003 40

(BIM) are required for its accurate determination. Accurate 15 0.10 *0.003 51-0.001 0.00638  0.00591
simulation data for the BIM were provided by Ogata and 15 0.20 *0.008-0.0111 0.0106 0.009 12
co-workers[40], and by DeWitt and Slatterj41]. Very re- 15 0.50 *0.008:0.0021 0.0135 0.0099

WWwWwwwwwwww

cently, ultrahigh accuracy results were presei@®|34] by 20 0.01 0.0009%0.00031  0.00071 0.000 71
DeWitt, Slattery, and Chabrier for both the BIM and the 3 20 0.05 0.0028%t0.00026  0.003 40 0.003 36

corresponding OCP energies, so thai®™ could be accu- 3 20 0.10 *0.006+0.001 0.00621  0.00583
rately determined using Eq§7), (8). All these simulations 3 20 0.20 *0.005+0.002 0.0103 0.008 96
agree very well with an analytic model, which thus provides 3 20 0.50 *0.007+0.002 0.0132 0.0094

a convenient representation for the equation of state of thes 10 0.01 0.001 4#40.00021  0.001 83 0.002 01

mixture, and is expected to be more reliable than a plain fits 10 0.05 0.006 880.00022  0.008 60 0.008 82

for purposes of interpolations and extrapolations of the data.s 10 010 0.012680.00028  0.015 37 0.0149
The model is based on the idea to consider the wells 10 020 00185%0.00040 0.02439 0.021 49

known variational hard-sphere moddl2,43 separately for 5 19 050 001967000084 002852 0.0209

the mixture and for the one-component systems Withand 8 10 001 0.002660.00019

I'y, and to calculate thdeviationfrom linear-mixing entirely

within the model. The expectation is that inaccuracies of the

model will cancel out between the results for the mixture andyhich can be conveniently used to fit both the simulations

for linear mixing, to yield accurate values fﬂlU_B'M- and hypernetted-chaitdNC) results forl’=1. It was proven
The model excess free energin NkgT units) for the  [44] that within the HNC approximation, which neglects the
Coulomb plasma is written in the forisee Appendix A bridge functionsa=—0.9 ands=0.5. The very recent high
vy accuracy Monte Carlo results have been fitted,Iferl, by
fed(7,0.Te,21,Z5,X)=f¢ "(1,9,X) DeWitt, Slattery, and Chabri¢B3]
tupy(7.0.Te.21,Z2.%), (9) a=—0.899 126, b=0.607 12,
where 2V is the excess free energy for the hard-sphere c=-0.27998, s=0.321308

binary mixture as obtained from the Percus-Yevick “virial”
(PYV) equation of stat¢45], andupy is the excesgpoten-  with a standard deviation af==+0.0045, which i§33] “the
tial) energy obtained by the standard energy integral but usmost accurate fitting function for the OCP energy at the
ing the Percus-Yevick(PY) radial distribution functions present time.” It is knowr{24] that the leading asymptotic
[45], and can be expressed analytically. The variational palargel” term of the above hard-spheiercus-Yevickvaria-
rameters are the total hard-sphere packing fracti@md the tional model for plasma mixtures obeys the linear-mixing
ratio between the two hard-sphere diametgr¥he optimal rule, and in view of the nature of the asymptotic expansion,
values of the parameterg,, g, are obtained by minimizing the deviations from linear mixing are expected to be rela-
fox. The reason for choosing the PY-virial entropy is that fortively small. It was already founB5] that the results of this
the OCP it provides the paradigfé3] for the functional —analytic model forAu®™ are very similar to those obtained
form used to fit the Monte Carlo data. It yieldd3] the  within the hypernetted-chaitHNC) approximation, featur-
following asymptotic largd™ expansion: ing always positive deviations from linear mixing.
The AuB™ results from the analytic variational model and
Upy(70(T) N\, T, Z;=12Z,,x=0)=—0.9"+0.97T%%-0.5 from the hypernetted-chain approximation are compared
with the simulations in Table I, and in Figs. 1-4. The overall
+-e, (100  agreement between the theories and the simulations is very
good, yet thel'; dependence of the simulations results is
featuring the form larger than predicted by the theoretical models. The models
predict that the deviations from linear mixing are always
uCCRT)=al +bI'S+c, (11 positive, in agreement with the simulations. The models pre-
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FIG. 1. Deviations from “linear mixing” for binary ionic mix-
turessuB™ for different charge ratioZ,(Z,;=1), for small concen-
trationsx, of the larger charg&,>Z7,=1, forI';/=10. The symbols
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FIG. 3. Deviations from “linear mixing” for binary ionic mix-
turesAuP™ for Z,=3 andZ,;=1, as a function of the concentra-
tions x, of the larger charg&,>Z,=1, for different values of';.

represent the simulation results, and the lines are the results of thlene full symbols represent the simulation results. The open dia-
monds represent the HNC results #oy=10, and the lines are the

variational modelsee the text and Tablé. |

dict (Fig. 4) linear dependence afu®™
relative concentrations of the larger chargee

[16]).

Extensive simulation data for Yukawa mixtures is not yet
available, but our calculations predict that the deviation
from the Yukawa linear mixing are alwaysositive and
change very slowly withe. It is also interesting to note here
that (like for the Coulomb plasmathe deviations from the
Yukawa linear mixing within the hypernetted-chaiiHNC)
approximation[23] are similar in magnitude to those ob-
tained by the variational model, and are also alwagsitive
As discussed in detail ih35,46,47, and in[18,33,34, our

results contradict those of Ogata and co-worke
[40] negative deviations from linear mixing in

on x, for small

also Ref.

rs, who found
the limit of

small concentrations of the larger charge<~0.1). The

claimed consequences for the enhancement factors and for,
the phase diagranj40,48 appear to be irrelevant.

IV. SELF-CONSISTENT DENSITY FUNCTIONAL THEORY

Q{pm( F)}] =Fidl{pm( F)}] +Fel{pm F)}]

Density functional methods played a key role in providing

the now emerging comprehensive picture of

the complex

thermodynamic behavior of fluids in confined geometries. As

SQ{pm(N)}1/ 8pi(r)=0,

i=12,...M,

results of the variational model fdf;=10. The theoretical results
do not vary appreciably witl'; (see the text and Table.|

a quite general approach to the equilibrium properties of
nonuniform fluids, the density functional method has proven
S’[0 be one of the more successful and widely applicable ap-
proaches to a variety of interfacial phenomena like adsorp-
tion, wetting, and freezinf49].

The density profile$p,,(r)} for the fluid subject to exter-
nal potentials{u,(r)} which couple to the particles of type
{m; m=1,2,...M} are obtained by solving the Euler-
Lagrange equations

(12

which correspond to the minimization of the grand potential

Q{pm(N}],

+Z fdr*pmr*)[ui(r*)—m, (13

0.0301 o where u; are the chemical potentials. The ideal-gas free en-
’ F1=10 ergy is given by the exact relation
0.025¢
i 'Z>=5
z 00200 /2 i ool Zo=5
3 0.0151 /"I ................ { ’ 2 /./' * =10
I S 0.0257 T VAR
ootof / 4 Z25=3 2 & s
e 0.020+ o HNC
0005/ * z '
s 300151
0.000 R
0.0 01 02 03 04 05 06 07 08 09 1.0 0.010f &
X2 If-
0.005/
FIG. 2. Deviations from “linear mixing” for binary ionic mix- 0.000ii o U
00 01 02 03 04 05 06 07 08 09 1.0

turesAuB™ for different charge ratioZ, (Z,;=1), as a

function of

the concentrationg, of the larger charg&,>7Z,=1, for I')=10.
The symbols represent the simulation results, and the lines are the

results of the variational modésee the text and Table. |

X2

FIG. 4. Same as Fig. 3, but fat,=5 andZ,=1.
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. .. . The exactfree-energy functional must obey the “test par-
Fidl{pm(N}1=ksT > f df pi(N{IN[pi(NHA]]—1}, ticle self-consistency”: the exad;(r)’s as obtained from
' (14) the solution of the coupled density profile equati¢hg) and

(18) are identical to those obtained from the Ornstein-

where\ ;= (h?/2mmkgT)*? are the de Broglie wavelengths. Zernike relations
The central quantity in the density functional theory for non-
uniform fluids is the exces®@ver “ideal-gas” contributions
free-energyF [ {pm(F)}] which originates in interparticle
interactions. It is a unique functional of the spatially varying
one particle densitie$p,(r)}, which is in general unknown. The bridge functional is defined as folloi&4]: Separate the

A hierarchy of direct correlation functior™ is given  free energy into a “second order” part and a “bridge” part,
by functional derivatives(FD) of the excess free-energy

hti(r)zcti(r)""; Pj,Oj dFCji(|F_r_7|)htj(r,)- (20)

functional. In particular, the one particle@=1, the excess Fed{pmati{pm(H)1=F2{pmoti{pm(F)} 1+ FE e
chemical potentialand pair(n=2) direct correlation func- ’ ' R
tions are X[{pmoh:{Pm(N)}], (21)

Tl LFD 7y SFellpm(N] - whereF &[{pmob:{pm(F)}] is the second order functional of
TG (ry)= opi(fy) Kol {pm(N)}iMal, the system ané & {p . o}:{pm(F)}] generates the bridge
(15 functional of thereferencesystem(which can also be the

original system at hand

5Fe>{{pm(F)}] )
8pi(F1)6p;(F2) BT {pmoti{PmoGm(r)}: ]

In the language of density functional theory, when given the ref Py ref
excess free-energy functiorfal,, the exact equations for the = Hiellpm(r)}; ]— Hied{Pmot]

ke TP P(Fy,Fp) = — (16)

pair correlation functions of the bulk fluid can be written in keT keT

the modified hypernetted-chain form, with the bridge func-

tion given through the bridge functional which is related to = (2,FD),ref el

the free-energy functiondR4]. A key role is played by the +2ipjo| dr'c Homoti(IF=1"D]
fundamental-measure excess free-energy functional for hard

sphered50-53 from which the “universal” bridge func- X(gy(r') =D} (22)

tional (see below is derived in explicit form.

When the external po_te_ntial»is obtained by fixinge_mt The resulting coupled equatiofi7)—(20), for both{g;; (r)}
particle of typet at the originu;(r) = ¢;(r) whereg,(r) is and{c;;(r)}, in which the bridge functions are obtained from
the corresponding pair potential between particles of types ihe exact bridge functionals ER2) should provide the ex-

andi in the fluid, then the density profilgs(r) normalized  act pair correlations. Given approximatéreference”)

to unity at largem, correspond to the pair distribution func- pigge functionals, the same set of equations defines the ref-
tions in the bulk uniform fluidg,(r)=pi(r)/pio Where  erence bridge functional approximation, which also opti-
{pmgt are the average densities of the bulk fluid. The test,i;e5 the second order free-energy functional when starting
particle limit of the exact density profile equations takes theygm the corresponding approximaiéreference”) free-

form [24,36,53 energy functional. Given explicit “reference” bridge func-
bulr) — tionals, the coupled equatiofis7)—(20) represent a well de-
g(r)=exp — RalALE by (r) fined approximation for the pair correlation functions. It is
kgT possible tooptimize the reference-system parametbysus-

ing the following equationgsee Appendix B which are the
+ . f dric,(|[F—r'hg(r')|, (179  same as derived by Lad60] in the context of the modified
; Pio i D hypernetted-chain theofy19]:

where hy;(r)=g;(r)—1, andc;;(r) are the uniform fluid, R R L R
bulk limit of the direct correlation functions as obtained from 2 piyopj’oJ dr[gij(r)—gi’ff(r)]5b{jef({g|m};r)=0.
the second functional derivativeFD) of the excess free- g

energy functional. Theymmetrizedridge function. (23
— . _ Xibi(r) +xibi(r) For simple fluids, interacting via Lennard-Jongs)) type
byi(r)= (18 potentials, or plasmas of point charges interacting through

XX the Coulomb or Yukawa potentials similar results are ob-

is obtained as the appropriate weighted bulk average of thteallned by the simplified forni24]

bridge functionsby;, which are derived from théridge

functional B[{pp,of:{pm(1)}:r] by using p;(r)=p; ogi(r) > piyopjvof dfgy; (1) — g IbE{gim}: ) =0.
ij

bti(r):Bi[{Pm,O};{Pm,Ogtm(r)};r]- (19 (24
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For a correct description of phase boundaries it is best to TABLE Il. Potential energies for the one component plasma
optimize the reference potential parameters by imposingOCP as calculated by Monte CarldC) simulations[33], [34],
thermodynamic consistendg.g., “energy-compressibility” by t_he dens@y fu_nctlonal theoryDFT), and by the hypernetted-
consistency, and see belpw chain approximatiofHNC).

In practice, the reference bridge functional calculations a“r OCP.MC OCP.DFT OCP.HNC
start from the same model free energy for the hard-body . . .
fluids, and thus from the same reference bridge functionals. 1 —0.572 05-0.000 05 -0.57181 —0.570 45
The self-consistent method is thus operationally equivalent 5 —3.756 96-0.000 10 —3.764 62 —-3.732 07
to the approximation that the bridge functionaluisiversal 10 —7.998 37-0.000 14 —8.004 97 —7.935 44
and is given(e.g) by that derived from the fundamental- 29 _16.67327%0.00016 —16.6986 —16.5377
measure free-energy functional for the hard-sphere fluid 40  _34959463:0.00026 —34.2932 —33.9992
[50-53. Thus we replace thg{f(r) in the Lado equations gy _69.72742-0.00041 —69.7612  —69.2636
by the results obtained by the Ornstein-Zernike equation Us-jgn  —141.039 63-0.00069 —141.023 —140.257

ing c{> "', namely,g{°*F"*', which, in the case of the

fundamental-measure functional for hard-spheres, turn out to
be just the well known Percus-Yevick hard-sphere correlatike in the modified HNC calculations using a universal
tion functions. bridge function[19], the density functional theory results for
The hard-sphere “universal” bridge functional, and the the compressibility equation of state are much more sensitive
corresponding optimized free-energy functional have beeto the reference-system paramet@g., the “bridge” effec-
tested(directly and also implicitly very successfully, for a tive packing fraction than the corresponding results for the
variety of hard and soft pair interactions and external potenenergy. Thus, if thermodynamic consistency is desired, it can
tials, by comparison with computer simulations of densitybe imposedinstead of the Lado criterigrin order to deter-
profiles for a large variety of situations where size or packingmine the “bridge” effective packing. This procedure will
effects play an important role and by comparison with ex-yield almost identical results for the energy as obtained from
periments on colloids and emulsions which address the chathe Lado equations, but will also provide much more accu-
lenging question of phase separation in asymmetric binaryate results for the compressibility.
hard-sphere mixtureE50—59,24. As special cases for the Using the density functional theory | also reconfirmed
general method, accurate resul8] were obtained also for (see Table I the Hansen-Verlet rulgg4] about the value of
the bulk pair correlation functions for a variety of potentials,the maximum value of the structure factor at freezing,
for both one-component systems and mixtures. “Universal-
ity of the bridge functional’[24] for general nonuniform TABLE IIl. Potential energies for the binary ionic mixtures
fluids generalizes “universality of the bridge functions” (BIM) as calculated by Monte Carl®IC) simulations[33], [34],
[19]. The application of this general method to the speciaPy the density functional theor{DFT), and by the hypernetted-
cases of charged particles and to plasmas is in accord withain approximationtHNC). The entries marked by a star denote
the asymptotic strong coupling limit of integral equation the BIM simulations of Ogata and co-worke0].
theories for the pair structuf¢Onsager limit”) [47,61]. The
fundamental-measure excess free-energy functional extende It
thg scaled particlg62] and sca]ed figld-particlEﬁ3] theor.ies 3 10 0.01 —8.45874-0.00011 —8.4628 —8.393
to mhomogeneo_us hard partlcle mixtures. By capturing theg 10 002 -8919270.00011 -8934 —-8.850
correct geometric features it prowde_s an accurate universal 15 005 —1030053-000014 —10.297 —10221
bridge functional for bulk simple _fIU|d mixtures, a_nd may , 10 0.10 —12.602+000F 12592 12508
well do the samé53] for_ nonspherlcal mole<_:ular fluids. _ 10 020 —17.208-0.00F 17201 —17.082
_ Perhaps the most striking tests for repulsive soft potenuala 10 050 —31.0350.00% 31032 -30.815
is provided by the plasmd4] (point charges! When the
recent extra-long simulations results for binary ionic mix- 15001 ~13.01204:0.00018 ~13.0166 —12.907
tures[33,34 became available, the self-consistent density3 15 005 ~1579068-0.00026 —15.7850 —15.668

Xo uBIM,MC uBIM,DFT uBIM,HNC

functional method has been applied to these important sys- 15 010 -19.265-0.00F —19.252 —19.120
tems, to find excellent agreement with the simulations. Th 15 020 -26.212-0.00 —26.199 —26.026
15 0.50 —47.066-0.002 —47.057 —46.752

results for the potential energy are compared with the simu®
lations, and with the hypernetted-chain theory, in Tables I8 20 0.01 —17.60188-0.00026 —17.6033 —17.461
and 1. Between three to five figures of accuracy for the bulk3 20 0.05 —21.31834-0.00019 -21.3100 -21.156

potential energy are achieved by the density functionaB 20 0.10 —25.963:0.00T —25.948 —25.776
theory, without any adjustable parameters. A typical examplé 20 0.20 —35.260-0.002 —35.237 —35.017
of the high accuracy for the pair correlation functions is3 20 0.50 —63.145-0.002 —63.126 —62.749

given in Fig. 5. Similar accuracy for the energy and pair5 10 0.01 —9.20414-0.00015 —9.20326 —9.134
correlation function is achieved for the one-componentts 10 0.05 -14.027 53-0.00015 -14.0081 -13.929
plasma(OCP. Accurate results for the energy of the one-5 10 0.10 —20.058 46-0.000 17 —20.0301 —19.926
component Yukawa system were recently tabulat2d]. 5 10 0.20 —32.123990.00023 —32.0974 —31.924
The self-consistent density functional theory results agree tg 10 0.50 —68.33913-0.00032 -68.3609 —67.940
better than a few parts in f@vith all these simulations re- g 10 0.01 —10.756 98-0.00018 —10.7466 —10.680
sults for the energy of the Yukawa system in the fluid state
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FIG. 5. Pair correlation functiong;;(r) for the equimolar
(x4=X,=0.5) binary ionic mixture ofZ,=5 andZ,=1, atI';=10.
The symbols represent the Monte Carlo data of DeWitt, Slattery,

FIG. 6. Bridge function®(r) on logarithmic scale, for different

and Chabrief33], [34] and the lines are the results of the self- one component systems, as obtained from the self-consistent den-

consistent density functional theotyee the tejt

sity functional theory. The reference bridge paramétiee radius,

R, or the corresponding effective packingg=4mpR%3, is deter-
S(K)uax ~3 at freezing. Since the density functional theory ™Mned bydtrlszadc; eci[uatt)lotrt@r;.e the text The different lines
employs a universal bridge functional, which was derived forcorrespon rom top fo botton:

hard spheres, | also obtain at each case the value of an ef-
fective hard-sphere packing fractiom associated with the

Bridge effective

optimal (self-consistentbridge function(see Table II). For _ _ packing, ,
all the freezing points in the literature for all potentials, the Potential Density-temperature ne=47pR33
value of the bridge parametére., the reference-system ef- .. =350, a=1.8 0.4933
fective pac_klng 7 is very c[ose Fo its hard—“sphere value_ of Coulomb '~100 0.4374
7=0.5. This is a nice confirmation of the “bridge freezing
rule” [65]: b(r=0)~50 at freezing. It will be interesting Yukawa '=350,a=2.4 0.4437
to check this rule for two dimensional systems, for which thehard-sphere p*=po’=038 0.4310
“bridge freezing rule” is expected65] to hold as well. (ie., 7=0.4189

It is also interesting to observe that the self-consistentennard-Jones p*=pa=0.8, 0.3781
bridge functions have the property that their asymptotic large T*=kgT/e=2

distance form also provides an excellent description of the

functions at intermediate distanc€Sig. 6). This property

TABLE IV. Self-consistent density fun_ctional theo_ry: maximum was observed66] for the pair correlation functions(r) of
of the structure factoSy,,(k) and the “bridge” effective packing  yarioys model simple fluids. A long standing question con-

fraction at freezing(7g)reezing: for different interaction potentials.

cerns the sign of the bridge functions. The bridge functions
that are obtained for the hard spheres by regarding the

Inverse-power potentials,d)(—r) __€ ( n’ izl Percus-Yevick analytic results as a solution to the modified
keT  kgT kgT hypernetted-chain equatiofi9] are positive definite. The
n po’ (78 )treezing Smax(K) bridge functions that are obtained from the self-consistent
1 r=171) 05011 3.00 dens?ty functional theory results and the “univ_ersgl” bridge
4 494 0.4767 269 functlo_nal were up to now _found tq be positive in all our
& 2 992 0.4918 2 67 numerical caIcuIamons for simple fluids and plasmas. More-
' : : over, a systematic search of the output of the bridge func-
12 1151 0.4825 2.86 tional for input pair correlation functions from the Percus-
* _ 0.943 0.5042 3.25 Yevick result for hard spheres, has sho(fig. 7) that the
Yukawa potential resulting bridge functions are positive for all input functions
@ r (798)freezing Smax(K) corresponding to the hard-sphere fluid. Although indicative,
0 171 0.5011 3.00 these results still leave open the general question regarding
1 220 0.4992 3.00 the sign of the bridge functions.
1.83 400 0.5001 3.07
3.34 1800 0.4938 3.02 V. CONCLUSION
@) 4e [[o\? [o|® . . .
Lennard-Joneg12-6 potential: T T (?) _(?) } The self-consistent density functional theory presented
T/ 2 (B ) _B S..(K) ab_ove, as t_)ased_on the fundamental-me_asure hard-sphere
B P 78 reezing a bridge functional, is the most accurate available “first prin-
100 2.601 0.4812 2.85 ciples” theory for the structure and the equation of state of
2.74 1.113 0.4719 278 classical plasmas. An additional major advantage of this

theory is that its application to the bulk plasma represents



2834 YAAKOV ROSENFELD 54

with the parameters quoted above. As we have seen above,
08¢ 00 e ee e sessecmecems o 0o this model agrees well with the simulations data for the bi-
000088 2 asssemeseed 850 nary ionic mixture. Given a good representation for the po-
05 28882385 0800e00328% 88 :
8888853 06338333588 58 tential energy of the one-component Yukawa system the
04k o o o2c00g00008 model, in its general fornj19], is applicable to arbitrary
fluid multicomponent Yukawa mixtures, and supplements
S ear o o o o o o the Yukawa ‘“mixing rule” developed23] on the basis of
the asymptotic strong coupling properties.
02r o o o o o o
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a jump discontinuity of the compensating background charge MODEL FOR YUKAWA
density. AND COULOMB PLASMA MIXTURES

Despite its high accuracfpetter than a few parts in iD The interaction potential energy of the mixtuiger par-
for the energy, the above density functional theory is noticle, in temperature unitsis given in general by the stan-

Capable of prOViding accurate results for the tlny deViatiOﬂSdard energy integra| invo|ving the pmradiab distribution
from the “mixing rules” (representing a few parts in 16f functionsg;;(r)

the energy, while much less accurate theories like the varia-

tional model and the hypernetted-chain approximation, can U n &ij(r)

describe correctly these deviations. The reason for this is U= NkeT 2 IEJ Xixif 9i(r) KeT

apparently the internal “coherence” within these models, by '

which the relatively large errors for the one component syswhere x;=N;/N are the number concentrations. For the

tem and for the mixtureglarger than a few parts in 0 Yukawa potentialuij(r)/kBT=ZiZer““/r this takes the

cancel out when applied for calculating the deviations fromspecial form

the “mixing rule.” This “coherence” is apparently lost by

the more sophisticated and more accurate density functional U ar

theory. u= NksT 2
The following semiempirical model for the equation of R

state for fluid multicomponent plasmas, with or without where Gij(a)zfz,“rgij(r)e’“rdr is the Laplace transform

Yukawa screening, is thus proposed: Combifig the  of [rg;;(r)]. In the Coulomb limit,a=0 we have to subtract

“mixing rule” approximation calculated with an accurate the contribution of the uniform compensating background

equation of state for the one-component system as obtainesharge density, and the potential energy is related to our

from simulations, together witkii) the deviations from the energy expression by using[g;;(r) —1] instead ofg;;(r) in

“mixing rule” calculated from the variational hard-sphere (Al) and(A2), i.e.,

model (with the Percus-Yevick pair correlation functions,

and the Percus-Yevick “virial” entropy

APPENDIX A: VARIATIONAL HARD-SPHERE

d®r, (A1)

Z ZiZinXjéij(a), (AZ)
1]

. 3r - 1
u=Ilim 7; XinZiZj Gij(a)—? . (A3)

fmix) _ a=0

ex (fmixing rule)from fit for one-component system
(i) The variational excess free enefgh?2,43 (in NkgT units) is
+(Afex™)from variational Hard-sphere-model ~ (25) based on the Gibbs-Bogoliubov-Feynman inequality, and

) takes the form
In particular, for the unscreened OCP we can use the

DeWitt-Slattery-Chabrier fif33,34] fox(a, 7,0, e, Z1,Z2,X)= f;ixs( 7,0,X)
+ uHS(al nlqare !Zl 122 ,X),

1‘OCF’(F)=aF+1 bI'S+c In['+d (26)
s (A4)
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wherefg'xS is the excess free energy for the hard-sphere bi- 912:(,71,72)1/2a2exqaR12)[G_(1+ 277)]/D/(7;1772)1’2,
nary mixture, andu,g is the excesgpotentia) energy ob-

tained by the standard expression but using the hard-sphere 3 - -
radial distribution functions in the energy integral. The varia- ~ Upv(@,7,0.1',.21,Z5,%) = 5 T'(X1Z1811+ X2Z592
tional parameters are the total hard-sphere packing fragtion
and the ratio between the two hard-sphere diametehe + 2X1X2Z1Z5012) -
optimal values of the parameters,q, are obtained by mini- ] o
mizing f o, (b) Percus-Yevick virial excess free-energynf(#.,q,x)
_ 3 3
afex(a!nvqire1211221x)_o_ A3_(X1R1+X2R2)’
an o _ 2 2
A= (X1R7+X5R5),
(A5) 2= (X1 RT+X2R3)
el m.G.Te 21,220 _ A=3(x;Ry+X,Rp) Ag /Ag,
aq '
With the exact hard-sphere input this gives an exact upper B= > A3IAS,

bound to the excess free energy. With approximate input,

e.g., the Percus-Yevick pair correlations, and the Percus- _ _ _ _

Yevick virial excess free energy, this provides a model ap- for(7,0,%) = (2B = 1)In(1 =) +(2B+A) /(1= ).
prOXimation for the excess free energy, which is convenient (C) Energy integra| for the one-component Yukawa System
to apply since the Laplace transforms of the hard-sphere pair

correlations in the Percus-Yevick approximation are given

analytically[45]. In view of a misprint in the paper by Leb- L=129
owitz [45], and in order to make the present paper self-

contained, we hereby give the complete set of relations s=[(1- 7)2]s3+67(1— 5)s?+ 18y%s—125(1+27),
which yields the desired expression for the energy integral

s+(1+27)

1+1
P

using the Percus-Yevick pair correlations for spheres of total g(7,5)=[(Ls/(129)]/[L+S exp(s)],
packing fraction 7, and size ratioq. Define x,=Xx,
x;=1-X,, and since we use the Wigner-Seitz radius as our o=27""

unit of length, the density isp=3/47r. Define p;=Xyp,

Pr=Xop, m=mp1/6, 7,="p,/6, then the hard-sphere radii are 3

given by,R,=[7/(7,9°+ 7,)]1*%, R;=qR,, and define also u(n.l'Z,a)=5 I'Z?0%g(n,a0).
Ri;=(R;+Ry)/2. The input parameters are thus:

aX,q,I',9,2;,Z;. (d) Percus-Yevick virial excess free energy for the one-

(@ Energy integral for Yukawa  mixtures component system
UPY(a!n!qarrzluzzax)
fovv(7)=2In(1—7)+67/(1- 7).

(e) Energy integral for the Coulomb plasma
3 In the Coulomb limit of the Yukawa energies we have to
+5 mRIR(Re—Ry) Rpa” cancel correctly divergent terms, and the energy is given
: through the following expressions:

h=367172(R,—R1)(R;—Ry),

1
L,=12, (1+ 5

h=367172(R2—Ry)(R2—Ry),

) L 3 .
Lo=127, (1+§ 7|+ 5 72RRoA(R1 = Ry) Rya? a;=[127,(1+27)—hRy],
+[1271(1+27)—hRy]a+h 1 3
[127:( 7) 2lath, by=127, | 1+ 5 7]+ 5 anlRl(RZ_Rl)}RZa

S=h+[12(7,+ 7,)(1+275) —h(Ry+R;)Ja— 187, R?
2p o 5 5 5 ” 4 a,=[127,(1+27)—hRy],
+ 7,R3)“a”—6( 7RI+ 7,R5) (1—n)a®— (1—n)°a”,

D=h—-L,exp(aR;)—L.expaR;) +S exg a(R;+Ry)], b,=127,

1 3
1"‘5 n "‘5 ﬂZRZRZ(Rl_RZ)}Rla

gllza[h—LzeX[Xa'Rz)]/D/lZ/??l, 8.32—(1-!-27]),

922: Cl’[h_ LleXF(aRl)]/D/].Z/??Q,

o2l

C1=[12(n1+ 12)(1+27)—h(R;+Ry)],

b—§( R3 - 7R3 (R,—R;)—R
372 PV /N 1)( 2 1) 12|

a,

3 3 3 1
G= Z(’]sz_ 71R)(R;—Ry) — Ry 1+§
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2= —18(7,RE + 7,R)?,
Ca= —6(mRI+ 7R3 (1— 1),
cs=—(1-17)?,
012=R;1+ Ry,
Wy = Cyg+ C307 1o+ Cro52+ C103/6+ ha} 24,

Wg= (C4/2+ C301/6+ C02,/24+ C105,/120+ ho' 1,/ 720) 02,

1
dy=ws—| 5 bR+ a,R3/6+hR}/24

1
- {5 b,R3+a,R3/6+ h R3/24} ,

de=wg—[b;R}/24+a;R,/24+ hR,/120]
—[b,R3/24+ a,R,/24+ hR,/120],

1 2 3
- b1R1+ E R1a1+ h R1/6 12/772,
1 2 3
tz_ - b2R2+ E R2a2+ h R2/6 12/7]1,

1 2
t3=| bR+ > asR1,|,

g2o=(t;—dg)/dy,
—dg)/dy,

—dg)/dy,

g11=(t2
g12= (13
uPY(a:OJ]qurlzj_;ZZ|X):UPY( ﬂ,q,r,zl,ZZ,X)

3 252 252
=35 (X1Z109111X5Z5020+ 2X1X2Z1Z59 1)

For the one-component plasma obtain

o= 2771/3
1 1 1
2 57

1 2
t1pm) /) (A2l

APPENDIX B: OPTIMIZATION OF THE REFERENCE
BRIDGE FUNCTIONAL PARAMETERS

3
Upy( n,F,Z,aZO)ZuPY( 7],F,Z): E FZZUZ

Rewrite Eq.(21) in the form

Fel{pmari{pm(NI=FS {pm(N)}]
+F@{pmoti{pm(N} - F&™
X[{pm,o};{Pm(r)}]]- (Bl)

In the test particle limit for the density profile equations, the
second order functiondi.e, without “bridge” contributiong
corresponds to the hypernetted-ch&tNC) approximation
[49]. Thus the approximation corresponds to the following
approximation in the bulk fluid:

f=f0%0 4 f e NG, (B2)

where f =F /kgT, and fyc denotes the HNC approxima-
tion free-energy functional for the bulk fluid7]

p oo

func=F+ 7 Ej xixjf hZ()dr, (B3)
wherep=2p; o, is the total bulk density ang,=p; /p are

the relative concentrations. The so called “random-phase ap-
proximation free energy functional” is given by

. o1 Ty
fZ—gZ Xinf Cij(r)dr+§(277)_32i Xif Cii(k)dk

ij
o )‘3f dk In de(1-C) (B4)
2p( m (= ~ /1

where 1lis the unit matrix, andC is the matrix of direct
correlation functions¢);; = (xx)l’zc (K). For pair correla-
tion functions which obey the Ornstein—Zernike equations,
and the HNC closure

gij(F)IeXF<—

for some potentialg;; (r), the HNC functional has the prop-
erty [67] that its variation with respect to variation of the
potentials obeys

QDi'(F) N -
kJBT +hij(r)_cij(r)) (B5)

p . .
5fHNc:m; Xixjf gij(r)de;(r)dr,  (B6)

which is the same relation as holds for the variation of the
exact free energy with respect to variation in the potentials.
We now recall that the bulk limit for the optimized free
energy is the solution of the HNC equation with the refer-
ence bridge func'uonal i.eq™'= @™+ b, for f i}t in Eq.
(B2), or ¢j;= ¢”+b foerNC in Eq (B2). Thus the varia-
tion of the approximate free enerdyin Eq. (B3) with re-
spect to variation in the reference potentials is

- P S |l aF
of= 2kgT ; x,xJJ' dr
@IF(F) 8[(F) + i () D ({ Qb )
~gif (O35 + o0 {girmin) 1)
- 2kpBT 2 Xixif AT gij() 805 ({gim} 1)

—gie'(7) SbIF({gleh; ). (B7)

The relative insensitivity of the bridge functional to differ-
ences in the shapes of the input pair correlation functions
(which is the preassumption of the present methiotplies
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that the difference 5b{ff({g|m}f)— 5birjef({glr% ‘)] is rela-  Similar equations in the context of the reference HNC equa-

tively small, and to leading order in the variations we thustion for the bulk were previously derived by Lado by a dif-
have ferent method 60]. We thus refer to EqB9) as the “Lado

equations”. For simple fluids, interacting via LJ type poten-

p - . ref, 4 et - tials, or plasmas of point charges interacting through the
of = 2KkaT > xiXj | dr[g;;(r) =g (1) ]obi7 ({gim}i7)- Coulomb or Yukawa potentials we found that the Lado equa-
o (B8) tions Eq.(B9), or the simplified Lado equations which we
proposed 24|

Thus to optimize the parameters of the reference potential we

should makef stationary and solve the following equations: S - . T R
y e foloning e p pr0i0 | 97Tay (D —G I {0l =0

iEj Pi,on,of dF[gij(F)—girjef(F)]5bir?f({g|m};F):0- (B10)
(B9)  yield almost identical results.
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