
Phase diagrams of self-organizing maps

H.-U. Bauer, M. Riesenhuber,* and T. Geisel
Institut für Theoretische Physik und SFB Nichtlineare Dynamik, Universita¨t Frankfurt, D-60054 Frankfurt/Main, Germany

~Received 13 December 1995; revised manuscript received 17 May 1996!

We present a method which allows the analytic determination of phase diagrams in the self-organizing map,
a model for the formation of topographic projection patterns in the brain and in signal processing applications.
The method only requires an ansatz for the tesselation of the data space induced by the map, not for the explicit
state of the map. We analytically obtain phase diagrams for various examples, including models for the
development of orientation and ocular-dominance maps. The latter phase diagram exhibits transitions to broad-
ening ocular-dominance patterns as observed in a recent experiment.@S1063-651X~96!00109-2#

PACS number~s!: 87.10.1e, 89.70.1c, 05.90.1m

Topographic maps occur in many areas of the brain where
sensory and other information is represented topographically,
as well as in signal processing applications where data points
are projected from one space to another in a neighborhood
preserving fashion. An archetypical example involves the
projection of oriented edge elements to the visual cortex
where neighboring neurons respond to edges of similar ori-
entation, at neighboring positions in the visual field@1#. To-
pographic maps were found to be most often generated or
refined by externally driven self-organization processes@2#.
Among the numerous models@3–6# for these pattern forma-
tion phenomena, Kohonen’s self-organizing map~SOM!
@7–9# has found particularly wide distribution. In the domain
of technical signal processing, the low-dimensional ‘‘feature
map’’ variant of the SOM is utilized for neighborhood pre-
serving vector quantization, motor control,@10,11# data visu-
alization, @12#, or speech data preprocessing~for many fur-
ther examples see@8,9#!. Studies of self-organization in the
brain are often based on the slightly different high-
dimensional SOM version. Here stimuli and receptive fields
are described not in terms of prespecified ‘‘features,’’ but in
terms of ~high-dimensional! activity, respectively, weight
distributions@13–15#. This allows for a simultaneous self-
organization not only of the map topography, but also of the
shapes of individual receptive fields.

The popularity of the SOM is based on its simple formu-
lation, its numerical robustness, and the empirical success of
its applications. However, due to a strong nonlinearity of this
model, a general analytical treatment of the corresponding
pattern formation process has been lacking. In particular, the
conditions on map and data set parameters for patterns to
occur are found most often only empirically, an unsatisfac-
tory and numerically costly procedure. In this paper we
present a method to analytically relate map and data set pa-
rameters to specific states of SOMs, i.e., to calculate phase
diagrams of SOMs. The method is based on a comparison of
the distortions of different data space tesselations, i.e., of
different ways to distribute the data points among the map
elements. Even though the method is applicable to the low-

dimensional as well as to the high-dimensional variant of the
SOM, it achieves its full potential in the latter case, where an
ansatz for the tesselation is comparatively easy, but an ansatz
for the map itself is unfeasible. We first apply our method to
a tutorial mapping example and then solve two models for
map formation in the visual cortex which previously could
be investigated only numerically.

A self-organizing map consists of nodes~neurons! char-
acterized by a positionr in the map output space lattice and
a weight vector~receptive field! wr in the map input space,
the data space. A data pointv is mapped onto that nodes
whose weight vectorws matchesv best. This amounts to a
winner-take-all rule, a strong nonlinearity which in a biologi-
cal context is explained as a consequence of lateral inhibition
@8#. In the context of technical applications this projection
rule is identical to that of a regular vector quantizer@16#. The
map results as a stationary state of a self-organization pro-
cess, which successively changes all vectorswr,

Dwr5ehrs~v2wr !, hrs5e2uur2suu2/2s2, ~1!

following the presentation of stimuliv. e controls the size of
learning steps. The neighborhood functionhrs enforces
neighboring neurons to align their receptive fields, imposing
the property of topography on the SOM.

In the general case, data pointsv and receptive field vec-
torswr are activity and weight distributions acrossM input
channels, respectively~normalized to a constant total activ-
ity, ( i

Mv i5S). The winners is determined by

s5argmaxr~wr–v!. ~2!

The input channels correspond, e.g., to the sensors in a sen-
sory layer, like the retinal ganglion cells as input channels to
a visual map. The typically large number of such channels
warrants the notion of a ‘‘high-dimensional’’ map. In case
the distributionsv andwr are replaced by~a small number
of! featuresṽ, w̃r, like the centers of gravity ofv andwr, one
arrives at the low-dimensional SOM variant. This replace-
ment precludes a self-organization of an internal shape of the
wr, but has the advantage of a drastically reduced numerical
expense.
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A theoretical analysis of pattern formation in SOMs has
only been performed as yet for the low-dimensional version
of the model@17–20#. There, a linear approximation of the
map dynamics about an equilibrium state led to conditions
for this equilibrium state to become unstable. This analysis
exploited the fact that in particular mapping geometries equi-
librium values of thew̃r trivially are known. In the high-
dimensional SOM the equilibrium values of thewr depend
on stimulus parameters as well as on the map parameters in
a nontrivial fashion even if the map performs a trivial pro-
jection. Since thewr are not analytically accessible in this
case, an analysis based on thewr is not feasible.

Here, we take a different approach which focuses on the
data space tesselation, i.e., the distribution of data points
among map neurons. Even if small changes of stimulus or
map parameters change thewr slightly, the tesselation can
remain unaffected. We consider it to be a change of the state
of the map only if the tesselation is changed, corresponding,
e.g., to a break of symmetry in the receptive fields. In many
cases~cf. examples!, an ansatz for the tesselations corre-
sponding to these different map states is easy to make.

To evaluate different possible states, we note that the
SOM approximately minimizes the distortion function

Ew5(
r

(
r8

(
v8PVr8

~v82wr !
2e~2uur2r8uu2/2s2!. ~3!

V r , the so-called Voronoi cell of neuronr , denotes the set of
data pointsv which are mapped onto noder via ~2!. Even
though the SOM learning dynamics does not proceed along
the gradient of this function~or any other energy function!,
the deviations become small in the limit of an ordered map
with large values fors @21#. It is also known that modifica-
tion of the SOM winner rule leads to a map formation algo-
rithm following exactly the gradient of an energy function
@22,23#. Therefore a sensible strategy to determine the final
state of a SOM is to compare distortion functions for differ-
ent map states. To avoid thewr problem inherent to an evalu-
ation ofEw , we replaceEw by the related distortion function

Ev5(
r

(
r8

(
v8PVr8

(
vPVr

~v82v!2e~2uur2r8uu2/2s2!, ~4!

which requires knowledge of the data space tesselationsV r
only. Under quite general assumptions@24#, Ev is approxi-
mately related toEw by a multiplicative factor~to compen-
sate for the additional summation inEv), henceEw andEv
become minimal for the same sets of parameters.

To elucidate the application of our method, and to illus-
trate the intricacies of high-dimensional SOMs, we first dis-
cuss a simple, tutorial example. Consider the map of a rect-
angular input space, extensions 432s, 0,s,2, with
periodic boundaries in the first and open boundaries in the
second direction, onto a ring of four neurons. The stimuli are
activity distributions of Gaussian shape, with small but finite
width. This input space is discretized withM3M channels
per unit square. Hence thev and wr are sum-normalized
(4M32sM)-dimensional vectors, not just two-dimensional
pointers as they would be in the feature map version of this
example.

Even for simple projection patterns, the explicit values of
the wr depend on the shape of the stimuli, and ons, and
cannot be determined easily. What are sensible data space
tesselations in this example? Since the SOM algorithm tries
to group similar stimuli into common Voronoi cells, stimuli
will be grouped such that they form connected, simple re-
gions in the input rectangle. One possible tesselation is such
that half of the stimuli will be mapped to one neuron, and the
rest of the stimuli to the first neuron’s next nearest neighbor
@statea, see Fig. 1~a!#. The remaining two neurons are never
best matching. Contrary to the low-dimensional feature map,
this tesselation is realizable for high-dimensional SOMs@for
a numerical example, see Fig. 1~e!#. Other tesselations dis-
tribute the stimuli evenly to all four neurons@statesb–d, see
Figs. 1~b!–1~d!, 1~f!–1~h!#. A tesselation with all stimuli go-
ing to just one neuron would not be stable.

When are these states attained? Let us first consider the
transition between the two-neuron statea and the four-
neuron statesb–d. In the limit of a small spatial stimulus
extension, most pairsv,v8 do not overlap, and their squared
difference takes on a value (v2v8)25c0. ThenEv can be
evaluated approximately,

Ev,a5 (
r51,3

(
r851,3

(
v8PVr8

(
vPVr

~v2v8!2e2uur2r8uu2/2s2

'2c0@~2M2sM!2e01~2M2sM!2e24/2s2#, ~5!
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'16c0~s
2M412s2M4e21/2s21s2M4e24/2s2!.

~6!

The transition between the two states occurs for

e01e24/2s252e21/2s2, i.e., fors'0.91. ~7!

FIG. 1. Stimulus space tesselations and receptive field distribu-
tionswr for the four-neuron example~see text!. ~a!–~d! Input space
regions, such that all stimuli centered in one region are mapped to
the same neuron. Note the division into only two such regions in
~a!, and into four regions of different shape in~b!–~d!. Depending
on s ands, maps corresponding to these tesselations are observed.
~e!–~h! Gray value images of correspondingwr for one exemplary
neuron, respectively@~e! s51.3, s51.13; ~f! s50.8, s50.78; ~g!
s51.2,s50.78; ~h! s51.2,s50.35#. Note the coincidence of the
shapes of the black regions in~e!–~h! with the tesselation regions in
~a!–~d!.
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For a subsequent distinction between the four-neuron states
b–d, the previously neglected impact of stimulus pairs over-
lapping across boundaries ofV r has to be taken into account
~for a more detailed presentation of these calculations, see
@24#!. Then the condition of minimalEv leads to the phase
diagram depicted in Fig. 2~a!. It coincides very well with the
results of simulations of the SOM algorithm for this mapping
example@Fig. 2~b!#. The simulations also showed that all the
tesselations we considered do indeed occur, but no others.

We now analyze two SOM models for the development of
topographic maps in the visual cortex@13,15#, which were
previously accessible only numerically. In these models a
sensory input space with one, respectively, two layers of
N3N retinal channels is mapped onto an (N3N)-neuron
output layer, the cortical area. The first model is concerned
with the development of orientation maps where neurons re-
spond best to stimuli of a particular orientation and location.
Using ellipsoidal Gaussian activity distributions as stimuli
~minor axiss1, major axiss2.s1), simulations led to maps
with oriented receptive fields for substantially elongated
stimuli @13#. Using rather circular stimuli (s2's1) nonori-
ented receptive fields were also observed. The tesselations
corresponding to these states have simple characteristics: in
maps with nonoriented receptive fields stimuli of different
orientation but same retinal position are grouped into one
Voronoi cell. Maps with oriented receptive fields have
stimuli of the same orientation but different positions in one
Voronoi cell. Using a finite set of stimuli~i.e., discrete ori-
entations and positions!, we evaluated and equated the cor-
responding distortionsEv,ori and Ev,non-ori. This led to an
analytic relation for the transition point between the stimulus
parameterss1 ,s2 and the network parameters,

s2,crit's11A3s. ~8!

Equation ~8! for the break of receptive field symmetry is
very well corroborated by numerical simulations using the
finite stimulus set employed in the calculations~Fig. 3!, as
well as by additional simulations with the full stimulus set
~all orientations and positions!. The additive relation be-
tweens1 and the criticals2 deviates from the multiplicative
relation found for a corresponding model in feature map ap-
proximation@18#.

The second model is concerned with the development of
ocular-dominance~OD! maps in the visual cortex. As in
@15#, the input space consists of two retinal layers. Stimuli

occur simultaneously at the same position in both retinae,
correlated by a factor ofc. For largec, neurons do not de-
velop a preference for one retina over the other~no OD!. For
decreasing values ofc, a transition takes place to solutions
where each neuron has a preference for one retina~OD!. As
in the previous example, there is no obvious direct way to
obtain the weight vectorswr analytically. But again the cor-
responding stimulus space tesselations are simple: either
stimuli from the same positions but from both retinae, or
stimuli from the same retina but different position are
grouped together in a Voronoi cell. In the latter case, we can
make further assumptions about the local spatial arrangement

FIG. 2. Phase diagrams for the four-neuron example.~a! Ana-
lytical, ~b! numerical results~letters! superimposed on the analytic
phase diagram. The letters indicate the solution types of Fig. 1,3
denotes nonclassifiable maps.

FIG. 3. Critical values2,crit of the longer half axis of elliptic
stimuli for the occurrence of an orientation map, as a function of the
shorter half axiss1, for two exemplary widthss of the map neigh-
borhood function. Symbols: values from simulations of SOMs
(15315 nodes,e50.1→0.001, 23105 steps!; solid line: fit to these
points, respectively. Dashed lines: analytic result~8!.

FIG. 4. DistortionsEv andEw as a function of stimulus corre-
lationsc for SOM ocular-dominance model. Dashed line: analytical
Ev of non-OD solution; dotted line: analyticalEv of OD solution
~width 1!; solid line: mean ocularityO5^uuwr , left eye2wr ,right eyeuu& r
indicates state transition atc50.66; solid line with stars: numerical
Ev , solid line with crosses: numericalEw . The Ev values were
scaled in order to compensate for the additional summation as com-
pared toEw . Upper right inset: enlargement of the crossover re-
gion. Lower left inset: analyticalEv of non-OD solution~dashed
line!, together with three analyticalEv of OD solutions with in-
creasing width. Note that for decreasingc, the minimal value for
Ev is attained for solutions with increasing bandwidth.
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of neurons which prefer the same retina. Among the exhaus-
tively many arrangements evaluated, only three turned out to
be of relevance: bands of width 1, bands of width 2, or bands
of ‘‘infinite’’ width ~i.e., half the system size!. Evaluating
Ev(c) for the different cases~Fig. 4! yields a transition point
c'0.64 for the change from OD to non-OD, depending only
very slightly on the ansatz for the spatial OD layout. Simu-
lating maps for different values ofc we find a steep increase
of OD at c'0.66, very close to our analytical result.

EvaluatingEw and Ev for these maps yields two very
similar curves, indicating the close relationship of the two
distortion measures~3! and ~4!. The deviation between the
numerical and analytical values ofEv is a consequence of
simplifying assumptions about the tesselations made in order
to obtain the analytical values.

Comparison of the curves for the different OD band lay-
outs reveals that with decreasingc layouts of increasing
bandwidth are preferred. Even though we consider our ansatz

for the different layouts as too crude to be realized precisely
in simulated maps, the tendency of increasing bandwidth
with decreasing correlation is nevertheless established. This
result coincides with the findings of a recent neuroanatomi-
cal experiment involving strabismic cats and normal-sighted
cats~corresponding to smaller and larger values ofc, respec-
tively! @25#.

Our method also turned out to be helpful in the derivation
and solution of a SOM-based model for the development of
orientation maps for the competition of on-center and off-
center cells@26#. This demonstrates the universality of the
analytic method in the investigation of any high-dimensional
SOM model, including more complicated mapping prob-
lems, which as yet are handicapped by the need for very
costly numerical simulations.

This work was supported by the Deutsche Forschungsge-
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