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The morphology diagram of possible structures in two-dimensional diffusional growth is given in the
parameter space of undercoolingD versus anisotropy of surface tensione. The building block of the dendritic
structure is a dendrite with parabolic tip, and the basic element of the seaweed structure is a doublon. The
transition between these structures shows a jump in the growth velocity. We also describe the structures and
velocities of fractal dendrites and doublons destroyed by noise. We introduce a renormalized capillary length
and density of the solid phase and use scaling arguments to describe the fractal dendrites and doublons. The
resulting scaling exponents for the growth velocity and the different length scales are expressed in terms of the
fractal dimensions for surface and bulk of these fractal structures. All the considered structures are compact on
length scales larger than the diffusion length and they show fractal behavior on intermediate length scales
between the diffusion length and a small size cutoff which depends on the strength of noise.
@S1063-651X~96!04209-2#

PACS number~s!: 81.10.Aj

I. INTRODUCTION

The growth of a crystal from the melt or from a solution is
a typical example for structure formation process@1#. This
type of phase change usually requires the transport of at least
one conserved quantity, the solute material or the latent heat
of solidification, which is transported via diffusion. This is
about the simplest pattern-forming process conceivable un-
der essentially homogeneous nonequilibrium conditions.
Mathematically this is known under the nameStefan@2# or
moving boundaryproblem. Some of the basic questions one
would like to answer in this context concern the kind of
structures that can be formed by such an advancing interface
and how the structures and the conditions under which they
are formed can be characterized.

It has been known since about three decades ago@3# that
a growing circular nucleus becomes unstable as its radius
becomes bigger than a few times the critical radius. If the
surface tension is anisotropic, for example due to crystalline
anisotropy, it is generally believed that the nucleus finally
deforms into a dendritic pattern like a snowflake@4#. The
limit of vanishing anisotropy, however, is still somewhat less
clear, although substantial progress was made during the past
three years.

There has been a recent attempt to formulate a theory@5#
for the fundamental morphologies of growth patterns under
diffusion and the most relevant parameters controlling their
appearance. This was based on scaling relations together
with asymptotic matching requirements so that solutions ex-
pected in some limits of the parameters would be recovered.
The morphology-diagram@5# usessupercooling vs anisot-

ropy as the principal axes and discriminates between sea-
weed and dendrites as the basic patterns, where the dendritic
patterns are characteristic for anisotropic growth conditions.
A second classification concerns the patterns’ internal struc-
tures, namely, fractal as opposed to compact patterns. A frac-
tal pattern is one with a self-similar or self-affine internal
structure with a scaling range of at least one order of mag-
nitude in length scales. The fractal region in parameter-space
is similar to the critical region in critical phenomena and
accordingly a similar changeover to the nonfractal compact
region may occur without any singularity. Some basic pre-
dictions of this theory@5# can be summarized as follows.

The dendritic pattern was predicted to compete at low
anisotropies and large driving force with a compact seaweed
growth mode which should still grow at a nonzero velocity
even when the anisotropy has completely vanished. This was
recently confirmed numerically in detail@6#. The compact
seaweed growth-mode was conjectured to be an independent
growth mode already several years ago under the name
‘‘dense branching morphology’’@7#.

At low supercoolings and at low anisotropies the dendritic
structures furthermore were predicted to break up into fractal
dendrites@5# in the presence of noise. The seaweed structures
were predicted to evolve into fractal patterns under these
conditions. Their fractal dimension was expected to be equal
to the one obtained in atomistic simulations@8# of the
Laplace-aggregation. This behavior was also confirmed@6#
within the available numerical precision.

When this previous paper@5# was written, however, the
existence ofdoublons as the basic building blocks for
seaweed-structures in two dimensions was not known. The
recent developments of parity-broken diffusional growth fin-
gers in a channel@6,9–11# and free doublons@12,13# gave
substantial new insight into the mechanism of seaweed
growth both for compact and fractal morphology and also
considering the possible competition with the dendritic
growth mode. Furthermore, the description of growing frac-
tal structures seems to require a renormalization of the sur-
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face energy which has not been performed so far. We found
it therefore necessary to address the question of the morphol-
ogy diagram again in the light of these recent observations.

II. FORMULATION OF THE PROBLEM

We are interested in a nonequilibrium situation—growth
of a stable phase from a metastable one. To be specific, we
consider the two-dimensional growth of a pure substance
from its undercooled melt, where the growth is controlled by
the diffusion of the latent heat of freezing. It obeys the dif-
fusion equation and appropriate boundary conditions at the
moving interface

]U

]t
5D¹2U, ~1!

vn5DnW •~¹W Usu int2¹W ULu int!, ~2!

Uu int5D2d~Q!K. ~3!

The indicesL and S refer to the liquid and solid, respec-
tively. The specific heatcp and the thermal diffusion con-
stantD are considered to be the same in both phases,L is the
latent heat;U5(T2T`)cp /L is the appropriately rescaled
temperature field measured from the imposed temperature
T` of the undercooled melt far away from the interface; in
terms of these parameters,

D5~TM2T`!cp /L ~4!

is the dimensionless undercooling of the melt andTM is the
melting temperature.

The physics underlying Eqs.~1!–~3! is quite simple. A
solidifying front releases latent heat which diffuses away as
expressed by Eq.~1!; requiring heat conservation at the in-
terface gives Eq.~2! (nW is the normal to the interface!. Equa-
tion ~3! is local equilibrium condition at the interface which
takes into account the Gibbs-Thomson correction;K is the
two-dimensional curvature andd(Q) is the so-called aniso-
tropic capillary length with an assumed fourfold symmetry,

d~Q!5d0~12ecos4Q!. ~5!

Hered05gTMcp /L
2 is a capillary length proportional to the

isotropic part of the surface energyg; Q is the angle be-
tween the normalnW to the interface and some fixed crystal-
lographic direction, at whichd(Q) is minimal; e is the
strength of the anisotropy.

In Eq. ~3! we neglect the kinetic effects, that is, the de-
pendence of the interface temperature on the growth velocity
vn which holds at the sufficiently small undercoolings and
velocities.

Our main interest here is concerned with patterns which
can grow at constant speed even at low undercoolings
D,1, because if they exist they will dominate the system’s
behavior. A two-phase structure then must exist behind the
growth front filling the space uniformly on sufficiently large
scales. The fractionh of solid inside this two-phase region
should be equal toD due to global conservation,

h5D. ~6!

One may define an envelope over the front of this complex
two-phase structure, calling this suitably averaged envelope
theaverage frontin contrast to the local interface separating
the solid from the liquid. This average front can be consid-
ered as the real growth front in the sense that a two-phase
mixture, solid plus liquid, grows into a one-phase region
originally consisting of liquid only. These two-phase struc-
tures are developed from initially smooth interfaces by the
well-known Mullins-Sekerka instability.

Equations~1!–~5! contain two dimensional parameters,
d0 andD, and two dimensionless parameters,D and e. It
means that any characteristic length scale,l , and growth
velocity,v, of the possible structures can be presented in the
form

l 5d0f ~D,e!, v5
D

d0
w~D,e!. ~7!

Our aim in this paper is to predict, for given undercooling
D and anisotropye, the type of the two-phase structure, and
its characteristic length scales and velocity, that is, to calcu-
late the functionsf andw in the relation~7!. As it turns out
these functions have scaling forms for smallD and e, thus
showing power law dependences onD ande.

Following the ideas of our previous paper@5# we try to
construct the kinetic phase diagram in the plane (D,e) ~Fig.
1!, which represents the regions of existence of different
structures and the lines of transitions between the structures.
As in, @5# we discriminate betweencompactstructures (C)
and fractal structures (F). A complementary classification
deals with the existence of orientational order. A structure
with pronounced orientational order will be calleddendritic
(D), and without apparent orientational order it will be
calledseaweed(S).

It turns out that noise which always exists in the system
~for example the thermodynamic noise! appears to play a
crucial role in the formation of fractal structures but is not so
important for compact patterns.

FIG. 1. Kinetic phase diagram.
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III. COMPACT DENDRITES „CD…

Dendrites can grow at arbitrary small undercoolingD, but
usually a nonzero value of the anisotropye is required. The
growth pattern evolving from a nucleus acquires a star-
shaped envelope surrounding a well-defined backbone. The
distances between the corners of the envelope increase with
time. For small undercooling we can use the scaling relation
for the motion of the corners as for free dendrites@14–17#
with tip-radiusr t and velocityv. These two relations come
from the Ivantsov formula@18#

P[
vr t
2D

;D2 ~8!

and from the selection condition for the stability parameter
s,

1

As
[

r t

Ad0D/v
;e27/8. ~9!

From Eqs.~8! and ~9! follow the dependencies ofr t andv
on the parametersD ande:

r t;d0e
27/4D22, v;

D

d0
e7/4D4. ~10!

Equation~10! really describes a needle-crystal which without
noise has no sidebranches. The corresponding star structure
then cannot fill the space with constant density and the
amount of material solidified in parabolic form increases
with time only like t3/2 rather than liket2 for a truly compact
object in two dimensions.

A small amount of noise, however, cures this problem.
The tip of the dendrite is still stable against small noise but
has a ‘‘convective’’ instability which produces sidebranches.
Those branches continue to grow until they become indepen-
dent primary branches a distancel 5D/v away from the
corners of the star. The global shape then consists of an
envelope of diamond type over the dendrite tips which ap-
pear a distanceD/v apart from each other~Fig. 2!. The ve-

locity scales like Eq.~10!. The relative space filling by pri-
mary dendrites and sidebranches of course must be equal to
D. The two basic length scales in this pattern accordingly are
the diffusion lengthD/v and the tip radiusr t of a typical
dendrite.

For small undercoolingD those two length scales are well
separated,r t!D/v. While the dendritic structure becomes
compact only at length scales larger thanD/v, it shows frac-
tal behavior at the intermediate length scalel ,
r t,l ,D/v, with fractal dimensionDf51.5 @19,20#. In this
fractal object the sidebranches interact due to the competi-
tion in the common diffusion field. Some of the sidebranches
die and some continue to grow in the direction prescribed by
the anisotropy. This competition leads to coarsening of the
structure in such a way that the distance between the surviv-
ing sidebranches is adjusted to be of the same order of mag-
nitude as the length of the sidebranches and is proportional
to the distance from the dendritic tip. At the same time, the
thickness of the surviving sidebranches is proportional to the
square root of the product ofr t and the distance from the tip.
On length scales larger thanD/v the dendritic structure ap-
pears to be compact with the mean densityh5D.

IV. COMPACT SEAWEED „CS…

CD structures formally exist at arbitrary small anisotropy
e but their velocity goes to zero withe→0. It was recently
discovered that there is another structure, compact seaweed
~CS!, which is favorable for smallere and largerD. The
velocity of the structure remains finite ate50.

The compact-seaweedmorphology@5# was originally in-
troduced on the basis of experimental observations under the
namedense branchingmorphology@7#. At that time, how-
ever, its introduction as a morphological ‘‘phase’’ distinct
from the well-known dendritic morphologies was rather
speculative. Computer simulations also were inconclusive at
that time.

The first indication for the existence of such a distinct
phase came~to our knowledge! from arguments@5# based on
a theoretical study of crystal growth in a channel@21#. This
analysis of channel growth gave among other things the fol-
lowing results. A finger type pattern symmetrically in the
center of the channel could grow at constant growth rate for
dimensionless supercoolingsD.0.5. The finger looks simi-
lar to the Saffmann-Taylor finger of viscous flow, but be-
longs to a different branch of the mathematical solution. The
growth rate of the crystal increases with increasing driving
forceD, as to be expected. A specifically remarkable result
of this theory@21# is that the driving force sets a length scale
and thereby also a velocity: For a given driving force
0.5,D,1 there exists a characteristic channel width below
which such a steadily growing finger is no longer possible.

However, it has been discovered recently that the spec-
trum of solutions for growth in a channel is much richer than
had previously been supposed. Parity-broken solutions were
found @9# and studied numerically in detail@6,10#. A similar
solution exists also in an infinite space which was called
‘‘doublon’’ for obvious reasons@6#. It consists of two fingers
with a liquid channel along the axis of the symmetry be-
tween them. It has a parabolic envelope with radiusr t and
the liquid channel of the thicknessh. The Peclet number

FIG. 2. Dendritic structure. For details, see Ref.@5#.
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P5vr t/2D depends onD according to the Ivantsov relation
~8!. The analytical solution of the selection problem for dou-
blons @13# shows that this solution for isotropic systems
(e50) exists even at arbitrary small undercoolingD and
obeys the following selection conditions:

h;r t ,
1

As
[

r t

Ad0D/v
;P25/4. ~11!

Equations~8! and ~11! give

r t;h;d0D
27, v;

D

d0
D9. ~12!

If one includes finite anisotropye, doublon solutions exist
only above the solid line on Fig. 1, for which

D;e1/4. ~13!

For e smaller than given by Eq.~13! the doublons obey the
same scaling law as given by Eq.~12! @13#.

It should be noted that doublons in the range of their
existence~13! grow faster than dendrites at the same param-
etersD and e. This statement is confirmed by numerical
calculations@6#.

The numerical calculations also show that the double-
fingering structure is stable against a competition between
the two fingers which belong to the doublon. It means that
the axis of symmetry and the direction of growth are stable.
Of course these directions are arbitrary in isotropic systems.
It is not completely clear at the moment whether the stability
of the free doublon pair follows precisely the scaling law Eq.
~13!. In any case this line represents a lower bound onD for
a givene.

We suppose that the doublons seem to represent a key
point in the growth of compact-seaweed morphology~Fig.
3!. The formation of a full CS structure evolving from a
growing nucleus is possible only due to noise, which triggers
sidebranches, as it is in the CD structure. The resulting two-
phase structure has an almost isotropic circular envelope

which moves with approximately the same velocity@Eq.
~12!# as a free doublon. The structure is fractal with
Df51.5 in the intermediate length scale betweenr t and
D/v, and it becomes compact with the mean densityh5D at
the length scale larger thanD/v. The region above the solid
line, D;e1/4 ~Fig. 1!, corresponds to CS structure where
doublons exist and grow faster than dendrites. This line rep-
resents the discontinuous transitions between CD and CS
structures with a jump of velocities.

V. FRACTAL STRUCTURES

For the compact structures described above noise is im-
portant only as the trigger of sidebranches. It has been sup-
posed that the tips~of dendrites or doublons! remain unde-
stroyed. However, the strength of noise may be large enough
not only to trigger the sidebranches but also to destroy the
tips. In order to estimate the parameters for which it happens
let us look at the theory of sidebranch-formation more care-
fully. According to the result of Langer@22# the root-mean-
square amplitudêz2&1/2 of the sidebranches on the underly-
ing parabolic interface generated by thermal fluctuations
depends on the distance from the tipz as

^z2&1/2

r t
;GexpF 27/4

3A3s
S zr tD

1/4G . ~14!

Here the stability parameters is given by Eqs.~9! and ~11!
for dendrites and doublons, respectively;G is the relative
noise strength (G!1)

G5~T/To!S 2Dd03vr t
4 D 1/2, To5S L2d03kBcp

D 1/2, ~15!

where kB is the Boltzmann constant. The tip becomes de-
stroyed if the amplitude of the sidebranches is of the order of
r t at the distancez;r t down the shaft. Thus we obtain from
Eq. ~14! the following condition:

1

As*
;u lnGu. ~16!

The tips of structures will be destroyed if the stability param-
eters becomes smaller than the critical values* given by
Eq. ~16!. Using the values;e7/4 @Eq. ~9!#, one obtains from
Eq. ~16! a line of smooth transition from CD to FD structures
on Fig. 1:

e*;u lnGu28/7. ~17!

The analogous line which separates CS and FS structures in
Fig. 1 can be obtained using Eqs.~8!, ~11!, and~16!:

D*;u lnGu22/5. ~18!

Equation ~16! has the following physical meaning. Let us
rewrite this relation, using the definition ofs5d0D/(vr t

2)
@Eq. ~9!#, which gives the following condition for a stable tip
radius:

r t<rMSu lnGu, ~19!

FIG. 3. Seaweed structure@T. Abel and H. Müller-Krumbhaar
~unpublished!#.
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whererMS;Ad0D/v is the Mullins-Sekerka length describ-
ing the instability of a planar interface. One can think of the
right-hand side of~19! as the characteristic length scale,
aG , of the instability set by noise

aG5rMSu lnGu;Ad0D/vu lnGu. ~20!

The tip is stable ifr t,aG and it becomes destroyed if
r t.aG . The same small-size cutoffaG depending on noise
G was introduced in our previous paper@5# based on the
consideration of the self-similar development of perturba-
tions induced by the Mullins-Sekerka instability. At that
time, however, the existence of doublons was not known.

A new approach, therefore, is required for the description
of the fractal patterns with the destroyed tips. Such destroyed
fractal structures have been already investigated in the
framework of Saffmann-Taylor viscous fingering and
diffusion-limited aggregation@19#. The important result of
these investigations is that there exists an effective envelope
obtained by averaging over the structures, which has pre-
cisely the same shape as an ideal stable solution—the shape
of the Saffman-Taylor finger in isotropic systems and para-
bolic shape in anisotropic systems. The density inside this
effective envelope ish̃,1. The envelope has a characteristic
tip radiusr̃ t . Because the underlying structure is fractal with
fractal dimensionDf'1.71 in the intermediate length scale
between small-length cutoffaG and r̃ t , the densityh̃ inside
the envelope can be obtained from the definition of the frac-
tal dimension~apart from a constant prefactor!

r̃ t
D f;E

aG

r̃t
drr h̃~r !,

which gives more explicitly

h̃~ r̃ t!;S aG

r̃ t
D 22Df

. ~21!

Following these results, we will now try to define an av-
eraged or coarse-grained structure over such a noisy fractal
pattern and to formulate an equation of motion for this
coarse-grained structure using scaling arguments. More ex-
plicitly we try to estimate the characteristic length scale of
the structure and its growth velocity by considering the
steady-state motion of an effective parabolic envelope which
replaces the destroyed dendrite or doublon. The density of
the solid phase inside the envelope with tip radiusr̃ t is given
by Eq.~21!, where the small size cutoffaG is defined by Eq.
~20!,

h̃~ r̃ t!;S Ad0D/vu lnGu

r̃ t
D 22Df

. ~22!

The temperature inside the envelope is supposed to be close
to the melting temperature. Because the densityh̃ inside the
envelope is smaller than 1, we have to replace the latent heat
L by h̃L. It changesD in Eq. ~4! to (D/h̃) and modifies the
Ivantsov relation to

P[
v r̃ t

2D
;S D

h̃
D 2. ~23!

The crucial point of the analysis is a modification of the
selection conditions~9! and ~11!. The experimental and nu-
merical results@19# ~the existence of a selected envelope!
support the idea that those selection conditions do exist. Un-
fortunately, we do not know any results which allow us to
write down these modifications explicitly. But using scaling
arguments, we can write the selection conditions in the fol-
lowing scaling form with scaling exponentb which for the
moment is undetermined but will be specified later in the
following section. For dendrites we can write

1

As
[

r̃ t

Ad0D/v
;e27/8h̃2b ~24!

and for doublons

1

As
[

r̃ t

Ad0D/v
;P25/4h̃2b. ~25!

These relations~24! and~25! transform into Eq.~9! and Eq.
~11!, respectively, forh̃;1.

The selection relations~24! and ~25! may be interpreted
as the conditions of selection due to an effective surface
tension. We have chosen the sameb in both Eqs.~24! and
~25! because in some sense the factorh̃2b can be seen as a
renormalization factor for the capillary lengthd0→d0 /h̃

2b.
To make an estimate of possible values ofb it is natural to
assume that a coarse-grained surface energy should decrease
with decreasingh̃, giving b,1/2 as a reasonable restriction.
Furthermore, under the speculation that not only the latent
heatL transforms toh̃L but also the surface energyg for the
solid-liquid interface transforms similarly intoh̃g for the
coarse-grained envelope, we find thatd0 remains unchanged.
For this simplest model one obtainsb50 which has been
used in our previous publication@5#. We will not follow this
reasoning but will see later that with much more conclusive
argumentsb can be expressed in terms of bulk and surface
fractal dimensions.

The solution of Eqs.~22!–~25! gives the following for
general fixedb.

For fractal dendrites,

r̃ t;
d0
D2

u lnGu2

~ u lnGue7/8!2g~Df21! , ~26!

v;
D

d0

D4

u lnGu2 ~ u lnGue7/8!2g~2Df23!, ~27!

h̃~ r̃ t!;~ u lnGue7/8!g~22Df !, ~28!

for

D,~ u lnGue7/8!g~22Df !,1, ~29!

where

g51/@12b~22Df !#. ~30!
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For fractal doublons,

r̃ t;
d0
D2

u lnGu2

~ u lnGuD5/2!2g8~Df21!
, ~31!

v;
D

d0

D4

u lnGu2 ~ u lnGuD5/2!2g8~2Df23!, ~32!

h̃~ r̃ t!;~ u lnGuD5/2!g8~22Df !, ~33!

for

D,~ u lnGuD5/2!g8~22Df !,1 ~34!

and

D.e1/4~ u lnGuD5/2!g8~22Df !, ~35!

where

g851/@11~5/22b!~22Df !#. ~36!

Equation~35! which has no analog among Eqs.~26!–~30! for
fractal dendrites is similar to Eq.~13! for compact doublons
and defines a region of parameters where the fractal dou-
blons do exist; on the boundary of the region~dotted line in
Fig. 1! the doublon solutions disappear.

Fractal dendrites and fractal doublons exist in the range of
parameters given by inequalities~29! and ~34!, respectively,
which correspond toD,h̃( r̃ t),1. The upper boundaries
@h̃( r̃ t);1#, u lnGue7/8;1, andu lnGuD5/2;1 correspond to the
transition to compact structures~dashed line and dash-dotted
line on the diagram of the Fig. 1!. The lower boundaries in
conditions ~29! and ~34! correspond toh̃;D ~and at the
same time correspond tor̃ t;D/v). The described structures
are fractal withDf'1.7 on the length scale betweenaG and
r̃ t , and fractal withDf51.5 in the range betweenr̃ t and
D/v; the structures become compact withh5D on the
length scale larger thanD/v.

Equations~26!–~36! describe fractal dendrites and dou-
blons as long asaG, r̃ t,D/v. If r̃ t becomes formally larger
thanD/v, the patterns are fractal withDf'1.7 in the range
betweenaG andD/v, and compact on the scale larger than
D/v with density h5D. The growth velocity of this last
structure can easily be obtained from Eq.~22! by replacing
r̃ t by D/v and by settingh̃( r̃ t);D:

v;
D

d0

D2/~22Df !

u lnGu2
. ~37!

This velocity matches to the velocity of the fractal dendrite
~27! at the line

D;~ u lnGue7/8!g~22Df !, ~38!

which corresponds to the lower boundary of the condition
~29!. The lower boundary in relation~34! gives a transition
from fractal doublons to the structure described by Eq.~37!.
The last structure which moves with velocity given by Eq.
~37! has been already described in our previous papers@5# as
representing the fractal seaweed morphology. The doublons
as an independent pattern were not yet discovered at that

time. Now we can see for reasonable values ofb,1/2 that
the structure described by Eq.~37! disappears from the mor-
phology diagram on Fig. 1. The point is that the formal line
given by Eq.~38!, which describes the transition from fractal
dendrites to the structure growing in accord to Eq.~37!, is
located in the region of fractal doublons, where the doublons
grow faster compared to the two other structures. Thus the
dotted line on Fig. 1 given by condition~35!,

D;u lnGucGece,

cG5
22Df

12b~22Df !
,

ce5
11~5/22b!~22Df !

4@12b~22Df !#
, ~39!

describes the discontinuous transition from fractal dendrites
~FD! to fractal doublons~FS! with a jump of growth veloc-
ity.

All the characteristics of fractal structures depend on the
noise strengthG. We can estimateG in the fractal region
using Eq.~15! and replacingr t by the noise induced length
scaleaG from Eq. ~20!. It gives

Gu lnGu2;S TToD S vd0D D 1/2. ~40!

The noise strengthG!1 because the capillary lengthd0 is
much smaller than the diffusion lengthD/v.

VI. SCALING OF COARSE GRAINED CAPILLARY
LENGTH

We now will try to relate the scaling exponentb to the
fractal exponents describing the fractal dimensionDs of the
surface and the fractal dimensionDf of the bulk of the re-
spective noisy structures which we have defined above as
fractal doublons and fractal dendrites.

The idea is that the fractal dendrite as a noisy object
should be describable in a similar form as the original com-
pact dendrite because the basic Ivantsov-relation Eq.~23!
represents a global conservation law. The ingredients of that
description such as capillary length or density inside that
envelope, however, then should be in some way renormal-
ized.

We assume now that a noisy dendrite can be described by
an effective envelope with a constant mean densityh̃ of
solid inside. Furthermore, we assume that also the Gibbs-
Thomson relation Eq.~3! has to be modified by introducing
an effective capillary lengthd̃0 and a macroscopic curvature
K̃ of the smoothed envelope. The Gibbs-Thomson relation
~3! then becomes

Uu int5
D

h̃
2
d̃0
h̃

@12ecos~4Q!#K̃, ~41!

where h̃ represents the mean density inside that approxi-
mately parabolic envelope over a single dendrite. Note that
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the densityh averaged over the whole solidified structure on
scales larger than the diffusion length is still given by Eq.
~6!.

The first term on the right-hand side of Eq.~41! represents
the modification of the conservation-law due to the deviation
from compactness,h̃,1. The second term is actually a defi-
nition of effective capillarity d̃0 through the geometrical
definition of local curvatureK̃ of the parabolic envelope.
This coarse-grained envelope should then evolve in analogy
to Eq. ~9! ~for the dendritic case! but now with the coarse-
grained variables as

1

As
[

r̃ t

Ad̃0D/~ h̃v !
;e27/8. ~42!

Note that not only the rescaled capillary length but also the
densityh̃ appear here because we have chosenh̃ as a com-
mon denominator in Eq.~41!. Combining Eq.~42! with Eq.
~24! one obtains formally the relation

d̃0;d0h̃
122b, ~43!

which holds both for doublons and dendrites.
In order to relate such a coarse-grained capillary-length to

the fractal properties of the growing structure we first must
introduce a coarse-graining lengthl̃ as some arc-length of
the resulting effective envelope. The coarse-grained contri-
bution of curvature to the Gibbs-Thomson relation~41! on
that envelope can be defined as an average over the local
curvature contribution as~for simplicity shown for the iso-
tropic case!

d̃0K̃5d0
* l̃ dlK

* l̃ dl
. ~44!

The integrals are performed within a neighborhood of diam-
eter l̃ at some point on the envelope, the path of integration
going along the real folding interface withK being the rap-
idly varying curvature of this real interface.

The result of this integration comes directly from the geo-
metric definition of a curvatureK5dQ/dl as follows:

* l̃ dl K

* l̃ dl
5

dQ~ l̃ !

l ~ l̃ !
. ~45!

Note thatl ( l̃ ) here is the arc-length along the real interface
around some fixed point on the envelope as a function of the
coarse-graining lengthl̃ . Furthermore,dQ is the change of
orientation of the envelope over a small tangential distance
l̃ . From this one immediately obtains the definition of the
curvatureK̃ by identifying

K̃[
dQ~ l̃ !

l̃
5
l

l̃

dQ~ l̃ !

l ~ l̃ !
. ~46!

A combination of this result and Eq.~44! gives the desired
result of the renormalized capillary lengthd̃0:

d̃05d0~ l̃ /l !. ~47!

This result looks trivial at first glance but in fact when the
surface becomes fractal the lengthl becomes much bigger
than the coarse-graining lengthl̃ and can be expressed by a
power-law dependence:

l ; l̃ S l̃aG
D Ds21

, ~48!

whereDs is the fractal dimension of the surface and more
specifically in two dimensions the fractal dimension of the
perimeter of the fractal structure. A relation 1<Ds<Df<2
here should hold between the various dimensions. The short-
length cutoffaG has been introduced before.

The coarse-graining lengthl̃ now can be defined as fol-
lows. It is obvious that this length is confined between the
limits

aG, l̃ , r̃ t , ~49!

because it must be bigger than the short-length cutoff and
should not be bigger than the smallest length scale appearing
along the coarse-grained envelope. A further restriction can
be obtained from an interesting observation made in the re-
lated problem of Laplacian growth@19#. There it was found
that the scaling of the noisy finger in the channel could be
mapped onto the theory of smooth fingers only if this coarse
graining length is taken to scale with the upper bound

l̃ ;r̃ t . ~50!

Furthermore, the~constant! density inside the coarse-grained
envelope had to be taken equal to the maximal density ob-
served in the averaged density-profile. Then the scaling of
this density with the tip-radius of the envelope became con-
sistent with the fractal scaling relation Eq.~21!. We therefore
adapt the same relations which are expected to be valid as
long as the length-scales under consideration are small com-
pared to the diffusion length.

Combining Eqs.~21! with Eqs. ~47!, ~48!, and ~50! we
arrive at the desired relation for the coarse-grained capillary
length

d̃0;d0h̃
~Ds21!/~22Df !. ~51!

Comparing this result with Eq.~43! we obtain immediately
the final formula for the exponentb depending on the fractal
dimensionsDs andDf for surface and bulk:

b5
1

2 S 12
Ds21

22Df
D . ~52!

Inserting this into the set of results Eq.~26! through Eq.~36!
makes all the scaling exponents depending on the two fractal
dimensionsDs andDf only. As an example for numerical
values@6# we may useDf'1.71 andDs'1.67. This results
in a value ofb'20.66, and the growth rate of a fractal
doublon Eq.~32! then should depend on the supercooling
D as

v;
D

d0
Dc, c'5.1. ~53!
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Apparently this growth rate is faster than our earlier result
@5# for fractal seaweed Eq.~37! because the exponentc here
is smaller than the previous value of 2/(22Df)'6.9 in Eq.
~37!. This means that fractal doublons should be the winning
pattern at small driving forces and small anisotropies.

VII. CONCLUSION

We have discussed the structure formation in diffusion-
controlled growth. The given description refers to solidifica-
tion of a pure undercooled melt but it also can be applied to
growth of a pure solid from solution or isothermal solidifi-
cation of a binary melt. More generally one may speak of
systems with a conserved quantity growing by diffusion. The
main control parameters of the process are dimensional un-
dercoolingD and the strength of the surface tension anisot-
ropy e. It turns out that the noise is also very important for
the structure formation and we characterize it by the dimen-
sionless quantityG.

The resulting morphology diagram~Fig. 1! with axesD
vs e classifies different kinds of structures and transitions
between them.

The dendritic structure has pronounced orientational order
and it is favorable for smallD and relatively largee. The
seaweed structure does not require anisotropy and is favored
for largerD and smallere. The transition between these two
structures takes place around the solid line on Fig. 1@Eq.
~13!# which is continued by the dotted line@Eq. ~39!# into the
fractal region. This transition is discontinuous with a jump of
velocities since the doublons move faster than the dendrites
as soon as they exist. The main element of the dendritic
structure is a dendrite with a parabolic tip~Fig. 2!, and the
main element of the seaweed structure is a doublon~Fig. 3!.
For compact dendritic and compact seaweed structures the
tips of dendrites and doublons are stable against the noise,
which is relatively small in these regions. The noise triggers
sidebranches which fill the space and make the structures
compact so that the mean density of solid phase ish5D on
the length scale larger thanD/v. In the intermediate region
of lengths between tip radiusr t and diffusion lengthD/v the
structure can be described as a fractal but with a trivial frac-
tal dimensionDf53/2 which comes from the parabolic
shape of the dendrite.

The region of fractal dendritic and fractal seaweed struc-
tures near the origin of the morphology diagram is charac-

terized by noise being sufficiently large to destroy even the
tips of dendrites and doublons. It means that the noise in-
duced length scaleaG @Eq. ~20!# is smaller thanr̃ t . In the
range betweenaG and r̃ t the structures are fractal with a
nontrivial fractal dimensionDf (Df'1.71). This is the rea-
son why we called these structures ‘‘fractal.’’ Furthermore,
these patterns are also fractal in the range betweenr̃ t and
D/v but again with the trivial fractal dimensionDf53/2.
Finally they become compact on length scales larger than the
diffusion lengthD/v just as compact dendritic and compact
seaweed structures. Note that if one would perform a mea-
surement of the fractal dimension on length scales around the
crossover lengthr̃ t one would observe an interpolation be-
tween our two different values ofDf , the precise result de-
pending on the interval chosen for the measurement. Since
both the dendritic and the seaweed patterns maintain their
basic identities inside the noisy region, the transitions from
the compact to the fractal regions represent rather smooth
changes in length scales.

We have described the structures and growth velocities of
the destroyed fractal dendrites and doublons by introducing
renormalized quantities for capillary length and density. We
have quantitatively introduced an effective parabolic enve-
lope following the results of@19#. The most nontrivial part of
our analysis is a modification of the selection conditions
@Eqs. ~24! and ~25!#. At this point we have used scaling
arguments which leave us only with one undetermined scal-
ing exponentb. This exponent subsequently is determined
by the fractal dimensionsDs for the surface andDf for the
bulk of the growing pattern.

The scaling arguments given here for two-dimensional
growth patterns formally can be extended in a straightfor-
ward fashion to three dimensions. For dendritic structures
this seems to be perfectly permissible since the basic growth
laws are rather similar in two and three dimensions@23,24#.
For the seaweed patterns much less is known since our pre-
liminary results there are still rather speculative. We hope to
report on this in the near future.
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2722 54E. BRENER, H. MÜLLER-KRUMBHAAR, AND D. TEMKIN


