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Structure formation and the morphology diagram of possible structures
in two-dimensional diffusional growth

E. Brenerf H. Muller-Krumbhaar, and D. Temkin
Institut fir Festkaperforschung, Forschungszentrumlidh, D-52425 Jlich, Germany
(Received 20 March 1996

The morphology diagram of possible structures in two-dimensional diffusional growth is given in the
parameter space of undercoolidgversus anisotropy of surface tensienThe building block of the dendritic
structure is a dendrite with parabolic tip, and the basic element of the seaweed structure is a doublon. The
transition between these structures shows a jump in the growth velocity. We also describe the structures and
velocities of fractal dendrites and doublons destroyed by noise. We introduce a renormalized capillary length
and density of the solid phase and use scaling arguments to describe the fractal dendrites and doublons. The
resulting scaling exponents for the growth velocity and the different length scales are expressed in terms of the
fractal dimensions for surface and bulk of these fractal structures. All the considered structures are compact on
length scales larger than the diffusion length and they show fractal behavior on intermediate length scales
between the diffusion length and a small size cutoff which depends on the strength of noise.
[S1063-651%96)04209-2

PACS numbegps): 81.10.A]

[. INTRODUCTION ropy as the principal axes and discriminates between sea-
weed and dendrites as the basic patterns, where the dendritic
The growth of a crystal from the melt or from a solution is patterns are characteristic for anisotropic growth conditions.
a typical example for structure formation procgé$ This A second classification concerns the patterns’ internal struc-
type of phase change usually requires the transport of at leaitres, namely, fractal as opposed to compact patterns. A frac-
one conserved quantity, the solute material or the latent he&®l pattern is one with a self-similar or self-affine internal
of solidification, which is transported via diffusion. This is Structure with a scaling range of at least one order of mag-

about the simplest pattern-forming process conceivable urpitude in length scales. The fractal region in parameter-space

der essentially homogeneous nonequilibrium conditions!S Similar to the critical region in critical phenomena and

Mathematically this is known under the narSeefan[2] or accordingly a similar changeover to the nonfractal compact

moving boundanproblem. Some of the basic questions 0neg?gt'i%rrlsmo"’zhoigiﬁgg&g?Létaﬁngesér&?;’rlggﬁ’z';o;gefotl)l‘;j'; pre-
would like to answer in this context concern the kind of '

structures that can be formed by such an advancing interface The dendritic pattern was predicted to compete at low
y 9 anisotropies and large driving force with a compact seaweed

and how the structures and the conditions under which the&rovvth mode which should still grow at a nonzero velocity

are formed can be characterized. even when the anisotropy has completely vanished. This was
It has been known since about three decades{8pthat ecently confirmed numerically in detdié]. The compact
a growing circular nucleus becomes unstable as its radiugaaweed growth-mode was conjectured to be an independent
becomes bigger than a few times the critical radius. If thegrovvth mode already several years ago under the name
surface tension is anisotropic, for example due to crystallinegense branching morphology[7].
anisotropy, it is generally believed that the nucleus finally At low supercoolings and at low anisotropies the dendritic
deforms into a dendritic pattern like a snowflalgl. The  structures furthermore were predicted to break up into fractal
limit of vanishing anisotropy, however, is still somewhat lessdendrited5] in the presence of noise. The seaweed structures
clear, although substantial progress was made during the pagere predicted to evolve into fractal patterns under these
three years. conditions. Their fractal dimension was expected to be equal
There has been a recent attempt to formulate a thgdry to the one obtained in atomistic simulatiof8] of the
for the fundamental morphologies of growth patterns undet.aplace-aggregation. This behavior was also confirfiégd
diffusion and the most relevant parameters controlling theiwithin the available numerical precision.
appearance. This was based on scaling relations together When this previous papéb]| was written, however, the
with asymptotic matching requirements so that solutions exexistence ofdoublons as the basic building blocks for
pected in some limits of the parameters would be recoveredeaweed-structures in two dimensions was not known. The
The morphology-diagrani5] usessupercooling vs anisot- recent developments of parity-broken diffusional growth fin-
gers in a channdl6,9-11 and free doublon§12,13 gave
substantial new insight into the mechanism of seaweed
“Permanent address: Institute for Solid State Physics, Chegrowth both for compact and fractal morphology and also

n(T)golovka, Russia. considering the possible competition with the dendritic
Permanent address: I.P. Bardin Institute of Ferrous Metals, Mosgrowth mode. Furthermore, the description of growing frac-
cow, Russia. tal structures seems to require a renormalization of the sur-
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face energy which has not been performed so far. We found
it therefore necessary to address the question of the morphol-
ogy diagram again in the light of these recent observations.

Il. FORMULATION OF THE PROBLEM

We are interested in a nonequilibrium situation—growth
of a stable phase from a metastable one. To be specific, we

consider the two-dimensional growth of a pure substance A FS /
from its undercooled melt, where the growth is controlled by FD /
the diffusion of the latent heat of freezing. It obeys the dif- / ch
fusion equation and appropriate boundary conditions at the /
moving interface /
/
oU !
~ _pvau, (1) S/
ot _
.o N 0
vn:Dn'(VUs|int_VUL|int)v 2 €
Uline=A—d(®)K. € FIG. 1. Kinetic phase diagram.

The indicesL and S refer to the liquid and solid, respec-
tively. The specific heat, and the thermal diffusion con-
stantD are considered to be the same in both phdsésthe
latent heat;U=(T—T.)c,/L is the appropriately rescale
temperature field measured from the imposed temperatu
T, of the undercooled melt far away from the interface; in
terms of these parameters,

One may define an envelope over the front of this complex
two-phase structure, calling this suitably averaged envelope
d the average frontin contrast to the local interface separating
'Ige solid from the liquid. This average front can be consid-
ered as the real growth front in the sense that a two-phase
mixture, solid plus liquid, grows into a one-phase region
originally consisting of liquid only. These two-phase struc-

A=(Ty—T.)c,/L (4)  tures are developed from initially smooth interfaces by the
well-known Mullins-Sekerka instability.
is the dimensionless undercooling of the melt argis the Equations(1)—(5) contain two dimensional parameters,
melting temperature. do and D, and two dimensionless parametefs,and e. It

The physics underlying Eq$1)—(3) is quite simple. A means that any characteristic length scafe,and growth
solidifying front releases latent heat which diffuses away aselocity, v, of the possible structures can be presented in the
expressed by EqJl); requiring heat conservation at the in- form

terface gives Eq2) (n is the normal to the interfageEqua-

tion (3) is local equilibrium condition at the interface which D

takes into account the Gibbs-Thomson correctikinis the /=dof(A,€), v=—=np(A,e). 7
two-dimensional curvature ard{®) is the so-called aniso- do

tropic capillary length with an assumed fourfold symmetry,

d(©)=dg(1— ecosd®). (5)  Our aim in this paper is to predict, for given undercooling
A and anisotropy, the type of the two-phase structure, and
Heredy= yTMcp/L2 is a capillary length proportional to the its characteristic length scales and velocity, that is, to calcu-
isotropic part of the surface energy ® is the angle be- late the functiond and ¢ in the relation(7). As it turns out

tween the norman to the interface and some fixed crystal- these functions have scaling forms for smalland ¢, thus

lographic direction, at whictd(®) is minimal; e is the  Showing power law dependences drande.

strength of the anisotropy. Following the ideas of our previous papéi] we try to
In Eq. (3) we neglect the kinetic effects, that is, the de-construct the kinetic phase diagram in the pladee) (Fig.

pendence of the interface temperature on the growth velocity), Which represents the regions of existence of different
v, which holds at the sufficiently small undercoolings andstructures and the lines of transitions between the structures.

velocities. As in, [5] we discriminate betweenompactstructures C)

Our main interest here is concerned with patterns whictnd fractal structures £). A complementary classification
can grow at constant speed even at low undercoolinggeals with the existence of orientational order. A structure
A<1, because if they exist they will dominate the system’swith pronounced orientational order will be calldendritic
behavior. A two-phase structure then must exist behind théD), and without apparent orientational order it will be
growth front filling the space uniformly on sufficiently large calledseaweedS).
scales. The fractiom of solid inside this two-phase region It turns out that noise which always exists in the system

should be equal t& due to global conservation, (for example the thermodynamic nojsappears to play a
crucial role in the formation of fractal structures but is not so

n=A. (6) important for compact patterns.
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FIG. 2. Dendritic structure. For details, see R&i.

Ill. COMPACT DENDRITES (CD)

Dendrites can grow at arbitrary small undercoolixgbut
usually a nonzero value of the anisotropys required. The

growth pattern evolving from a nucleus acquires a star-
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locity scales like Eq(10). The relative space filling by pri-
mary dendrites and sidebranches of course must be equal to
A. The two basic length scales in this pattern accordingly are
the diffusion lengthD/v and the tip radiugp, of a typical
dendrite.

For small undercooling those two length scales are well
separatedp,<D/v. While the dendritic structure becomes
compact only at length scales larger tHafv, it shows frac-
tal behavior at the intermediate length scalg,
pi</<D/v, with fractal dimensiorD;=1.5[19,20. In this
fractal object the sidebranches interact due to the competi-
tion in the common diffusion field. Some of the sidebranches
die and some continue to grow in the direction prescribed by
the anisotropy. This competition leads to coarsening of the
structure in such a way that the distance between the surviv-
ing sidebranches is adjusted to be of the same order of mag-
nitude as the length of the sidebranches and is proportional
to the distance from the dendritic tip. At the same time, the
thickness of the surviving sidebranches is proportional to the
square root of the product gf and the distance from the tip.
On length scales larger thdaWv the dendritic structure ap-
pears to be compact with the mean densjty A.

IV. COMPACT SEAWEED (CS)

shaped envelope surrounding a well-defined backbone. The cp structures formally exist at arbitrary small anisotropy
distances between the corners of the envelope increase Withyt their velocity goes to zero wite—0. It was recently
time. For small undercooling we can use the scaling relatiojiscovered that there is another structure, compact seaweed

for the motion of the corners as for free dendriféd—17

with tip-radiusp, and velocityv. These two relations come

from the Ivantsov formul§18]

(C9), which is favorable for smallee and largerA. The
velocity of the structure remains finite at=0.

The compact-seaweeghorphology[5] was originally in-
troduced on the basis of experimental observations under the
namedense branchingnorphology[7]. At that time, how-
ever, its introduction as a morphological “phase” distinct
from the well-known dendritic morphologies was rather

and from the selection condition for the stability parametergpecyjative. Computer simulations also were inconclusive at

=20 & ®
o,
1 Pt ~78
—= ~¢e 18 9
\/; doD/U ( )

From Eqgs.(8) and (9) follow the dependencies gf;, andv
on the parameterA ande:

D
— TAp4
0

pr~doe” A2, (10

v~

that time.

The first indication for the existence of such a distinct
phase caméo our knowledggfrom argument$5] based on
a theoretical study of crystal growth in a chanfl]. This
analysis of channel growth gave among other things the fol-
lowing results. A finger type pattern symmetrically in the
center of the channel could grow at constant growth rate for
dimensionless supercoolings>0.5. The finger looks simi-
lar to the Saffmann-Taylor finger of viscous flow, but be-
longs to a different branch of the mathematical solution. The
growth rate of the crystal increases with increasing driving

Equation(10) really describes a needle-crystal which withoutforce A, as to be expected. A specifically remarkable result
noise has no sidebranches. The corresponding star structuséthis theory[21] is that the driving force sets a length scale
then cannot fill the space with constant density and theand thereby also a velocity: For a given driving force
amount of material solidified in parabolic form increases0.5<A <1 there exists a characteristic channel width below

with time only liket®? rather than liket? for a truly compact
object in two dimensions.

which such a steadily growing finger is no longer possible.
However, it has been discovered recently that the spec-

A small amount of noise, however, cures this problem.trum of solutions for growth in a channel is much richer than
The tip of the dendrite is still stable against small noise buthad previously been supposed. Parity-broken solutions were
has a “convective” instability which produces sidebranches.found[9] and studied numerically in detdib,10]. A similar
Those branches continue to grow until they become indepersolution exists also in an infinite space which was called

dent primary branches a distange=D/v away from the

“doublon” for obvious reason§6]. It consists of two fingers

corners of the star. The global shape then consists of awith a liquid channel along the axis of the symmetry be-
envelope of diamond type over the dendrite tips which aptween them. It has a parabolic envelope with ragiysnd

pear a distanc®/v apart from each othgiFig. 2). The ve-

the liquid channel of the thickneds. The Peclet number
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which moves with approximately the same velocjiq.
(12] as a free doublon. The structure is fractal with
D¢=1.5 in the intermediate length scale betwegnand
D/v, and it becomes compact with the mean densityA at

the length scale larger thdp/v. The region above the solid
line, A~ € (Fig. 1), corresponds to CS structure where
doublons exist and grow faster than dendrites. This line rep-
resents the discontinuous transitions between CD and CS
structures with a jump of velocities.

V. FRACTAL STRUCTURES

For the compact structures described above noise is im-
portant only as the trigger of sidebranches. It has been sup-
posed that the tipgof dendrites or doublongemain unde-
stroyed. However, the strength of noise may be large enough
not only to trigger the sidebranches but also to destroy the
tips. In order to estimate the parameters for which it happens
FIG. 3. Seaweed structufd@. Abel and H. Miler-Krumbhaar let us look at the theory of sidebranch-formation more care-
fully. According to the result of Lang€d22] the root-mean-
square amplitudé?)Y/2 of the sidebranches on the underly-

P=vp,/2D depends om\ according to the Ivantsov relation ing parabolic intgrface generated _by thermal fluctuations
(8). The analytical solution of the selection problem for dou-depends on the distance from the tims

blons [13] shows that this solution for isotropic systems
(e=0) exists even at arbitrary small undercoolingand

(unpublished.

(£2)V2 - o7l [\ 14
obeys the following selection conditions: X 330 lp) | (19
1 p _5a Here the stability parameter is given by Eqs(9) and(11)
h~p, \/—;= \/m”P : (1D for dendrites and doublons, respectively;is the relative
0 noise strengthl{<1)

Equations(8) and(11) give 2Dd8 112 deg 112

5 =TT —7| » To=|1 | - (15
ph—doA ™, v A (12) P 5P
0

where kg is the Boltzmann constant. The tip becomes de-
If one includes finite anisotropy, doublon solutions exist stroyed if the amplitude of the sidebranches is of the order of
only above the solid line on Fig. 1, for which p; at the distance~ p, down the shaft. Thus we obtain from
Eq. (14) the following condition:
A~ e, (13

1
For e smaller than given by Eq13) the doublons obey the FN“”H- (16)
same scaling law as given by E@.2) [13]. i
It should be noted that doublons in the range of theirT
existencg13) grow faster than dendrites at the same param

etersA and e. This statement is confirmed by numerical Eq. (16). Using the valuer~ "4 [Eq. (9)], one obtains from

calculationd 6]. ; .
The numerical calculations also show that the double-Eq'(16) a line of smooth transition from CD to FD structures

fingering structure is stable against a competition betweer?n Fig. 1:

the two fingers which belong to the doublon. It means that e ~|In[| =87, (17)

the axis of symmetry and the direction of growth are stable.

Of course these directions are arbitrary in isotropic systemsfhe analogous line which separates CS and FS structures in

Itis not completely clear at the moment whether the stabilityrig. 1 can be obtained using Ed8), (11), and (16):
of the free doublon pair follows precisely the scaling law Eg.

(13). In any case this line represents a lower bound\dior A* ~|InI"| 25, (18
a givene.

We suppose that the doublons seem to represent a kdyquation(16) has the following physical meaning. Let us
point in the growth of compact-seaweed morpholdgig.  rewrite this relation, using the definition of= doD/(vptz)
3). The formation of a full CS structure evolving from a [Eq.(9)], which gives the following condition for a stable tip
growing nucleus is possible only due to noise, which triggergadius:
sidebranches, as it is in the CD structure. The resulting two-
phase structure has an almost isotropic circular envelope pi<pmsdlInl|, (19

The tips of structures will be destroyed if the stability param-
eter o becomes smaller than the critical vala& given by
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wherepy, s~ VdgD/v is the Mullins-Sekerka length describ- vpe [ A 2
ing the instability of a planar interface. One can think of the P= 501 =] - (23
right-hand side of(19) as the characteristic length scale, n

ar, of the instability set by noise The crucial point of the analysis is a modification of the

selection condition$9) and (11). The experimental and nu-
ar=pwsg|Inl'|~ydoD/v|InT|. 20 merical resultd19] (the existence of a selected envelppe

support the idea that those selection conditions do exist. Un-
The tip is stable ifp;<ar and it becomes destroyed if fortunately, we do not know any results which allow us to
p:=>ar. The same small-size cutodf depending on noise write down these modifications explicitly. But using scaling
I' was introduced in our previous papis] based on the arguments, we can write the selection conditions in the fol-
consideration of the self-similar development of perturbadowing scaling form with scaling exponegit which for the
tions induced by the Mullins-Sekerka instability. At that moment is undetermined but will be specified later in the
time, however, the existence of doublons was not known. following section. For dendrites we can write

A new approach, therefore, is required for the description

of the fractal patterns with the destroyed tips. Such destroyed 1 bt g

fractal structures have been already investigated in the \/——E Y ~€E 7 (24)
framework of Saffmann-Taylor viscous fingering and i oLfv

diffusion-limited aggregationi19]. The important result of .4 tor doublons

these investigations is that there exists an effective envelope

obtained by averaging over the structures, which has pre- 1 B

cisely the same shape as an ideal stable solution—the shape —= ~ PSP, (25)
of the Saffman-Taylor finger in isotropic systems and para- \/; VdoD/v

bolic shape in anisotropic systems. The density inside this . .
effective envelope ig< 1. The envelope has a characteristic | '€S€ refations24) and (25) transform into Eq(9) and Eq.

tip radiusp, . Because the underlying structure is fractal with (11, respectively, forp~1. .
fractal dimensiorD;~1.71 in the intermediate length scale The selec_tlpn relat|0n$24)_ and (25) may be mtgrpreted
between small-length cutoff andp,, the densityy inside &5 the conditions of selection due to an effective surface

the envelope can be obtained from the definition of the fractension. We have chosen the safién both Egs.(24) and
tal dimension(apart from a constant prefacjor (25) because in some sense the facfor® can be seen as a
renormalization factor for the capillary lengthy— dq/%?~.

To make an estimate of possible values@oitt is natural to
~p'th~ f”‘d”;'](r), assume that a anrse-grained surface energy should decrease
ap with decreasingy, giving 8<1/2 as a reasonable restriction.
Furthermore, under the speculation that not only the latent
which gives more explicitly heatL transforms toyL but also the surface energyfor the
solid-liquid interface transforms similarly intgy for the
( ar) 2-Dg coarse-grained envelope, we find thgtremains unchanged.
7o)~ =— . (21)  For this simplest model one obtaifs=0 which has been
Pt used in our previous publicatids]. We will not follow this
reasoning but will see later that with much more conclusive
Following these results, we will now try to define an av- arguments8 can be expressed in terms of bulk and surface
eraged or coarse-grained structure over such a noisy fractfithctal dimensions.
pattern and to formulate an equation of motion for this The solution of Eqs(22)—(25) gives the following for
coarse-grained structure using scaling arguments. More exieneral fixeds.
plicitly we try to estimate the characteristic length scale of For fractal dendrites
the structure and its growth velocity by considering the

steady-state motion of an effective parabolic envelope which ~ do |InT"|? 26
replaces the destroyed dendrite or doublon. The density of Pt A2 (]InC| €827~ (26)
the solid phase inside the envelope with tip radiuss given
by Eq.(21), where the small size cuto#f;- is defined by Eq. D A% 78,25(201-3)
~—— V! f=
(20), v a0 |Inlﬂ|2(|Inl"|e ) , (27)
2-D
- doD/v|InT f —= 718, y(2-Dy)
- pt)w(_w ) | 22 730~ (|Inr| 79200, 29
Pr for

The temperature inside the envelope is supposed to be close A<(|InT| 872 Pi<q, (29)

to the melting temperature. Because the dengityside the

envelope is smaller than 1, we have to replace the latent he@ihere

L by 7L. It changesA in Eq. (4) to (A/7) and modifies the

Ivantsov relation to vy=1[1-B(2—Dy)]. (30
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For fractal doublons time. Now we can see for reasonable valuegefl/2 that
the structure described by E@7) disappears from the mor-

(31) phology diagram on Fig. 1. The point is that the formal line
given by Eq.(38), which describes the transition from fractal
dendrites to the structure growing in accord to E3j), is

- do |InT"|2
Pt P(“nrlAS/Z)Zy’(fol)'

A4 5224 (2D 3 located in the region of fractal doublons, where the doublons
v o W(“”HA )27 (2D173), (32 grow faster compared to the two other structures. Thus the
0 dotted line on Fig. 1 given by conditiof85),
7(p)~ (|InC[A%)7 (2P0, (33 A~|InT|#re¥e
for
, 2—D;
A<(|In[]A5?)7 2-Pn<y (34) r=1"p2-D,"
and
_1+(5/2- B)(2—Dy) @9
A> V4| In['|A52) 7' (2D, (35) € 4[1-B(2-Dyp)]
where describes the discontinuous transition from fractal dendrites
, (FD) to fractal doublongFS) with a jump of growth veloc-
' =1[1+ (52— B)(2—Dy)]. (36) Jump ot g

ity.

All the characteristics of fractal structures depend on the
noise strengti’. We can estimatd™ in the fractal region
L}J_sing Eq.(15) and replacing; by the noise induced length
scalear from Eq. (20). It gives

Equation(35) which has no analog among E¢26)—(30) for
fractal dendrites is similar to E¢13) for compact doublons
and defines a region of parameters where the fractal do
blons do exist; on the boundary of the regi@otted line in
Fig. 1) the doublon solutions disappear.

Fractal dendrites and fractal doublons exist in the range of T'|Inr|2~ (l) (U_do
parameters given by inequaliti€®9) and (34), respectively, T,/\ D
which correspond taA<7%(p;)<1. The upper boundaries
[7(p)~1], [In['|€®~1, and|In['|A%?~ 1 correspond to the The noise strengtli’<1 because the capillary length, is
transition to compact structur¢dashed line and dash-dotted much smaller than the diffusion lengbvuv.
line on the diagram of the Fig.)1The lower boundaries in

1/2

(40)

conditions (29) and (34) correspond ton~A (and at the VI. SCALING OF COARSE GRAINED CAPILLARY
same time correspond |~ D/v). The described structures LENGTH

are fractal withD;~ 1.7 on the length scale betweap and

¢, and fractal withD;=1.5 in the range betweep, and We now will try to relate the scaling exponefitto the
D/v; the structures become compact with=A on the fractal exponents descrlb.mg thg fractal dimendinof the
length scale larger thad/v. surface and the fractal dimensi@y of the bulk of the re-

Equations(26)—(36) describe fractal dendrites and dou- SPective noisy structures which we have defined above as
blons as long aar<p;<D/v. If , becomes formally larger fractal doublons and fractal dendrites. _ _
thanD/v, the patterns are fractal with;~1.7 in the range ~ 1he idea is that the fractal dendrite as a noisy object
betweena; andD/v, and compact on the scale larger thanShould be describable in a similar form as the original com-
D/v with density s=A. The growth velocity of this last Pact dendrite because the basic Ivantsov-relation (E8)
structure can easily be obtained from EB2) by replacing '€Presents a global conservation law. The ingredients of that

7, by D/v and by settingj(p,) ~A: description such as capillary length or density inside that
envelope, however, then should be in some way renormal-

D A2(2-Dy) ized.
~ d_o W 37 We assume now that a noisy dendrite can be described by

an effective envelope with a constant mean densityf
This velocity matches to the velocity of the fractal dendriteSolid inside. Furthermore, we assume that also the Gibbs-
(27) at the line Thomson relation Eq3) has to be modified by introducing
an effective capillary lengtd, and a macroscopic curvature
A~(|InT'|€"®)727P), (38) K of the smoothed envelope. The Gibbs-Thomson relation

3) then becomes
which corresponds to the lower boundary of the condition( )

(29). The lower boundary in relatiof84) gives a transition

from fractal doublons to the structure described by &7). Ulin=
The last structure which moves with velocity given by Eq.

(37) has been already described in our previous pdfgras

representing the fractal seaweed morphology. The doublonghere 7 represents the mean density inside that approxi-
as an independent pattern were not yet discovered at thatately parabolic envelope over a single dendrite. Note that

[1—ecog40)]K, (41)

3 >
STER



2720 E. BRENER, H. MULLER-KRUMBHAAR, AND D. TEMKIN 54

the densityn averaged over the whole solidified structure onThis result looks trivial at first glance but in fact when the
scales larger than the diffusion length is still given by Eq.surface becomes fractal the lengthbecomes much bigger
(6). than the coarse-graining lengthand can be expressed by a
The first term on the right-hand side of E¢1) represents  power-law dependence:

the modification of the conservation-law due to the deviation _
from compactnessy<1. The second term is actually a defi- R
nition of effective capillarityd, through the geometrical /N/(a_r
definition of local curvatureK of the parabolic envelope.

This coarse-grained envelope should then evolve in analogyhere D is the fractal dimension of the surface and more
to Eqg. (9) (for the dendritic casebut now with the coarse- specifically in two dimensions the fractal dimension of the

Dg—1

, (48)

grained variables as perimeter of the fractal structure. A relatiorsD<D;<2
here should hold between the various dimensions. The short-
1 bt 8 length cutoffar has been introduced before.

N (42 The coarse-graini : i -
~ graining lengti now can be defined as fol
Vo doD/(70) lows. It is obvious that this length is confined between the

Note that not only the rescaled capillary length but also thdimits
densitys appear here because we have chogers a com-
mon denominator in Eq41). Combining Eq.(42) with Eq.
(24) one obtains formally the relation

ar< ;7<’5t ' (49)

because it must be bigger than the short-length cutoff and
should not be bigger than the smallest length scale appearing
along the coarse-grained envelope. A further restriction can
. . be obtained from an interesting observation made in the re-
which holds both for doublons and dendrites. lated problem of Laplacian grow{i9]. There it was found

In order to relatg sucha coarsg—grained capillaryjlength t(?hat the scaling of the noisy finger in the channel could be
the fractal properties of the growing structure we first rnuStmapped onto the theory of smooth fingers only if this coarse
mtroduce.a coarse-graining length as some arc-lgngth of graining length is taken to scale with the upper bound
the resulting effective envelope. The coarse-grained contri-

bution of curvature to the Gibbs-Thomson relati@i) on Z‘Zt- (50)
that envelope can be defined as an average over the local

curvature contribution a¢for simplicity shown for the iso-  Furthermore, théconstant density inside the coarse-grained

do~do7 2%, (43)

tropic casg envelope had to be taken equal to the maximal density ob-
_ served in the averaged density-profile. Then the scaling of
dK=d J7dIK (44) this density with the tip-radius of the envelope became con-

0 O fzdl - sistent with the fractal scaling relation Eg1). We therefore

adapt the same relations which are expected to be valid as
The integrals are performed within a neighborhood of diam{ong as the length-scales under consideration are small com-
eter/ at some point on the envelope, the path of integratiorpared to the diffusion length.
going along the real folding interface with being the rap- Combining Egs.(21) with Egs. (47), (48), and (50) we
idly varying curvature of this real interface. arrive at the desired relation for the coarse-grained capillary
The result of this integration comes directly from the geo-length
metric definition of a curvatur&=d®/dl| as follows:
~ do~dg7Ps™ 12700, (52)
[7d/7K  50(7)
[7d7 /()

(45  Comparing this result with Eq43) we obtain immediately
the final formula for the exponet depending on the fractal

Note that/'(?) here is the arc-length along the real interfacedImenSIOHSDS andDy for surface and bulk:

around some fixed point on the envelope as a function of the 1 D—1
coarse-graining length. Furthermore® is the change of B= 5( 1- 5~D )
orientation of the envelope over a small tangential distance f

/. From "[J;]IS one immediately obtains the definition of themserting this into the set of results E(Q_G) through Eq(36)
curvatureK by identifying makes all the scaling exponents depending on the two fractal
dimensionsDg and D; only. As an example for numerical
values[6] we may useD;~1.71 andD¢~1.67. This results

in a value of B~ —0.66, and the growth rate of a fractal
doublon Eq.(32) then should depend on the supercooling
A combination of this result and E¢44) gives the desired A as
result of the renormalized capillary length:

(52

50(7) /80(/)

K = .
770

(46)

D
- _ ~—A'/’, ~5.1. 53
do=do(717). 47) ’"d, v ®3
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Apparently this growth rate is faster than our earlier resulterized by noise being sufficiently large to destroy even the
[5] for fractal seaweed Eq37) because the exponeiithere  tips of dendrites and doublons. It means that the noise in-
is smaller than the previous value of 24D;)~6.9 in Eq.  duced length scalar [Eq. (20)] is smaller tharp;. In the
(37). This means that fractal doublons should be the winningange betweera; andp; the structures are fractal with a

pattern at small driving forces and small anisotropies. nontrivial fractal dimensioD; (D¢~1.71). This is the rea-
son why we called these structures “fractal.” Furthermore,
VIl. CONCLUSION these patterns are also fractal in the range betvwgesnd

) .. ... D/v but again with the trivial fractal dimensiob;=3/2.

We have discussed the structure formation in diffusion-ginaly they become compact on length scales larger than the
controlled growth. The given description refers to solidifica- ity sion lengthD/v just as compact dendritic and compact
tion of a pure undercooled melt but it also can be applied tQeayweed structures. Note that if one would perform a mea-
growth of a pure solid from solution or isothermal solidifi- \;rement of the fractal dimension on length scales around the
cation of a binary melt. More generally one may speak ofrqssover lengtfs, one would observe an interpolation be-
systems with a conserved quantity growing by diffusion. Theyyeen our two different values @ , the precise result de-
main control parameters of the process are dimensional Usanding on the interval chosen for the measurement. Since
dercoolingA and the strength of the surface tension anisoty o, the dendritic and the seaweed patterns maintain their
ropy e. It tumns out that the noise is also very important for asic identities inside the noisy region, the transitions from
the structure formation and we characterize it by the dimeng,o compact to the fractal regions represent rather smooth

sionless quantity’. _ _ _ changes in length scales.

The resulting morphology diagrafirig. 1) with axesA We have described the structures and growth velocities of
vs e classifies different kinds of structures and transitionsye destroyed fractal dendrites and doublons by introducing
between them. renormalized quantities for capillary length and density. We

The dendritic structure has pronounced orientational ordepaye quantitatively introduced an effective parabolic enve-
and it is favorable for small and relatively largee. The  |gpe following the results dfL9]. The most nontrivial part of
seaweed structure does not require anisotropy and is favoregyr analysis is a modification of the selection conditions
for largerA and smallere. The transition_ be_tween th_ese WO [Egs. (24) and (25)]. At this point we have used scaling
structures takes place around the solid line on FigEG.  arguments which leave us only with one undetermined scal-
(13)] which is continued by the dotted lif&q. (39)] intothe  jng exponents. This exponent subsequently is determined
fractal region. This transition is discontinuous with a jump ofby the fractal dimensionB for the surface and; for the
velocities since the doublons move faster than the dendritgg|k of the growing pattern.
as soon as they exist. The main element of the dendritic The scaling arguments given here for two-dimensional
structure is a dendrite with a parabolic {iBig. 2, and the  growth patterns formally can be extended in a straightfor-
main element of the seaweed structure is a doulfiaq. 3. \ard fashion to three dimensions. For dendritic structures
For compact dendritic and compact seaweed structures thgjs seems to be perfectly permissible since the basic growth
tips of dendrites and doublons are stable against the noisgys are rather similar in two and three dimensif23,24].
which is relatively small in these regions. The noise triggersqr the seaweed patterns much less is known since our pre-

sidebranches which fill the space and make the structur§gninary results there are still rather speculative. We hope to
compact so that the mean density of solid phasg=sA on  yeport on this in the near future.

the length scale larger thdd/v. In the intermediate region
of lengths between tip radiys and diffusion lengttD/v the

struc;ure can be describeq as a fractal but with a trivial frac- ACKNOWLEDGMENTS
tal dimensionD;=3/2 which comes from the parabolic
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