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Short-time dynamics of colloidal suspensions
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We report numerical simulations of the velocity autocorrelation fundfi®hCF) for tagged particle motion
in a colloidal suspension. We find that the asymptotic decay follows the theoretical expression for the VACF
of an isolated particle, but with the suspension viscosity replacing the pure fluid vis¢aisiong times the
suspension behaves, so far as a tagged particle is concerned, like a fluid with the suspension viscosity—as an
“effective fluid” ). While physically appealing, this observation is hard to reconcile with a recent theoretical
prediction that at long times the VACF in a suspension should be the same as the VACF at infinite dilution. It
also differs, in a rather subtle manner, from a scaling rule which has been used in the analysis of experimental
and computer simulation results. From the scaling behavior of the VACF we conclude that effective fluid
behavior only occurs on a time scale somewhat longer than the time taken for transverse momentum to diffuse
a particle radius. This contrasts with the findings of earlier workers who concluded that effective fluid behavior
is already observed at much shorter timex1063-651%96)03909-9
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I. INTRODUCTION N4 5
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A colloidal suspension can be considered as a mixture in 0
which the particles of one component are much bigger thaivhere ¢ is the proportion of space occupied by the Brown-
those of all the others. If the size difference is sufficientlyjan particles.

large, the smaller components can be thought of as forming Knowledge of the diffusion coefficient allows us to de-
fluid which occupies the space between the big particles. Thecribe the behavior of Brownian particles on a time scale
larger particles are often referred to as Brownian particlesiong compared to the time it takes velocity correlations to
named after the botanist Robert Brown, who was the first tqlecay. If one assumes that the motion of the Brownian par-
observe the apparently random motion of small particles susicle can be modeled as a Markovian process, i.e., that a
pended in water. Starting with Brown’s observation, our un-random force acts on the particle at one instant which is not
derstanding of these systems has evolved in an interestingbrrelated with the random force at any previous instant, one
series of historical jumps. It was not until over seventy yeargan use a classical Langevin equation to describe Brownian
later that Einsteifi1] proposed that the motion of the Brown- motion [4]. By definition the velocity autocorrelation func-
ian particles(Brownian motion arose from the accumulated tjon in d dimensionsC,(t) is given by

effects of individual collisions between Brownian particles

and the particles of the host fluid. This was strong evidence 1

that fluids were molecular in nature, a view not universally Cy(t)=5{v(0)-V(1)), )
accepted at that time. Einstein was also able to make

progress with the theory of transport processes in Browniawherev(t) is the particle velocity. The Langevin approach
suspensions. First he derived the expression for the diffusiopredicts an exponential decay for the velocity autocorrelation

coefficientD, of a spherical patrticle in the dilute limj2] function (VACF), which, in three dimensions, has the form
97'0
_ kT n C,()=C,(0)exp — 5/, €Y
O 6wy’ P

wherep* is the ratio of the particle density to the fluid den-
wherea is the particle radius ang, is the shear viscosity of Sity, C,(0) the initial value of the VACF, and, a dimen-
the solvent. This is known as the Stokes-Einstein diffusiorsionless time parameter. This time parameter is defined by
coefficient. Secondly3], Einstein derived the first order cor- 7o= vt/a®, wherev(= 7,/p) is the kinematic viscosity. The
rection to the ratio of suspension viscosify, to the solvent velocity autocorrelation function can in turn be related to a
viscosity, more macroscopically observable quantity, the mean-square
displacemeni(t),

* . . . A(t) t 1t
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At long times the second terfalmost alwaysgoes to zero, the time scale on which the particles significantly change
so by making use of the Einstein definition of the diffusion their positions. The time scale for particle displacement

coefficient we have can be characterized by the time taken for a particle to dif-
At . fuse a distance of its own radiu§=a2/D0. Making use of
D={immL)=f C,(t")dt’. (6) the Stokes-Einstein relation, Eq(l), gives us 7,
Tfadt Jo 7 =9mv/2p*kT. For particles dispersed in a waterlike fluid at

o _ room temperature this implies that the conditigg® 7, is
Clearly, as long as the time integral of the VACF is not asijl| reasonably well satisfied, even allowing for the effect of
constant, it makes no sense to describe the motion of a pajne long-time tail, for particles down to aboutAm. For
ticle as diffusive. The Langevin result implies that this time'timest<rp, the regime of “short-time” dynamics, transport
which we denoter, , should be of the order,~p* »/a’.  coefficients can be calculated assuming that the configuration
However, when Alder and Wainwrighb] studied the decay s essentially fixed. Within this approximation considerable
of the VACF in a hard-sphere fluid they found that ratherprogress has been made in deriving higher order terms in the
than decaying exponentially, as the Markovian theory pre«yjria| expansion” of both the short-time single-particle dif-
dicts, it had a surprisingly slow algebraic decay of the formfysjon coefficien{19] and the short-time suspension viscos-
Cv(_t)Nt_d/z- Alder and Wainwright also provided the expla- ity [20]. with advances in experimental techniques it is now
nation for what was to become known as the “long-time possible to study the dynamics of Brownian particles on
tail.” Roughly speaking, momentum is con;erved in the ﬂPidthese short-time scales and, indeed, the experim¢a1a)
so any momentum transferred to the fluid by the particlgheoretical[19], and numerica[22] results, particularly for
cannot just disappear. Part of it diffuses slowly aw#lye  the VACF, all seem to agree quite nicely. In this article we
remainder is rapidly carried off by the propagation of soundconsider the short-time regime. Hence where, in the remain-
waves. While this is happening the particle feels an addi-der of this paper, we talk about “long-time” behavior we are
tional push from the fluid in its original direction of motion always referring to times for whichy, although greater than
which in turn gives rise to the slow decay of the VACF. unity, is still much less tham, .
Consequently, the “random” force exerted by the fluid ona | recent experimen{s8,23 the transient behavior of the
Brownian particle is not quite as random as one might havenean-square displacement was studied at very short times,
imagined, it actually depends on what was happening to thgjying detailed information about how the asymptotic regime
particle long ago—the process is non-Markovian. Althoughis reached. These studies have provided another surprise. Al-
Alder and Wainwright originally considered a hard-sphereinoygh there is a strong analogy between colloidal suspen-
fluid, the same argument is not only quantitatively correctsions and simple fluids, there is at least one way in which
but also quantitatively much more important for a colloidal they should fundamentally differ. The interactions between
suspension. In the years since their discovery, long-time tailgarticles, which are after all the reason that transport coeffi-
have developed into something of a cottage industry. Thgjents in a concentrated suspensions differ from their values
theory was recast more formally in terms of mode couplingiy the dilute limit, are of a different nature. Whereas inter-
[6] and kinetic theory[7] and tested both experimentally molecular forces between individual molecules are essen-
[8—11 and by computer simulatiofi2—1§. For a colloidal 5}y instantaneous, colloidal particles also influence one an-
particle in an incompressible fluid Hauge and Martin-Lo giher via the fluid occupying the space between them. The
[17] derived the Laplace transformed equations of motion forspeed at which these interactions propagate depends on the
the entire time range. In three dimensions the explicit |°n9‘properties of the fluid itself. As “hydrodynamic” interac-

time decay of the VACF is given by tions between particles develop by the propagation of mo-
. mentum through the fluid, they were generally assumed to
~_C(0)p* 5, develop on a time scale determined by the kinematic viscos-

Cu,long(TO)_WTO : (7)

ity of the fluid, i.e., 7o~ 1. However, by comparing the short-
time dynamics of particles in a concentrated suspension with
Again these results have been verified by experini@Bt  those of an isolated particle, recent experimefit8,23
and computer simulatiofiL4]. found no evidence for such a time lag. In fact, it was found
The existence of long-time tails may seem interesting, if &hat the two deviated even at the shortest times that could be
little esoteric. However, they have important practical consemeasured £,<<1). Zhu et al. [18] also found that all the
guences. For instance, the presence of the long-time ta#ixperimental data could be collapsed onto the single-particle
means that the diffusion coefficient in quasi-two-dimensionakurve if the time was rescaled in unitsaﬂ/vd,, wherev,, is
fluids, such as free-standing films, does not exist. Anothethe kinematic viscosity of the suspension. The conclusion
consequence, of direct relevance for the present study, is thaias, that even on time scales wherg=tv/a%)<<1, a
purely diffusive behavior of a colloidal particle only occurs colloidal suspension behaves like an “effective fluid,” by
on a time scale that is several orders of magnitude longewhich we mean a fluid with the viscosity of the suspension.
than one would expect from the Langevin equation, irg., This is surprising because, if the hydrodynamic interactions
>p*a?/v (this is clearly illustrated by the experimental re- develop on a time scale,~1, then one would expect that
sults of Zhuet al. [18] for instance. the suspension can only behave as an effective fluid on time
Although long-time tails greatly extend the time scalescalesty>1. Experiments performed by Kao, Yodh, and
over which velocity correlations influence Brownian motion, Pine [23] probedD(t) on very short time scales, down to
generally speaking there is still a convenient separation 0fy<<0.1, and indicated that the same scaling worked in this
time scales between the transient effects of the VACF andime regime. However, in Ref23] it was pointed out that
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other scalings could perform equally well. Finally, computerdiffusion coefficientD(t), defined adD(t)=A(t)/2dt. The
simulations performed by Ladd 4,24 also seemed to con- two functions are, however, related by E§), so any scaling
firm that the scaling of Ref[18] is indeed obeyed at very which applies toD(t) also corresponds to some scaling for
short times. One possible explanation has been proposed Iy, (t). It is therefore natural to consider what the scaling for
Espaml, Rubio, and Zuiga [25,26 who suggested that the D(t) applied by Zhuet al. [18] would imply for the scaling
speed of sound and not the kinematic viscosity determinesf the VACF. First, we consider a particle in the dilute limit
the time scale at which the hydrodynamic interactions propaand assume that we have measupdtl). We then apply the
gate. In a typical colloidal suspension, sound wave propagascaling of Ref[18] to collapse our data onto a single curve.
tion is several orders of magnitude faster than vorticity dif-To this end we first scale the time fromto 7, to give us
fusion. This, they suggested, could make effective-fluidD(7,). This corresponds to scaling the time for the VACF
behavior possible in the very short-time regime. from t to 7, and multiplying C,(t) by a? v (the multiplica-

A second topic that we address in this paper is the longtive factor enters because scaling the time should not change
time behavior of the VACF in concentrated suspensions. Althe integral of the VACF Next we divide by the diffusion
though the result for the VACF of a single particle is well coefficient at infinite dilution to yield the function
known, there remain contradictory theoretical results for they(ry) =D (7,)/D,. This step simply corresponds to dividing
VACF in a concentrated suspension. A calculation perthe VACF by D, so the scaled VACFK(r,) corresponding
formed by Milner and Liy/27] suggested that the effective- tg g(7) is simply
fluid argument is correct, at least to ordérin the volume
fraction (they further speculated that it was generally jrue a’C, (o)

On the other hand Cichocki and Feldertj@B,29 argued f(ro)=—HF5— ®

that, again to orde#, the long-time form of the VACF for a 0

particle in a concentrated suspension shoulddesticalto  \yhich, if we substitute the Stokes-Einstein result g,

the result at infinite dilution. As Cichoki and Felderhof pocomes

pointed out, this result is hard to reconcile with the scaling

that is reported in experiments and computer simulations. 9 C, (7o)

The result of Ref[29] is also somewhat counterintuitive, f(To)=§ c.(0)"
because it implies that, at long times, a particle no longer v
experiences the presence of its neighbors. Cichocki an
Felderhof suggestef®9] that the experimental results cov-
ered times too short for the asymptotic long-time tail to ad-
equately describe the VACF. Yet, the data obtained by Zh%0

et al.[18] did at least extend to times long enough for thempension viscosity,. We define this reduced time, ,, t0

to clegrly observe the Iong-t|_me tail in the c_hlute limit. distinguish it from the reduced time defined in terms
In light of these observations and theories we have per-

formed computer simulations in an attempt to clarify theo.f .}he SOIng wscosnly Vo-h They fthen foIIowzdd_a
issues raised. First we wish to examine more closely thg'mrar proce ure—rescamg_t € tlme_ “1”_‘0 7o NG dI-
scaling proposed by Zhat al. [18] and what it implies for yldmg by Dy, where Dy is the diffusion coefﬂmen;
the velocity autocorrelation function. This leads us to pro-In the _suspensmn—to give the scaleq func;non
pose a slightly different scaling. Finally we describe numeri-g¢(70v¢)[_D(T°v¢)/D¢]' In the experiments, this function

cal results for the VACF of a Brownian particle and studyWas found to be equal to the single-particle functig(r).

both the short- and long-time behavior in a concentrated Su§o|lowmg the same argument as before, the scaled VACF
pension., +(7T0,4) corresponding t@ (7o 4) is now

(€)

g/here we have also spt = 1. The scaled normalized VACF
is therefore only a function of, as expected.

What Zhu et al. did was to extend this argument to a
ncentrated suspension by definingin terms of the sus-

£ )_azcu,¢(7'o,¢)
IIl. THE SCALING OF THE VELOCITY AP T, Dy
AUTOCORRELATION FUNCTION

(10

wherev, is the suspension viscosity ai} 4(t) the VACF

in the concentrated suspension. However, if we now try to
eI'EﬂnateDd) we have a problem because the Stokes-Einstein

Suation is not valid for a suspensigat least on the time
cale we are considering herdy introducingDgg 4, the

Stokes-Einstein diffusion coefficient for a single particle in a

fluid with the suspension viscosity, we can write

The VACF for an isolated Brownian particlsee for in-
stance the results derived by Hauge and Martif-L17])
depends on the same three parameters as the Langevin re
[Eg. (4)]. To recapitulate, these parameters are the initia
value of the VACFC,(0) the density ratip*, and the re-
duced timery. In reality p* is a parameter which cannot
differ much from unity—otherwise the colloid would be
unstable—so we consider it fixed. Having done so, the
VACF becomes a unique function ef andC,(0), which is fy(T0,0) = D
in principle known. Even more simple is the normalized Vo sE 4
VACF C,(t)/C,(0) that becomes a function af, only. We
shall call this functionf (7).

The scaling behavior of the mean-square displacement is 9C, ,(r0,) D
not usually discussed in terms of the velocity autocorrelation fo(To0)=5 Zv.4 04 “SES
function. It is more usual to consider the time-dependent #72 Cl0) D,

a’C, 4(704) Dse g
D¢ ’

(11)

which, following from the Stokes-Einstein equation, gives

(12
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The scaling Zhwet al. observedy (7o 4) = 9( 7o) is equiva- . DESCRIPTION OF THE MODEL
lent to sayingf ,(7o4) =f(70), which in turn implies that
C,.6(70,4) = (D 4/Dsg 4)C, (7). The implication is that the
VACEF looks like the single-particle VACF for a particle in a
fluid with the suspension viscosityut multiplied by a factor
of D,/Dggy. If Dy/Dggy is equal to unity the scaling
implies effective-fluid behavior, otherwise it does not. But,
as we mentioned before, the Stokes-Einstein equation do
not yield the correct short-time diffusion coefficient for a
suspension of colloidal spheres, and heBgg/Dgg ,# 1.

It is important to note that if the suspension behaves lik

We have used a hybrid hard-sphere, lattice-gas model to
simulate suspensions. The initial configurations are gener-
ated by a Monte Carlo simulation of a hard-sphere fluid. In
keeping with our assumption of short-time dynamics, we im-
pose the time-scale separatigp< 7, so the positions of the
colloidal particles do not change during a run. The time-
%Sependent hydrodynamic interactions between the spheres
are computed by embedding them in a simple model fluid,
qnamely, a lattice gas simulated at the Boltzmann level. The
: : . . attice-Boltzmann model is a preaveraged version of a
Zrc])szt]c:gt;l)\;ert]iclclf:ad{/\/t:ir?:vc\)/\;ﬁast(::thlr; gngvﬁlr::g;w)vgn: _':3% T:cn Iattice—gqs cellular automato(rlLGCA) model of a fluid of

oo 10 .the type introduced by Frisch, Hasslacher, and Porigal
we suppose for a moment that the_effectlve—flwd argument iy lattice-gas cellular automata the state of the fluid at any
cqrrect, then aalong t'mef’ the sc_almg pro_posed by ehai. (discrete time is specified by the number of particles at ev-
will work if an “apparent” viscosity ves given by ery lattice site and their velocity. Particles can only move in
a limited number of directiongtowards neighboring lattice
2/3 pointg and there can be at most one particle moving on a
) =v,a?? (13)  given “link.” The time evolution of the LGCA consists of
two steps; propagation, during which every particle moves
one time step along its link to the next lattice site, and col-
is used to definery, instead of the suspension viscosity lision, where at every lattice site particles can change their
v,. This makes the derivatives of the scaled function idenvelocities by collision(subject to the condition that these
tical to those of the single-particle function and, since bothcollisions conserve the number of particles and momentum
functions are approaching the same asymptote, they will coand retain the full symmetry of the latticeln the lattice-
incide at long times. Because the valuenois close to unity ~ Boltzmann methodsee, e.g.[31]) the state of the fluid sys-
[22], the apparent viscosity needed to make the functionéém is no longer characterized by the number of particles that
coincide at long times only differs from the suspension vis-move in directiorg; on lattice siter, but by theprobability of
cosity by a small factofranging from 2% atp=0.05 to 14% finding such a particle. The single-particle distribution func-
at ¢»=0.30). Such a small effect may well be compatibletion n;(r,t), describes the average number of particles at a
with the uncertainty in the experimental data and is ratheparticular node of the lattice, at a timet, with the discrete
unimportant. However, at short times the two functions will velocity ¢;. The hydrodynamic fields, mass densjty mo-
differ if eitherthe effective-fluid assumption breaks domn  mentum densityj, and the momentum flux densitfl are
the single-particle curve is no longer adequately described bgimply moments of this velocity distribution:
the long-time tail. This would make it difficult to draw any
i(lerlflmte conclusions about the onset of effective-fluid behav- pzzi n, j= zl nic , H:Z nice . (15)

Before we go on to describe our numerical simulation, we
would like to suggest a more appropriate scalingdgt) in ~ The lattice model used in this work is the four-dimensional
an effective fluid. We mentioned earlier that applying the(4D) face-centered hypercubi@=CHC) lattice. A two- or
isolated particle scaling to particles in a suspension leads tdree-dimensional model can then be obtained by projection
an inconsistencjsee Eq(12)]. The fact '[ha[)q5 is not equal in the number of requi.red di_mensions.. Thi§ FCHC model is
to Dsg 4 means that it is impossible to scdlt) in a sus- used because three-dimensional cubic lattices do not have a
pension onto the single-particle curve over all times. Wehigh enough symmetry to ensure that the hydrodynamic
therefore propose a slightly different scaling which cures thigransport coefficients are isotropic. The time evolution of the
problem by using an additive, rather than a multiplicative,distribution functions; is described by the discretized ana-
constant logue of the Boltzmann equatid32]

Dy

Veff= V¢< DSE¢

ni(r+¢,t+21)=n;(r,t)+A;(r,t), (16)

94(T04)= (14 whereA, is the change im; due to instantaneous molecular
collisions at the lattice nodes. The postcollision distribution
n;+ A, is propagated in the direction of the velocity vector
Adding a constant t® (7 4) is equivalent to the assumption ¢;. A complete description of the collision process is given
that (at long time$ the VACF in a concentrated suspensionin [33]. The main effect of the collision operatag(r,t) is to
looks like the scaled single-particle function. The short-time(partially) relax the shear stress at every lattice site. The rate
deviation from effective-fluid behavior integrates to a con-of stress relaxation, or equivalently, the kinematic viscosity
stant offset ing 4( 7o ,) . Effective-fluid behavior sets in when v, can be chosen almost freely.
this deviation has decayed to zero. It is in this regime that the The motion of the colloidal particle is determined by the
above scaling should hold. This is discussed in more detail ifiorce and torque exerted on it by the fluid. These are in turn
the Appendix. a result of the stick boundary conditions applied at the solid-

D(r D
( 0“”)+(1— ¢ )
Dseg Dseg



2708 C. P. LOWE AND D. FRENKEL 54

fluid interface. For a stationary boundary a simple bouncesystem with net momentum, decays to zero and is indepen-
back rule performed on boundary links enforces the sticldent of system siz@ip to the time required for momentum to
boundary condition. Boundary links are links connecting lat-cross the simulation bgx
tice sites inside and outside the solid object. Stick boundary
conditions with a moving boundary can be performed using
the Boltzmann analogu&3] of a scheme originally used for
lattice gase¢34]. For a moving boundary the bounce-back  The simulations were performed using two different sets
rule is still applied but some of the particles moving in the of parameters. It is convenient to define these parameters in
same direction as the solid object are allowed to “leak” terms of lattice units, such that the lattice spacing, time step,
through, thus matching the fluid velocity to the object veloc-and particle mass are all equal to unity. For low densities
ity at the boundary. The equations of motion of the colloidal(0.05< ¢<0.2) we used a sphere of radius 2.5 in a fluid of
particle are integrated according to a r{lés] whereby the  kinematic viscosity 1/6 and fluid density 24. For higher vol-
force and torque which act on an object give the same neWme fractions (0.28 ¢=<0.30) we used a sphere of radius
velocities for both particle and fluid. This method gives us4.5 in a fluid of kinematic viscosity 1/2 and fluid density 24.
considerable ﬂEX|b|I|ty in ChOOSing the denSity ratio, so for Using a |arger representation of a Sphere gives a better ap-
our simulations we chosg* =1—a good approximation t0 proximation to the hydrodynamic interactions at small par-
the value one would expect in an experimental setup. ticle separations. One might expect this to become important
Simulating the lattice gas at the Boltzmann level has &t high densities which is why we chose to switch to the
number of advantages over the LGCA approach, for inqarger particles(although the results obtained faf=0.2,
stance, the model is Gallilean invariant whereas a lattice gaghere we tried both representations, were very similar
iS not. However, as a result of the ensemble averaging aﬂ'here is an approxima’[ion involved in mappmg a Sphere
spontaneous fluctuations in the fluid disappear, i.e., thento the lattice which means that the object we end up with
lattice-Boltzmann model is purely dissipative. In the absencéggks like a sphere with a slightly different radiag com-
of any externally imposed fluctuations a Brownian particle inpared to the nominal radits. The effective radius also de-
a Boltzmann fluid just sits there and does nothing. FluctuapendS on the fluid viscosity. This is discussed by Ladd in
tions can be incorporated in the lattice-Boltzmann model byeference[m]_ We calculated the effective radii of the
adding a suitable random noise term to the stress té2ddr  spheres by calculating the VACF of an isolated particle in a
but we have chosen a slightly different approach. We makeyyid with the appropriate viscosity, and integrating it to ob-
use of Onsager’s regression hypothesis and watch the decgyin p,. We then took the values @, along with the mass
of a smgle _fluc_tuatlon which we impose on thatherwis@  gpg viscosity and used the Stokes-Einstein equéion(1)]
purely dissipative system. A similar approach was used 1qq define the effective radi*. The values we obtained were
calculate the stress-stress autocorrelation function in Reb 46 and 4.20 for spheres of nominal radius 2.5 and 4.5,
[15]. This has the advantage of not adding any noise to thgaspectively. For all the calculations we were careful to
system, although we still need to average over different congjiminate the effects of the periodic boundary conditions
figurations. Our procedure is as follows. We take a configu-(which are largeby only calculating the VACF up to times
ration of hard spheres in a stationary fluid and assign eacfass than the time taken for a sound wave to cross the simu-
one a velocity taken from a Maxwell distribution. We then |ation box. For calculations at non-negligible volume frac-
calculate the VACF for each particle as its velocity decaysion this time was significantly reduced because the speed of
and finally we average the function over all particles. Onesoyng increases with volume fraction. The box was typically
small point is that we do not constrain the total momentum ings length 150 and the speed of sound in the pure fluid was
the system to be zero because this introduces an artifici%ways equal to /2.
anticorrelation between the velocity of an individual particle  Ejrst we considered the time scale on which the effects of
and the velocitie_s of its neighbors. However, since we have g,q hydrodynamic interactions could be seen. To do this we
net momentum in the system the VACF does not decay 1@a|cylated the VACF for a single particle and then the VACF
zero. To correct for this we perform the calculation in theg,, particles in a low concentration suspensign=0.01). In
frame of reference where the total fluid momentum remainsf;ig_ 1 we have plotted théabsolutg percentage difference
zero, so the correlation function we actually calculate is  parwveen the two VACE's in terms of the reduced time It
is clear that the difference begins to appear at the shortest
1 times we can calculate and certainly for timgs<1. This is
_- . the same kind of behavior observed experimentally by Zhu
Cu(t) d (Av(0)-Av(D)), (17 et al.[18] and by Kao, Yodh, and Pirf@3], although we are
looking at shorter times and lower volume fractiofmur
volume fraction here is actually lower than that typically
where Av(t) is the velocity of the particle relative to the used experimentally as the infinite dilution regufo, our
velocity of the fluid. If the total momentum of the colloidal simulations confirm that the hydrodynamic interactions
particles at a given time ig(t) then the total momentum manifest themselves at times very short compared to the time
gained by the fluid at that timeAp(t) is just taken for transverse momentum to be transferretypécal
p(t=0)—p(t). The velocity of a particle relative to the fluid interparticle separation. This in itself does not mean that
velocity Av(t) is therefore equal tov(t)—Ap(t)/(Vp), some faster mechanism is required. There are always par-
wherep is the density of the fluid an¥f the volume of the ticles at very small separations, which can interact quickly,
system. This procedure gives a VACF which, starting from aeven in extremely dilute systems. To see if interactions de-

IV. RESULTS
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FIG. 1. The percentage deviation of the linear and angular ve- FIG. 2. The velocity autocorrelation functi@®, (7,) divided by
locity autocorrelation functions in a suspension from their values inthe theoretical long-time resut, jonq( 7o), Which is defined in the
the dilute limit, plotted as a function of the reduced timg The  text. The results were obtained at variou volume fractignghe
volume fraction of colloidal particles in the suspension wassolid line with no error bars, labeled=0, is the single-particle
¢=0.01. result. The dashed lines are the asymptotic values of
C,(70)/C, 1ong( 7o) ONe obtains by replacing the fluid viscosity with
veloping by sound wave propagation are necessarily respofihe suspension viscosity in the equation for the long-time tail.
sible for this observation, we performed an identical calcu-
lation for the angular velocity autocorrelation function (0.05, 0.10, and 0.)5where the asymptotic value has not
(defined in the same way as the VACF but replacing thebeen reached during the simulation, we applied the same
translational with the rotational velocjtyln contrast to a extrapolation procedure described above. At higher volume
linear velocity fluctuation, a rotational velocity fluctuation fractions (0.2, 0.25, and 0.30the data has, to within the
produces no sound wave, so the speed at which hydrodsstatistical errors, reached a plateau. In this case any extrapo-
namic torques between particles develop cannot depend dation would of course be meaningless so we took the as-
sound wave propagation. Our results for the angular VACF/mptotic value to be the plateau value. Armed with the long-
are also plotted in Fig. 1. Clearly the angular VACF behavegime form of the VACF we made the effective fluid
in the same way as the linear VACF, the hydrodynamic in-assumption and used E,) to convert them into viscosities.
teractions begin to influence the decay at very short timesThe values we obtained are plotted in Fig. 3. For complete-
We know that sound wave propagation is unimportant in thimiess we have also plotted valuesdf /D, obtained by in-
case so we can conclude that it is not needed to explain thegrating the VACF. Clearly both sets of values are in agree-
behavior we observe for the VACF. ment with those calculated by Ladf22]. Our results,
Next we look at the form of the decay of the VACF in a therefore, strongly suggest that in a concentrated suspension
concentrated suspension. In Fig. 2 we have plotted the vahe VACF at long times looks like that of a single particle in
locity autocorrelation function divided by the theoretical a fluid with the suspension viscosity—just as predicted theo-
long-time decay for a particle in the dilute linfgiven in Eq.  retically by Milner and Liu[27]. This result may seem un-
7)]. For the single particle the curve appears to be approachsurprising, but we recall that it contradicts the theory of
ing unity as we would expect. If we extrapolate to infinite Cichocki and Felderhof28,29, according to which all
times by fitting C,(70)/C, 1ong(70) to a polynomial of the curves in Fig. 2 approach the single-particle asymptote. It
form a+ b751+ 0752 then we obtain asymptotic values of also differs slightly from the scaling proposed by Zéiual.
1.006+0.01 and 0.994 0.01 for the spheres of nominal ra- [18] which would have the asymptotes deviating from the
dius 2.5 and 4.5, respectively. This extrapolation procedureffective-fluid asymptote by a factor d,/Dgg,, for
is illustrated in Ref[16] and the quality of the extrapolation which we see no evidence.
here is comparable. Having established that all is well for the Our simulations suggest that the scaled funct@ygr,)
single particle we now wish to consider the other curves iris identical to the single-particle functio@,(7,) at long
Fig. 2, those obtained for non-negligible volume fractions.times(we have shortened the notation for the time scale de-
First, the plots are approaching an asymptote, indicating thdined in terms of the suspension viscosity 4g). We also
thet ™2 tail is still present in the concentrated suspensionsknow that at short times the two functions must differ be-
In Fig. 2 we have also plotted the asymptotic values expectedause they have different integrals. The question now is, af-
if the long-time decay is given by E¢7) but with the sus- ter how long do the two coincide or, equivalently, when does
pension viscosity replacing the pure fluid viscosity, i.e., if thethe suspension start to behave like an effective fluid? To
suspension behaves like an effective fluid. The values for thanswer this question we have plott€d(,)/C, jong(74) as
suspension viscosity as a function of volume fraction werea function of 7,. The data for the spheres with nominal
taken from Ref.[22]. Again, the curves appear to be ap- radius 2.5 are plotted in Fig. 4 and for the spheres of nominal
proaching the correct asymptote. At low volume fractionsradius 4.5 in Fig. 5. Because we have an uncertainty as to the
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FIG. 3. Values for the transport coefficients in a colloidal sus-  FIG. 4. The velocity autocorrelation functid®(r,) divided by
pension of volume fractiors. The circles are the diffusion coeffi- its long-time decayC, jong(7,) (Which was calculated by assuming
cient D, divided by the single-particle valuB,. Values for the that the suspension behaves like an effective fluid at long jimes
diffusion coefficients were calculated by integrating the velocity The reduced time  is defined in terms of the suspension viscosity
autocorrelation function. The squares are the solvent viscagity v, and the effective particle radius® by r¢=tv(¢)/a*2. These
divided by the suspension viscosity,. Values for the suspension results were obtained for spheres with an effective radius of 2.46.
viscosity were calculated by assuming that the suspension behav@&se solid lines are the results for the isolated particle. The gray
like an effective fluid at long times. Finally the pure fluid viscosity regions are the results for non-negligible volume fractions, with
divided by an effective viscosity.¢;. The effective viscosity was volume fraction¢ increasing from top to bottom. The regions are
calculated by applying the scaling procedure of #iwal. to data  defined by our upper and lower estimates for the suspension viscos-
for the time-dependent diffusion coefficient. Filled symbols indicateity. To assist clarity the data for volume fractiogs=0.05, 0.10,
results for spheres with an effective radius of 2.46 and open symand 0.15 have been displaced in thdirection by 0.9, 0.6, and 0.3,
bols for spheres with an effective radius of 4.2. The solid lines areespectively.
splines through the values calculated by L48d).

work. However, for the data at the bottom of the figures we
true asymptote(or equivalently viscosity we have scaled have performed the same scaling using the valub pfD,
the data using both our upper and lower estimates for thé&om the simulation, but allowing the suspension viscosity to
viscosity. In Figs. 4 and 5 we show this by plotting the be a free parameter. By doing so we can achieve a convinc-
region bounded by these two values. Both figures suggestg looking result but we have to use the wrong viscosity to
that VACF cannot be collapsed onto the single-particle curveachieve it. The apparent values for the viscosity obtained by
for times less than those at which the single-particle curvdollowing this procedure ;¢ are plotted in Fig. 3, along with
itself reaches its asymptotic decay. The long-time tail apthe correct values. There is clearly a systematic deviation
pears to establish sooner, both literally and proportionatelybetween the apparent viscosity, derived from this scaling,
in the concentrated suspensions. Remembering that our defind the true viscosity.
nition of effective-fluid behavior requires that these functions
coincide, our simulations suggest that this is only the case for
reduced times where the long-time tail adequately describes
the VACF of a single particle, i.e., approximatety>4. By calculating the velocity autocorrelation function for a

It is easy for us to look at the velocity autocorrelation tagged particle in a colloidal suspension, we have shown
function but it is a quantity that is not so easy to determinethat, as far as the particle is concerned, at long times the rest
experimentally. With this in mind we have used HB) to  of the suspension behaves just like a fluid with the suspen-
convert our results for the VACF into time-dependent diffu- sion viscosity. This we refer to as effective-fluid behavior.
sion coefficients. These are plotted in Fig. 6 for the sphere$Ve have shown that although the VACF in a dilute suspen-
with nominal radius 2.5, and in Fig. 7 for the spheres withsion differs from the single-particle VACF at very short
nominal radius 4.5. We have used three scalings for the datémes, effective-fluid behavior only begins when the viscous
(which has also been offset for clanityFor the uppermost time scale for the suspensiary exceeds values of the order
data we have scaled(t) according to Eq(14). As we ex-  four. From these observations, our arguments about the scal-
pected from our analysis of the VACF, the scaling works,ing of the mean-square displacement follow. Our data are not
but only for times7,>4. For the data in the middle of the quite compatible with the scaling of the mean-square dis-
figures we have applied the scaling proposed by 2hal.  placement used in Refsl8,24]. However, the incorrect scal-
using values foD , and v calculated from the simulation. ing for the mean-square displacement can be made to look
These of course have a statistical error associated with themather compelling, even at short times, by scaling the time
The influence of these errors on the scaled function is of th&vith a slightly incorrect viscosity. So, by just looking at the
order of the symbol size. Clearly the scaling does not quiteanean-square displacement it would be very easy to conclude

V. DISCUSSION
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FIG. 5. The velocity autocorrelation functidd, (7,) divided by FIG. 6. The scaled mean-squared displacergén},) as a func-

its long-time decayC, ;ong(74) (Which was calculated by assuming tion of the reduced time-,. The upper scaling is the scaling we
that the suspension behaves like an effective fluid at long jimes propose in the texdisplaced by 0.3 in thg direction). The middle

The reduced timer,, is defined in terms of the suspension viscosity scaling is the scaling proposed by Zktial. using our calculated

v, and the effective particle radites* by 7,=tv($)/a*% These value for the suspension viscosifgisplaced by 0.1 in thg direc-
results were obtained for spheres with an effective radius of 4.2Qton). The lower scaling is the scaling proposed by ZHual. but

The solid lines are the results for the isolated particle. The grayith the suspension viscosity as a free parameter. The data were
regions are the results for non-negligible volume fractions, withobtained with spheres of effective radius 2.46. In each case the solid
volume fractiong increasing from top to bottom. The regions are line is the single-particle result.

defined by our upper and lower estimates for the suspension viscos-

ity. To assist clarity the data for volume fractios=0.20 and
0.25 and have been displaced in thalirection by 0.6 and 0.3,
respectively.

time taken for vorticity to diffuse a particle diameter. At

shorter times the behavior of a particle in the suspension
cannot be described by rescaling the isolated particle result.
At higher viscosities, where the suspension viscosity is sig-

that effective-fluid behavior begins at much shorter timedhificantly higher than the fluid viscosity, this time becomes
than our results for the VACF suggest. Our results are there-
fore consistent with the experimental results but, by consid- : : : : : . :
ering the VACF rather than the mean-square displacement
itself, we arrived at a slightly different conclusion. However,
our data are hard to reconcile with the theoretical work of
Cichocki and Felderhd28,29 who stated that, to ordef in 0.9
the volume fraction, the asymptotic decay of the VACFina  os
suspension is identical to that of an isolated particle. In con-  ,,
trast our simulations strongly support the conjecture of Mil-
ner and Liu—that the suspension behaves like an effective
fluid at least to orderp and probably to higher orders in 0.5
¢. 04
We now wish to consider the implications of our results 0.3
for the propagation of hydrodynamic interactions. We found
that the effect of the hydrodynamic interactions on the
VACF could be seen at very short times, certainly fQr
<1. However, we found the same behavior for the angular 0.0
VACF, so this feature of the linear VACF can be explained
quite simply. There are always particles at small separations
which can influence ea_ch other via the diffusion of transverse 5 7 The scaled mean-squared displacergéng) as a func-
momen_tum, e\{en on time scales short compgred to the 'Fm\?on of the reduced timer,. The upper scaling is the scaling we
for the interactions to propagate a typical particle separationygnose in the textdisplaced by 0.2 in thg direction. The middle
The suspension only behaved like an effective fluid on &cajing is the scaling proposed by Zeual. using our calculated
longer time scale, of the ordef,>4. To be more precise on vajue for the suspension viscositgisplaced by 0.1 in thg direc-
time scales for which the VACF of an isolated particle COUldtion)_ The lower scaling is the scaling proposed by Ztual. but
be described by its asymptotic decay. At low densitieswith the suspension viscosity as a free parameter. The data were
where the suspension viscosity, is only slightly different  obtained with spheres of effective radius 4.20. In each case the solid
from the fluid viscosityyg, this is almost equivalent to the line is the single-particle result.
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somewhat less than the time taken to diffuse a particle diamsupported by SON. Computer time on the CRAY-C98/4256
eter. However, the interparticle separations also start to beat SARA was made available by the Stichting Nationale
come smaller. We therefore conclude that our results ar€omputer FaciliteitedN.C.F).

consistent with the hypothesis that hydrodynamic interac-

tions develop by the diffusion of transverse momentum APPENDIX
through the fluid. We do not seem to need a “superfast” ] )
speed of sound mechanism. As we showed in the argument leading up to B), the

We can gain further insight into this by considering the Scaling proposed by Zhet al. for the time-dependent diffu-
speed of sound in our simulations. First we can define &ION coefficienD(t) corresponds to the following scaling for
characteristic time based on the time taken for vorticity tothe VACF f4(70,4):
diffuse a particle radius,=a? v. We can also define a sec- 9C, 4(70,) D
ond characteristic time based on the time taken for a sound f o (Toy)== Zv. e\ T0¢) TSE¢

: : i #704)72 7C,(0) D
wave to propagate a particle radins=a/cg. In our simula- »(0) ¢
tions the ratiorg/ 7, is equal to about 0.1 for the spheres with If we follow the same procedure as Zbtal. but, instead of

radius 2.5 and 0.2 for the spheres of radius @tfis is the %i‘viding D(t) by the suspension viscosiy,, we divide by

(A1)

reason we generally plotted the results obtained for the tw - R >
sizes of spheres separately, otherwise we would not ha e Stokfs E|n§te|n diffusion coefficient then, the new scaled
ACF f5(704) is

been comparing like with liKe In a typical colloid studied

experimentally the ratio should be more like 0.01, but our 9C, ,(704)

simulations basically satisfy the conditian<r,, i.e., that % (1g4) == —2t 00 (A2)
=" ¢2704772 C,(0

sound propagates much faster than vorticity. At a volume »(0)

fraction of 0.2 we used bqth sphere rgdn. The only dn‘ferencecompared with the scaled VACF for a single partiélero)
between the two calculations is that in one case 2.5) we which was given by

have 75/7,=0.1 and in the seconda&4.5) we have

7s/7,=0.2. We can find no convincing evidence that the 9 C,(7)
time required for effective-fluid behavior to be observed dif- f(r9)=5 ==
fers in the two cases. This is despite the fact that the ratio

7/, differs by a factor of two. However, if we ask the gfrective-fluid behavior corresponds to the VACF in the sus-

question, are the results the same? then the answer is: N9nsjon being the same as the VACF for a single particle in
quite. If we look at the scaled VACF for the particles with 5 f,id with the suspension viscosity, i.e.

radius 2.5 at a volume fraction of O(Eig. 4) and compare it

with the equiva}lent plot for_ the sphereg of rgdius *H. 5 _ Cy.4(T04)=C,(70) (A4)

then at short times there is a perceptible difference. For in-

stance, at a timer,~1 the scaled VACF for the larger corresponding to

spheredin the system with the proportionately lower speed .

of sound is actually less than the isolated particle VACF. f%(70,4)=f(70). (A5)

This never appears to be the case for the smaller spheres. So . )

our results tend to suggest that sound wave propagation mayowever, remember that to the scaling leadingf$¢ro,)

influence the manner in which effective-fluid behavior isinvolved dividing by the Stokes-Einstein diffusion coeffi-

reached, but not the time scale. cient and not the true short-time diffusion coefficient. This
We conclude by noting that there is also a rather fundaMeans that, Whi_Ie the integral'over aII' times of the righy hand

mental objection to the suggestion that hydrodynamic interSide of EQ.(AS) is equal to unity, the integral over all times

actions propagate with the speed of sound. In our discussioff the left hand side is equal  4/Dsg, . In other words

of the scaling of the VACF we introduced a function which Ed- (AS) cannot apply over all times so neither can effective-

quantified the deviation of the scaled VACF from the iso-fluid behavior. One way around this pr_oblem is to accept_that

lated particle VACF. The integral of this function was de- Cv,4(704) cannot be equal to the single-particle function

fined by the suspension viscosity and the suspenabart-  C.(70,4) over all times, but speculate that it is at long times.

time) diffusion coefficient. Neither of these quantities /N this case we can write the scaled VACF in a suspension as

depend on the speed of sound so neither can the total devidle sum of the scaled single-particle VACF plus some “de-

tion between the two functions. In other words, no matteviation” function 5,(7o4), i..,

what the speed of sound, the scaled VACF in a suspension B

differs from the scaled single-particle VACF by an amount Co.6(704) = Co(T04) + F(T04)-

that is independent of the speed of sound.

(A3)

(A6)

If, on some time scale, the deviation function has decayed to
zero, the suspension will behave like an effective fluid and
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tegral of Eq.(A6), so the terms involvings (7, ,) will all
approach a constant (o 4) approaches zero. If this is the
case then we will have

70 ! ’
9¢(704)= f f(70,4)d70,4
0 (A8)

1 fTo,:/)
+— 74 4f(70,0")d 7 ,+ const,
790 04f(70,6")d70 4

where the first two terms are just the single-particle scaling
with 7o, replacingr,. In other words, if the suspension be-
haves like an effective fluid then, using the modified scaling
we have proposed, the time-dependent diffusion coefficient,
plotted in terms of the suspension viscosity, will differ from
the single-particle function by a constant. The value of this
constant is most conveniently chosen to bell,/Dsg 4,

in which casegy(7o,4) Will have an asymptotic value of
unity, independent of.
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