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We report numerical simulations of the velocity autocorrelation function~VACF! for tagged particle motion
in a colloidal suspension. We find that the asymptotic decay follows the theoretical expression for the VACF
of an isolated particle, but with the suspension viscosity replacing the pure fluid viscosity~at long times the
suspension behaves, so far as a tagged particle is concerned, like a fluid with the suspension viscosity—as an
‘‘effective fluid’’ !. While physically appealing, this observation is hard to reconcile with a recent theoretical
prediction that at long times the VACF in a suspension should be the same as the VACF at infinite dilution. It
also differs, in a rather subtle manner, from a scaling rule which has been used in the analysis of experimental
and computer simulation results. From the scaling behavior of the VACF we conclude that effective fluid
behavior only occurs on a time scale somewhat longer than the time taken for transverse momentum to diffuse
a particle radius. This contrasts with the findings of earlier workers who concluded that effective fluid behavior
is already observed at much shorter times.@S1063-651X~96!03909-8#

PACS number~s!: 82.70.Dd, 05.40.1j, 66.20.1d, 82.20.Wt

I. INTRODUCTION

A colloidal suspension can be considered as a mixture in
which the particles of one component are much bigger than
those of all the others. If the size difference is sufficiently
large, the smaller components can be thought of as forming
fluid which occupies the space between the big particles. The
larger particles are often referred to as Brownian particles,
named after the botanist Robert Brown, who was the first to
observe the apparently random motion of small particles sus-
pended in water. Starting with Brown’s observation, our un-
derstanding of these systems has evolved in an interesting
series of historical jumps. It was not until over seventy years
later that Einstein@1# proposed that the motion of the Brown-
ian particles~Brownian motion! arose from the accumulated
effects of individual collisions between Brownian particles
and the particles of the host fluid. This was strong evidence
that fluids were molecular in nature, a view not universally
accepted at that time. Einstein was also able to make
progress with the theory of transport processes in Brownian
suspensions. First he derived the expression for the diffusion
coefficientD0 of a spherical particle in the dilute limit@2#
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wherea is the particle radius andh0 is the shear viscosity of
the solvent. This is known as the Stokes-Einstein diffusion
coefficient. Secondly@3#, Einstein derived the first order cor-
rection to the ratio of suspension viscosityhf to the solvent
viscosity,
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wheref is the proportion of space occupied by the Brown-
ian particles.

Knowledge of the diffusion coefficient allows us to de-
scribe the behavior of Brownian particles on a time scale
long compared to the time it takes velocity correlations to
decay. If one assumes that the motion of the Brownian par-
ticle can be modeled as a Markovian process, i.e., that a
random force acts on the particle at one instant which is not
correlated with the random force at any previous instant, one
can use a classical Langevin equation to describe Brownian
motion @4#. By definition the velocity autocorrelation func-
tion in d dimensionsCv(t) is given by

Cv~ t !5
1

d
^v~0!•v~ t !&, ~3!

wherev(t) is the particle velocity. The Langevin approach
predicts an exponential decay for the velocity autocorrelation
function ~VACF!, which, in three dimensions, has the form

Cv~ t !5Cv~0!expS 2
9t0
2r* D , ~4!

wherer* is the ratio of the particle density to the fluid den-
sity, Cv(0) the initial value of the VACF, andt0 a dimen-
sionless time parameter. This time parameter is defined by
t05nt/a2, wheren(5h0 /r) is the kinematic viscosity. The
velocity autocorrelation function can in turn be related to a
more macroscopically observable quantity, the mean-square
displacementD(t),
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At long times the second term~almost always! goes to zero,
so by making use of the Einstein definition of the diffusion
coefficient we have

D5 t→`
lim D~ t !
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Cv~ t8!dt8. ~6!

Clearly, as long as the time integral of the VACF is not a
constant, it makes no sense to describe the motion of a par-
ticle as diffusive. The Langevin result implies that this time,
which we denotetv , should be of the ordertv;r* n/a2.
However, when Alder and Wainwright@5# studied the decay
of the VACF in a hard-sphere fluid they found that rather
than decaying exponentially, as the Markovian theory pre-
dicts, it had a surprisingly slow algebraic decay of the form
Cv(t);t2d/2. Alder and Wainwright also provided the expla-
nation for what was to become known as the ‘‘long-time
tail.’’ Roughly speaking, momentum is conserved in the fluid
so any momentum transferred to the fluid by the particle
cannot just disappear. Part of it diffuses slowly away~the
remainder is rapidly carried off by the propagation of sound
waves!. While this is happening the particle feels an addi-
tional push from the fluid in its original direction of motion
which in turn gives rise to the slow decay of the VACF.
Consequently, the ‘‘random’’ force exerted by the fluid on a
Brownian particle is not quite as random as one might have
imagined, it actually depends on what was happening to the
particle long ago—the process is non-Markovian. Although
Alder and Wainwright originally considered a hard-sphere
fluid, the same argument is not only quantitatively correct
but also quantitatively much more important for a colloidal
suspension. In the years since their discovery, long-time tails
have developed into something of a cottage industry. The
theory was recast more formally in terms of mode coupling
@6# and kinetic theory@7# and tested both experimentally
@8–11# and by computer simulation@12–16#. For a colloidal
particle in an incompressible fluid Hauge and Martin-Lo¨f
@17# derived the Laplace transformed equations of motion for
the entire time range. In three dimensions the explicit long-
time decay of the VACF is given by

Cv,long~t0!5
Cv~0!r*
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Again these results have been verified by experiment@18#
and computer simulation@14#.

The existence of long-time tails may seem interesting, if a
little esoteric. However, they have important practical conse-
quences. For instance, the presence of the long-time tail
means that the diffusion coefficient in quasi-two-dimensional
fluids, such as free-standing films, does not exist. Another
consequence, of direct relevance for the present study, is that
purely diffusive behavior of a colloidal particle only occurs
on a time scale that is several orders of magnitude longer
than one would expect from the Langevin equation, i.e.,tv
@r* a2/n ~this is clearly illustrated by the experimental re-
sults of Zhuet al. @18# for instance!.

Although long-time tails greatly extend the time scale
over which velocity correlations influence Brownian motion,
generally speaking there is still a convenient separation of
time scales between the transient effects of the VACF and

the time scale on which the particles significantly change
their positions. The time scale for particle displacementtp
can be characterized by the time taken for a particle to dif-
fuse a distance of its own radiustp5a2/D0. Making use of
the Stokes-Einstein relation, Eq.~1!, gives us tp
59mn/2r* kT. For particles dispersed in a waterlike fluid at
room temperature this implies that the conditiontp@tv is
still reasonably well satisfied, even allowing for the effect of
the long-time tail, for particles down to about 1mm. For
timest,tp , the regime of ‘‘short-time’’ dynamics, transport
coefficients can be calculated assuming that the configuration
is essentially fixed. Within this approximation considerable
progress has been made in deriving higher order terms in the
‘‘Virial expansion’’ of both the short-time single-particle dif-
fusion coefficient@19# and the short-time suspension viscos-
ity @20#. With advances in experimental techniques it is now
possible to study the dynamics of Brownian particles on
these short-time scales and, indeed, the experimental@21#,
theoretical@19#, and numerical@22# results, particularly for
the VACF, all seem to agree quite nicely. In this article we
consider the short-time regime. Hence where, in the remain-
der of this paper, we talk about ‘‘long-time’’ behavior we are
always referring to times for whicht0, although greater than
unity, is still much less thantp .

In recent experiments@18,23# the transient behavior of the
mean-square displacement was studied at very short times,
giving detailed information about how the asymptotic regime
is reached. These studies have provided another surprise. Al-
though there is a strong analogy between colloidal suspen-
sions and simple fluids, there is at least one way in which
they should fundamentally differ. The interactions between
particles, which are after all the reason that transport coeffi-
cients in a concentrated suspensions differ from their values
in the dilute limit, are of a different nature. Whereas inter-
molecular forces between individual molecules are essen-
tially instantaneous, colloidal particles also influence one an-
other via the fluid occupying the space between them. The
speed at which these interactions propagate depends on the
properties of the fluid itself. As ‘‘hydrodynamic’’ interac-
tions between particles develop by the propagation of mo-
mentum through the fluid, they were generally assumed to
develop on a time scale determined by the kinematic viscos-
ity of the fluid, i.e.,t0;1. However, by comparing the short-
time dynamics of particles in a concentrated suspension with
those of an isolated particle, recent experiments@18,23#
found no evidence for such a time lag. In fact, it was found
that the two deviated even at the shortest times that could be
measured (t0,1). Zhu et al. @18# also found that all the
experimental data could be collapsed onto the single-particle
curve if the time was rescaled in units ofa2/nf , wherenf is
the kinematic viscosity of the suspension. The conclusion
was, that even on time scales wheret0([tn/a2),,1, a
colloidal suspension behaves like an ‘‘effective fluid,’’ by
which we mean a fluid with the viscosity of the suspension.
This is surprising because, if the hydrodynamic interactions
develop on a time scalet0;1, then one would expect that
the suspension can only behave as an effective fluid on time
scalest0@1. Experiments performed by Kao, Yodh, and
Pine @23# probedD(t) on very short time scales, down to
t0,0.1, and indicated that the same scaling worked in this
time regime. However, in Ref.@23# it was pointed out that
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other scalings could perform equally well. Finally, computer
simulations performed by Ladd@14,24# also seemed to con-
firm that the scaling of Ref.@18# is indeed obeyed at very
short times. One possible explanation has been proposed by
Español, Rubio, and Zu´ñiga @25,26# who suggested that the
speed of sound and not the kinematic viscosity determines
the time scale at which the hydrodynamic interactions propa-
gate. In a typical colloidal suspension, sound wave propaga-
tion is several orders of magnitude faster than vorticity dif-
fusion. This, they suggested, could make effective-fluid
behavior possible in the very short-time regime.

A second topic that we address in this paper is the long-
time behavior of the VACF in concentrated suspensions. Al-
though the result for the VACF of a single particle is well
known, there remain contradictory theoretical results for the
VACF in a concentrated suspension. A calculation per-
formed by Milner and Liu@27# suggested that the effective-
fluid argument is correct, at least to orderf in the volume
fraction ~they further speculated that it was generally true!.
On the other hand Cichocki and Felderhof@28,29# argued
that, again to orderf, the long-time form of the VACF for a
particle in a concentrated suspension should beidentical to
the result at infinite dilution. As Cichoki and Felderhof
pointed out, this result is hard to reconcile with the scaling
that is reported in experiments and computer simulations.
The result of Ref.@29# is also somewhat counterintuitive,
because it implies that, at long times, a particle no longer
experiences the presence of its neighbors. Cichocki and
Felderhof suggested@29# that the experimental results cov-
ered times too short for the asymptotic long-time tail to ad-
equately describe the VACF. Yet, the data obtained by Zhu
et al. @18# did at least extend to times long enough for them
to clearly observe the long-time tail in the dilute limit.

In light of these observations and theories we have per-
formed computer simulations in an attempt to clarify the
issues raised. First we wish to examine more closely the
scaling proposed by Zhuet al. @18# and what it implies for
the velocity autocorrelation function. This leads us to pro-
pose a slightly different scaling. Finally we describe numeri-
cal results for the VACF of a Brownian particle and study
both the short- and long-time behavior in a concentrated sus-
pension.

II. THE SCALING OF THE VELOCITY
AUTOCORRELATION FUNCTION

The VACF for an isolated Brownian particle~see for in-
stance the results derived by Hauge and Martin-Lo¨f @17#!
depends on the same three parameters as the Langevin result
@Eq. ~4!#. To recapitulate, these parameters are the initial
value of the VACFCv(0) the density ratior* , and the re-
duced timet0. In reality r* is a parameter which cannot
differ much from unity—otherwise the colloid would be
unstable—so we consider it fixed. Having done so, the
VACF becomes a unique function oft0 andCv(0), which is
in principle known. Even more simple is the normalized
VACF Cv(t)/Cv(0) that becomes a function oft0 only. We
shall call this functionf (t0).

The scaling behavior of the mean-square displacement is
not usually discussed in terms of the velocity autocorrelation
function. It is more usual to consider the time-dependent

diffusion coefficientD(t), defined asD(t)5D(t)/2dt. The
two functions are, however, related by Eq.~5!, so any scaling
which applies toD(t) also corresponds to some scaling for
Cv(t). It is therefore natural to consider what the scaling for
D(t) applied by Zhuet al. @18# would imply for the scaling
of the VACF. First, we consider a particle in the dilute limit
and assume that we have measuredD(t). We then apply the
scaling of Ref.@18# to collapse our data onto a single curve.
To this end we first scale the time fromt to t0 to give us
D(t0). This corresponds to scaling the time for the VACF
from t to t0 andmultiplying Cv(t) by a

2/n ~the multiplica-
tive factor enters because scaling the time should not change
the integral of the VACF!. Next we divide by the diffusion
coefficient at infinite dilution to yield the function
g(t0)5D(t0)/D0. This step simply corresponds to dividing
the VACF byD0 so the scaled VACFf (t0) corresponding
to g(t0) is simply

f ~t0!5
a2Cv~t0!

nD0
~8!

which, if we substitute the Stokes-Einstein result forD0,
becomes

f ~t0!5
9

2

Cv~t0!

Cv~0!
, ~9!

where we have also setr*51. The scaled normalized VACF
is therefore only a function oft0 as expected.

What Zhu et al. did was to extend this argument to a
concentrated suspension by definingt0 in terms of the sus-
pension viscositynf . We define this reduced timet0,f , to
distinguish it from the reduced time defined in terms
of the solvent viscosity n0. They then followed a
similar procedure—rescaling the time fromt to t0,f and di-
viding by Df , where Df is the diffusion coefficient
in the suspension—to give the scaled function
gf(t0,f)@5D(t0,f)/Df#. In the experiments, this function
was found to be equal to the single-particle functiong(t0).
Following the same argument as before, the scaled VACF
f f(t0,f) corresponding togf(t0,f) is now

ff~t0,f!5
a2Cv,f~t0,f!

nfDf
, ~10!

wherenf is the suspension viscosity andCv,f(t) the VACF
in the concentrated suspension. However, if we now try to
eliminateDf we have a problem because the Stokes-Einstein
equation is not valid for a suspension~at least on the time
scale we are considering here!. By introducingDSE,f , the
Stokes-Einstein diffusion coefficient for a single particle in a
fluid with the suspension viscosity, we can write

f f~t0,f!5
a2Cv,f~t0,f!

nfDSE,f

DSE,f

Df
, ~11!

which, following from the Stokes-Einstein equation, gives

f f~t0,f!5
9

2

Cv,f~t0,f!

Cv~0!

DSE,f

Df
. ~12!
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The scaling Zhuet al. observedgf(t0,f)5g(t0) is equiva-
lent to sayingf f(t0,f)5 f (t0), which in turn implies that
Cv,f(t0,f)5(Df /DSE,f)Cv(t0). The implication is that the
VACF looks like the single-particle VACF for a particle in a
fluid with the suspension viscositybutmultiplied by a factor
of Df /DSE,f . If Df /DSE,f is equal to unity the scaling
implies effective-fluid behavior, otherwise it does not. But,
as we mentioned before, the Stokes-Einstein equation does
not yield the correct short-time diffusion coefficient for a
suspension of colloidal spheres, and henceDf /DSE,fÞ1.

It is important to note that if the suspension behaves like
an effective fluid, the above scaling willalmostwork. For an
isolated particle we know that at long timesf (t0);t0

23/2. If
we suppose for a moment that the effective-fluid argument is
correct, then at long times the scaling proposed by Zhuet al.
will work if an ‘‘apparent’’ viscosityne f f given by

ne f f5nfS Df

DSE,f
D 2/35nfa2/3 ~13!

is used to definet0,f instead of the suspension viscosity
nf . This makes the derivatives of the scaled function iden-
tical to those of the single-particle function and, since both
functions are approaching the same asymptote, they will co-
incide at long times. Because the value ofa is close to unity
@22#, the apparent viscosity needed to make the functions
coincide at long times only differs from the suspension vis-
cosity by a small factor~ranging from 2% atf50.05 to 14%
at f50.30). Such a small effect may well be compatible
with the uncertainty in the experimental data and is rather
unimportant. However, at short times the two functions will
differ if either the effective-fluid assumption breaks downor
the single-particle curve is no longer adequately described by
the long-time tail. This would make it difficult to draw any
definite conclusions about the onset of effective-fluid behav-
ior.

Before we go on to describe our numerical simulation, we
would like to suggest a more appropriate scaling forD(t) in
an effective fluid. We mentioned earlier that applying the
isolated particle scaling to particles in a suspension leads to
an inconsistency@see Eq.~12!#. The fact thatDf is not equal
to DSE,f means that it is impossible to scaleD(t) in a sus-
pension onto the single-particle curve over all times. We
therefore propose a slightly different scaling which cures this
problem by using an additive, rather than a multiplicative,
constant

gf~t0,f!5
D~t0,f!

DSE,f
1S 12

Df

DSE,f
D . ~14!

Adding a constant toD(t0,f) is equivalent to the assumption
that ~at long times! the VACF in a concentrated suspension
looks like the scaled single-particle function. The short-time
deviation from effective-fluid behavior integrates to a con-
stant offset ingf(t0,f). Effective-fluid behavior sets in when
this deviation has decayed to zero. It is in this regime that the
above scaling should hold. This is discussed in more detail in
the Appendix.

III. DESCRIPTION OF THE MODEL

We have used a hybrid hard-sphere, lattice-gas model to
simulate suspensions. The initial configurations are gener-
ated by a Monte Carlo simulation of a hard-sphere fluid. In
keeping with our assumption of short-time dynamics, we im-
pose the time-scale separationtv!tp , so the positions of the
colloidal particles do not change during a run. The time-
dependent hydrodynamic interactions between the spheres
are computed by embedding them in a simple model fluid,
namely, a lattice gas simulated at the Boltzmann level. The
lattice-Boltzmann model is a preaveraged version of a
lattice-gas cellular automaton~LGCA! model of a fluid of
the type introduced by Frisch, Hasslacher, and Pomeau@30#.
In lattice-gas cellular automata the state of the fluid at any
~discrete! time is specified by the number of particles at ev-
ery lattice site and their velocity. Particles can only move in
a limited number of directions~towards neighboring lattice
points! and there can be at most one particle moving on a
given ‘‘link.’’ The time evolution of the LGCA consists of
two steps; propagation, during which every particle moves
one time step along its link to the next lattice site, and col-
lision, where at every lattice site particles can change their
velocities by collision~subject to the condition that these
collisions conserve the number of particles and momentum
and retain the full symmetry of the lattice!. In the lattice-
Boltzmann method~see, e.g.,@31#! the state of the fluid sys-
tem is no longer characterized by the number of particles that
move in directionci on lattice siter , but by theprobabilityof
finding such a particle. The single-particle distribution func-
tion ni(r ,t), describes the average number of particles at a
particular node of the latticer , at a timet, with the discrete
velocity ci . The hydrodynamic fields, mass densityr, mo-
mentum densityj , and the momentum flux densityP are
simply moments of this velocity distribution:

r5(
i
ni , j5(

i
nici , P5(

i
nicici . ~15!

The lattice model used in this work is the four-dimensional
~4D! face-centered hypercubic~FCHC! lattice. A two- or
three-dimensional model can then be obtained by projection
in the number of required dimensions. This FCHC model is
used because three-dimensional cubic lattices do not have a
high enough symmetry to ensure that the hydrodynamic
transport coefficients are isotropic. The time evolution of the
distribution functionsni is described by the discretized ana-
logue of the Boltzmann equation@32#

ni~r1ci ,t11!5ni~r ,t !1D i~r ,t !, ~16!

whereD i is the change inni due to instantaneous molecular
collisions at the lattice nodes. The postcollision distribution
ni1D i is propagated in the direction of the velocity vector
ci . A complete description of the collision process is given
in @33#. The main effect of the collision operatorD i(r ,t) is to
~partially! relax the shear stress at every lattice site. The rate
of stress relaxation, or equivalently, the kinematic viscosity
n, can be chosen almost freely.

The motion of the colloidal particle is determined by the
force and torque exerted on it by the fluid. These are in turn
a result of the stick boundary conditions applied at the solid-
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fluid interface. For a stationary boundary a simple bounce-
back rule performed on boundary links enforces the stick
boundary condition. Boundary links are links connecting lat-
tice sites inside and outside the solid object. Stick boundary
conditions with a moving boundary can be performed using
the Boltzmann analogue@33# of a scheme originally used for
lattice gases@34#. For a moving boundary the bounce-back
rule is still applied but some of the particles moving in the
same direction as the solid object are allowed to ‘‘leak’’
through, thus matching the fluid velocity to the object veloc-
ity at the boundary. The equations of motion of the colloidal
particle are integrated according to a rule@16# whereby the
force and torque which act on an object give the same new
velocities for both particle and fluid. This method gives us
considerable flexibility in choosing the density ratio, so for
our simulations we choser*51—a good approximation to
the value one would expect in an experimental setup.

Simulating the lattice gas at the Boltzmann level has a
number of advantages over the LGCA approach, for in-
stance, the model is Gallilean invariant whereas a lattice gas
is not. However, as a result of the ensemble averaging all
spontaneous fluctuations in the fluid disappear, i.e., the
lattice-Boltzmann model is purely dissipative. In the absence
of any externally imposed fluctuations a Brownian particle in
a Boltzmann fluid just sits there and does nothing. Fluctua-
tions can be incorporated in the lattice-Boltzmann model by
adding a suitable random noise term to the stress tensor@24#,
but we have chosen a slightly different approach. We make
use of Onsager’s regression hypothesis and watch the decay
of a single fluctuation which we impose on the~otherwise!
purely dissipative system. A similar approach was used to
calculate the stress-stress autocorrelation function in Ref.
@15#. This has the advantage of not adding any noise to the
system, although we still need to average over different con-
figurations. Our procedure is as follows. We take a configu-
ration of hard spheres in a stationary fluid and assign each
one a velocity taken from a Maxwell distribution. We then
calculate the VACF for each particle as its velocity decays
and finally we average the function over all particles. One
small point is that we do not constrain the total momentum in
the system to be zero because this introduces an artificial
anticorrelation between the velocity of an individual particle
and the velocities of its neighbors. However, since we have a
net momentum in the system the VACF does not decay to
zero. To correct for this we perform the calculation in the
frame of reference where the total fluid momentum remains
zero, so the correlation function we actually calculate is

Cv~ t !5
1

d
^Dv~0!•Dv~ t !&, ~17!

whereDv(t) is the velocity of the particle relative to the
velocity of the fluid. If the total momentum of the colloidal
particles at a given time isp(t) then the total momentum
gained by the fluid at that timeDp(t) is just
p(t50)2p(t). The velocity of a particle relative to the fluid
velocity Dv(t) is therefore equal tov(t)2Dp(t)/(Vr),
wherer is the density of the fluid andV the volume of the
system. This procedure gives a VACF which, starting from a

system with net momentum, decays to zero and is indepen-
dent of system size~up to the time required for momentum to
cross the simulation box!.

IV. RESULTS

The simulations were performed using two different sets
of parameters. It is convenient to define these parameters in
terms of lattice units, such that the lattice spacing, time step,
and particle mass are all equal to unity. For low densities
(0.05<f<0.2) we used a sphere of radius 2.5 in a fluid of
kinematic viscosity 1/6 and fluid density 24. For higher vol-
ume fractions (0.20<f<0.30) we used a sphere of radius
4.5 in a fluid of kinematic viscosity 1/2 and fluid density 24.
Using a larger representation of a sphere gives a better ap-
proximation to the hydrodynamic interactions at small par-
ticle separations. One might expect this to become important
at high densities which is why we chose to switch to the
larger particles~although the results obtained forf50.2,
where we tried both representations, were very similar!.
There is an approximation involved in mapping a sphere
onto the lattice which means that the object we end up with
looks like a sphere with a slightly different radiusa* com-
pared to the nominal radiusa. The effective radius also de-
pends on the fluid viscosity. This is discussed by Ladd in
reference @14#. We calculated the effective radii of the
spheres by calculating the VACF of an isolated particle in a
fluid with the appropriate viscosity, and integrating it to ob-
tainD0. We then took the values ofD0 along with the mass
and viscosity and used the Stokes-Einstein equation@Eq. ~1!#
to define the effective radiia* . The values we obtained were
2.46 and 4.20 for spheres of nominal radius 2.5 and 4.5,
respectively. For all the calculations we were careful to
eliminate the effects of the periodic boundary conditions
~which are large! by only calculating the VACF up to times
less than the time taken for a sound wave to cross the simu-
lation box. For calculations at non-negligible volume frac-
tion this time was significantly reduced because the speed of
sound increases with volume fraction. The box was typically
of length 150 and the speed of sound in the pure fluid was
always equal to 1/A2.

First we considered the time scale on which the effects of
the hydrodynamic interactions could be seen. To do this we
calculated the VACF for a single particle and then the VACF
for particles in a low concentration suspension (f50.01). In
Fig. 1 we have plotted the~absolute! percentage difference
between the two VACF’s in terms of the reduced timet0. It
is clear that the difference begins to appear at the shortest
times we can calculate and certainly for timest0!1. This is
the same kind of behavior observed experimentally by Zhu
et al. @18# and by Kao, Yodh, and Pine@23#, although we are
looking at shorter times and lower volume fractions~our
volume fraction here is actually lower than that typically
used experimentally as the infinite dilution result!. So, our
simulations confirm that the hydrodynamic interactions
manifest themselves at times very short compared to the time
taken for transverse momentum to be transferred, atypical
interparticle separation. This in itself does not mean that
some faster mechanism is required. There are always par-
ticles at very small separations, which can interact quickly,
even in extremely dilute systems. To see if interactions de-

2708 54C. P. LOWE AND D. FRENKEL



veloping by sound wave propagation are necessarily respon-
sible for this observation, we performed an identical calcu-
lation for the angular velocity autocorrelation function
~defined in the same way as the VACF but replacing the
translational with the rotational velocity!. In contrast to a
linear velocity fluctuation, a rotational velocity fluctuation
produces no sound wave, so the speed at which hydrody-
namic torques between particles develop cannot depend on
sound wave propagation. Our results for the angular VACF
are also plotted in Fig. 1. Clearly the angular VACF behaves
in the same way as the linear VACF, the hydrodynamic in-
teractions begin to influence the decay at very short times.
We know that sound wave propagation is unimportant in this
case so we can conclude that it is not needed to explain the
behavior we observe for the VACF.

Next we look at the form of the decay of the VACF in a
concentrated suspension. In Fig. 2 we have plotted the ve-
locity autocorrelation function divided by the theoretical
long-time decay for a particle in the dilute limit@given in Eq.
7!#. For the single particle the curve appears to be approach-
ing unity as we would expect. If we extrapolate to infinite
times by fittingCv(t0)/Cv,long(t0) to a polynomial of the
form a1bt0

211ct0
22 then we obtain asymptotic values of

1.00660.01 and 0.99460.01 for the spheres of nominal ra-
dius 2.5 and 4.5, respectively. This extrapolation procedure
is illustrated in Ref.@16# and the quality of the extrapolation
here is comparable. Having established that all is well for the
single particle we now wish to consider the other curves in
Fig. 2, those obtained for non-negligible volume fractions.
First, the plots are approaching an asymptote, indicating that
the t23/2 tail is still present in the concentrated suspensions.
In Fig. 2 we have also plotted the asymptotic values expected
if the long-time decay is given by Eq.~7! but with the sus-
pension viscosity replacing the pure fluid viscosity, i.e., if the
suspension behaves like an effective fluid. The values for the
suspension viscosity as a function of volume fraction were
taken from Ref.@22#. Again, the curves appear to be ap-
proaching the correct asymptote. At low volume fractions

~0.05, 0.10, and 0.15!, where the asymptotic value has not
been reached during the simulation, we applied the same
extrapolation procedure described above. At higher volume
fractions ~0.2, 0.25, and 0.30! the data has, to within the
statistical errors, reached a plateau. In this case any extrapo-
lation would of course be meaningless so we took the as-
ymptotic value to be the plateau value. Armed with the long-
time form of the VACF we made the effective fluid
assumption and used Eq.~7! to convert them into viscosities.
The values we obtained are plotted in Fig. 3. For complete-
ness we have also plotted values ofDf /D0 obtained by in-
tegrating the VACF. Clearly both sets of values are in agree-
ment with those calculated by Ladd@22#. Our results,
therefore, strongly suggest that in a concentrated suspension
the VACF at long times looks like that of a single particle in
a fluid with the suspension viscosity—just as predicted theo-
retically by Milner and Liu@27#. This result may seem un-
surprising, but we recall that it contradicts the theory of
Cichocki and Felderhof@28,29#, according to which all
curves in Fig. 2 approach the single-particle asymptote. It
also differs slightly from the scaling proposed by Zhuet al.
@18# which would have the asymptotes deviating from the
effective-fluid asymptote by a factor ofDf /DSE,f , for
which we see no evidence.

Our simulations suggest that the scaled functionCv(tf)
is identical to the single-particle functionCv(t0) at long
times~we have shortened the notation for the time scale de-
fined in terms of the suspension viscosity totf). We also
know that at short times the two functions must differ be-
cause they have different integrals. The question now is, af-
ter how long do the two coincide or, equivalently, when does
the suspension start to behave like an effective fluid? To
answer this question we have plottedCv(tf)/Cv,long(tf) as
a function of tf . The data for the spheres with nominal
radius 2.5 are plotted in Fig. 4 and for the spheres of nominal
radius 4.5 in Fig. 5. Because we have an uncertainty as to the

FIG. 1. The percentage deviation of the linear and angular ve-
locity autocorrelation functions in a suspension from their values in
the dilute limit, plotted as a function of the reduced timet0. The
volume fraction of colloidal particles in the suspension was
f50.01.

FIG. 2. The velocity autocorrelation functionCv(t0) divided by
the theoretical long-time resultCv,long(t0), which is defined in the
text. The results were obtained at variou volume fractionsf; the
solid line with no error bars, labeledf50, is the single-particle
result. The dashed lines are the asymptotic values of
Cv(t0)/Cv,long(t0) one obtains by replacing the fluid viscosity with
the suspension viscosity in the equation for the long-time tail.
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true asymptote~or equivalently viscosity!, we have scaled
the data using both our upper and lower estimates for the
viscosity. In Figs. 4 and 5 we show this by plotting the
region bounded by these two values. Both figures suggest
that VACF cannot be collapsed onto the single-particle curve
for times less than those at which the single-particle curve
itself reaches its asymptotic decay. The long-time tail ap-
pears to establish sooner, both literally and proportionately,
in the concentrated suspensions. Remembering that our defi-
nition of effective-fluid behavior requires that these functions
coincide, our simulations suggest that this is only the case for
reduced times where the long-time tail adequately describes
the VACF of a single particle, i.e., approximatelytf.4.

It is easy for us to look at the velocity autocorrelation
function but it is a quantity that is not so easy to determine
experimentally. With this in mind we have used Eq.~5! to
convert our results for the VACF into time-dependent diffu-
sion coefficients. These are plotted in Fig. 6 for the spheres
with nominal radius 2.5, and in Fig. 7 for the spheres with
nominal radius 4.5. We have used three scalings for the data
~which has also been offset for clarity!. For the uppermost
data we have scaledD(t) according to Eq.~14!. As we ex-
pected from our analysis of the VACF, the scaling works,
but only for timestf.4. For the data in the middle of the
figures we have applied the scaling proposed by Zhuet al.
using values forDf andnf calculated from the simulation.
These of course have a statistical error associated with them.
The influence of these errors on the scaled function is of the
order of the symbol size. Clearly the scaling does not quite

work. However, for the data at the bottom of the figures we
have performed the same scaling using the value ofDf /D0
from the simulation, but allowing the suspension viscosity to
be a free parameter. By doing so we can achieve a convinc-
ing looking result but we have to use the wrong viscosity to
achieve it. The apparent values for the viscosity obtained by
following this procedurene f f are plotted in Fig. 3, along with
the correct values. There is clearly a systematic deviation
between the apparent viscosity, derived from this scaling,
and the true viscosity.

V. DISCUSSION

By calculating the velocity autocorrelation function for a
tagged particle in a colloidal suspension, we have shown
that, as far as the particle is concerned, at long times the rest
of the suspension behaves just like a fluid with the suspen-
sion viscosity. This we refer to as effective-fluid behavior.
We have shown that although the VACF in a dilute suspen-
sion differs from the single-particle VACF at very short
times, effective-fluid behavior only begins when the viscous
time scale for the suspensiontf exceeds values of the order
four. From these observations, our arguments about the scal-
ing of the mean-square displacement follow. Our data are not
quite compatible with the scaling of the mean-square dis-
placement used in Refs.@18,24#. However, the incorrect scal-
ing for the mean-square displacement can be made to look
rather compelling, even at short times, by scaling the time
with a slightly incorrect viscosity. So, by just looking at the
mean-square displacement it would be very easy to conclude

FIG. 3. Values for the transport coefficients in a colloidal sus-
pension of volume fractionf. The circles are the diffusion coeffi-
cient Df divided by the single-particle valueD0. Values for the
diffusion coefficients were calculated by integrating the velocity
autocorrelation function. The squares are the solvent viscosityn0

divided by the suspension viscositynf . Values for the suspension
viscosity were calculated by assuming that the suspension behaves
like an effective fluid at long times. Finally the pure fluid viscosity
divided by an effective viscosityne f f . The effective viscosity was
calculated by applying the scaling procedure of Zhuet al. to data
for the time-dependent diffusion coefficient. Filled symbols indicate
results for spheres with an effective radius of 2.46 and open sym-
bols for spheres with an effective radius of 4.2. The solid lines are
splines through the values calculated by Ladd@22#.

FIG. 4. The velocity autocorrelation functionC(tf) divided by
its long-time decayCv,long(tf) ~which was calculated by assuming
that the suspension behaves like an effective fluid at long times!.
The reduced timetf is defined in terms of the suspension viscosity
nf and the effective particle radiusa* by tf5tn(f)/a* 2. These
results were obtained for spheres with an effective radius of 2.46.
The solid lines are the results for the isolated particle. The gray
regions are the results for non-negligible volume fractions, with
volume fractionf increasing from top to bottom. The regions are
defined by our upper and lower estimates for the suspension viscos-
ity. To assist clarity the data for volume fractionsf50.05, 0.10,
and 0.15 have been displaced in they direction by 0.9, 0.6, and 0.3,
respectively.
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that effective-fluid behavior begins at much shorter times
than our results for the VACF suggest. Our results are there-
fore consistent with the experimental results but, by consid-
ering the VACF rather than the mean-square displacement
itself, we arrived at a slightly different conclusion. However,
our data are hard to reconcile with the theoretical work of
Cichocki and Felderhof@28,29# who stated that, to orderf in
the volume fraction, the asymptotic decay of the VACF in a
suspension is identical to that of an isolated particle. In con-
trast our simulations strongly support the conjecture of Mil-
ner and Liu—that the suspension behaves like an effective
fluid at least to orderf and probably to higher orders in
f.

We now wish to consider the implications of our results
for the propagation of hydrodynamic interactions. We found
that the effect of the hydrodynamic interactions on the
VACF could be seen at very short times, certainly fort0
!1. However, we found the same behavior for the angular
VACF, so this feature of the linear VACF can be explained
quite simply. There are always particles at small separations
which can influence each other via the diffusion of transverse
momentum, even on time scales short compared to the time
for the interactions to propagate a typical particle separation.
The suspension only behaved like an effective fluid on a
longer time scale, of the ordertf.4. To be more precise on
time scales for which the VACF of an isolated particle could
be described by its asymptotic decay. At low densities,
where the suspension viscositynf is only slightly different
from the fluid viscosityn0, this is almost equivalent to the

time taken for vorticity to diffuse a particle diameter. At
shorter times the behavior of a particle in the suspension
cannot be described by rescaling the isolated particle result.
At higher viscosities, where the suspension viscosity is sig-
nificantly higher than the fluid viscosity, this time becomes

FIG. 5. The velocity autocorrelation functionCv(tf) divided by
its long-time decayCv,long(tf) ~which was calculated by assuming
that the suspension behaves like an effective fluid at long times!.
The reduced timetf is defined in terms of the suspension viscosity
nf and the effective particle radiusa* by tf5tn(f)/a* 2. These
results were obtained for spheres with an effective radius of 4.20.
The solid lines are the results for the isolated particle. The gray
regions are the results for non-negligible volume fractions, with
volume fractionf increasing from top to bottom. The regions are
defined by our upper and lower estimates for the suspension viscos-
ity. To assist clarity the data for volume fractionsf50.20 and
0.25 and have been displaced in they direction by 0.6 and 0.3,
respectively.

FIG. 6. The scaled mean-squared displacementg(tf) as a func-
tion of the reduced timetf . The upper scaling is the scaling we
propose in the text~displaced by 0.3 in they direction!. The middle
scaling is the scaling proposed by Zhuet al. using our calculated
value for the suspension viscosity~displaced by 0.1 in they direc-
tion!. The lower scaling is the scaling proposed by Zhuet al. but
with the suspension viscosity as a free parameter. The data were
obtained with spheres of effective radius 2.46. In each case the solid
line is the single-particle result.

FIG. 7. The scaled mean-squared displacementg(tf) as a func-
tion of the reduced timetf . The upper scaling is the scaling we
propose in the text~displaced by 0.2 in they direction!. The middle
scaling is the scaling proposed by Zhuet al. using our calculated
value for the suspension viscosity~displaced by 0.1 in they direc-
tion!. The lower scaling is the scaling proposed by Zhuet al. but
with the suspension viscosity as a free parameter. The data were
obtained with spheres of effective radius 4.20. In each case the solid
line is the single-particle result.
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somewhat less than the time taken to diffuse a particle diam-
eter. However, the interparticle separations also start to be-
come smaller. We therefore conclude that our results are
consistent with the hypothesis that hydrodynamic interac-
tions develop by the diffusion of transverse momentum
through the fluid. We do not seem to need a ‘‘superfast’’
speed of sound mechanism.

We can gain further insight into this by considering the
speed of sound in our simulations. First we can define a
characteristic time based on the time taken for vorticity to
diffuse a particle radiustn5a2/n. We can also define a sec-
ond characteristic time based on the time taken for a sound
wave to propagate a particle radiusts5a/cs . In our simula-
tions the ratiots /tn is equal to about 0.1 for the spheres with
radius 2.5 and 0.2 for the spheres of radius 4.5~this is the
reason we generally plotted the results obtained for the two
sizes of spheres separately, otherwise we would not have
been comparing like with like!. In a typical colloid studied
experimentally the ratio should be more like 0.01, but our
simulations basically satisfy the conditionts!tn , i.e., that
sound propagates much faster than vorticity. At a volume
fraction of 0.2 we used both sphere radii. The only difference
between the two calculations is that in one case (a52.5) we
have ts /tn50.1 and in the second (a54.5) we have
ts /tn50.2. We can find no convincing evidence that the
time required for effective-fluid behavior to be observed dif-
fers in the two cases. This is despite the fact that the ratio
ts /tn differs by a factor of two. However, if we ask the
question, are the results the same? then the answer is: not
quite. If we look at the scaled VACF for the particles with
radius 2.5 at a volume fraction of 0.2~Fig. 4! and compare it
with the equivalent plot for the spheres of radius 4.5~Fig. 5!
then at short times there is a perceptible difference. For in-
stance, at a timetf;1 the scaled VACF for the larger
spheres~in the system with the proportionately lower speed
of sound! is actually less than the isolated particle VACF.
This never appears to be the case for the smaller spheres. So
our results tend to suggest that sound wave propagation may
influence the manner in which effective-fluid behavior is
reached, but not the time scale.

We conclude by noting that there is also a rather funda-
mental objection to the suggestion that hydrodynamic inter-
actions propagate with the speed of sound. In our discussion
of the scaling of the VACF we introduced a function which
quantified the deviation of the scaled VACF from the iso-
lated particle VACF. The integral of this function was de-
fined by the suspension viscosity and the suspension~short-
time! diffusion coefficient. Neither of these quantities
depend on the speed of sound so neither can the total devia-
tion between the two functions. In other words, no matter
what the speed of sound, the scaled VACF in a suspension
differs from the scaled single-particle VACF by an amount
that is independent of the speed of sound.
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APPENDIX

As we showed in the argument leading up to Eq.~12!, the
scaling proposed by Zhuet al. for the time-dependent diffu-
sion coefficientD(t) corresponds to the following scaling for
the VACF f f(t0,f):

f f~t0,f!5
9

2

Cv,f~t0,f!

Cv~0!

DSE,f

Df
. ~A1!

If we follow the same procedure as Zhuet al.but, instead of
dividing D(t) by the suspension viscosityDf we divide by
the Stokes-Einstein diffusion coefficient then, the new scaled
VACF f f* (t0,f) is

f f* ~t0,f!5
9

2

Cv,f~t0,f!

Cv~0!
~A2!

compared with the scaled VACF for a single particlef (t0)
which was given by

f ~t0!5
9

2

Cv~t0!

Cv~0!
. ~A3!

Effective-fluid behavior corresponds to the VACF in the sus-
pension being the same as the VACF for a single particle in
a fluid with the suspension viscosity, i.e.,

Cv,f~t0,f!5Cv~t0! ~A4!

corresponding to

f f* ~t0,f!5 f ~t0!. ~A5!

However, remember that to the scaling leading tof f* (t0,f)
involved dividing by the Stokes-Einstein diffusion coeffi-
cient and not the true short-time diffusion coefficient. This
means that, while the integral over all times of the right hand
side of Eq.~A5! is equal to unity, the integral over all times
of the left hand side is equal toDf /DSE,f . In other words
Eq. ~A5! cannot apply over all times so neither can effective-
fluid behavior. One way around this problem is to accept that
Cv,f(t0,f) cannot be equal to the single-particle function
Cv(t0,f) over all times, but speculate that it is at long times.
In this case we can write the scaled VACF in a suspension as
the sum of the scaled single-particle VACF plus some ‘‘de-
viation’’ function df(t0,f), i.e.,

Cv,f~t0,f!5Cv~t0,f!1df~t0,f!. ~A6!

If, on some time scale, the deviation function has decayed to
zero, the suspension will behave like an effective fluid and
the scaled function will become

f f* ~t0,f!5
9

2

Cv~t0,f!

Cv~0!
5 f ~t0,f!. ~A7!

From Eq. ~5!, notice that the corresponding scaled time-
dependent diffusion coefficientgf(t0,f) involves a time in-
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tegral of Eq.~A6!, so the terms involvingdf(t0,f) will all
approach a constant ifdf(t0,f) approaches zero. If this is the
case then we will have

gf~t0,f!5E
0

t0,f
f ~t 0,f8 !dt0,f8

1
1

t0,f
E
0

t0,f
t 0,f8 f~t0,f8!dt 0,f8 1const,

~A8!

where the first two terms are just the single-particle scaling
with t0,f replacingt0. In other words, if the suspension be-
haves like an effective fluid then, using the modified scaling
we have proposed, the time-dependent diffusion coefficient,
plotted in terms of the suspension viscosity, will differ from
the single-particle function by a constant. The value of this
constant is most conveniently chosen to be 12Df /DSE,f ,
in which casegf(t0,f) will have an asymptotic value of
unity, independent off.
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