PHYSICAL REVIEW E VOLUME 54, NUMBER 3 SEPTEMBER 1996

Stability of densely branched growth in dissipative diffusion-controlled systems
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The dense branching morphology appears in a humber of pattern-forming systems. Neither ordered nor
fractal, this pattern is characterized by a large number of branches advancing at constant areal density behind
a smooth envelope. We propose a two-sided model which accounts for the stability of the dense branching
morphology(DBM) through dissipative and anisotropic current transport in the evolving pattern. Confinement
of currents to slightly resistive branches suffices to stabilize radially symmetric DBM growth in two and three
dimensions. Stability of the planar DBM, on the other hand, is found to require, in addition, the introduction
of a characteristic length scale, such as a short diffusion lep§063-651X96)03009-1

PACS numbes): 68.70+w, 47.544r, 68.35.Fx

I. INTRODUCTION obliged to distinguish between two experimental geometries.
In the radial geometry the pattern grows outward from a
Several distinct classes of patterns, or morphologies, capource of radiug, centered within a region of radiug,
emerge when the interface between two phases is driven outhile in the flat geometry it advances between parallel planar
of equilibrium by a diffusive field. Highly branched fractals boundaries separated by distarRe The distinction arises
resembling diffusion limited aggregatigdBLA) clusters[1], because the DBM was found to be linearly stable in the
snowflakelike dendrite§2], and dense branching patterns two-dimensional radial case, but not in the planar geometry
[3,4] are produced by processes as varied as viscous f|uﬁﬂ-] Thus these models fail to account for the appearance of
displacement and electrochemical deposition of metals angfructures such as that in Fig(bl which suggests that the
polymers. The dense branching morpholo@yBM), ex- DBM can occur in the planar geometry also.
amples of which appear in Fig. 1, is characterized by a large This article is organized as follows. The growth model is
number of fine branches advancing behind a smooth stab[@resented in Sec. Il in the context of pattern formation during
envelope. Unlike ordered dendrites, the individual brancheglectrochemical deposition and viscous fingering. This sec-
in the DBM are unstable against repeated tip splitting. In thigion also outlines the linear stability analysis used in the
respect, the DBM more closely resembles DLA. Unlike following section to investigate morphological stability of
DLA, however, the ensemble of DBM branches fills spacethe DBM. The central results of this article are presented in
uniformly. The underlying interfacial instability responsible Sec. lll. Section Il A reviews our previously reported results
for branch formation also might be expected to destabilizdor the 2D radial geometry in the quasistationary approxima-
the apparent interface enclosing the branch tips. A centrdion. We extend this analysis in Secs. Il B and 11l C both to
challenge for models of densely branched growth, thus, is téhe 3D radial geometry and also beyond the quasistationary
explain the stability of the smooth advancing envelope. ~ approximation in the planar geometry. We find a range of
Many pattern forming systems such as e|ectr0chemicd]]0ntriVia| growth conditions under which the radial DBM is
deposition, viscous fingering, and dielectric breakdown cadinearly stable in three dimensions. No such conditions are
be described by a model in which the interface’s movementound for growth from a line or a plane in the quasistationary
is governed by a scalar field satisfying Laplace’s equation a@Pproximation. Stability of the planar DBM is established,
least in the quasistatic limi6,6]. The simplest version of the however, by including both dissipation and a finite diffusion
Laplacian growth model treats the moving interface as afength. This analysis therefore extends the range of pattern
equipotential. Under these conditions, the tendency of proforming systems for which the dissipative growth model ac-
trusions to concentrate field gradients, which was first emcounts for the appearance of the dense branching morphol-
phasized in this context by Mullins and Sekefka, renders  09Y.
a smooth advancing interface linearly unstable to perturba-
t!ons at all wavelengths_. Corrections to tr_le iljterfacial POten-)  HisSIPATIVE AND ANISOTROPIC GROWTH MODEL
tial due to surface tension and growth kinetics can stabilize
the interface at wavelengths comparable to the width of a Dissipation occurs naturally in the growth channels of
branch, but do not suppress longer-wavelength instabilitiesnany physical pattern forming systems. In electrochemical
Extension of the Mullins-Sekerka analysis to systems withdeposition, for example, the deposited metal has a measur-
finite diffusion lengths also results in linear instability at long able resistance; the advancing fluid in viscous fingering sys-
wavelengths. The existence of these long-wavelength instdems similarly has a finite viscosity. A complete theory for
bilities suggest that the DBM cannot form in standard non-pattern formation in such systems would account for field
dissipative models for diffusive pattern formation. gradients within the detailed branching geometry of the
Previous efforts[4,8,9 to extend these models by ac- evolving pattern. In the absence of such a theory, we con-
counting for the small but nonvanishing resistance tostruct a self-consistent model by assuming that a dense
gradient-driven currents in the patterns’ branches have bedranching pattern has already formed and investigating its
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scopic conductivity anisotropy originates from the branched
structure of the DBM and reflects the currents’ preference to
flow along the branches rather than between them. It should
not be confused with the microscopic crystalline anisotropy
which is responsible for stabilizing the dendritic morphology
against tip splitting.

Outside the pattern, we assume the figj¢r) satisfies the
diffusion equation

du,
(TzVZUz:W. (2)
This reduces to the usual Laplace’s equation in the quasi-
static limit. The conductivityo, in this region is isotropic.

We assume that the interface advances at a rate proportional
to the local current density;=bj fo whereb is a system-
dependent material parameter aﬁdis the position of the

interface. We further assume that the currents arise from gra-
dients in the field according to Fick's law

j=aVu. 3

The system is driven out of equilibrium by a constant poten-
tial difference applied across the boundaries aand R

Us(re)=0, (4)

and
u,(R)=1. (5

Assuming continuity in both the field and current across the
interface atr,

uy(re)=uy(ry), (6)
and

J1(r9)=7a(rs) @)

allows us to solve for the interface’s evolution.

In the context of electrochemical deposition, E@S—(7)
might be interpreted as describing a pair of arbitrarily shaped
electrodes held at a fixed voltage difference in contact with

FIG. 1. Densely branched growth in quasi-two-dimensionalan electrolyte of conductivity,. The fieldu(r) then would
electrochemical depositior(a) Radial geometry. Zinc deposited correspond roughly to the electrochemical potential at posi-

from 0.0 ZnSQ at 10 V, withr=0.1 mm andR=4.2 cm.(b) 5 /' For viscous fingeringu(r) represents the local pres-
;'ft4ge°metry' Copper deposited from [LICUSQ at 5 V with g6 field, and the system is driven by a constant pressure
=4 mm. difference between the boundaries. While this simple growth

stability against small deformations. We treat the region be " odel glosses over most system-dependent details which

hind the smooth advancing envelope as an effective mediu might dominate a system’s behavior under some operating

. Y onditions, its behavior is rich enough to shed light on ge-
whosc_a transport properties mimic those of actual patterns Heric mechanisms of pattern formation under diffusive con-
least in an average sense.

) . . : trol.
Our two-sided model consists of a scalar field both in the We find it useful to define two-dimensionless control pa-

pgtterneq aggreg.atg regigregion 3 and |.n the reglon (ZUt' rameters: the conductivity anisotropy

side (region 2. Within the aggregate region, the field(r)

satisfies an anisotropic Laplace’s equation , O ®)
Y ="

i

o Vius+o, Viu=0, (1) N
and the conductivity contrast
whereo and o, are, respectively, the conductivities along
and perpendicular to the branché and VI denote the _o2 @)

corresponding components of the Laplacian. This macro- - o’
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Large anisotropy is indicated by small values gf which ~ As we previously reported4], the relative growth rate of
physically correspond to stronger confinement of currents tgerturbations in this model is
the branches. Smaller values gf similarly correspond to

stronger conductivity contrast between the invading and dis- my(1—p8)
placed phases. For viscous fingering, the condigonl cor- ap=-—1+ o R\
responds to injecting a viscous fluid into an inviscid fluid. B tan}‘{my In (—) +y tanl{m In(—”
i o intrinai it le o
The interface is intrinsically stable under these conditions (13)

and no branches form. By contrag=0 corresponds to the

DLA-like case in which the aggregate surface is an equipoThis result was found to be in good qualitative and fair quan-

tential and the interface is intrinsically unstable at all Wave-jjiotive agreement with both numerical simulations and

lengths. We focus instead on the more interesting intermedbuasi-two-dimensional electrochemical deposition experi-
ate range & B<1. ments.

Analysis of this model can either proceed numerically on™ £\ tficiently large internal dissipatiofvalues of 3
a computer, or anajyncally via Imr—_zar S‘?b"'ty analy3|s. F)re'larger than zerpand sufficiently strong anisotropfsmall
viously [4], 2D radial computer simulations of this model \ ;05 of), the relative growth rate is negative for small

were performed, showing DLA and DBM-like growth. Here, mode numbers; the circular envelope is stable against long-

we .concentrate on Imgar St"?‘b'“ty analy3|§ to probe 'the pre\'/vavelength perturbations under these conditions. Both dissi-
dictions of our model in various geometries. Following the

: ) ) pation and current confinement are required to stabilize the
procedure described by Mullins and Sekefkawe first as- smooth envelope of densely branched structures. In contrast

sume that a rz_‘;xdial or planar DBM has fqrmed of a Ceftai”to the suggestion of Erlbacher, Searson, and SierddHi
sge anfd thatl its en\_ﬁlope selparat(_es rﬁglor:f 1 anccji 2.'E ﬂfﬁat the dense branching morphology is stabilized in quasi-
above formulation. The envelope is then distorted With &, qimensional experiments by three-dimensional effects,

pe.rtl_erz.ation of infinitgsimal amplitgdé. Sincg a general our result indicates that the DBM can be stable in purely
infinitesimal perturbation can be built up by linear superpo-

. ; | £ 1 . : | two-dimensional systems.

sition 9d rlsmy c(:jorl’np_ete _setr? ZUSC“%'?SI’ Wed e>iam|ne OnlY " Earlier one-sided models which attempted to account for
sinusoidal mo u:_:mons In t e U radial and planar geom'dis:sipation in the growth channels through corrections to the
etries, and spherical harmonics in the 3D radial geometry

h fth i desiis th | erfacial boundary condition failed to account for stable
The response of the system to linear or eoirs then cal- o0 branching structures in electrochemical deposition
culated in the form of a dimensionless growth rate of th

) &when reasonable estimates férwere used4,9,11. Even

perturbation with a conductivity contrast as small g8~1/100, the

_ present model can account for the stability of the DBM pro-
Sl 6 vided the confinement of currents to the branches is suffi-
(10 ciently strong. Comparable values fBrhave been estimated
from measurements in quasi-two-dimensional electrochemi-
al deposition experiments under conditions which formed
he DBM[9]. Strong confinement of currents to the branches
in these experiments is reasonable since the electrolyte be-
tween the branches is known to be largely depleted of metal
lIl. RESULTS ions[12].

a= ,
Uolro

wherer ¢ labels the position of the unperturbed envelope, an
vg its velocity.

A. Two-dimensional radial geometry
. ) ) B. Three-dimensional radial geometry
In the two-dimensional radial geometry, a DBM aggre-

gate has a circular envelope of radiyswith radially radi- ~ Experiments such as those depicted in Fig. 1 have three-
ating branches. We have discussed this geometry in detail ifimensional analogs which have been studie8-19 al-
Ref.[4] and include an overview here for completeness andnOst as extensively as their more easily interpreted two-
to contrast with results for other geometries. A circular in-dimensional variants. Recent advances in admittance
terface preserves its shape under H@s-(7) and advances SPectroscopy14] and image analysiEl5] make it possible

with a radial velocity to analyze the shapes of evolving three-dimensional patterns.
High speed magnetic resonance imaging also has been ap-
bo, plied to the study of fluid flow in porous media. Three-
Vo™ ro ' 11 dimensional radial pattern formation, in which branches
rol B In . +1In G” grow outward from the end of a conduit, constitute another
C

class of systems to which our growth model should pertain.
In the full three-dimensional radial geometry model, the
The conductivity anisotropy does not appear in Eq11)  unperturbed spherical interface advances with velocity
because there are no tangential currents in this radially sym-
Bro

metric solution. The linear stability of the interface is deter- _bo, ro] *
mined by studying the evolution of an-fold sinusoidal per- UO_? e + (1_:3)_§ (14)

turbation of infinitesimal amplitudé,,

An infinitesimal perturbation to the growth front with a
rs=ro+dnycogmé). (120  spherical harmonic
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FIG. 2. Dimensionless growth ratg of thelth harmonic in the

three-dimensional radial geometry. Conductivity anisotr - . . .
J 4 y 1 10?'# FIG. 3. Plot of the critical perturbation harmonicas a function

0.01yy=10r., andR=100C. Lines are plotted foB= 3z, 35,35 , o . .
2—10, and ﬁ—, As the branches become increasingly resistive, the criti-Of the gmouqt of d'SS'Pat'OW and degree of amsotropy in the
ree-dimensional radial geometry model, witg=10r., and

cal mode number below which all modes are stable increases. Tl]lg o ) -
dependence oR is very weak provided y<R. =100, . Dissipation and anisotropy both help stabilize the DBM.

oping equipotential still is reasonably smooth by the time the
interface has advanced to a mean positien§j . The size at
which the envelope of the growing pattern becomes stable
scales with the size of the inner boundaryand depends

re=ro+o"Y(r,0,0) (15

grows at the relative rate

2 strongly on the amount of dissipation in the system. The
a=—2+(1-8) 5171 TR position at which such a crossover to stable dense radial
(2l +1)cotl{ In(— +1 growth might occur fory=1/100 andR=100r. appears in
2 Mo Fig. 4 as a rapid increase Ip with ry. Under certain condi-
28 -1 tions, |, decreases again far, very nearR and a second
+ (16) crossover from stable DBM to unstable growth is possible.

W (g '
w coth - In| —| |—1 .
2 le C. Growth from a line or plane

where w=\1+421(1+1). Figure 2 shows a plot of the In a planar geometry version of the dissipative quasistatic
growth rate as a function of the perturbation harmonic for gn°del, the growth rate of a sinusoidal perturbation of wave
range of dissipation values. The growth rate is negative foPUmberk is given by

values ofl less than a critical mode numbér which de- kxo(1— )

pends on the degree of dissipation in the growth channels. ak:ﬂ 0 , (19
Such long-wavelength perturbations shrink as the aggregate Pianh vkxa) + tani k(R— x

grows. The greatek,, therefore, the more nearly spherical 04 7kxo) Tk o]

the evolving pattern appears. In Fig. 3 this marginally stable . . )
harmonic number is plotted as a function of the amount ofVherexo is the location of the unperturbed interface along
dissipation (8) and anisotropy ¥) in the system. As seen the growth directiorx. The growth ratey, is positive for all
from the plot, dissipation and current confinement act in conwave numbers in all regions of parameter space, so that the
cert to stabilize the dense branching morphology in the threeflat envelope is unstable against perturbations at all wave-
dimensional radial geometry. lengths. This result reflects the planar geometry’s lack of a
In the limit R>r,, we can solve for the critical aggregate characteristic length scale to play the role played bin the
radius beyond which the envelope will be stable against perradial geometry. Without such a reference against which to
turbations of harmonic numbér distinguish perturbations of different sizes, they are either all
stable or all unstable. The branches’ transport properties as
modeled in Eq(1) do not introduce new length scales them-
selves.
(17 The quasistatic approximation to E@) requires the dif-
fusion length\ = o,/2v 4 to be larger than any other charac-
In the anisotropic limit ¢—0), the expression simplifies to teristic sizes in the system. If we relax this requirement, then
N may influence the stability of the DBM. Thus outside the
1__3_ 1 (18) patterned aggregate region we seek a solution to the diffu-
2 B(l+1) sion equation. The similarity transforz= x/Xxq(t) rescales
the problem into the frame moving with the interface. In this
For ry <r. the DBM is stable against perturbations of har-frame, the diffusion equation has the form
monic number greater thdn Even forr§ >r., an initially — .
disordered core pattern can cross over into a regime where duy(z) B duy(2) (20)
densely branched growth will be stable, provided the envel- dz dz

4B8(1+1)+ (1= B)(I+1)(w+1)—2(w+1)] ™

4B(1+1)—(1-B8)(I+1)(w—1)+2(w—1)

ro=re

*

ro=|1+ re.
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: : : : £BX
60 B=1110 up(x,t)= bxg (29
40+ 115 at the interface. As before, we perturb the flat interface with
o 1720 a sinusoid of wave numbérand solve for the growth rate of
= 1/25 the perturbation to linear order in the perturbation’s ampli-
20+ y tude. The linear stability calculations then give
Xo(1—B)—
0 | | | | ak:ﬁq o(1-8)—¢ , 26
0 20 40 60 80 100 P antf ykxo] + 1
ror. 7k
. . ) ) where
FIG. 4. Plot of the critical perturbation harmornicas a function
of the size of the patterm,,/r., in the three-dimensional radial I3 é 2 12
geometry model, withy=0.01 andR=100r,. Lines are plotted for 9%=2 + E) +(KX) 2+ ey (27)
1 1 1

B= 16 % 361 andz%. Predictions for the size-dependent crossover to
stable growth in the anisotropic limit given by Eq18),
r§/r.=5.5, 8, 10.5, and 13 for the foys values, respectively,
agree well with the jump it for the full solution.

Equations(26) and(27) reduce to the dissipative Laplac-
ian resulf Eq. (19)] and nondissipative short diffusion length
result[Eqg. (24)] in the limits £—0, andB8— 0, respectively.
These equations also can be solved &y, although the

ghfgz?é(zzg%ze(g’%;n?j: )é((’)vnos{[gﬁj[ E_lgrlﬁzt'fen(&i?éﬁelﬂ; in result is messy and so not particularly informative. For the
9 P ) d sake of clarity, we leave the solution as two coupled equa-

tprn determlngs the time dependence of the interfacial POSKons which we can compare more easily with results from
tion and velocity

the earlier analyses.
_ B E3 In the limit that e, is small compared witlg, lays the
Xo=V2&aat, (21) role of a wave numll;er whose |OWF()9r limit is seqt gy %/he diffu-
sion lengthg>1/2\. This is the length scale against which
features in the evolving pattern can be compared. The factor
12 of B in the numerator of Eq(26) then provides the offset
necessary to achieve negative valuesrpfind thus stability
at long wavelengths.

Similar time evolution was obtained by Zener in his model ~ Settinga,=0 in Eqgs.(26) and(27) allows us to solve for
of nondissipative diffusive growtfil6]. The solution to Eq. he marginally stable mode number

and

éoy
o=l

(20) which satisfies the boundary conditions in EGS~(7) VB
in the limit of largeR is given by Kk :g—ﬂ_ (28)
¢ Xo(1-8)
Ux(X,t)= f—ﬂ+ 1— f_ﬂ) 1— M , (22 Long-wavelength modes witk<k. are stable while modes
b b erfo(V€/2) with k>k, grow unstably; this is consistent with the overall
o ) picture of a large number of branches advancing behind a
where¢ satisfies the transcendental equation smooth envelope. The critical mode number depends in-
12 12 versely on the diffusion lengtin through the constant
exp( é)erfo( § ): (_ (b—&B) (23) £=Xy/2\. Since the diffusion length changes as the pattern
2 2 mé ' advances, howeveg, is a more useful control parameter.

. » o _ It is noteworthy that the conductivity anisotropy does
~We are now in a position to show that diffusion without ot jnfluencek, in the planar geometry despite its significant
dissipation in the growth channels is not sufficient to stabig|e in determinind. in the radial geometrysee Fig. 3 The
lize the planar DBM. In the imif3=0, the advancing pat- extentr, of the central boundary condition sets the charac-
tern is an equipotential withi,(rg,t)=0 and the linear sta- teristic scale for quasistationary growth in the radial geom-

bility calculation for the similarity solution gives etry and couples to the growth front through the pattern’s
transport properties. The diffusion length on the other
ay=kxo>0. (24 hand, sets the scale of the problem outside the advancing

o o ] interface and its influence depends only indirectly on the
Surprisingly this is the same result as was obtained by MU'disposition of currents within the pattern.

lins and Sekerka in the quasistatic linjit]. Although the Finally, it would appear from Eq28) that DBM growth
actual growth rates depends on the diffusion length, the is inevitable in the planar geometry sinkg diverges when
nondimensional growth rate does not. Xo=0. In fact, the initial transient behavior at the onset of
Including contributions from dissipation and current con-growth is not treated by Eq22) and thus is not accounted
finement in the advancing region requireg(r) to satisfy  for in Eq. (28). Furthermore, the value fg8 may evolve as
continuity conditions with the field inside, the morphology of the aggregate changes during early
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growth, and this evolution will affect the interface’s stability. growth should be seen. This model provides quantitative pre-
The above analysis simply provides a mechanism by whichlictions for the interfacial velocity as well as for the length
the planar DBM, once formed, can be linearly stable. Thisscales at which the DBM can appear. We have focused our
analysis also demonstrates that the planar DBM must eveninvestigation on the long-wavelength stability of the DBM’s
tually become unstable since the critical mode number vanenvelope, with the understanding that instabilities at short

ishes as the interface advances. wavelengths are responsible for the finely branched structure
of the DBM. Extensions of this model could include consid-
IV. CONCLUSIONS eration of short-wavelength stabilizing mechanisms such as

surface tension and terms accounting for the kinetics of at-

The previous sections demonstrate that diffusive patte”?achment. The problem of mode selection for the dense

forming systems in which growth currents are confined by, ranching morpholoay then could be addressed
resistive branches within the advancing pattern are capable 9 P oy '

of generating the dense branching morphology. We find that The photographs in Fig. 1 were produced in collaboration
in the two- and three-dimensional radial geometries, dissipawith Len Sander, Roy Clarke, and Nancy Hecker at The
tion and current confinement alone are sufficient to stabilizéJniversity of Michigan. We also are grateful to Peter Garik
densely branched growth. However, in the flat geometryfor pointing out the similarity transform used in Sec. IIl. This
both dissipation in the advancing region and a short diffusiorwork was supported in part by the MRSEC Program of the
length in the displaced region are necessary to account fd¥ational Science Foundation under Contract No. DMR-
stable DBM growth. Our simple yet realistic model predicts9400379 and in part by the Petroleum Research Fund of the
the region of parameter space where densely brancheimerican Chemical Society under Contract No. 26873-G.
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