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Polymers can be formed into a wide range of structures depending on the monomer chemistry and the kinetic
conditions of growth. A general model of polymers having higher-order connectivity is introduced that reduces
to flexible linear polymers, membranes, and sponges as special cases. This ‘‘Wiener sheet’’ model, which
extends the conventional Wiener path model of linear polymers, is argued to describe various classes of
branched polymers, as well as different types of interacting random surfaces. For example, lattice animals and
percolation clusters are considered to be perforated sheets whose large-scale dimensions are described by the
Wiener sheet model with excluded volume interactions. To within the approximations of the model calcula-
tions, the properties of the Wiener sheet ‘‘membrane’’ are consistent with this correspondence. The influence
of the excluded volume and the kinetics of growth of membrane and sponge structures are treated at a
Flory-level approximation, although the Wiener sheet model should admit to a renormalization-group treat-
ment as in the case of linear polymers. Predictions of the self-interacting Wiener sheet model are contrasted
with an alternative and complementary random surface model introduced by Nelson and co-workers and are
compared with recent simulations and experiment.@S1063-651X~96!00509-0#

PACS number~s!: 36.20.Ey, 05.90.1m, 05.40.1j, 82.35.1t

I. INTRODUCTION

Polymers of a networklike structure can be synthesized by
polymerizing multifunctional monomers and sheetlike poly-
mers~‘‘membranes’’! can be made by polymerizing surface
adsorbed monomers@1# or bilayers @2#. Random surface
polymers can also be obtained by cleaving layers from crys-
talline materials@3#, such as graphite oxide, and similar
sheetlike polymers are believed to naturally arise in certain
glassy materials@4#. Membranelike and networklike poly-
mers are also commonly found in biological systems such as
cell membranes@5#. Consequently, there is significant moti-
vation for the study of polymers having higher-order chain
connectivity. As in the special case of linear chain polymers,
the study of mutual and self-excluded volume interactions,
hydrodynamic interactions, surface interactions, and the in-
fluence of rigidity and the topological form of random sur-
faces on the properties of materials containing these struc-
tures provides a basic field of study. Random sheet models
have many other physical applications, which are reviewed
by Fröhlich @6# and Nelson@7#.

There are evidently a large number of network structures
that are possible through the variation of kinetic, chemical,
and spatial constraints in the polymerization process. Ideal-
ized models are useful in obtaining insights into these
branched structures. In the present work we consider a natu-
ral generalization of the Wiener path model of linear poly-
mers to describe polymers that are sheetlike or networklike
in their connectivity.

A random surface model introduced by Kantor, Kardar,
and Nelson@8# ~denoted the KKN model! has recently stimu-
lated much analytical and numerical work on polymers of
sheetlike connectivity. However, this is not the only gener-
alization of the Wiener path model of polymers. The

‘‘Wiener sheet’’ or ‘‘Brownian sheet’’@9,10# model of ran-
dom surfaces, which has been well studied in the mathemati-
cal literature, is also considered as a possible model of ran-
dom surface polymers. The present exploratory paper
indicates some of the exactly known properties of the Wiener
sheet and provides a Flory-level description of the influence
of excluded volume interactions on these sheetlike struc-
tures. Adsorption of sheets onto surfaces and some selected
hydrodynamic properties are also considered briefly. Ana-
lytic results obtained for the Wiener sheet and KKN random
surface models calculations are compared with Monte Carlo
simulation~see Fig. 1! and recent experiments on sheetlike

FIG. 1. Tethered self-avoiding random surface@11~d!#. This rep-
resentative configuration, obtained by molecular-dynamics simula-
tion @11~d!#, corresponds to 4219 particles connected by tethers
depicted as bonds in the figure. The particles interact with a hard-
core repulsion, but are not shown.L denotes the characteristic di-
mension of the surface in the coordinates of the manifold andm0 is
a nonuniversal constant~see also Fig. 3!.
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polymers.
Section II provides some background information on the

origin and application of random sheet models. The KKN
model @8# is briefly reviewed as a point of reference in the
discussion of the Wiener sheet model@9,10#. Many of the
properties deduced from the Wiener sheet model are rather
different from those indicated for the KKN model, although
both models are intended to model similar physical systems.
Significant discrepancies@11# between the analytic calcula-
tions of the KKN model and molecular-dynamics calcula-
tions of ‘‘tethered sheet’’ polymers have been found and a
primary motivation of the present work is to investigate
whether the Wiener sheet model@9,10# can more faithfully
describe simulated and physical membrane structures@11#.
Excluded volume interactions are incorporated into the
Wiener sheet model and the radius of gyration exponentsn
for swollen Wiener sheets and foru-point Wiener sheets are
calculated at a Flory-level approximation. These calculations
indicate unanticipated relations between interacting Wiener
sheets~membranes! and branched polymers in good solvents
and between percolation clusters and membranes inu sol-
vents. Networklike polymers of fractal connectivity@12,13#
are also considered within the Wiener sheet model. Consid-
eration of network polymers having a three-dimensional to-
pological connectivity indicates an additional ‘‘sponge’’
polymer universality class that should be relevant to describ-
ing self-avoiding random surfaces having a foamlike struc-
ture. The collapse transition, surface adsorption, and dilute
solution hydrodynamic properties of membranes are briefly
sketched to stimulate further comparisons with experiment.
Section III considers the swelling of flexible sheets and
sponges due to electrostatic interactions and the kinetic
growth of these structures.

II. RANDOM SHEET MODELS

The recent theoretical interest in random surfaces first
arose in the context of high-energy physics@14#. Random
surfaces arise naturally in field theories that have been pro-
posed to describe the internal structure of subatomic par-
ticles. When viewed on a fine level~high energy! it is no
longer appropriate to consider such elementary particles as
being structureless pointlike particles that sweep out filamen-
tary paths analogous to polymer chain configurations in their
shape irregularity. Rather, admitting the spatial extent of the
particles leads to a picture in which finite particles sweep out
complex volume elements in space-time. From the stand-
point of geometry, these ‘‘extended objects’’ have much in
common with polymer membranes and ordinary polymers at
high concentrations. This analogy has stimulated interest in
polymeric random surfaces.

The mathematical and the physics literature describing
random surfaces is quite extensive and good review articles
representing a variety of points of view are available
@6,7,15#. The random surface models considered so far come
in two primary classes defined in terms of an increase in
chain mass with the average radius of the structure. In the
absence of interaction one class of ‘‘ideal’’~no excluded
volume! random surfaces have a radius of gyrationRg that
increases only as the square root of the logarithm of the
molecular weightM @16#. The other general class of random

surfaces has aRg that scales asRg;M1/4 in the absence of
excluded volume interactions@9,11,17#. The scaling of the
second class of random surfaces is conspicuously similar to
ideal ~no excluded volume! branched polymers@18# and nu-
merical evidence and theoretical arguments indicate that cer-
tain classes of random surfaces~self-avoiding plaquette sur-
faces! belong to the branched polymer~‘‘lattice animal’’!
universality class@19,20#, even when the excluded volume is
incorporated into these models. Both of these classes of ran-
dom surface models@Rg

2;ln(M ), Rg;M1/4# are natural gen-
eralizations of the Wiener path model of linear polymers~see
below! @21#. Boulatovet al. @17~d!# have considered a more
general random surface model that exhibits a crossover be-
tween these random surface models involving an ‘‘intrinsic
curvature’’ parametera. The KKN and Wiener sheet models
can thus be expected to becomplementarymodels of random
surfaces.

A. The KKN random surface model

Kantor, Kardar, and Nelson introduced an analytic theory
of flexible surfaces of fixed connectivity embedded in a
d-dimensional space@8#. Extensive theoretical and numerical
literature was stimulated by this publication@11,22#. Excite-
ment was initially generated by a Flory-level description@8#
of the excluded volume in this random surface model, which
indicated agreement with preliminary numerical calculations
@8#. Later simulations established a significant deviations be-
tween the analytic KKN model calculations and the simula-
tions, however@11#. The KKN model and some results based
on this model are summarized below for comparison with the
Wiener sheet model. Part of the motivation of considering
the Wiener sheet model is to determine if this model gives a
more accurate description of the universal properties of the
simulated and real random surfaces with excluded volume
interactions.

The KKN model is a natural generalization of the Wiener
path model of polymer chains@21#. A point on the surface of
the sheetlike polymer is specified by a position vectorR~t!.
The coordinate variable, however, is itself a vector in the
manifold coordinatest5(t1 ,t2 ,...,tdm), where dm is the
manifold dimension. For a linear polymert reduces to just a
scalar variablet specifying the contour coordinate along the
chain. The sheet is specified by theR~t! spatial coordinates
embedded in ad-dimensional space and the manifoldV co-
ordinates.L is a characteristic scale of the manifold such as
the side length of a square manifold sheet and is measured in
the Euclidean metric of the sheet coordinates. Configura-
tional properties of KKN sheets are calculated by averaging
over all surfaces with respect to the Boltzmann weight
exp~2H/kBT!, where the Hamiltonian equals@8#

H„R~t!…/kBT5H0„R~t!…1~bz/2!E
V
dtE

V
dt8

3d„R„t…2R~t8!…, ~2.1a!

H0„R~t!…5 1
2 E

V
dtu¹t„R~t……u2, ~2.1b!

whereb2 is the binary cluster integral. This model reduces to
the ‘‘two-parameter model’’~or ‘‘Edward’s model’’! of the
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polymer excluded volume@21,23# for manifolds of dimen-
sion dm51 ~ordinary linear polymer chains!. However, this
is not a unique extension of the linear polymer model to
describe random surfaces~see below!.

The Flory-type calculation for the radius of gyration ex-
ponent for the KKN random surface model is a generaliza-
tion of the linear polymer calculation. There is an elastic
termR2/L22dm from H0 in Eq. ~2.1b! and an excluded vol-
ume interaction contributionb2L

2dm/Rd. Summing these
terms, taking the derivative with respect toR, and setting the
result equal to zero gives the result of Kantor, Kardar, and
Nelson for the average sheet radiusR̄ @8#,

R̄;L n̂, n̂5~dm12!/~d12!. ~2.2a!

The total massM of the sheet scales with its sizeL asM
;Ldm so that the swollen sheet size scales with mass
as @8#

R̄;M n, n5~dm12!/dm~d12!. ~2.2b!

A caret is put over the exponentn̂ in Eq. ~2.2a! to distinguish
it from the related mass scaling exponentn in Eq. ~2.2b!.
This model predicts that sheets without excluded volume are
extraordinarily compact fordm.1,

R̄0
2;L22dm, dm,2, ~2.2c!

reducing to a logarithmic variationR̄0
2;lnL as dm ap-

proachesdm→22. These networks are ‘‘collapsed’’ or ‘‘lo-
calized’’ for dm.2 sinceR̄0

2 is then independent of L. Simu-
lations of tethered random surfaces in theabsenceof
excluded volume interactions have verified the logarithmic
scaling@11~d!# in Eq. ~2.2c! for dm52.

The scaling of random surface dimensions according to
Eq. ~2.2c! was implicit in earlier work on Gaussian chain
networks by James and Guth@24#. Ronca and Allegra@25#
have shown a relation between the radius of gyration of the
Gaussian chain network model of James and Guth and the
resistivity of networks. The characteristic logarithmic varia-
tion of R̄0

2 also describes the resistance between two points
separated by a large distanceL in a plane net of resistors
@25~c!#. The KKN model then has many potential applica-
tions, apart from the description of certain model random
surfaces.

It has been argued@13,26# that the manifold dimensiondm
in the KKN random surface model can beformally replaced
by the ‘‘spectral dimension’’ds→dm , which governs the
rate of random-walk exploration on the manifold defining the
chain connectivity. Levinson@12# has presented numerical
evidence supporting this proposal. However, exact calcula-
tions@27# for the Wiener sheet, discussed below,~rigorously!
indicate a different definition of the ‘‘effective topological
dimension’’ of Wiener random sheets so that the identifica-
tion of ds→dm should be taken with some caution. This
problem deserves further investigation.

Initial Monte Carlo data and table top experiments with
crumpled foil balls indicated@8# an exponentn̂ ~dm52,
d53! consistent with Eq.~2.2a!; n̂'0.8. More recent and
larger-scale molecular-dynamics simulations~see Fig. 1!
have established thatn̂ is near unity in three dimensions@11#
and that Eq.~2.2a! is not an accurate approximation.~Be-

cause the scaling relationR̄;L is reminiscent of the scaling
of a plane sheet these random surfaces are referred to as
being ‘‘flat.’’ Specific realizations of these surfaces are actu-
ally rather crumpled looking, so the term should not be taken
too literally.! Because of the conflict between their simula-
tion data and the KKN random surface model, Grest and
Murat @28# attempted to ‘‘crumple’’~decreasen̂! in their
simulated surfaces by punching holes at random positions in
them and letting the structures relax. Surprisingly, this deci-
mation process gave rise tono detectable changein the scal-
ing properties of the random surface until the holes reached
the percolation threshold@28,29#, whereupon the whole
structure disintegrated. The significance of this important ob-
servation is discussed in Sec. II B.

Difficulties are also encountered in analytic calculations
based on the Hamiltonian in Eq.~2.1! @26#. Examination of
the scaling of them-body excluded volume interaction for
this model in a fashion parallel to linear polymers reveals
that them-body interactions scale with molecular weight as

zm~KKN !;Mfm, fm~KKN !5m, ~2.3!

where ln(M ) terms are neglected. Formally, the relevance of
m-body interactionsincreaseswith the order of them-body
interaction. The physical appropriateness of including only
binary excluded volume interactions is certainly a question.
Even neglecting the somewhat arbitrary truncation of ex-
cluded volume interactions at the binary interaction level, a
formal calculation of the resulting model~dm52! reveals a
perturbation theory having an ‘‘infinite critical dimension’’
and a reference model having an ‘‘infinite fractal dimen-
sion’’ @16#. Application of thee-expansion method is then
out of the question unless the manifold dimension is formally
taken as variable,dm,2 @26#. Apart from these technical
difficulties, the main problem with the model at the present
stage of development is the observed inconsistency between
model predictions@such as Eq.~2.2!# and the simulation data
mentioned above.

Goulian @30# recently made an alternative ‘‘Gaussian ap-
proximation’’ estimate ofn̂ for swollen sheets starting from
Eq. ~2.1!, which led to better agreement with numerical es-
timates ofn̂ as a function of dimensiond @31#. At a Flory-
level description this calculation amounts to taking the ex-
cluded volume contributionb2L

2dm/Rd in the Hamiltonian,
defined in Eq.~2.1!, on the order of a constant andneglecting
the elastic contribution to the free energy. This argument
gives

R̄;L n̂;M n, n̂52dm /d, n52/d, ~2.4!

which for a two-dimensional~dm52! sheet reduces to the
case considered explicitly by Goulian@30#. The linear poly-
mer estimate~dm51! corresponding to Eq.~2.4! corresponds
to the classical Reiss–Des Cloizeaux estimate@32# n52/d,
and in this case the predicted value ofn is known to be
inaccurate. Although Goulian’s calculation seems to gives an
improved estimate forn̂ for random surfaces~dm52! over a
range of dimensions@31# in comparison with the KKN
Flory-theory calculation@8#, this argument still does not lead
to accurate estimates ofn̂ for the swollen sheet ind53. This
calculation does suggest, however, that the shortcoming of
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the KKN model in describing tethered surfaces is associated
with the elastic contribution to the free energy.

B. Wiener sheet model of random surfaces

There is another model of random surfaces that is a natu-
ral generalization of the Wiener path model of linear poly-
mers. The Wiener~or Brownian! sheet model@9,10# is de-
scribed by a surface represented by position vectorsR~t!
defined as in the KKN model. The Wiener sheet corresponds
to an independent random process where the individual po-
sition components ofR~t! obey a covariance relation in thet
coordinate similar to Brownian motion@9,10#. ~This is a de-
fining characteristic of these random surfaces and an under-
standing of how this type of surface emerges as the con-
tinuum limit of discrete microscopic models of random
surfaces is an outstanding problem.! The Wiener sheet model
has been studied extensively over the past 30 years@see, e.g.,
@9~d!## and we therefore limit the discussion to some of the
well established properties of this model. In this initial study
Flory-type calculations are also developed to make a quali-
tative check of the model in relation to simulation and ex-
perimental data.

In the absence of self-excluded volume interactions the
fractal ~Hausdorff! dimensiondf of the Wiener sheet has
rigorously been proven to equal@9~a!,10~a!#

df5min~2dm ,d!. ~2.5!

The minimum relation occurs since the Hausdorff dimension
cannotexceed the spatial dimensiond. The relation Eq.~2.5!
corresponds to the average radiusR̄ of the Wiener sheet
scaling as

R̄0;Ln0;M n0, n05
1
2 , n051/2dm , ~2.6a!

where the zero subscript denotes the absence of excluded
volume interactions. The average radius of a membrane
~dm52! or linear polymer~dm51! in the absence of excluded
volume interactions scales as

R̄0

;HM1/2 ~ linear polymer, noninteracting! ~2.6b!

M1/4 ~membrane polymer, nonintearacting!. ~2.6c!

The random-walk result Eq.~2.6b! is familiar and the mem-
brane model result Eq.~2.6c! was suggested by Parisi@17~a!#
for noninteracting random surfaces~dm52!. We also recog-
nize that the scaling of the surface radius with mass corre-
sponds to the Flory-Stockmayer theory@18# of ‘‘branched
polymers’’ and this connection is discussed further below.

Montford @27# considered generalizations of the Wiener
random sheet whose network connectivity is defined as a
fractal set. His results show that if the mass elements of the
sheet are positioned on a manifold of fractal dimensiondfm
then the fractal~Hausdorff! dimensiondf of the resulting
Wiener sheet in space~rigorously! equals

dfm52dm , ~2.7!

wheredf is less than or equal tod. This result means that the
manifold dimensiondm should be replaced by the fractal
~Hausdorff! dimensiondfm rather than a spectral dimension
in the calculation ofn in the case of the Wiener sheet. Equa-

tion ~2.7! is important in our discussion below of random
sheets of irregular connectivity.„Below the fractal dimension
df will refer to the mass scaling exponent@e.g.,df52dm in
Eq. ~2.6a!# rather than the Hausdorff dimension so that the
min terminology in Eq.~2.5! is avoided.…

The incorporation of excluded volume interactions into
the Wiener sheet model is a simple matter in a Flory-level
approximation. Formally, the interaction terms are thesame
as in the KKN model. The distribution function between two
points on the surface is aGaussian functionin the Wiener
sheet model@9~a!, 9~d!#, as in the case of linear polymers,
and we thus have the elastic contributionR2/L and a binary
excluded volume contributionb2L

2dm/Rd as in the KKN sur-
face model calculation summarized in Sec. II A. Adding
these contributions and minimizing in the usual fashion gives
the Flory-type estimate ofn for the Wiener sheet

R̄;L n̂;M n, n̂5~2dm11!/~d12!,

n5~2dm11!/dm~d12!. ~2.8!

Taking dm52 andd53 we find n̂51 andn51/2, which is
compatible with numerical simulations on simulated swollen
tethered random surfaces@11#. It then seems plausible that
the local rigidity ~‘‘intrinsic curvature’’ @17~d!#! of the ran-
dom surface is strongly perturbed by excluded volume inter-
actions so that the Wiener sheet provides a better reference
model for the swelling of random surfaces than the KKN
model. This presumption is hard to prove, but it is possible to
explore some of the many implications of this hypothesis.
Moreover, the problem of the swelling of Wiener sheets
should have independent interest.

The simple noninteracting Wiener sheet model applies for
d high enough that the probability of self-intersection be-
comes negligible@9~d!#. It is well known that the ideal
Wiener path model describes long swollen linear polymers
for dimensions greater than 4. Recent direct enumeration cal-
culations ofn for self-avoiding walks in Fig. 2 illustrate this
variation. Simple dimensional analysis based on the Wiener
sheet model and consideration of the binary interaction in
Eq. ~2.1! allows the formal deduction of the critical dimen-
sion for the self-interacting Wiener sheet. The dimensionless
m-body interactionszm scale with random surface massM as

zm;bmL
Dm, Dm52dmm2~m21!d, ~2.9!

corresponding to a scaling ofzm with mass

zm;bmM
fm, fm5m2~m21!d/2dm . ~2.10!

This is a direct generalization of the scaling of the dimen-
sionless excluded volume interaction for linear polymers.
From Eq.~2.10! we see thatd58 is a critical dimension for
binary ~m52! excluded volume interactions andd56 is a
critical dimension for ternary interactions~m53! in a mem-
brane~dm52!. In accord with these scaling results for the
Wiener sheet~dm52! rigorous calculations@9~d!# indicate
that the probability of nontrivial Wiener sheet intersection
vanishes aboved58 and the scaling exponentDm defines the
fractal~Hausdorff! dimension of them-body self-intersection
set @33#. Parisi @17~a!# previously suggested that the lower
critical dimension@see Eq.~2.5!# for a class of random sur-
faces wasd54 @corresponding tofm51 in Eq. ~2.10!# and
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d58 was an upper critical dimension for binary excluded
volume interactions and discussed some of the important
physical implications of these geometrical relations. These
conjectures exactly accord with the known properties of the
Wiener sheet~dm52!.

Flory-type estimates of theu-point exponentnu for self-
interacting Wiener sheets are also possible. First, it is naively
assumed thatonly ternary interactions are relevant in deter-
mining nu . Adding the ternary interactionL3dm/R2d to the
elastic termR2/L and minimizing gives, in the tenary ap-
proximation, ford<3dm ,

R̄u;L n̂u;M nu, n̂u5~3dm11!/2~d11!,

nu5~3dm11!/2dm~d11!. ~2.11!

The linear polymer casenu'2/~d11! is known to be rather
inaccurate ind52 @34#, however, so that quantitative agree-
ment with Eq.~2.11! with experimental and simulation data
cannot be expected~see below!.

A basic problem with Flory-type estimate ofnu is the
retention of only ternary interactions under circumstances
where higher-order interaction are also relevant. Isaacson
and Lubensky@35# introduced an alternative modeling ofn
for concentrated polymer solutions where higher-order inter-
actions are also important. They suggest modeling the binary
interaction by a ‘‘renormalized’’ interactionb2(L

2dm/
Rd) L2a in the casedm51. The L2a term is intended to
reflect the ‘‘screening’’ of the binary interactions within a
chain by the other chains in solution. This idea can also be
adapted to estimate theu-point exponentnu of membranes

where theL2a term is assumed to reflect the influence of
ternary and higher-order interactions. The magnitude ofa
can befixedby noting that the critical dimension for ternary
interactions equalsdc,353dm from Eq. ~2.10! and higher-
order interactions are irrelevant ford.3dm . Taking dm52
~membranes! for specificity, we should then have ideal be-
havior (R̄0;L1/2;M1/4) for d<6 dimensions. With this con-
straint in mind we add the interaction term
b2(L

2dm/Rd)L2a to R2/L and minimize to obtain

R̄u;L n̂u, n̂u5~4112a!/~d12!. ~2.12!

The exponenta must be 1 atd56 to recover the classical
exponentn̂05

1
2 and following Isaacson and Lubensky@35# in

the context of their discussion of the swelling of ‘‘gelation
clusters’’ we takea51 generally. This approximation gives
an approximation forn̂u for a membrane,

n̂u5H 4/~d12!, d,3dm56, dm52 ~2.13a!

1
2 , d>6. ~2.13b!

Equation~2.13a! corresponds~fortuitously! to the KKN ran-
dom surface exponentn̂(dm52) in Eq.~2.2a!, aside from the
restrictiond,6 in Eq. ~2.13a!.

The Flory-theory estimates of the self-avoiding and
u-point Weiner sheets reveal an unanticipated relation be-
tween the Weiner sheet~dm52!, branched polymers~lattice
animals!, and percolation clusters. Expressing the average
radius of a self-avoiding Weiner sheet in terms of the mass
of the sheet indicates

R̄~dm52!;M n, n5H 5/@2~d12!#, d,4dm58

1
4 , d.8.

~2.14a!

~n is related generally to the manifold dimensiondm and the
fractal dimension of the surfacedf as n̂5dm/df5dmn.! The
critical dimension of branched polymers for binary excluded
volume interactions is well known@18# to bedc(m52)58
and the exponentn55/@2~d12!#, d<8 is exactly the
Isaacson-Lubensky Flory-theory estimate@18# for n ~lattice
animal!. The critical dimension of percolation clusters is
d56 @36# andnu in Eq. ~2.13a! also describes the mass scal-
ing of percolation clusters

R̄u;M nu, nu5H 2/~d12!, d<6

1
4 , d>6 ~2.14b!

within a Fory-level approximation. Exact formal calculations
@34~a!,34~b!# indicate thatnu in d52 for linear polymers is
the mass scaling exponent of ‘‘percolation hulls’’ ind52,
indicating another relation between theu-point scaling of
Wiener sheets@nu~dm51, d52!5 4

7# and percolation theory.
The hulls of percolation clusters ind53 have a fractal di-
mension closely corresponding to 1/nu in Eq. ~2.14b! ~see
below! so there is some evidence that this geometric connec-
tion extends to higherd ~see below!.

A direct relation between branched polymers~lattice ani-
mals! and self-avoiding random surfaces is strikingly shown
in the simulations of Grest and Murat@28# ~see Fig. 3!. They
find that the scaling of the membrane dimensions with mass

FIG. 2. Estimation of the SAW exponentn obtained by direct
enumeration and ratio method extrapolation@69#. The solid line
represents an analytic interpolation formula that is closely approxi-
mated~dashed line! by the Flory-theory estimaten53/~d12!. See
Ref. @69# for an explanation of the lattice data.
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is independent of hole concentrationto within numerical un-
certainty up to the hole percolation thresholdpc . Nearpc the
decimated membrane is clearly a branched polymer and this
numerical study strongly suggests that self-avoiding mem-
branes belong to the lattice animal universality class~Grest
and Murat did not make this point in their numerical study!.
These decimated sheet simulations and this point of view
make the connection between the Wiener sheet estimate forn
in Eq. ~2.14! and previously known results for branched
polymers and percolation clusters almost obvious.

Figure 4 compares Eq.~2.14a! to estimates@38# of the
exponentn for swollen branched polymers~lattice animals!
in various spatial dimensionsd. As is well known, the agree-
ment is rather good, as in the case of linear polymers~see

Fig. 2!. Further, de Gennes@39# has developed a model of
percolation clusters as branched polymers subject to inter-
cluster screening of excluded volume interactions. These
connections between branched polymers and self-avoiding
membranes suggest that the exponentn, describing the mean
size of percolation clusters,equalsthe u-point exponentnu
for self-interacting membranes. Another possibility is that
1/nu for the membrane equals the fractal dimension of the
hull of percolation clusters, which would be a natural exten-
sion of the linear chain results@34~a!,34~b!# and consistent
with recent numerical data for the percolation hull dimension
df'2.5 @37#. Finally, we mention that Eq.~2.11! corresponds
to Daoud and Joanny’s estimate@40# of nu for branched poly-
mers. The Wiener sheet model then offers the prospect of a
unified model of linear and branched polymers.

Some exact results are known for lattice animals and per-
colation clusters and in other cases precise numerical esti-
mates are available~see Fig. 4!. These results allow for a
quantitative comparison between the properties of random
sheets and branched polymers. The exponentn for lattice
animals ind53 and 4 equalsn51

2 and
5
12, respectively@41#.

These values agree with the Flory-theory value ofn for
membranes in Eq.~2.14a! and these estimates are conjec-
tured to be exact for self-avoiding membranes as well
~dm52!, so thatn̂~d53!51 andn̂~d54!55

6. ~Grest’s numeri-
cal estimate@31# of n̂ is somewhat higher in four dimensions
n̂'0.91,although further work on larger systems would be
helpful in assessing the accuracy of this value.! Estimatingnu
as the reciprocal fractal dimension of percolation clusters
@42# yields n̂u~d52!5 48

91 and n̂u~d56!5 1
4 and numerical cal-

culation @43# gives n̂u~d53!50.402. Agreement with the
Flory estimate from Eq.~2.14b!, n̂u~d53!5 4

10, is again rather
good. We next mention some relevant experimental data for
branched polymers that should be consistent with the random
surface data by the arguments above. Bouchaudet al. @44#
observe 1/n51.9860.03 for diluted branched polymers~ge-
lation clusters! in good accord with the expectations of lat-
tice animals and Adamet al. @45# obtain 1/n52.560.09 for
undiluted branched polymers. These results are consistent
with expectations for branched polymers or Wiener mem-
branes in good andu solvents, respectively. Recent experi-
ments@46# on branched dextran polymers in theu solvent
water gave 1/nu'2.5. Finally, we note recent molecular-
dynamics simulations of flexible tethered random sheets that
indicate thatdf'2.4 at theu point @22#. The observed ex-
cluded volume dependence of branched polymers is similar
to simulations of the swelling of tethered sheets and with the
Flory-theory estimates of the swelling of membrane poly-
mers~see Sec. II E!.

Sheetlike surfaces have also been obtained by exfoliating
graphite with strong oxidizing agents@3#. Light-scattering
measurements on these surfaces indicate 1/n52.460.1 and
1/n'3, dependent on solvent conditions. These preliminary
exponent estimates are consistent withnu in Eq. ~2.14! and
the value ofn expected for collapsed surfaces~see Sec. II E!.
It is unclear, however, whether these measurements are made
under equilibrium conditions.

C. ‘‘Sponge’’ polymers

Another important class of Wiener sheets corresponds to a
polymer having a three-dimensional lattice net~e.g., cubic
lattice! connectivity. Allowing such a structure to relax into a
disordered configuration gives rise to a sponge polymer.@In

FIG. 3. Self-avoiding tethered surfaces with randomly cut bonds
@28#. 12p denotes the concentration of bonds that have been cut.
The molecular-dynamics study of Grest and Murat@28# shows that
the exponentn is unaffectedby the bond cutting to within numerical
uncertainty so that branched polymers~p'1/2! seem to correspond
to a perforated swollen ‘‘membrane.’’ This connection is also found
in Flory-type calculations forn using the Wiener sheet random
surface model~see text!.

FIG. 4. Exponentn for a self-avoiding Wiener sheet~dm52!, a
membrane. The filled squares correspond to numerical estimates of
n for branched polymers~‘‘lattice animals’’! @17,18#. The solid line
is the Flory-theory prediction for the dimensional variation ofn,
which is thesameas for the swollen Wiener sheet.
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KKN model calculations such generalized polymers~dm53!
are sometimes referred to as ‘‘gels,’’ but this term is avoided
because it is often employed with a rather different meaning
in polymer science.# Simulation studies have not been made
for these sponge polymers, but the expected results for these
structures can be estimated based on the Wiener sheet model
~dm53!. Related numerical and experimental observations
are also examined in light of these theoretical results.

From Eq. ~2.10! the critical dimension for binary ex-
cluded volume interactions~m52, dm53! is d512 and the
u-point critical dimension for ternary excluded volume inter-
actions for the sponge isd59. The average radiusR̄ of the
swollen sponge in the Flory approximation then scales as, for
dm53,

R̄;L n̂;M n, n̂57/~d12!, n57/@3~d12!#, d,12
~2.15a!

and theu-point exponents equal

R̄;L n̂u;M nu, n̂u511/@2~d12!#,

nu511/@6~d12!#, d,9. ~2.15b!

Above d512 the mass exponentn is equal to 1
6 so that

sponge polymers tend to be rather compact. The variation of
n for the swollen sponge@Eq. ~2.15!# is indicated in Fig. 5.

The discussion of Sec. II B suggests that representations
of the sponge universality class of self-avoiding random sur-
face’s might correspond to a class of branched polymers.
With this possibility in mind we examine the simulations of
branched polymers by Alexandrowicz@47#, since this work
emphasizes the existence of more than one branched poly-
mer universality class, depending on growth conditions. In
particular, ‘‘bushy’’ branched polymers grown in sequential
generations~reminiscent of ‘‘dendrimers’’@48#! gave differ-
ent n values than branched polymers grown under equilib-
rium conditions. The exponentn for these stepwise generated
polymers tended to be more compact than regular branched

polymers. In Fig. 4 the numerical values of 1/df for the step-
wise generated branched polymers is compared with Eq.
~2.15b!. Alexandrowicz@47# estimates the reciprocal fractal
dimension in the limit of high dimensionality as roughly
1/df'0.22 and he found somewhat smaller values of the ef-
fective n exponent,n'~0.1, 0.13!, describing the scaling of
the average size of these polymers. These exponent estimates
are compared to the exact sponge valuen51

6 for d.12. The
simulation values ofn for ordinary branched polymers,
which are believed to be in the lattice animal universality
class, are presented in Fig. 5 for comparison. Evidently,
these two classes of branched polymers are rather distinct, as
indicated by Alexandrowicz@47#. The stepwise growth and
continuous growth polymers~also considered by Alexand-
rowicz! seem to conform well to the self-avoiding sponge
~dm53! and membrane~dm52! model predictions, respec-
tively. This comparison, of course, is rather heuristic.

We next consider some other branched polymer structures
grown under nonequilibrium conditions in a further qualita-
tive comparison to the sponge model. Data for the silica
colloid aggregates indicate 1/n52.1260.05, where 1/n is re-
ported as the aggregate fractal dimension by Schaeferet al.
@49#. The corresponding self-avoiding sponge prediction is
1/n515

7 '2.14. Experiments on zinc electrodeposit aggregates
in d52 @50# indicate 1/n51.6660.03, which is compared
with the sponge model estimate ind52, 1/n512

7 '1.71, from
Eq. ~2.15a!. These favorable comparisons suggest that it
might be worth looking more carefully at this phenomenon
based on the sponge model. The sponge model may also
have significant biological relevance. Protein molecules can
often be idealized as random surfaces and recent experiments
have shown a surprising degree of universality for the fractal
dimensions of many proteins that are found to lie in the
narrow rangedf[1/n52.1460.04 @51#. This range is also
consistent with the swollen sponge model prediction
df'2.14 from Eq.~2.15b!.

There is another class of branched polymers that is inter-
esting to compare with the self-avoiding sponge model. Wes-
sel and Ball@52# consider the diffusion-limited aggregation
~DLA ! model @53#, generalized to allow for aggregated par-
ticles to disaggregate so that an ‘‘equilibrium structure’’ is
obtained. They argue and provide numerical evidence that
the disaggregation model of DLA generated polymers is in
the lattice animal universality class. An estimate of the ki-
netic growth of sponges is developed in Sec. III.

D. Random plaquette surfaces

Another random surface model involves placing square
‘‘plaquettes’’ on a lattice edge to edge where no overlaps are
allowed @19# ~the elementary plaquettes can also be cubes!.
Numerical calculations for this generalization of self-
avoiding lattice walks indicate that the the geometrical prop-
erties of these random surfaces again closely correspond to
those of branched polymers@19#. For example, a recent
Monte Carlo estimate ofn for this kind of random surface
gives @19~c!#

n~d52!50.50660.005 ~2.16!

and similar but less precise estimates have been obtained by
direct enumeration@19~e!#. This exponent estimate is re-
stricted to self-avoiding plaquette surfaces having no loops

FIG. 5. Exponentn for a swollen ‘‘sponge.’’ The solid line
denotes the Flory-theory estimate ofn for the Wiener sheet~dm53!
from Eq. ~2.15b!. The filled squares correspond to values for
‘‘bushy’’ branched polymers grown by a sequential kinetic growth
process@47#. Thesen data correspond to the reciprocal fractal di-
mension values 1/df reported by Alexanderowicz@47#. Branched
polymers grown under continuous growth conditions led to expo-
nents close to those for lattice animals~see Fig. 4!.
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~‘‘handles’’!. This kind of constraint is similar to the ‘‘light
branching’’ constraint in linear polymers@55# ~light branch-
ing corresponds to the formation of a ring, star, or comb
chain topology and this low degree of branching does not
change the linear chain self-avoiding walk exponentn!.

Self-avoiding random plaquette surfaces~SARPS! with an
arbitrary number of loops more resemble a spongelike struc-
ture and a change of universality class from branched poly-
mer ~lattice animals! to another universality class seems
plausible when the number of loops is large. Banavar, Mari-
tan, and Stella@54# have previously argued for this possibil-
ity, although they argue that the resulting highly branched
polymers are compact~df53!. The situation is quite similar
to the linear to branched polymer~lattice animal! crossover
obtained by increasing the number of chain cross links. It
seems very likely that the SARPS with a high degree of
looping correspond to the sponge universality class@this con-
jecture remains to be tested by a recently developed numeri-
cal algorithms developed at NIST to simulate SARPS with a
high degree of looping@19~e!#. The proposed relation be-
tween sponge polymers and SARPS with a large number of
loops indicates that such SARPS should exhibit a signifi-
cantly different critical behavior~contrastn values in Figs. 4
and 5!.

Maritan, Seno, and Stella@56a# recently indicated a class
of SARPS corresponding to the hulls of Ising model clusters.
The fractal dimension of these Ising clusters is estimated to
satisfy the bound 1.88<1/n<2.16 for d53, which is again
consistent~roughly! with the Flory-theory estimates of the
sponge exponents@56b#. It would be interesting if future
simulations of this class of SARPS and Ising critical clusters
confirmed a relation to the sponge model. The directly ob-
servable clusters@57# in critical fluid mixtures certainly cer-
tainly have a spongelike appearance and the fractal dimen-
sion of these critical clusters~df'2.860.01! is consistent
with the spongeu-point estimate ~df'2.72! from Eq.
~2.15b!, appropriate for a high concentration of critical clus-
ters where screening of the excluded volume interactions
should arise.

Random plaquette surfaces with a high propensity to form
loops should rather resemble an open cell foamlike structure
and this model has great potential for the modeling spongy
materials such a microemulsions and the disordered phase of
block copolymer fluids. Measurements on certain am-
phiphilic molecule materials such as lipids and soap mol-
ecules often reveal a bicontinuous latticelike structure that
can ‘‘melt’’ into a disordered spongelike phase@58~a!# and
this type of order-disorder transition is also commonly en-
countered in block copolymer materials@58~b!#. It remains to
be seen whether the Wiener sponge model is applicable in
the quantitative description of any of these physical systems,
but the model appears promising for these material science
applications.

E. Collapse of a ‘‘membrane’’

The presence of attractive self-interactions in the Wiener
sheet causes a decrease in the average polymer dimensions
as in linear polymers. This effect is so important that it de-
serves a separate discussion. For the self-interacting mem-
brane~dm52! Eqs.~2.11! and ~2.14b! imply

R̄~T@u!;L n̂;M n, n̂55/~d12!, n55/@2~d

12!#, d,8 ~2.17a!

R̄u~T'u!;L n̂u;M nu, n̂u54/~d12!,

nu52/~d12!, d,6 ~2.17b!

R̄~T!u!;L n̂c;M ne, n̂c52/d, nc51/d,
~2.17c!

where the collapsed sheet exponentnc51/d is estimated by
assuming that the collapsed surfaces achieves a uniform seg-
ment density for sufficiently large attractive interactions.
This same assumption is conventional in discussions of lin-
ear polymer collapse. It would be interesting to examine the
u-point in these surfaces more carefully to determine the
magnitude ofnu in comparison with Eq.~2.14b!. Note that
Eq. ~2.17! implies that au-point membrane is crumpled
~n̂u,1!. This effect was recently observed in simulations
@22#, as mentioned above. Experimental estimates@3# of n
for dissolved graphite sheets are also in accord with Eqs.
~2.17b! and ~2.17c!, which is consistent with the measure-
ments being made in a poor or marginal solvent. Osmotic
pressure measurements could confirm this possibility.

III. WIENER SHEETS WITH SURFACE AND
HYDRODYNAMIC INTERACTIONS

Treatment of surface and hydrodynamic interactions in
the Wiener sheet is a direct extension of the linear polymer
problem. For example, we may consider the interaction
Hamiltonian@59# for a random sheet interacting with a Eu-
clidean surface~point, line plane, etc.! of dimensiondi ,

HI5bsE
V
dt d„R'~t!…, ~3.1!

wherebs is the coupling constant between the random sur-
face and the Euclidean surface. The vectorR'~t! in Eq. ~3.1!
is the component of the sheet coordinateR~t!, which is nor-
mal to the Euclidean surface of dimensiondi , d'1di5d.
Dimensional analysis based on Eq.~3.1! indicates that the
dimensionless surface interaction scaleszs as, for 0,fs<1,

zs;bsM
fs;bsL

Ds,

fs512~d2di!/2dm ,

Ds5dm2~d2di!/2, ~3.2!

whereDs is the fractal dimension of the intersection between
the membrane and the Euclidean plane~see@27# for a rigor-
ous discussion ofDs for the casedi50!. The perturbative
calculation of surface interacting sheet properties is formally
similar to those for linear polymers near an interacting
boundary@59,60#.

Adsorption of a sheet onto a surface should give rise to an
extensive change in free energyDF;M as in the case of
linear polymers. Consistency of the free-energy scaling with
Eq. ~3.2! implies that the free energy of a random surface
adsorbed on a Euclidean surface scales as@60#

DF;uzsu1/fs, DF/M;ubsu1/fs. ~3.3!
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Thus the order of the surface adsorption phase transition of a
membrane~dm52! onto a surface of dimensiondi ~di50,
point; di51, line; di52, plane; etc.! equals 1/fs @60#. For a
plane surface~di52! in d53 dimensions the membrane in-
teraction exponent equalsfs5

3
4 and the order of the transi-

tion is 4
3 ~see Ref.@60# for a discussion of fractional order

transitions!. The linear chain polymer exhibits a second-
order transition onto the plane surface so the membrane
should exhibit a sharper transition than its linear chain topol-
ogy counterpart. The inclusion of excluded volume interac-
tions into the sheet could alter this conclusion, however.

At a rough configurational preaveraging level approxima-
tion @61,62# we can deduce the scaling for Wiener sheet hy-
drodynamic interactions and the scaling behavior of some
basic hydrodynamic solution properties. The preaveraged
Oseen tensor scales like the Coulomb potential (uRu2(d22))
and from dimensional analysis the scaling of the dimension-
less hydrodynamic interactionh with chain massM is
readily deduced for an ideal Wiener sheet

h;~z/hs!M
fH, fH512~d22!/2dm , ~3.4!

wherez is the monomer friction. For an arbitrary fractal 2dm
in Eq. ~3.4! is replaced by the sheet fractal dimension. The
scaling of the dimensionless hydrodynamic interactionh is
not so simple if the preaveraging approximation is not em-
ployed, but Eq.~3.4! should remain qualitatively correct. The
translational frictionf T of a Wiener sheet, within a generali-
zation of the Kirkwood-Riseman theory@61#, should be rea-
sonably approximated by@62#

f T5nz/@11A~z/hs!M
fH#, ~3.5a!

f T;M ~d22!/2dm, h→`, ~3.5b!

whereA is a constant on the order of unity. Note that the
critical dimensiondcH of the translational frictionf T of an
ideal Wiener sheet equals

2dm125dcH ~3.6a!

and for a swollen ‘‘fractal object’’ of dimensiondf , Eqs.
~3.4!, ~3.5b!, and ~3.6a! become for strong hydrodynamic
interaction,

f T;M ~d22!/df , df125dcH, fH512~d22!/df
~3.6b!

For rodlike chains~dm51! d53 is critical ~fH formally van-
ishes! andd54 is critical for random coil shaped polymers.
In contrast, for swollen membranes~dm52! and flat plates
d54 is critical @62#. The translational frictionf T generically
has a logarithmic variation on the massM at the critical
dimension, as in the case of rodlike polymers ind53. Above
the critical dimensionf T is proportional to the polymer,
membrane, or sponge massM . If these objects are taken to
have a position volume.

The intrinsic viscosity of a slender body scales@64# as
@h#;f TRG

2 /M and a swollen membrane is presumed to swell
similarly. The friction scales asf T;M (d22)n @numerical cal-
culation of f T for membranes and ‘‘sponges’’ is feasible
@@63~b!## so that@h# for a swollen membrane should have the
molecular weight dependence

@h#;M1/2, d53, ~3.7a!

where we have usedn (d53;dm52)5 1
2 from Eq. ~2.14a!.

~The intrinsic viscosity of a flat plate, swollen membrane, or
ideal linear polymer chain all have the same molecular
weight dependence since these objects have the same fractal
dimension.! Experiments @1~b!# on sheetlike polymers
formed by polymerizing surface-adsorbed poly~methyl meth-
acrylate! indicate a rough variation@h#;M1/2 in accord with
Eq. ~3.7a!. This agreement may be fortuitous, however, and
more generally scaling arguments indicate that@h# scales as

@h#;M ~3d24!/2~d12!, 2<d,8 ~3.7b!

@h#u;M ~d22!/~d12!, 2<d,6, ~3.7c!

which shows that the viscosity exponent is rather dependent
on solvent quality~i.e., temperature!. The intrinsic viscosity
exponent should be much smaller~ 15! in a u solvent and
independent of molecular weight in a very poor solvent
where the membrane is in a compact form@63~c!#.

This section provides a brief description of surface and
hydrodynamically interacting membranes based on the
Wiener surface model. Direct calculation of Wiener sheet
properties follow the same general patterns as linear poly-
mers, but the calculations become technically more compli-
cated.

IV. SWELLING OF FLEXIBLE SHEETS AND SPONGES
DUE TO ELECTROSTATIC INTERACTIONS AND
THE GROWTH OF MEMBRANES AND SHEETS

Naturally occurring membranes often ionize in an aque-
ous environment. At high salt concentrations these bare
charges are largely screened by counterions and the problem
of swelling reduces in large measure to an ordinary excluded
volume interactions. At lower salt concentrations the ions
within the sheets strongly interact and consequently modify
the sheet configuration. Suppose for simplicity that the
charges are distributed continuously over the surface. The
question is then how a membrane or sponge swells under
these circumstances. Within a primitive Flory-type modeling
this question is readily answered, although it should be ap-
preciated that this type of modeling is very crude.

The generalization of the Flory theory to describe the
swelling due to electrostatic repulsion follows from a consid-
eration of the symmetries of thed-function pseudo-potential
for the excluded volume interaction and for the Coulomb
potential under rescaling of lengths. Thed function obeys the
scaling relationd~lR!5ldd~R! and the Coulomb potential
scales asV~lR!5ld22V~R!. The interaction term for a bi-
nary interaction is of the general form

bdL
2dm/Rs, ~4.1!

wherebd is a coupling constant~excluded volume, electro-
static, etc.! ands is the homogeneity index of the potential.
Notice that the only place that dimensionality comes into the
Flory-type calculation is through the constants, characteriz-
ing the symmetry of the interaction potential under rescaling.
In the electrostatic interaction problems5d22 and in the
excluded volume problems5d so that the problems are re-
lated by a simpledimensional shift d→d22. Taking
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d→d22 in the excluded volume result Eq.~2.11! gives an
estimate ofn for random surfaces with unscreened electro-
static interactions

n5@~2dm11!/d#/dm ; ~4.2!

In d<3 we see that linear charged polymers are highly
swollenn51 sincen cannot exceed 1. A charged membrane
~dm52! should likewise be ‘‘flat’’ ford<3.

Another general factor affecting the exponentn is the or-
der of the excluded volume interaction. It is useful to con-
sider, for example, a ‘‘one-body’’ version of the excluded
volume interaction, the ‘‘true self-avoiding surface.’’ The
excluded volume interaction in this case is built up as the
surface grows so that only a factorLdm arises in the polymer
self-interaction term. The potential has homogeneity index
s5d as in ordinary excluded volume, so that total self-
interaction term equalsbdL

dm/Rd. Minimizing the free en-
ergy in the usual way gives

n5~dm11!/dm~d12!, d,dcT52dm , ~4.3!

wheredcT is the critical dimension for this type of ‘‘local’’
excluded volume interaction. Simulations agree very well
with this prediction for linear chains~dm51! @65# and this
result perhaps has some relevance to the kinetic growth of
membranes and sponges since the critical dimensions are
thend54 and 6, respectively, the lower critical dimensions
of the Wiener sheet. The true self-avoiding surface is meant
to describe the growth of membranes~dm52! and sponges
~dm53! under conditions where the surrounding medium has
a saturated concentration of the monomer material needed
for growth. The volume exclusion effect actually develops in
time as the structure grows. Another extreme case corre-
sponds to the situation where the concentration of monomer
for growth is more limited so that the growth is governed by
the rate of diffusion to the aggregate. This is the kind of
growth process that inspired the classic diffusion-limited ag-
gregation model@53#.

In Sec. II C an approximate relation between a particular
kinetic growth model of branched polymers and the sponge
~dm53! Wiener surfaces was suggested and we next treat the
growth of sponges where diffusion-limited nature of the
growth is considered. The interaction term develops kineti-
cally in time, as in the true self-avoiding surface model, so
that we have aLdm factor for the sponge~dm53! self-
interaction. However, the potential governing the growth is
nonlocal because the aggregate induces a depletion in the
concentration of monomer in its surroundings. From Smolu-
chowski theory@66# the concentration field to which the ag-
gregate growth is responding is the Coulomb potential
uRu2(d22), which governs the probability of a random walk
launched from large distance from the growing sponge to hit
the sponge@63~b!#. Thus we take the interaction term
bdL

dm/Rd22 and add it to the elastic term and minimize as
usual to obtain

R̄;M4/3d ~4.4!

for the sponge growing under diffusion-limited conditions.
This rather heuristic estimaten agrees qualitatively with the
rough numerical estimates ofn for DLA approximated by

n~DLA !56/5d @67# ~see below for an improved estimate!. It
should be mentioned that in this idealized model of
diffusion-limited growth model there is a critical dimension
(dc52dm12), while it is is widely believed that DLA
growth does not have a finite upper critical dimension as in
the KKN model @68#. This feature is not captured by the
Wiener sheet model. The intrinsic curvature~see Ref.
@17~d!#! may well become diminished in high dimension so
that the KNN model becomes a better model of the random
surfaces and the critical dimension then becomes infinite.

The calculation ofn in Eq. ~4.4! does not take into ac-
count screening effects and this effect is responsible for
much of subtlety of the DLA growth process. Again follow-
ing Lubensky and Isaacson@18#, we can consider the ex-
treme limit of screening corresponding to an extra factorL2a

in the interaction term, wherea51. A value ofa51 exactly
cancels theL21 term in the elastic term when we consider
the free-energy minimization. This limiting case of screening
~a51! implies n51/d or the growth of a compact sponge.
For the sake of illustration we takea to have the intermedi-
ate value1

2 to obtain n57/6d. This estimate ofn for the
diffusion limited growth of a sponge~with thead hocchoice
of the screening parametera51

2! agrees well with DLA
simulation data@67# and a comparison with DLA data is
shown in Fig. 6.

It is evident that by varying the conditions controlling the
deposition of monomer to a growing aggregate a wide range
of growth patterns in sponges and membranes should be pos-
sible. Such processes are important in the natural develop-
ment of fractal structures in the physical world. The fractal
dimension of the structure and other geometrical information
of these clusters preserve a memory of the kinetic conditions
under which the structure was formed. Basically these struc-
tures are ‘‘fossils’’ of the kinetic growth process.

V. CONCLUSION

There are numerous physical processes that can be mod-
eled by random-walk paths. In condensed matter these pro-
cesses include equilibrium phase transitions~liquid vapor,

FIG. 6. Estimate ofn for diffusion-limited growth of a sponge.
The filled squares denote simulation data forn of diffusion-limited
aggregates obtained by Meakin@67# ~see the text for an explanation
of this comparison and assumptions associated with this estimate!.
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liquid-liquid phase separation magnetic phase transitions,
etc.!. The random-walk model provides a basic model of
polymer chains in the bulk and in solution. The existence of
higher-order connectivity in sponge, membrane, or irregular
branched polymer configurations requires more general mod-
els than Brownian motion for the specification of the large-
scale properties of these structures. The Wiener sheet@9,10#
generalization of Brownian motion provides an important
generalization that should have a wide range of applications
beyond the polymer models discussed in the present paper.
The challenge is to understand the geometrical properties of
these general random surfaces and the relation of their geo-
metrical properties to the many physical processes naturally
described by this type of model.

In the present exploratory paper we emphasize the geo-
metrical properties of the Wiener sheet model. Many prop-
erties of these surfaces have been established rigorously by
mathematicians working in this field over many years@9,10#.
The new contribution involves pointing out the relevance of
this model to polymer science and the inclusion of excluded
volume interactions into this random surface model at the
level of Flory theory. The results of these simple model cal-
culations are compared with recent molecular-dynamics
simulations of random surfaces@11,12# and experiments@3#
on real random surfaces. The simulations suggest a remark-
able ‘‘universality’’ and provocative relations between
branched polymers and random surfaces. For example, the
exponentn for flexible tethered sheets with excluded volume
is very close to that for self-avoiding random plaquette sur-

faces@19#. Grest and Murat@28# and Plischke and Fourcade
@29# made the interesting observation that adding holes at
random into a tethered random sheet apparently hasno ap-
parent effecton the critical exponentn. The picture of
branched polymers that emerges is quite simple. Increasing
branching in linear polymers leads to a series of transitions
in the effective topological dimension from linear to sheet-
like ~dm52! to spongelike~dm53! polymeric forms. From
this point of view branched polymers are perforated sheets or
networks that are incompletely connected, as beautifully il-
lustrated in the simulations of Grest and Murat. It is also
notable that the ideal Wiener sheet model leads to ideal rub-
ber elasticity and the model is much more realistic than
single-chain models’ network elasticity.

The Wiener sheet model is very convenient for the calcu-
lation of random surface and branched polymer properties
since the whole machinery of the renormalization group and
self-consistent field theory can be readily generalized from
the case of linear polymers@21#. Further work is needed to
understand how the Wiener sheet model emerges as a con-
tinuum limit of microscopic random surface models.
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