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Swelling and growth of polymers, membranes, and sponges
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Polymers can be formed into a wide range of structures depending on the monomer chemistry and the kinetic
conditions of growth. A general model of polymers having higher-order connectivity is introduced that reduces
to flexible linear polymers, membranes, and sponges as special cases. This “Wiener sheet” model, which
extends the conventional Wiener path model of linear polymers, is argued to describe various classes of
branched polymers, as well as different types of interacting random surfaces. For example, lattice animals and
percolation clusters are considered to be perforated sheets whose large-scale dimensions are described by the
Wiener sheet model with excluded volume interactions. To within the approximations of the model calcula-
tions, the properties of the Wiener sheet “membrane” are consistent with this correspondence. The influence
of the excluded volume and the kinetics of growth of membrane and sponge structures are treated at a
Flory-level approximation, although the Wiener sheet model should admit to a renormalization-group treat-
ment as in the case of linear polymers. Predictions of the self-interacting Wiener sheet model are contrasted
with an alternative and complementary random surface model introduced by Nelson and co-workers and are
compared with recent simulations and experimg®1.063-651X96)00509-0

PACS numbes): 36.20.Ey, 05.90tm, 05.40+j, 82.35+t

I. INTRODUCTION “Wiener sheet” or “Brownian sheet’[9,10] model of ran-
dom surfaces, which has been well studied in the mathemati-

Polymers of a networklike structure can be synthesized bgal literature, is also considered as a possible model of ran-
polymerizing multifunctional monomers and sheetlike poly-dom surface polymers. The present exploratory paper
mers(“membranes’) can be made by polymerizing surface indicates some of the exactly known properties of the Wiener
adsorbed monomerEl] or bilayers[2]. Random surface sheet and provides a Flory-level description of the influence
polymers can also be obtained by cleaving layers from crysof excluded volume interactions on these sheetlike struc-
talline materials[3], such as graphite oxide, and similar tures. Adsorption of sheets onto surfaces and some selected
sheetlike polymers are believed to naturally arise in certaiflydrodynamic properties are also considered briefly. Ana-
glassy material§4]. Membranelike and networklike poly- lytic results obtained for the Wiener sheet and KKN random
mers are also commonly found in biological systems such agsurface models calculations are compared with Monte Carlo
cell membrane$5]. Consequently, there is significant moti- simulation(see Fig. 1 and recent experiments on sheetlike
vation for the study of polymers having higher-order chain
connectivity. As in the special case of linear chain polymers,
the study of mutual and self-excluded volume interactions,
hydrodynamic interactions, surface interactions, and the in-
fluence of rigidity and the topological form of random sur-
faces on the properties of materials containing these struc-
tures provides a basic field of study. Random sheet models
have many other physical applications, which are reviewed
by Frahlich [6] and Nelsor{7].

There are evidently a large number of network structures
that are possible through the variation of kinetic, chemical,
and spatial constraints in the polymerization process. Ideal-
ized models are useful in obtaining insights into these
branched structures. In the present work we consider a natu-
ral generalization of the Wiener path model of linear poly-
mers to describe polymers that are sheetlike or networklike g\ 1. Tethered self-avoiding random surféta(d)]. This rep-
in their connectivity. resentative configuration, obtained by molecular-dynamics simula-

A random surface model introduced by Kantor, Kardar,tion [11(d)], corresponds to 4219 particles connected by tethers
and Nelsori8] (denoted the KKN modghas recently stimu-  depicted as bonds in the figure. The particles interact with a hard-
lated much analytical and numerical work on polymers ofcore repulsion, but are not showh.denotes the characteristic di-
sheetlike connectivity. However, this is not the only gener-mension of the surface in the coordinates of the manifoldragds
alization of the Wiener path model of polymers. The a nonuniversal constafsee also Fig. 8
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polymers. surfaces has R, that scales aR,~M™* in the absence of
Section Il provides some background information on theexcluded volume interaction®,11,17. The scaling of the
origin and application of random sheet models. The KKNsecond class of random surfaces is conspicuously similar to
model[8] is briefly reviewed as a point of reference in the ideal (no excluded volumebranched polymergl8] and nu-
discussion of the Wiener sheet mod@l10]. Many of the  merical evidence and theoretical arguments indicate that cer-
properties deduced from the Wiener sheet model are rathéain classes of random surfaceelf-avoiding plaquette sur-
different from those indicated for the KKN model, although faces belong to the branched polyméflattice animal”)
both models are intended to model similar physical systemauniversality clas$19,20, even when the excluded volume is
Significant discrepancigsl 1] between the analytic calcula- incorporated into these models. Both of these classes of ran-
tions of the KKN model and molecular-dynamics calcula-dom surface mode[3?§~ln(M), Rg~M1’4] are natural gen-
tions of “tethered sheet” polymers have been found and eeralizations of the Wiener path model of linear polymiesese
primary motivation of the present work is to investigate below) [21]. Boulatovet al.[17(d)] have considered a more
whether the Wiener sheet modé,10] can more faithfully —general random surface model that exhibits a crossover be-
describe simulated and physical membrane structltés  tween these random surface models involving an “intrinsic
Excluded volume interactions are incorporated into thecurvature” parametet. The KKN and Wiener sheet models
Wiener sheet model and the radius of gyration exponents can thus be expected to bemplementarynodels of random
for swollen Wiener sheets and férpoint Wiener sheets are surfaces.
calculated at a Flory-level approximation. These calculations
indicate unanticipated relations between interacting Wiener A. The KKN random surface model
zzzeésgtrxerzgr%g%ggi gr:aglilgfgrg 2%?%2%3&?2;231?”6 Kantor, Kardar, and Nelson introduced an analytic theory

vents. Networklike polymers of fractal connectivitg2,13 of flexible surfaces of fixed connectivity embedded in a
are also considered within the Wiener sheet model.’Consi J-dimensional spac8]. Extensive theoretical and numerical

eration of network polymers having a three-dimensional to-lterature was stimulated by this publicatiohl, 22 E?(C'te'

pological connectivity indicates an additional “sponge” ment was initially genergted.by a Flory-level descriptjéih .

polymer universality class that should be relevant to describ9f the excluded vqumg In th|s. rqndom surfage model, W.h'Ch
indicated agreement with preliminary numerical calculations

ing self-avoiding random surfaces having a foamlike struc- . : . o o
ture. The collapse transition, surface adsorption, and diIutfs]' Later simulations established a significant deviations be-

: ; . : the analytic KKN model calculations and the simula-
solution hydrodynamic properties of membranes are briefl ween
sketched to stimulate further comparisons with experiment.'ons’ howevef11]. The KKN model and some results based

Section lll considers the swelling of flexible sheets and®" this m(r)]deltare Zulmrlr;arézefdtl;elow ftc')r ctpmpafnson V.V('jth Fhe
sponges due to electrostatic interactions and the kineti%ﬁ/'ene.r sheet model. Fart of the motivation ot considering

e Wiener sheet model is to determine if this model gives a
growth of these structures. o . i

more accurate description of the universal properties of the
simulated and real random surfaces with excluded volume
Il. RANDOM SHEET MODELS Interactions. , o ,
The KKN model is a natural generalization of the Wiener
The recent theoretical interest in random surfaces firspath model of polymer chaif1]. A point on the surface of
arose in the context of high-energy physidsl]. Random  the sheetlike polymer is specified by a position vedor).
surfaces arise naturally in field theories that have been profhe coordinate variable, however, is itself a vector in the
posed to describe the internal structure of subatomic pamanifold coordinatesr=(7y,75,...,7q4 ), Whered,, is the
m

ticles. When viewed on a fine levehigh energy it is N0 anifold dimension. For a linear polymereduces to just a

longer appropriate to consider such elementary particles ag.5|ar variabler specifying the contour coordinate along the

being structureless pointlike particles that sweep out filamer)éham' The sheet is specified by tRé7) spatial coordinates

tary pths analc_;gous to polyme.r (_:hain configprations in theik bedded in a-dimensional space and the manifdlico-
shape irregularity. Rather, admitting the spatial extent of theyjinates|. is a characteristic scale of the manifold such as
particles leads to a picture in which finite particles sweep ouj}q sige length of a square manifold sheet and is measured in

complex volume elements in space-time. From the standye gyclidean metric of the sheet coordinates. Configura-

point of geometry, these “extended objects” have much ingqna| properties of KKN sheets are calculated by averaging
common with polymer membranes and ordinary polymers ahyer gl surfaces with respect to the Boltzmann weight

high concentrations. This analogy has stimulated interest i%xp(—H/kBT), where the Hamiltonian equal§]
polymeric random surfaces.

The mathematical and the physics literature describing
random surfaces is quite extensive and good review articles ~ H(R(7))/kgT=Ho(R(7))+(B/2) deTdeT'
representing a variety of points of view are available
[6,7,19. The random surface models considered so far come X 8(R(n)—R(7)), (2.13
in two primary classes defined in terms of an increase in
chain mass with the average radius of the structure. In the 1
absence of interaction oneg class of “idealho excluded HO(R(T))ZEJQdTIVT(R(TmZ’ (2.1
volume) random surfaces have a radius of gyratRpthat
increases only as the square root of the logarithm of thevherep, is the binary cluster integral. This model reduces to
molecular weightV [16]. The other general class of random the “two-parameter model'{or “Edward’s model”) of the
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polymer excluded volum§21,23 for manifolds of dimen- cause the scaling relatidR~L is reminiscent of the scaling
sion d,,=1 (ordinary linear polymer chainsHowever, this of a plane sheet these random surfaces are referred to as
is not aunique extension of the linear polymer model to being “flat.” Specific realizations of these surfaces are actu-
describe random surfacésee below ally rather crumpled looking, so the term should not be taken
The Flory-type calculation for the radius of gyration ex- too literally) Because of the conflict between their simula-
ponent for the KKN random surface model is a generalization data and the KKN random surface model, Grest and
tion of the linear polymer calculation. There is an elasticMurat [28] attempted to “crumple” (decreaser) in their
term R?/L2~ 9 from H, in Eq. (2.1b and an excluded vol- simulated surfaces by punching holes at random positions in
ume interaction contribution3,L2%m/RY. Summing these them and letting the structures relax. Surprisingly, this deci-
terms, taking the derivative with respectRpand setting the mation process gave rise to detectable change the scal-
result equal to zero gives the result of Kantor, Kardar, andng properties of the random surface until the holes reached

Nelson for the average sheet radRi§8],

R~L?  v=(dy+2)/(d+2). (2.29

The total masdM of the sheet scales with its siteas M

the percolation threshold28,29, whereupon the whole
structure disintegrated. The significance of this important ob-
servation is discussed in Sec. Il B.

Difficulties are also encountered in analytic calculations
based on the Hamiltonian in EQ.1) [26]. Examination of

d - : \ . .
~L"m so that the swollen sheet size scales with massghe scaling of them-body excluded volume interaction for

as[8]

R~M”, v=(d+2)/d(d+2). (2.2b
A caret is put over the exponentin Eq. (2.2 to distinguish

it from the related mass scaling exponenin Eq. (2.2b.
This model predicts that sheets without excluded volume ar
extraordinarily compact fod,>1,

RZ~L%Um  d,<2, (2.29
reducing to a logarithmic variatiorR_%~InL as d,, ap-
proachesl,—2—. These networks are “collapsed” or “lo-
calized” for d,,>2 sinceRj is then independent of.LSimu-

lations of tethered random surfaces in tldsence of

this model in a fashion parallel to linear polymers reveals
that them-body interactions scale with molecular weight as
Zn(KKN)~M?%m ¢ (KKN)=m, 2.3

gvhere InM) terms are neglected. Formally, the relevance of
m-body interactionsncreaseswith the order of them-body
interaction. The physical appropriateness of including only
binary excluded volume interactions is certainly a question.
Even neglecting the somewhat arbitrary truncation of ex-
cluded volume interactions at the binary interaction level, a
formal calculation of the resulting modéll,=2) reveals a
perturbation theory having an “infinite critical dimension”
and a reference model having an “infinite fractal dimen-

excluded volume interactions have verified the logarithmicSion” [16]. Application of thee-expansion method is then

scaling[11(d)] in Eq. (2.29 for d,,=2.

The scaling of random surface dimensions according td

Eqg. (2.29 was implicit in earlier work on Gaussian chain
networks by James and GufR4]. Ronca and Allegrd25]

out of the question unless the manifold dimension is formally
aken as variabled ;<2 [26]. Apart from these technical
difficulties, the main problem with the model at the present
stage of development is the observed inconsistency between

have shown a relation between the radius of gyration of th&hodel predictiongsuch as Eq(2.2)] and the simulation data
Gaussian chain network model of James and Guth and tH@€ntioned above.

resistivity of networks. The characteristic logarithmic varia-

tion of R2 also describes the resistance between two pointBroximation”

separated by a large distantein a plane net of resistors

Goulian[30] recently made an alternative “Gaussian ap-
estimate ofy for swollen sheets starting from
Eq. (2.1, which led to better agreement with numerical es-

[25(c)]. The KKN model then has many potential applica- timates oﬁz_ as a function of Qimensiod [31]. At a Flory-
tions, apart from the description of certain model random/€Vel description this calculation amounts to taking the ex-

surfaces.

It has been argu€d 3,26 that the manifold dimensiod,,
in the KKN random surface model can bermally replaced
by the “spectral dimension"ds—d,,, which governs the
rate of random-walk exploration on the manifold defining the
chain connectivity. Levinsofil2] has presented numerical

cluded volume contributior8,L2/R% in the Hamiltonian,
defined in Eq(2.1), on the order of a constant andglecting

the elastic contribution to the free energy. This argument
gives

R~L’~M", »=2d,/d, v=2/, (2.4)

evidence supporting this proposal. However, exact calcula-

tions[27] for the Wiener sheet, discussed beldrigorously
indicate a different definition of the “effective topological

which for a two-dimensionald,,=2) sheet reduces to the
case considered explicitly by Gouli@80]. The linear poly-

dimension” of Wiener random sheets so that the identificamer estimatéd,,=1) corresponding to Eq2.4) corresponds

tion of ds—d,, should be taken with some caution. This
problem deserves further investigation.

Initial Monte Carlo data and table top experiments with
crumpled foil balls indicated8] an exponenty (d,=2,
d=3) consistent with Eq(2.29; »~0.8. More recent and
larger-scale molecular-dynamics simulatiofeee Fig. 1
have established thatis near unity in three dimensiof$1]
and that Eq.(2.29 is not an accurate approximatio(Be-

to the classical Reiss—Des Cloizeaux estin{@® v=2/d,

and in this case the predicted value »fis known to be
inaccurate. Although Goulian’s calculation seems to gives an
improved estimate fop for random surface&,,=2) over a
range of dimensiong31] in comparison with the KKN
Flory-theory calculatiof8], this argument still does not lead

to accurate estimates offor the swollen sheet id=3. This
calculation does suggest, however, that the shortcoming of
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the KKN model in describing tethered surfaces is associatetion (2.7) is important in our discussion below of random

with the elastic contribution to the free energy. sheets of irregular connectivityBelow the fractal dimension
) d; will refer to the mass scaling expondmt.g.,d;=2d,, in
B. Wiener sheet model of random surfaces Eq. (2.63] rather than the Hausdorff dimension so that the

There is another model of random surfaces that is a natunin terminology in Eq(2.5) is avoided)
ral generalization of the Wiener path model of linear poly- The incorporation of excluded volume interactions into
mers. The Wienefor Browniarn sheet mode[9,10] is de- the Wiener sheet model is a simple matter in a Flory-level
scribed by a surface represented by position vecRirg approximation. Formally, the interaction terms are $aene
defined as in the KKN model. The Wiener sheet correspondas in the KKN model. The distribution function between two
to an independent random process where the individual pgoints on the surface is @aussian functiorin the Wiener
sition components dR(7) obey a covariance relation in the  sheet mode[9(a), 9(d)], as in the case of linear polymers,
coordinate similar to Brownian motidi®,10]. (This is a de- and we thus have the elastic contributi@L and a binary
fining characteristic of these random surfaces and an undeexcluded volume contributiofi,L2%m/R? as in the KKN sur-
standing of how this type of surface emerges as the corface model calculation summarized in Sec. Il A. Adding
tinuum limit of discrete microscopic models of random these contributions and minimizing in the usual fashion gives
surfaces is an outstanding problerfihe Wiener sheet model the Flory-type estimate of for the Wiener sheet
has been studied extensively over the past 30 \saes e.g., . R
[9(d)]] and we therefore limit the discussion to some of the R~L"~M", v=(2d,+1)/(d+2),
well established properties of this model. In this initial study
Flory-type calculations are also developed to make a quali- v=(2dy+1)/dr(d+2). 28
tatiye check of the model in relation to simulation and eX'Taking d,=2 andd=3 we find »=1 and »=1/2, which is
perimental data.

In the absence of self-excluded volume interactions th
fractal (Hausdorfj dimensiond; of the Wiener sheet has
rigorously been proven to equi@(a),10(a)]

compatible with numerical simulations on simulated swollen
fethered random surfac¢$l]. It then seems plausible that
the local rigidity (“intrinsic curvature” [17(d)]) of the ran-
dom surface is strongly perturbed by excluded volume inter-
— i actions so that the Wiener sheet provides a better reference
dr=min(2dy,d). @9 model for the swelling of random surfaces than the KKN

The minimum relation occurs since the Hausdorff dimensiormodel. This presumption is hard to prove, but it is possible to
cannotexceed the spatial dimensidn The relation Eq(2.5) explore some of the many implications of this hypothesis.
corresponds to the average radilsof the Wiener sheet Moreover, the problem of the swelling of Wiener sheets
scaling as should have independent interest.

— L The simple noninteracting Wiener sheet model applies for

Ro~L"~M", =3, wo=1/2dy, (268 { high enough that the probability of self-intersection be-
where the zero subscript denotes the absence of exclud mes negligible[9(d)]. It. is well known th".lt the ideal
volume interactions. The average radius of a membrang//€ner path model describes long swollen linear polymers

(d.=2) or linear polymerd, =1) in the absence of excluded or dimensions greater than 4. Recent direct enumeration cal-
vorlnume interactions scaleénas culations ofv for self-avoiding walks in Fig. 2 illustrate this

o variation. Simple dimensional analysis based on the Wiener
Ro sheet model and consideration of the binary interaction in
v _ _ Eqg. (2.1) allows the formal deduction of the critical dimen-
M™¢  (linear polymer, noninteracting (2.6D  sjon for the self-interacting Wiener sheet. The dimensionless
RRVEL (membrane polymer, nonintearacting(2.6¢  M-body interactiong, scale with random surface malgsas

The random-walk result Eq2.6b) is familiar and the mem- Zy~ BmL P, Dpy=2d,m—(m—1)d, 2.9
brane model result E¢2.60 was suggested by Par[4i7(a)] ) i )
for noninteracting random surfacés, =2). We also recog- C0rresponding to a scaling af, with mass
nize that the scaling of the surface radius with mass corre- _ P P
sponds to the Flory-Stockmayer thedr8] of “branched Zn~ BuM - pm=m—(m-1)dizdy. (210
polymers” and this connection is discussed further below. Thjs is a direct generalization of the scaling of the dimen-
Montford [27] considered generalizations of the Wiener sionless excluded volume interaction for linear polymers.
random sheet whose network connectivity is defined as &rom Eq.(2.10 we see thati=8 is a critical dimension for
fractal set. His results show that if the mass elements of thginary (m=2) excluded volume interactions art=6 is a
sheet are positioned on a manifold of fractal dimenslan  critical dimension for ternary interactiorim=3) in a mem-
then the fractal(Hausdorfj dimensiond; of the resulting  prane(d,,=2). In accord with these scaling results for the
Wiener sheet in spadeigorously equals Wiener sheetd,,=2) rigorous calculation§9(d)] indicate
d. = 2d 2.7 that the probability of nontrivial Wiener sheet intersection
fm m vanishes abovd=8 and the scaling exponebt,, defines the
whered; is less than or equal . This result means that the fractal(Hausdorfj dimension of them-body self-intersection
manifold dimensiond,,, should be replaced by the fractal set[33]. Parisi[17(a)] previously suggested that the lower
(Hausdorff dimensiond;,, rather than a spectral dimension critical dimension[see Eq.(2.5)] for a class of random sur-
in the calculation ofv in the case of the Wiener sheet. Equa-faces wasd=4 [corresponding tap,=1 in Eqg. (2.10] and
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FIG. 2. Estimation of the SAW exponemtobtained by direct
enumeration and ratio method extrapolati@®]. The solid line
represents an analytic interpolation formula that is closely approxi
mated(dashed ling by the Flory-theory estimate=3/(d+2). See
Ref.[69] for an explanation of the lattice data.

d=8 was an upper critical dimension for binary excluded

volume interactions and discussed some of the importar]?(dmzz)NMv,
physical implications of these geometrical relations. These
conjectures exactly accord with the known properties of the

Wiener sheetd,,=2).

Flory-type estimates of thé-point exponenty, for self-
interacting Wiener sheets are also possible. First, it is naivel
assumed thabnly ternary interactions are relevant in deter-
mining v,. Adding the ternary interactioh®dm/R? to the
elastic termR?/L and minimizing gives, in the tenary ap-
proximation, ford<3d,,,

Ry,~L"~M"s,  b,=(3dn+1)/2(d+1),

vy=(3dn+1)/2d,(d+1). (2.11
The linear polymer case,~2/(d+1) is known to be rather
inaccurate ind=2 [34], however, so that quantitative agree-
ment with Eq.(2.11) with experimental and simulation data
cannot be expecte@ee below.

A basic problem with Flory-type estimate of, is the

OLYMERS, MEMBRANES. . . 2681
where theL ™ term is assumed to reflect the influence of
ternary and higher-order interactions. The magnitudexof
can befixedby noting that the critical dimension for ternary
interactions equalsl, ;=3d,,, from Eq. (2.10 and higher-
order interactions are irrelevant fdr>3d,,. Takingd,,=2
(membranesfor specificity, we should then have ideal be-
havior (Ry~ L*?~MY4 for d<6 dimensions. With this con-

straint in mind we add the interaction term
Bo(L%m/RY L~ to R?/L and minimize to obtain
Ry~L", b,=(4+1—a)/(d+2). (2.12

The exponentx must be 1 ad=6 to recover the classical
exponenty,=3 and following Isaacson and Lubensk35] in
the context of their discussion of the swelling of “gelation
clusters” we takea=1 generally. This approximation gives
an approximation fow, for a membrane,

 [4(d+2), d<3d,=6, d,=2

Vo d=6.

(2.13a
(2.130

T2

2
Equation(2.133 correspondsfortuitously) to the KKN ran-
dom surface exponem(d,,=2) in Eq.(2.29, aside from the
restrictiond<6 in Eq.(2.133.

The Flory-theory estimates of the self-avoiding and
#-point Weiner sheets reveal an unanticipated relation be-
tween the Weiner sheéd,=2), branched polymerdattice
animalg, and percolation clusters. Expressing the average
radius of a self-avoiding Weiner sheet in terms of the mass
of the sheet indicates

5/[2(d+2)], d<4d,=8

d>8.

v=

INTN

(2.143

(v is related generally to the manifold dimensiof and the
{/actal dimension of the surfaah asv=d,/d;=d,».) The
critical dimension of branched polymers for binary excluded
volume interactions is well knowfl8] to bed.(m=2)=8
and the exponentv=5/[2(d+2)], d<8 is exactly the
Isaacson-Lubensky Flory-theory estimis3] for v (lattice
anima). The critical dimension of percolation clusters is
d=6[36] andv, in Eq.(2.133 also describes the mass scal-
ing of percolation clusters

2/[(d+2), d=<6

d=6

RﬁNMVg, Vo=

: (2.14b
within a Fory-level approximation. Exact formal calculations
[34(a),34(b)] indicate thatv, in d=2 for linear polymers is
the mass scaling exponent of “percolation hulls” ih=2,

retention of only ternary interactions under circumstancesndicating another relation between tigegpoint scaling of
where higher-order interaction are also relevant. Isaacsowiener sheet$v,(d,,=1, d=2)=3] and percolation theory.

and Lubensky35] introduced an alternative modeling of

The hulls of percolation clusters =3 have a fractal di-

for concentrated polymer solutions where higher-order intermension closely corresponding tov}/in Eq. (2.140 (see
actions are also important. They suggest modeling the binaryelow) so there is some evidence that this geometric connec-

interaction by a “renormalized” interactiong,(L2%m/
RY L™%in the cased,,=1. TheL™“ term is intended to
reflect the “screening” of the binary interactions within a

tion extends to highed (see below.
A direct relation between branched polyméettice ani-
mals and self-avoiding random surfaces is strikingly shown

chain by the other chains in solution. This idea can also bén the simulations of Grest and Murig28] (see Fig. 3. They

adapted to estimate th@point exponenty, of membranes

find that the scaling of the membrane dimensions with mass
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Fig. 2. Further, de Genngs39] has developed a model of
percolation clusters as branched polymers subject to inter-
cluster screening of excluded volume interactions. These
connections between branched polymers and self-avoiding
membranes suggest that the expongrtescribing the mean
size of percolation clustergqualsthe 6-point exponenty,
fahp = 050 ®yp = 070 for self-interacting membranes. Another possibility is that
1/v, for the membrane equals the fractal dimension of the
hull of percolation clusters, which would be a natural exten-
sion of the linear chain resul{84(a),34(b)] and consistent
with recent numerical data for the percolation hull dimension
d;~2.5[37]. Finally, we mention that Eq2.11) corresponds
to Daoud and Joanny’s estima#9| of v, for branched poly-
mers. The Wiener sheet model then offers the prospect of a
unified model of linear and branched polymers.

Some exact results are known for lattice animals and per-
colation clusters and in other cases precise numerical esti-

FIG. 3. Self-avoiding tethered surfaces with randomly cut bondsmalteS are availablésee Fig. 4 These results allow for a

[28]. 1—p denotes the concentration of bonds that have been Cuquantltatlve comparison between the properties of random

i heets and branched polymers. The exponefur lattice
The molecular-dynamics study of Grest and MU28&] shows that : P _1 5 :
the exponent is unaffectedy the bond cutting to within numerical animals ind=3 and 4 equal$=; and r;, respectively41].

) These values agree with the Flory-theory value iofor
imcertalfnty ts%that Itl)ran“ched Eolyme’é’p_sr;l/ 2 seemtj[o co rr?sp?nd dmembranes in Eq(2.143 and these estimates are conjec-
{0-a perforated swo'len ‘membrane. fhis Connection 1 aiso oundy, req to pe exact for self-avoiding membranes as well
in Flory-type calculations forv using the Wiener sheet random ~ ~ 5 , .

(d,=2), so thatr(d=3)=1 andv(d=4)=3. (Grest's numeri-
surface mode(see text mo= ~ . . . .
cal estimatg 31] of v is somewhat higher in four dimensions
v»~0.91, although further work on larger systems would be
helpful in assessing the accuracy of this vallstimatingy,
as the reciprocal fractal dimension of percolation clusters
[§12] yields ve(d=2)=A;L§ and v,(d=6)=% and numerical cal-
culation [43] gives v,(d=3)=0.402. Agreement with the

(c) p = 060 (d)p = 051

is independent of hole concentratiém within numerical un-
certainty up to the hole percolation threshpld Nearp, the
decimated membrane is clearly a branched polymer and th
numerical study strongly suggests that self-avoiding mem

branes belong to the lattice animal universality cléGsest Flory estimate from Eq(2.140, v,(d=3)=1, is again rather

and Murat did not make this point in their numerical study 4454, We next mention some relevant experimental data for
These decimated sheet simulations and this point of vievhranched polymers that should be consistent with the random
make the connection between the Wiener sheet estimate forgyrface data by the arguments above. Bouchetual. [44]
in Eqg. (2.14 and previously known results for branched gbserve 1#=1.98+0.03 for diluted branched polymetge-
polymers and percolation clusters almost obvious. lation clusters in good accord with the expectations of lat-
Figure 4 compares E(2.143 to estimateqd38] of the tice animals and Adarat al. [45] obtain 1k=2.5+0.09 for
exponenty for swollen branched polymerattice animals  undiluted branched polymers. These results are consistent
in various spatial dimensiorts As is well known, the agree- with expectations for branched polymers or Wiener mem-
ment is rather good, as in the case of linear polymieez branes in good and solvents, respectively. Recent experi-
ments[46] on branched dextran polymers in tifesolvent
water gave W,~2.5. Finally, we note recent molecular-

065 dynamics simulations of flexible tethered random sheets that
0.6 indicate thatd;~2.4 at the# point [22]. The observed ex-
0.55. cluded volume dependence of branched polymers is similar
' to simulations of the swelling of tethered sheets and with the
0.5 Flory-theory estimates of the swelling of membrane poly-
0451 mers(see Sec. Il E

N Sheetlike surfaces have also been obtained by exfoliating
041 graphite with strong oxidizing agen{8]. Light-scattering
0.35- measurements on these surfaces indicate=2/4+0.1 and

1/v~3, dependent on solvent conditions. These preliminary
il exponent estimates are consistent within Eq. (2.14 and
0.25- - the value ofv expected for collapsed surfaceee Sec. Il
02 : : : : : : : , Itis unclear, however, whether these measurements are made
2 4 6 8 10 12 14 16 18 2 under equilibrium conditions.

dimension

- ) C. “Sponge” polymers
FIG. 4. Exponent for a self-avoiding Wiener sheéd,=2), a

membrane. The filled squares correspond to numerical estimates of Another important class of Wiener sheets corresponds to a
v for branched polymer§‘lattice animals”) [17,18. The solid line  polymer having a three-dimensional lattice rfetg., cubic

is the Flory-theory prediction for the dimensional variationi9f lattice) connectivity. Allowing such a structure to relax into a
which is thesameas for the swollen Wiener sheet. disordered configuration gives rise to a sponge polyiier.
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06 polymers. In Fig. 4 the numerical values ofi1for the step-
wise generated branched polymers is compared with Eqg.
(2.15h. Alexandrowicz[47] estimates the reciprocal fractal

0.55+

0.5 dimension in the limit of high dimensionality as roughly

0451 1/d¢~0.22 and he found somewhat smaller values of the ef-

’ fective v exponent,p=~(0.1, 0.13, describing the scaling of

L 04 the average size of these polymers. These exponent estimates

0851 are compared to the exact sponge valse; for d>12. The
simulation values ofv for ordinary branched polymers,

037 which are believed to be in the lattice animal universality

0.251 class, are presented in Fig. 5 for comparison. Evidently,

0.2 these two classes of branched polymers are rather distinct, as
indicated by Alexandrowicf47]. The stepwise growth and

0187 s e continuous growth polymer&lso considered by Alexand-

dimension rowicz) seem to conform well to the self-avoiding sponge
(d,=3) and membrandd,,=2) model predictions, respec-
FIG. 5. Exponentv for a swollen “sponge.” The solid line tively. This comparison, of course, is rather heuristic.

denotes the Flory-theory estimatesofor the Wiener sheefd,=3) We next consider some other branched polymer structures
from Eq. (2.15h. The filled squares correspond to values for grown under nonequilibrium conditions in a further qualita-
“bushy” branched polymers grown by a sequential kinetic growth tjye comparison to the sponge model. Data for the silica
procesq47]. Thesev data correspond to the reciprocal fractal di- colloid aggregates indicate & 2.12+0.05, where 1/ is re-
mension values 4 reported by Alexanderowicg47]. Branched ported as the aggregate fractal dimension by Schatfef.
polymers grown under continuous growth conditions led to expoT49] The corresponding self-avoiding sponge prediction is
nents close to those for lattice animatee Fig. 4. 1/v="~2.14. Experiments on zinc electrodeposit aggregates

KKN model calculations such generalized polymé@is=3)  in d=2 [50] indicate 1/=1.66+0.03, which is compared
are sometimes referred to as “gels,” but this term is avoidedwith the sponge model estimatedr=2, 1/v=%~1.71, from
because it is often employed with a rather different meanind=q. (2.153. These favorable comparisons suggest that it
in polymer sciencg.Simulation studies have not been mademight be worth looking more carefully at this phenomenon
for these sponge polymers, but the expected results for thesmsed on the sponge model. The sponge model may also
structures can be estimated based on the Wiener sheet modiglve significant biological relevance. Protein molecules can
(dy=3). Related numerical and experimental observationsften be idealized as random surfaces and recent experiments
are also examined in light of these theoretical results. have shown a surprising degree of universality for the fractal
From Eg.(2.10 the critical dimension for binary ex- dimensions of many proteins that are found to lie in the
cluded volume interactionsn=2, d,=3) is d=12 and the narrow ranged;=1/r=2.14+0.04 [51]. This range is also
6-point critical dimension for ternary excluded volume inter- consistent with the swollen sponge model prediction
actions for the sponge #=9. The average radiuR of the  d;~2.14 from Eq.(2.15h.
swollen sponge in the Flory approximation then scales as, for There is another class of branched polymers that is inter-
d,=3, esting to compare with the self-avoiding sponge model. Wes-
. sel and Ball[52] consider the diffusion-limited aggregation
R~L"~M?, v=7/(d+2), v=7/3(d+2)], d<12 (DLA) model[53], generalized to allow for aggregated par-
(2.153 ticles to disaggregate so that an “equilibrium structure” is
obtained. They argue and provide numerical evidence that
the disaggregation model of DLA generated polymers is in
R~L70~M"s, ve=1112(d+2)], the lattice animal universality class. An estimate of the ki-
netic growth of sponges is developed in Sec. IlI.

and the#-point exponents equal

vy=11/6(d+2)], d<09. (2.15pH
) D. Random plaquette surfaces
Above d=12 the mass exponent is equal toz so that

sponge polymers tend to be rather compact. The variation of Another ’r,andom s_urface model involves placing square
v for the swollen sponggEq. (2.15] is indicated in Fig. 5. plaguettes” on a lattice edge to edge where no overlaps are

The discussion of Sec. Il B suggests that representatior%”owed [19] (the elementary plaquettes can also be cubes

of the sponge universality class of self-avoiding random surlumerical calculations for this - generalization of self-

face’s might correspond to a class of branched polymers"’.‘vc,’iding lattice walks indicate that the the geometrical prop-
With this possibility in mind we examine the simulations of erties of these random surfaces again closely correspond to
branched polymers by Alexandrowi¢47], since this work ~t0S€ of branched polymerfgl9]. For example, a recent
emphasizes the existence of more than one branched pO:ngonte Carlo estimate of for this kind of random surface
mer universality class, depending on growth conditions. | ives[19(c)]

particular, “bushy” branched polymers grown in sequential — o) —

generationgreminiscent of “dendrimers’[48]) gave differ- »(d=2)=0.506=0.005 (2.19

ent v values than branched polymers grown under equilib-and similar but less precise estimates have been obtained by
rium conditions. The exponemtfor these stepwise generated direct enumeratiorf19(e)]. This exponent estimate is re-
polymers tended to be more compact than regular branchestricted to self-avoiding plaquette surfaces having no loops
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(“handles”). This kind of constraint is similar to the “light R_(T> 0)~L;~M”, 7=5/(d+2), v»=5/[2(d
branching” constraint in linear polymef&5] (light branch-
ing corresponds to the formation of a ring, star, or comb +2)], d<8 (2179
chain topology and this low degree of branching does not — . .
change the linear chain self-avoiding walk exponent Ry(T~6)~L"~M", v,=4/(d+2),

Self-avoiding random plaquette surfa¢d8®\RPS Wit_h an vy=2/(d+2), d<6 (2.17h
arbitrary number of loops more resemble a spongelike struc-
ture and_a charjge of universality clgss fro_m branched poly- R_(T< 0)~L30~M ve, D.=2ld, w.=1/d,
mer (lattice animaly to another universality class seems (2.179
plausible when the number of loops is large. Banavar, Mari-
tan, and Stell§54] have previously argued for this possibil- where the collapsed sheet exponept 1/d is estimated by
ity, although they argue that the resulting highly branchedassuming that the collapsed surfaces achieves a uniform seg-
polymers are compadt=3). The situation is quite similar ment density for sufficiently large attractive interactions.
to the linear to branched polyméattice animal crossover This same assumption is conventional in discussions of lin-
obtained by increasing the number of chain cross links. lear polymer collapse. It would be interesting to examine the
seems very likely that the SARPS with a high degree of6-point in these surfaces more carefully to determine the
looping correspond to the sponge universality c[dsis con- magnitude ofv, in comparison with Eq(2.14h. Note that
jecture remains to be tested by a recently developed numereq. (2.17) implies that aé-point membrane is crumpled
cal algorithms developed at NIST to simulate SARPS with a7,<1). This effect was recently observed in simulations
high degree of looping19(e)]. The proposed relation be- [22], as mentioned above. Experimental estimggdsof v
tween sponge polymers and SARPS with a large number dbr dissolved graphite sheets are also in accord with Egs.
loops indicates that such SARPS should exhibit a signifi{2.170 and (2.179, which is consistent with the measure-
cantly different critical behaviofcontrasty values in Figs. 4 ments being made in a poor or marginal solvent. Osmotic

and 5. pressure measurements could confirm this possibility.
Maritan, Seno, and Stell®64] recently indicated a class

of SARPS corresponding to the hulls of Ising model clusters. ll. WIENER SHEETS WITH SURFACE AND

The fractal dimension of these Ising clusters is estimated to HYDRODYNAMIC INTERACTIONS

satisfy the bound 1.881/v<2.16 for d=3, which is again

consistent(roughly) with the Flory-theory estimates of the  Treatment of surface and hydrodynamic interactions in

sponge exponentfs6h]. It would be interesting if future the Wiener sheet is a direct extension of the linear polymer

simulations of this class of SARPS and Ising critical clustersproblem. For example, we may consider the interaction

confirmed a relation to the sponge model. The directly ob-Hamiltonian[59] for a random sheet interacting with a Eu-

servable clusterg57] in critical fluid mixtures certainly cer- clidean surfacépoint, line plane, et¢.of dimensiond,,

tainly have a spongelike appearance and the fractal dimen-

sion of these critical cluster&d;~2.8+0.01) is consistent _

with the sponge 6-point estimate (d;~2.72 from Eq. A BszdT SR, (7). S

(2.15D, appropriate for a high concentration of critical clus- _ _

ters where screening of the excluded volume interaction¥/here s is the coupling constant between the random sur-

should arise. face and the Euclidean surface. The ve®g(7) in Eq. (3.1
Random plaquette surfaces with a high propensity to fornis the component of the sheet coordinRier), which is nor-

loops should rather resemble an open cell foamlike structurB@l to the Euclidean surface of dimensidp, d, +d,=d.

and this model has great potential for the modeling spongimensional analysis based on H@.1) indicates that the

materials such a microemulsions and the disordered phase @fmensionless surface interaction scatess, for 0<¢s=<1,

block copolymer fluids. Measurements on certain am- 2o~ BM @5~ B Ds

phiphilic molecule materials such as lipids and soap mol- s s s

ecules often reveal a bicontinuous latticelike structure that $s=1—(d—dy)/2d,,,

can “melt” into a disordered spongelike phake(a)] and

this type of order-disorder transition is also commonly en- Ds=d,—(d—d,)/2, 3.2

countered in block copolymer materig&8(b)]. It remains to _ _ ) ) )
be seen whether the Wiener sponge model is applicable iyhereDs is the fractal dimension of the intersection between
the quantitative description of any of these physical systemdhe membrane and the Euclidean plasee[27] for a rigor-

but the model appears promising for these material scienc@US discussion oD, for the cased,=0). The perturbative
applications. calculation of surface interacting sheet properties is formally

similar to those for linear polymers near an interacting
boundary{59,60.
E. Collapse of a “membrane” Adsorption of a sheet onto a surface should give rise to an
. . . . . __extensive change in free energyk~M as in the case of
The presence of attractive self-interactions in the Wienefj oo, polymers. Consistency of the free-energy scaling with

she_et causes a decrease_ in the average polymer dim_ensi%‘& (3.2) implies that the free energy of a random surface
as in linear polymers. This effect is so important that it de'adsorbed on a Euclidean surface scalefsas
serves a separate discussion. For the self-interacting mem-

brane(d,,=2) Egs.(2.11) and(2.14h imply AF~|zdYs,  AFIM~|Bg%s. (3.3
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Thus the order of the surface adsorption phase transition of @here we have used (d=3;d,,=2)=3 from Eq. (2.144.
membrane(d,,=2) onto a surface of dimensiod, (d;=0, (The intrinsic viscosity of a flat plate, swollen membrane, or
point; d,=1, line; d,=2, plane; etg.equals 1¢, [60]. For a ideal linear polymer chain all have the same molecular
plane surfacéd,=2) in d=3 dimensions the membrane in- weight dependence since these objects have the same fractal
teraction exponent equals,=3 and the order of the transi- dimension) Experiments [1(b)] on sheetlike polymers

tion is 3 (see Ref[60] for a discussion of fractional order formed by polymerizing surface-adsorbed faigthyl meth-
transitiony. The linear chain polymer exhibits a second- acrylaté indicate a rough variatiofr]~M 2 in accord with
order transition onto the plane surface so the membranEg. (3.73. This agreement may be fortuitous, however, and
should exhibit a sharper transition than its linear chain topolimore generally scaling arguments indicate thgtscales as

ogy counterpart. The inclusion of excluded volume interac-

tions into the sheet could alter this conclusion, however. [p]~MEBa-d2d+2) = o< q<g (3.7p
At a rough configurational preaveraging level approxima-
tion [61,62 we can deduce the scaling for Wiener sheet hy- [7],~M@-2/0+2)  ><q<p, (3.70

drodynamic interactions and the scaling behavior of some

basic hydrodynamic solution properties. The preaverageghich shows that the viscosity exponent is rather dependent
Oseen tensor scales like the Coulomb potenfi®{ 1““"?)  on solvent qualityi.e., temperatufe The intrinsic viscosity
and from dimensional analysis the scaling of the dimensionexponent should be much small&)) in a 6 solvent and
less hydrodynamic interactioh with chain massM is  jndependent of molecular weight in a very poor solvent
readily deduced for an ideal Wiener sheet where the membrane is in a compact foie3(c)].
— by 1] This section provides a brief description of surface and

h~(&lm)M™,  ¢y=1-(d=2)/2dm, S hydrodynamically interacting membranes based on the
where({ is the monomer friction. For an arbitrary fractal ~ Wiener surface model. Direct calculation of Wiener sheet
in Eq. (3.4) is replaced by the sheet fractal dimension. Theproperties follow the same general patterns as linear poly-
scaling of the dimensionless hydrodynamic interactiois mers, but the calculations become technically more compli-
not so simple if the preaveraging approximation is not em-cated.
ployed, but Eq(3.4) should remain qualitatively correct. The

translational frictionfy of a Wiener sheet, within a generali- |\, sWELLING OF FLEXIBLE SHEETS AND SPONGES

zation of the Kirkwood-Riseman theof$1], should be rea- DUE TO ELECTROSTATIC INTERACTIONS AND
sonably approximated by62] THE GROWTH OF MEMBRANES AND SHEETS
fr=nZI[1+A(¢/ 7o M P, (3.5 Naturally occurring membranes often ionize in an aque-

frM@ 2280 o, (3.5 ous environment. At high salt concen_tratlons these bare
charges are largely screened by counterions and the problem

whereA is a constant on the order of unity. Note that the of swelling reduces in large measure to an ordinary excluded
critical dimensiond,,, of the translational frictiorf; of an  Vvolume interactions. At lower salt concentrations the ions

ideal Wiener sheet equals within the sheets strongly interact and consequently modify
the sheet configuration. Suppose for simplicity that the
2dm+2=dcy (3.68  charges are distributed continuously over the surface. The

question is then how a membrane or sponge swells under
these circumstances. Within a primitive Flory-type modeling
this question is readily answered, although it should be ap-
preciated that this type of modeling is very crude.
fr~M@=20d g+ 2=d.y, dy=1—(d—2)/d; The generalization of the Flory theory to describe the

(3.6b swelling due to electrostatic repulsion follows from a consid-
eration of the symmetries of th&function pseudo-potential
for the excluded volume interaction and for the Coulomb
potential under rescaling of lengths. Tléunction obeys the
scaling relationd\R)=\&R) and the Coulomb potential
scales a8/(A\R)=\9"2V(R). The interaction term for a bi-
nary interaction is of the general form

and for a swollen “fractal object” of dimensiod;, Egs.
(3.4), (3.5b, and (3.6a become for strong hydrodynamic
interaction,

For rodlike chaingd,,=1) d=3 is critical (¢, formally van-
isheg andd=4 is critical for random coil shaped polymers.
In contrast, for swollen membranéd,,=2) and flat plates
d=4 is critical[62]. The translational frictiorf+ generically
has a logarithmic variation on the mabt at the critical
dimension, as in the case of rodlike polymerslin3. Above
the critical dimensionf; is proportional to the polymer,
membrane, or sponge malk. If these objects are taken to
have a position volume.

The intrinsic viscosity of a slender body scalé&sf] as
[7]~f:R2/M and a swollen membrane is presumed to swel
similarly. The friction scales afs;~M©~2"” [numerical cal-
culation of f; for membranes and ‘“sponges” is feasible
[[63(b)]] so that] %] for a swollen membrane should have the
molecular weight dependence

BsL2m/RS, 4.2

where B; is a coupling constantexcluded volume, electro-
|static, etc. ands is the homogeneity index of the potential.
Notice that the only place that dimensionality comes into the
Flory-type calculation is through the constantcharacteriz-
ing the symmetry of the interaction potential under rescaling.
In the electrostatic interaction probles=d—2 and in the
excluded volume problers=d so that the problems are re-
[p]~M¥2  d=3, (3.7a lated by a simpledimensional shift d-d—2. Taking
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d—d—2 in the excluded volume result ER.11) gives an 06
estimate ofy for random surfaces with unscreened electro- '
static interactions 0551
0.5

v=[(2d,+1)/d]/dy; (4.2
0.45

In d=3 we see that linear charged polymers are highly 0.4]
swollenv=1 sincev cannot exceed 1. A charged membrane =
(d,=2) should likewise be “flat” ford<3. 0.351

Another general factor affecting the exponeris the or- 03
der of the excluded volume interaction. It is useful to con-
sider, for example, a “one-body” version of the excluded
volume interaction, the “true self-avoiding surface.” The 0.2
excluded volume interaction in this case is built up as the _
surface grows so that only a factofm arises in the polymer 0153 8 10 12 14 16 18 20
self-interaction term. The potential has homogeneity index dimension
s=d as in ordinary excluded volume, so that total self-
interaction term equal@;L%/RY. Minimizing the free en-
ergy in the usual way gives

0.261

N
H
]

FIG. 6. Estimate of for diffusion-limited growth of a sponge.
The filled squares denote simulation data fasf diffusion-limited
aggregates obtained by Meakii7] (see the text for an explanation

y=(dpt 1)/d(d+2), d<d.=2d,, 43 of this comparison and assumptions associated with this esjimate

whered. is the critical dimension for this type of “local” Y(DLA)=6/5d [67] (see below for an improved estimatét
excluded volume interaction. Simulations agree very welShould be mentioned that in this idealized model of
with this prediction for linear chain&d,,=1) [65] and this diffusion-limited gr_ovvth model there is a.crltlcal dimension
result perhaps has some relevance to the kinetic growth ddc=2dm+2), while it is is widely believed that DLA
membranes and sponges since the critical dimensions afgowth does not have a_f|n|te upper critical dimension as in
thend=4 and 6, respectively, the lower critical dimensionsthe KKN model[68]. This feature is not captured by the
of the Wiener sheet. The true self-avoiding surface is meanfV/iener sheet model. The intrinsic curvatuteee Ref.
to describe the growth of membrané,=2) and sponges [17(d)]) may well become diminished in high dimension so
(d,,=3) under conditions where the surrounding medium haghat the KNN model becomes a better model of the random
a saturated concentration of the monomer material neededrfaces and the critical dimension then becomes infinite.
for growth. The volume exclusion effect actually develops in  The calculation ofv in Eq. (4.4) does not take into ac-
time as the structure grows. Another extreme case corréOuUnt screening effects and this effect is responsible for
sponds to the situation where the concentration of monomdpuch of subtlety of the DLA growth process. Again follow-
for growth is more limited so that the growth is governed byiNd Lubensky and Isaacsdi8], we can consider the ex-
the rate of diffusion to the aggregate. This is the kind oftréme limit of screening corresponding to an extra fattof
growth process that inspired the classic diffusion-limited agi" the interaction term, where=1. A value ofa=1 exactly
gregation mode[53]. cancels thel ~ term in the elastic term when we consider
In Sec. Il C an approximate relation between a particulatthe free_-en_ergy minimization. This limiting case of screening
kinetic growth model of branched polymers and the spongé®=1) implies »=1/d or the growth of a compact sponge.
(d,=3) Wiener surfaces was suggested and we next treat tHeor the salke of |Ilu§trat|on we tal@ to have the intermedi-
growth of sponges where diffusion-limited nature of the@t€ value; to obtain »=7/6d. This estimate ofv for the
growth is considered. The interaction term develops kinetidiffusion limited growth of a spongevith thead hocchoice
cally in time, as in the true self-avoiding surface model, sc°f the screening parameter=3) agrees well with DLA
that we have aL% factor for the sponged,=3) self- simulation _data[67] and a comparison with DLA data is
interaction. However, the potential governing the growth isShown in Fig. 6. . - .
nonlocal because the aggregate induces a depletion in the It |s.<_aV|dent that by varying the. conditions control_llng the
concentration of monomer in its surroundings. From Smolud€position of monomer to a growing aggregate a wide range
chowski theory[66] the concentration field to which the ag- ©f growth patterns in sponges and membranes should be pos-
gregate growth is responding is the Coulomb potentiaﬁ'ble- Such processes are important in the natural develop-
IR|~(9~2 "which governs the probability of a random walk ment of fractal structures in the physical worlld. The frac'FaI
launched from large distance from the growing sponge to hiflimension of the structure and other geometr.|calllnform§1fuon
the sponge[63(b)]. Thus we take the interaction term of these qlusters preserve a memory of the'klnetlc conditions
BsLIRY"2 and add it to the elastic term and minimize agunder which th_e structure was formed. Basically these struc-
usual to obtain tures are “fossils” of the kinetic growth process.

R~ M4 (4.9 V. CONCLUSION

for the sponge growing under diffusion-limited conditions. There are numerous physical processes that can be mod-
This rather heuristic estimateagrees qualitatively with the eled by random-walk paths. In condensed matter these pro-
rough numerical estimates of for DLA approximated by cesses include equilibrium phase transitighguid vapor,
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liguid-liquid phase separation magnetic phase transitiondaces[19]. Grest and Muraf28] and Plischke and Fourcade
etc). The random-walk model provides a basic model of[29] made the interesting observation that adding holes at
polymer chains in the bulk and in solution. The existence ofrandom into a tethered random sheet apparentlynioaap-
higher-order connectivity in sponge, membrane, or irregulaparent effecton the critical exponent. The picture of
branched polymer configurations requires more general modsranched polymers that emerges is quite simple. Increasing
els than Brownian motion for the specification of the large-pranching in linear polymers leads to a series of transitions

scale properties of these structures. The Wiener 4I8cEd]

in the effective topological dimension from linear to sheet-

generalization of Brownian motion provides an importantjike (d,,=2) to spongelike(d,,=3) polymeric forms. From
generalization that should have a wide range of applicationgis point of view branched polymers are perforated sheets or
beyond the polymer models discussed in the present papefetworks that are incompletely connected, as beautifully il-
The challenge is to understand the geometrical properties Qfistrated in the simulations of Grest and Murat. It is also
these general random surfaces and the relation of their ge@ptable that the ideal Wiener sheet model leads to ideal rub-
metrical properties to the many physical processes naturallijer elasticity and the model is much more realistic than

described by this type of model.

single-chain models’ network elasticity.

In the present exploratory paper we emphasize the geo- The Wiener sheet model is very convenient for the calcu-
metrical properties of the Wiener sheet model. Many prop1ation of random surface and branched polymer properties
erties of these surfaces have been established r|gor0us|y l%Ynce the Who'e machinery Of the renorma”zation group and

mathematicians working in this field over many ye@d0].

self-consistent field theory can be readily generalized from

The new contribution involves pointing out the relevance ofthe case of linear polymef@1]. Further work is needed to

this model to polymer science and the inclusion of excludeq nderstand how the Wiener sheet model emerges as a con-
volume interactions into this random surface model at thqinuum limit of microscopic random surface models.

level of Flory theory. The results of these simple model cal-

culations are compared with recent molecular-dynamics

simulations of random surfac¢$1,12 and experiment§3]

on real random surfaces. The simulations suggest a remark-

able “universality” and provocative relations between
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