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Spatiotemporal dynamics near a codimension-two point

A. De Wit,* D. Lima, G. Dewel, P. Borckmans
Service de Chimie Physique, Centre for Nonlinear Phenomena and Complex Systems and Nonlinear Chemistry Unit,
Case Postal 231, Universiteibre de Bruxelles, Campus Plaine, 1050 Brussels, Belgium
(Received 25 January 1996

Spatiotemporal dynamics resulting from the interaction of two instabilities breaking, respectively, spatial
and temporal symmetries are studied in the framework of the amplitude equation formalism. The correspond-
ing bifurcation scenarios feature steady-Hopf bistability with corresponding localized structures but also dif-
ferent types of mixed states. Some of these mixed modes result from self-induced subharmonic instabilities of
the pure steady and Hopf modes. The bifurcation schemes are then used to organize the results of numerical
simulations of a one-dimensional reaction-diffusion model. These dynamics are relevant to experimental
chemical systems featuring a codimension-two Turing-Hopf point but also to any experimental setup where
homogeneous temporal oscillations and spatial patterns are obtained for nearby values of parameters.
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[. INTRODUCTION The ideas that will be discussed below in the chemical con-
text are of greater generality as a CTHP can be expected to
In nonequilibrium systems, instabilities breaking eitheroccur in any other experimental setup where two instabilities
temporal or spatial symmetry have been studigdn fields  breaking, respectively, spatial and temporal symmetries in-
as diverse as hydrodynamif], nonlinear opticg3], active  teract. The mechanism giving rise to the spatial pattern is
chemical system$4,5], etc. Recently, dynamics resulting then not necessarily the chemical Turing instability.
from the interaction of both types of instabilities have been Formally, a CTHP point is obtained when the linear sta-
observed in several experimental systefis13. Among  bility analysis of a reference homogeneous steady state fea-
these, chemical systems have proved to be a generic examplges a degeneracy between a real root vanishing for a wave
as they genuinely present both types of instabilities. On theyymberk, and a pair of complex conjugated roots with fre-
one hand, oscillating r_eactions in well mixed reactors h_av‘?quencywc that both have a zero real part. Then the real root
indeed become the typical examples of systems undergoing,responds to a stationary spatial Turing pattern character-

Hopf bifurcation resulting from a breaking of time symme- . h ) _f hile th
try. On the other hand, the breaking of spatial symmetry inIzed by the wave-number-frequency couplte,0) while the

. . ) ; complex roots relates to the Hopf mode @), correspond-
chemical systems is now well documentel5] since its . o .
observation in the chlorite-iodide-malonic adi@IMA) re- ng toa temporgl_ oscillation W'.th frequen&yci. Letus con-
action in 1990[14]. The periodic stationary spatial patterns s!der.the conditions to Obta"? a CTHP in the reaction-
that emerge in that case result from a Turing instability base&ilfoSIOn Brusselator model. Th|_s model was chosen bec"’?use
solely on the coupling between nonlinear chemical reactiond has already been the subject of extensive analytical
and molecular diffusioi15]. A necessary condition for the @nd numerical studies related to both single Turing and
Turing instability to occur is that the diffusion coefficient of HOPf instabilities[17,18. The evolution equations of the
the inhibitor species should be sufficiently larger than that oBrusselator model read
the activator. In the experiments, color indicators are used to
visualize the patterns. They consist of large molecular weight dX=A—(B+1)X+X?Y+D,V2X,
molecules of very smalin the gel possibly zejadiffusivity.
Such color indicators act to create favorable conditions to the
formation (_)f Turing structures b_ecause _they bind to the acti- 9.Y=BX—X2Y+D,V2Y. 1)
vator species thereby reducing its effective mobflitg]. For y
a low indicator concentration, waves characteristic of a Hopf
oscillating regime are observed while Turing patterns tal(el'he concentration of speci€s is chosen as the bifurcation
over for higher concentrations of the indicator. This one
therefore controls the distance between the thresholds of t grameter. The homogeneous steady : state
Turing and Hopf instabilities that coincide at a codimension-‘’ ?’YS):(A'B/A)T of system(1) unozlergoes ‘T" Turing |n§ta-
two Turing-Hopf point(CTHP). Changing the concentration Pility when B>B;=(1+AyD,/D,)". A stationary spatial
of malonic acid allows one to scan the bifurcation scenaridPattern then emerges characterized by an intrinsic critical
near this point. In the vicinity of this degenerate point, awave vectork;=A/\D,D,. The steady state may also go
wealth of complex spatiotemporal dynamics are observedhrough a Hopf instability i8>B"=1+ A2, evolving then
into a homogeneous limit cycle characterized by a critical
frequencyw.=A. The thresholds of these two instabilities
"Electronic address: adewit@ulb.ac.be coincide at the CTHP point such th&=B{=B_. This
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condition is achieved when the ratio of the diffusion
coefficients o=D,/D, reaches its critical value
o=[(V1+AZ-1)/A]2
In this work we study the bifurcation scenarios that can be
obtained in one-dimensional systems near the CTHP. Previ- ‘,’/-
ous analyse§19—-27 have tackled this problem and classi-
fied the bifurcation scenarios, focusing on the interaction be-
tween the steady mode and the Hopf mode without taking
into account spatial effects or subharmonic bifurcations of
the basic modes. However, by numerically integrating the
Brusselator model for values of parameters near a CTHP, we FIG. 1. Theoretical bifurcation diagrams when a Turing mode
have discovered several spatiotemporal dynamics that do n#tteracts with a Hopf mode. Solid and dashed lines correspond to
enter the previously obtained classes of bifurcation scestable and unstable states, respectivésy. When A<0, we get
narios. We will consider here only a two-variable model ex-Pistability between the Turing and Hopf modes.1*0, we have
cluding the possibility of oscillating behavior and waves the succession Hopf-bistability-Turingi¢B-T) and th(_e inverse se-
originating through a Hopf bifurcation with finite wave num- AUenceT-B-H when»<0. (b) WhenA>0, a stable mixed mode is
ber. The aim of this work is to extend the previous studies of ?S€"ved: >0, we have the successibtMM-T and the inverse
the Turing-Hopf interaction by reviewing the different spa- sequence-MM-H when »<0.
tiotemporal dynamics that can be observed near a CTHP. To
do so, we compare the theoretical bifurcation schemes de- ﬂ_ T—g|TI2T—A[H[2T 3)
rived in the framework of amplitude equations to the pecu- a M 9 '
liarities obtained by the numerical integration of the Bruss-
elator. The resulting dynamics that can be observed near a JH
CTHP can be dlvu_jed into two main groups. The first one —=uuyH—(B,+iB)|H[PH=(8+i8)|T|?H, (4
gathers the dynamics due to the interaction between a Turing ot
mode and a Hopf mode. Their interplay can give rise to
bistability, localized structures, and to a mixed mode as isvhere u and uy= u+ v are the two unfolding parameters,
discussed in Sec. Il. The second group of spatiotemporal being the distance between the two thresholds of instability
dynamics results from subharmonic instabilities of either thewhich vanishes at the codimension-two point. In the Bruss-
Turing or the Hopf mode and features more complex mixecelator, wheno> o, the Hopf instability occurs before the
modes. Sections Il and IV are, respectively, devoted to theTuring one and hence>0. On the contrary wheo <o,
subharmonic instability of the Turing and the Hopf modes.the first instability to occur is the Turing one and in that case
Section V discusses additional spatiotemporal scenarios o~ 0. We will suppose thax and 8, are positive as well as
served in the reaction-diffusion model before we summarizey and g, , this last condition ensuring that the two bifurca-
and conclude in Sec. VI. tions will be supercritical. Notice that for the Brusselator,
B, is always positive. The slow spatial dependence should be
introduced if secondary instabilities with long wavelength
Il INTERACTION BETWEEN A TURING MODE are to be studied. The syste(@) and (4) possesses three
AND A HOPF MODE nontrivial global solutions: (1) a Turing structure:
={ulg}*?>, H=0; (2) a homogeneous limit cycle:

v>0(v<0)

The CTHP is characterized by the fact that three roots of. 2 Yoot I
the characteristic equation of the linear stability analysis =0, HQ__{"iH /'8'}/28_ \(/jwtg the. rednormdalllf/lal\t/:o.an_re-
have their real part which vanishes simultaneously. As afu®ncy**= ;BAi'“f/'z B{_',_an 3) agnlxe/Arr;/cz)eith ) _h
example, in the Brusselator model and for a given value o [Bri—Nunl/ A} H={[gun— Sul/A} wit

- o - o A=pB,g—\6, and Qy=—Bi|Hul?>— & |Tul?, where H
A, this occurs at the critical poinB(;,o.). In the vicinity of r r M i A M
such a degenerate point, a Turing mot.,0) with wave and Ty, are the preexponential factors &f and T. This
number k. interacts with a homogenei)us Hopf mode solution corresponds to a Turing pattern with wave number
H(0,0,) v&ith frequencyw, . For one-dimensional systems, k. oscillating periodically in time with the frequency

the variablesC of the system can be described by a super—(wc+QM)‘. . -
position of these two modes: Depending on the specific values of the coefficients of

Egs.(3) and(4), the relative stability of these three solutions
may vary, leading to different bifurcation scenarios
C(x,t)=Co+ Tek*wr+H e'“ctw,, + c.c. (2 [919,21-23
(i) If A<O, the mixed mode is always unstable while the

pure Turing and Hopf modes are both stable in a given do-
C, is the uniform reference state wheraesandwy are the  main. Whenv>0, a regular increase Qi gives successive
critical eigenvectors of the Turing and Hopf linearized evo-transitions between the Hopf oscillations, the Turing-Hopf
lution operator, while c.c. stands for complex conjugdte. bistability domain, and stationary Turing patterns. This
andH are the amplitudes of the spatial and temporal moduscheme is abbreviated &sB-T. The inverse sequenck-
lations, respectively. The competition between these twd-H is obtained wherv<0 [Fig. 1(a)].
modes is then described by the coupled amplitude equations (ii) If A>0, the mixed mode is stable in the domain
[19,21,2%: where the Turing and Hopf modes are both unstable. When
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v>0, we successively observe, by increasingthe homo-
geneous limit cycle, the Turing-Hopf mixed mode, and sta-
tionary Turing patterns, i.e., the sequent¢eMM-T and the
inverse sequencB-MM-H whenv<0 [Fig. 1(b)]. For some
values of parameters, the mixed mode can appear subcriti-
cally or also undergo a Hopf bifurcation of its amplitudes
T andH [22]. The limit cycle resulting from this instability
can disappear through a heteroclinic orbit around which
complex spatiotemporal behavior is expected to occur even
in small systems.

Near the CTHP, the coupling between the Turing and :
Hopf instabilities thus allows one to observe different sce- ¢
narios (Turing-Hopf bistability or a Turing-Hopf mixed :
mode depending on the values of the parameters. We will
now illustrate these with the one-dimensional Brusselator
model numerically integrated by means of an implicit
scheme based on finite difference methods. Unless stated
otherwise in the captions, all space-time maps presented in
this article feature theX variable shown on a gray scale
ranging from its minimum(white) to its maximum(black)
value. Let us remark that in this model, some nonlinear terms
in the equations for the perturbations around the steady state _ _
are proportional to the bifurcation parameBerThis charac-  F!G. 2. Space-time maps of localized structures. A one-
teristic leads to a renormalization of the coefficiefzd] of ~ dimensional Brusselator model of length=250 with no-flux
the amplitude equation&) and (4) proportional to the dis- boundary condltlor(B_C) evolves in time running upwards during

. S . 20 units of time. The parameters areA=2.5,
tance B—B.,o0— o), making the task of linking the bifur- D,=4.11, Dy=9.73(/0.~092). (a Turing-Hopf front
cation diagrams of Fig. 1 and those obtained numerically for S /= Y~ c

i . . (B=10). (b) Turing structure embedded in a Hopf background
the Brusselator more difficult. Our simulations of the Bruss—(leo)_ (©) Hopf mode embedded in a Turing background

elator will thus chus on checking qualitatiyely to Wha§ €X- (B=10). (d) “Flip-flop” dynamics shown during 50 units of time
tent the model bifurcation scenarios describe the spatlotqu: 12.5).

poral dynamics of a system near a CTHP. In particular, we ] ) ]
will show effects that have not yet been described in previ-3)- The nonadiabatic effect also accounts for a stepwise pro-
ous work. gression of the Turing-Hopf front outside the pinning do-

main[18,29,3Q. In this process, the mode locking phenom-
enon shows up as a tendency of the average velocity to lock
A. Bistability and localized structures into rational multiples of the Hopf frequen¢®1]. The sim-

a

In the Turing-Hopf bistability domain, the system
evolves, for a given set of parameters, either to homogeneous
temporal oscillations of the variables or to a stationary spa- T , - T

tial pattern depending on the initial condition. For some val- front

ues of parameters near the CTHP, both schef@& T and ' 370
T-B-H are observed numerically in the Brusselator in some 19 A

subdomains of the parameter spaged/ o). In addition, a 6\
stable front between a Turing domain and a train of plane

waves[Fig. 2(a)] exists in the bistability domain. The stabil- 3

ity of this simplest localized state is related to a nonadiabatic
effect due to the interaction of the front with the periodicity

of the spatial organizatiofi.8,25—29. This effect which is flip-flop

not contained in the amplitude equation formalism may oc- ‘

cur for fronts between two states one of which is periodic in L L 1 L B
space. It appears, for instance, in the growth of crystals & 10 12 14 16 18

where the interaction between the interface and the periodic

structure gives rise to a periodic potent.ial. If the difference in FIG. 3. Stability domain of the different localized structures
free energy between the two phases is smaller than the €Rown in Fig. 2. The sigix\ denotes localized Turing domains
ergy required to move the front by one wavelength, the front.ainingx wavelengths in their core. For the values of parameters

remains pinned. The Brusselator being a nonpotential modelseqd here, localized Turing domains with down to five wavelengths
one cannot define a function to minimize near the CTHPhave the same pinning domain as that of the front which results

However, the picture of an interaction between the front androm a nonadiabatic effect. Localized Turing domains with fewer
the Turing structure remains qualitatively correct and giveshan five wavelengths have a wider stability domain thanks to the
rise to an intrinsic pinning of the Turing-Hopf front for a action of a nonvariational effect. The “flip-flop” shown in Fig(d
large set of values of the control parametBr (Fig. s the localized structure stable in the largest domain.
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FIG. 5. Space-time map of the mixed mode with one wave
number and one frequency foA=0.8, D,=10, o/0.=0.9,
FIG. 4. Space-time map showing a Turing mode invading aB=1.68, L=64 during 25 units of time. Periodic BC are applied.
Hopf background in a system of length 300 during 200 units of
time. No-flux BC are applied. The mean velocity of the front is

slower than one Turing wavelength for one temporal oscillation and_. . e .
sion, a Turing spot sitting in the core of a one-armed spiral,

hence the system evolves through intermediate localized oscillg- . . . : -

tions. The initial condition is a stable front obtained for the sam;\qas ?"SO been obtalneq both in num(_arlcal S'm“'a“m

values of parameters as in Fig. 2 @B 9. The front is set unstable and in the CIMA experimentp34]. Turlng-quf Iocallzgd

by suddenly decreasir to 8.8 in order to go outside the pinning StrUCtures have also been observed experimentally in one-

domain. dimensional arrays of resistively coupled nonlineég os-
cillators[10] and in binary-fluid convectiohl1].

o Bistability between the Turing and Hopf modes near a
plest mode locking is one wavelength for one frequency bubThp hag already long been predicted in the amplitude

other ratios are possible as long as there is an integer numbgg ation formalism. We have shown that in this bistability
of wavelengths per period of oscillation or vice versa. Inregime, Iocalized structures of one state embedded into the
these situations, the front may progress faster or slower andsher can be stabilized by a combination of nonadiabatic and
in order to satisfy the nonadiabatic constraint, the system,qonyariational effects. In addition, if long-wavelength insta-
then sometimes creates temporary localized subzdfigs  pjjiies are considered, the Hopf mode could undergo a

4) [30]. . , Benjamin-Feir instability and the Turing mode an Eckhaus
Two Turing-Hopf fronts can be used to build up stablejgapility[1]. These types of secondary instabilities have not

localized structures corresponding to a droplet of a Turingyeen considered here.

(Hopf) state embedded into a Hogfuring) domain[Figs.
2(b) and Zc)]. We observe that, if the Turing core contains
several wavelengths, the stability region of such localized
structures is the same as that of the fréfig. 3) and can Near the CTHP, the system may also exhibit a stable
correspondingly be ascribed to pinning effects. Such localmixed mode corresponding to a spatial pattern with the Tur-
ized structures are thus also stabilized by nonadiabatic efhg wave number oscillating in time with the Hopf fre-
fects. If the localized Turing domain contains few wave-quency. This stable state has been obtained by numerical
lengths, this stabilizing nonadiabatic effect can no longer bdntegration of the Brusselator model with periodic boundary
invoked alone. Stable localized Turing patterns with fewconditions in bothH-MM-T and T-MM-H cases. A space-
wavelengths are nevertheless observed in the Brusselattime map of this dynamicgFig. 5 shows the polygonal
model and the fewer wavelengths they contain, the largesipace-time structure characteristic of a mixed mode. This
their stability domain(Fig. 3). Their stability should then solution was previously obtained in numerical simulations of
result from nonvariational effects present in the Brusselatothe Brusselator by Sangalli and Chaf®p] in a H-MM-T

as this model cannot be derived from any potential functionscenario. Here we recover several of these scenarios in the
Nonvariational effects have been shown in other systems tbA,o/ o) parameter space but we also find the complemen-
stabilize localized structures if they provide a repulsive in-tary T-MM-H scenario. This invalidates the conclusions of
teraction between two fronts that otherwise attract each othdRovinsky and Menzing€l36] stating that the MM is always
[1,32,33. They can thus account for the existence of local-unstable in the Brusselator.

ized droplets of one state embedded into the other state. This The amplitude equations we have considered to predict
effect is strongest for the so-called “flip-flop” localized pat- the MM do not contain any spatial dependence of the ampli-
tern having the smallest cofdig. 2(d)] and therefore the tudes on the large scales. If such a dependence is taken into
widest stability domain. This could explain why the “flip- account, phase stability criteria can be derived giving the
flop” is the only localized pattern that has been observedconditions for which the global solutions and the MM in
experimentally in the CIMA reaction for values of the con- particular[23] can become unstable towards secondary long-
centrations near the CTHP)]. Its two-dimensional exten- wavelength instabilities. In our simulations of the Brussela-

B. Mixed mode and spatiotemporal chaos
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FIG. 7. Space-time map of th¥ variable of the Brusselator
shown in gray scale ranging from its minimumvhite) to its maxi-
mum (black value. The dynamics features a subharmonic Turing
mode with two wave numbers and one frequency shown during 35
units of time. The parameters areA=1.5, D,=10,
olo.=0.75, B=4.4, L=64. Periodic BC are applied.

trates all this information. We have drawn in FBa sche-
matic dispersion relation of the Brusselator model. Let us
suppose that the primary bifurcation leads to the Turing state
with wave numberk,.. As we are close to the CTHP, the
linear eigenvalue of the subharmonic mode with wave num-
ber k./2 may be complex with frequency(k./2) and its
growth rate small. In the vicinity of such a critical situation

[37], the variables of the system are expanded as
FIG. 6. Dynamics of the mixed mode in a large system. The

dynamics is shown during 40 units of time with periodic B@). C(x,t)=Co+ Tekwr+ A e'leket+ (ke/2)xlyy,
Phase chaos. All parameters are the same as in Fig. 5 except ok /2)t— (k/2)x]
L=512. (b) Localized MM embedded in the Turing regime ob- +Age!t e ¢ wrtC.C., (5

tained forA=0.8, D,=10, ¢/0,=0.75, B=1.780, L=512. N )
wherew, andwg are the critical eigenvectors correspond-

tor model, such a phase instability has been obtained. Using
the sizeL of the system as a bifurcation parameter, the
mixed mode of Fig 5. becomes phase unstable whegs
increased and the system enters a regime of spatiotemporal
chaodFig. 6(a)]. The fact that this chaos appears when using
the length of the system as a control parameter suggests that
we are here dealing with a long-wavelength instability and
not with a homoclinic type of chaos. More complex spa-
tiotemporal dynamics are obtained like the one displayed in
Fig. 6(b): the stable MM appears as localized structures in a
Turing pattern when the size of the system is increased. This
mixed mode, generic of the CTHP, is characterized by one !
wave numberk, and one frequencyw.. Other types of ’
mixed modes can also be observed close to the CTHP as we ‘
will see next. ‘.

IIl. SUBHARMONIC INSTABILITY OF A TURING MODE -

A mixed state different from thek(,w;) mixed mode
discussed abové-ig. 5 has also been obtained in the Brus-

selator. This mixed state is characterized by one frequency riG. 8. Schematic dispersion relation explaining the resonance
and two wave numbers, the Turing okg and its subhar- petween the Turing modek(0) and the subharmonic mode
monic k¢/2. At each location, the system is oscillating in [k/2,w(k/2)] leading to the existence of the Sulnode of Fig. 7.
time and therefore the minima of the mixed state are shiftedhe solid(dashedlline corresponds to the dependence of the solid
one wavelength each half period of oscillations. The correreal (imaginary part of the eigenvalues of the linear stability analy-
sponding space-time map of this dynam{€$g. 7) concen-  sis.
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ing to the left- and right-going waves of wave numlbgf2
and frequencyw(k./2). The amplitudes obey the following
equationg 38,39

E:MT_9|T|2T_)\(|AR|2+ AP T+vARAL,  (6)

AR

WZM'AR_9'|AR|2AR_ h'|ALPAR—N\'|T|?Ag
+v'TYAL, (7)

A,

7:M'AL_9/|AL|2AL_h,|AR|2AL_)\'|T|2AL
+v'TAR, (8

whereu’, g, and\ are taken as real while the primed co-
efficients are complexd’ =« +iaj). All bifurcations are
considered here to be supercritical with and\; taken as

positive. Among others, this system admits the following

global solutions[39,40: (1) a Turing mode:T={u/g}*?,
AgR=A =0; (20 a right traveling wave: T=0,
Ar={u'lg,} V%™t A =0 or a left traveling waveT =0,
Ar=0A, ={u'/g/} %™ with the renormalization fre-
quency Q,,=—g/u'/g;; and (3) a mixed mode solution
T=Ty, Ag=R7e' @1t A =R '@t 4 By an appro-

priate choice of the origin of the coordinates, we can take

T+ as real. The phases obey the equation

I(pr— 1)

ot

20, Trsin( pr— ). 9

The ¢r— ¢ =0 () stationary solution is stable when
v, >0 (<0). ThenT;, Ry, andQy are the solutions of the
following set of equations:

B = NTo+[o][Ty

2 _
RT glf_'_hr/ ’ (10)
0=gT3—(u—2\R3T1+vR%, (11)
QT:iUIITT_(gl,‘I'hI/)R%_)\I,T% (12)

The upper(lower) sign in front of thev’s corresponds to
the case where; >0 (<0). The most prominent feature of

Egs.(6)—(8) is the presence of the resonant interaction term

between the two modesk{,0) and[k./2,w(k./2)] propor-

tional tov andv’ which can induce a subharmonic destabi- . ; ) . )
e give rise to chaotic behaviors. It is worthwhile to note that

lization of the Turing mode giving rise to a new mixed mod
solution. A linear stability analysis of the solutions(&)—(8)
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As this mixed mode results from a subharmonic instabil-
ity of the Turing pattern, let us coin it the subharmonic Tur-
ing mixed mode or in short siib A comparison 0f13) and
(14) shows that the first instability of the Turing mode will
always be towards the stibvather than towards the traveling
waves. This transition may be subcritical. The Eidmlution
is the combination of a steady structure with wave number
k. and of a standing wave formed by the superposition of the
left- and right-going wavesAr=A,) with wave number
k./2 and frequencyw(k./2). The resulting spatiotemporal
dynamics thus corresponds to a spatial pattern with two wave
numbers oscillating in time with one frequency as observed
in the Brusselator modé€Fig. 7). The two wave numbers are
here, respectively, the Turing wave number and its subhar-
monic. This mixed state is thus of a different origin than the
one due to the interaction between a steady pattern and a
wave as introduced ifi7] where the two wave numbers are
not necessarily linked. To find if the s@itsolution is stable
towards perturbations of its amplitude, we insert
T=T1+6r, Ar=A_=(R;+ r)e' T into (6)—(8) and find
the characteristic equation

w?—aw+b=0, (15
with
2 R-zr 2
a=—29Tr¥ v —2R%(g/+h/), (16)
T
2 2 R-Zr
b=2R%{|2gT2+v —|(g/+h/)
Tr
_(|Ur,|_2)\r,TT)(iU_2)\TT)]- 17

When the Turing modgwith Ry=0, Ty=+u/g) be-
comes unstable, a transition towards a stabld subde oc-
curs ifb>0, i.e.,

2u(g;+h;)—<v—2>\ \/g)(v,’—zxg \/§)>0
(18

and if a<0. On the other hand, &>0, the sull solution
can undergo a Hopf instability of its amplitude that should

the sulf mode can be obtained for values of parameters such

shows indeed that the Turing solution is the first to appeaf@t the standing waves of the syste and (8) with

supercritically whenu'<u and g>0. This pure Turing
mode becomes unstable towards the traveling wave if

! /M
M>)\r§

and unstable towards the mixed mode solution when

! /M ! M
K >)\r§_|vr|\[§-

13

(14

T=0 are unstable versus traveling wavey $g,). It is
known that such a standing wave can be stabilized if an
external time modulation with a frequency twice the fre-
quency of the traveling waves is applied to the system
[41,42. Here the stabilization of the standing wave is self-
induced by an intrinsic coupling with the steady mode which
plays the role of an external forcing by restoring the left-
right symmetry. The sub mode described here analytically
has been observed in the Brusselator for1.5 when
olo:.<1. Looking at Fig. 9, we see that for the sadehe
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FIG. 10. Schematic dispersion relation explaining the resonance
between the Hopf mode (®) and the subharmonic mode
[k(w/2),w/2] leading to the existence of a ddbmode with one
wave number and two frequencies. If in additiok i8 of the order
of the Turing wave number, the additional resonance with the mode
(2k,0) can lead to the existence of a slilb mode with two wave

FIG. 9. S“mm"?“y of the different spatiotemporal dy_namic_s thatnumbers and two frequencies. The sdiithshed line corresponds
can be observed in the Brusselator model near a codlmensmn-twt% thek dependence of the reimaginary part of the eigenvalues

Turing-Hopf point in the parameter spade—o/o.. The line
olo.=1 is the codimension-two Turing-Hopf line. &/o.<1
(>1), the Turing(Hopf) bifurcation is the first to occur at critical-
ity. The filled squaregcircles are points for which we have ob-
tained only Turing(Hopf) states for all the values d and the

of the linear stability analysis.

system, i.e., the Hopf mode, as we will see in the next sec-
tion.

initial conditions we have scanned. The filled triangles represent

points for which we obtain by increasirg successive transitions

between a Turing mode—a mixed mode with one wave number and IV. SUBHARMONIC INSTABILITY OF A HOPF MODE

one frequency(see Fig. 5—a Hopf mode. The reverse situation

with the Hopf mode being the first to appear exists for the opery,
squares. Bistability regimes with the corresponding localized struc-

tures (see Fig. 2 obtained after the TuringHopf) mode are ob-
served at points with an open triangleircle). SublT modes with
two wave numbers and one frequensee Figs. 7 and l4are
observed at points where an open diamond is pictured. Filled di
monds represent points where the b mode with two wave
numbers and two frequenciésee Fig. 11 come to hand. Points

Another subharmonic instability could be observed if the
ase state is the Hopf mode with frequengygenerated by
a primary bifurcation. The subharmonic mode/2 has an
eigenvalue of the linear stability analysis associated to a
wave numberk(w/2) (Fig. 10. If a resonant interaction

{43—-49 occurs between the two modes @) and

[k(w¢/2),w./2], the variables of the system may be written
as

1-3 are the locations for which numerical bifurcation schemes are

discussed in Sec. V.

T-B-H scheme exists near/o.=1, that is, near the CTHP

line. Subharmonic instability of the Turing mode comes into

play further away from this line. The sililmode is reminis-

cent of subharmonic cellular patterns observed experimen-

tally in the flow of a viscous fluid inside a partially filled
rotating horizontal cylindef13]. In this experimental setup,

successive transitions between steady patterns, th& sub 5t

C(X,t) — CO+ HeiwctWH + ALei[(a)C/Z)tJrk(wC/Z)X]WL

+ Age'll0dt=klod2Xlyy o + ¢ ¢, (19
where the amplitudes obey the following equations:

JH
= uMH = BIH|?H — y(|Agl?+|ALDH +vA AR,

mode, and spatiotemporal chaos due to a phase instability of (20)
the sull mode[40] are observed when the control parameter

is increased.

We have shown that near a CTHP, a Turing mode can  9A
give rise to subharmonic cellular patterns oscillating in time

R n ! ! !
M Ar—B'|Arl*Ar— 7' |AL|?Ar— &'|H|?Ag

and generated by subharmonic instabilities. The same type of -
instability can destabilize the other generic solution of the Tv'HAL, (21)
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&AL U ! ! !
WZM,AL_E |ALIPAL— ' |ARIPAL— &' [H|?AL
+u'HAY. 22

Al coefficients are complexd=a,+ia;). Whenu|<u! a
pure Hopf mode is the first to appear with
H=\u/B8€e Ag=A =0; Q=—g;ul/B,. Here also
the self-induced parametric terms proportionalvto favor
the onset of modulated waves for which the three amplitudes
are different from zero. Performing the linear stability analy- g5 11 Space-time maps 68 the subiT mode with two
sis of the homogeneous oscillations with respect to perturbaequencies and two wave numbers in a box of lerigth80 with
tions SRg=6R_ = sRe" we find the instability condition:  periodic BC displayed during 25 units of time. The parameters are
A=3, D,=10, o/o.=1.1, B=10.445. (b) Traveling subiT
MH mode obtained for the same conditions aganbut with another
r

H
w =8 —+ /ﬂ—r[v’coszp+v4’sin2¢]>0 (23 random initial condition. The dynamics is shown during 100 units
r r r I ? .
Br Br of time.

where the phasé is determined by

C(X,t) — CO+ Hei thWH 4 ALei[k(wC/Z)x+(a}c/2)t]WL

H H —i[k(0g/2)x—(w/2t] g2ikx
My My ) +Age Wr+ T wr+C.C.,
8 — —ul'=\/ ={v]cos2y+uv|sin2y]. 24
| IBr Iu“l ﬁr[ I r ‘ﬁ] ( ) (29)

When the Hopf mode is unstable, another mixed state with

now H#0; A =Rye'’; Ag=R.e'?% can appear where \here the amplitudes obey a set of four coupled amplitude
H, Ry, andd= ¢, + ¢ are found as solutions of the fol- &gy ations. We have not analyzed this set of equations but it
lowing system of equations: seems reasonable to expect conditions for which a transition
between a Hopf mode and a mixed state with two wave
O=p/—[B+ yr’]Rﬁ— 8/H2+H[v/cosb +v/sind], numbers and two frequencies is possible. As this spatiotem-
(250  poral dynamics results from the resonance near the CTHP
between a sud mode and a Turing mode, let us coin it the
SutHT mode. This suHT mode has been obtained in the
Brusselator domain, for example, whenA,¢/o;)
=(3,1.1). Starting from a homogeneous limit cycle at
B=10.1 in a system of length 64, a cellular pattern with two
0=ul'H—BH3—2y,R4H+R3[v,cosP —v;sind], wavelengths appears with increasing amplitude wBefs
(27 increased above 10.2. At each location of the system, the
variables oscillate in time with two frequencies. After one
period of oscillation, each maximum of the spatial pattern
has become a minimum and vice versa. The initial structure

As this other mixed mode results from a subharmonic instalS recoyered after two perigds as can be seen on t'he related
bility of the homogeneous Hopf limit cycle, let us coin it the SPace-time plot shown in Fig. {d. The same dynamics has
subharmonic Hopf mixed mode or in short ubThis sub ~ been obtained in a reaction-diffusion model of a semicon-
H mode is the combination of a homogeneous temporal osductor devicg47]. In the Brusselator, the st may also
cillation with frequencyw, and of a standing wave with Coexist with a traveling sthT mode[Fig. 11(b)].

frequency w./2 and wave numbek(w./2). The resulting Several mixed modes are stable near the CTHP in the
dynamics is then a pattern with one wave number oscillatingdrusselator model: the simple MM, the Sumode, and the
with two frequencies. This sibis different from the modu- sutHT. The transitions between those dynamics of the sys-
lated standing waves occurring when homogeneneous aridm can sometimes become very complex as we will see
finite wave number Hopf instabilities interdet6]. We have  next.

not observed the siib dynamics in the Brusselator model

although it should be generic as it is independent of the

proximity of the CTHP contrary to the slibomode. Near the V. ADDITIONAL SPATIOTEMPORAL DYNAMICS

CTHP, we nevertheless observe a transition from a Hopf

mode towards a mixed state with two wave numbers and two TO summarize the dynamics described up to now, let us
frequencies. We suggest that near the CTHP, &ismimde  look at Fig. 9, which displays the different bifurcation sce-
characterized by the wave numblefw./2) could resonate narios obtained numerically in the Brusselator model in the
with the Turing mode of wave numbkg if 2k~k; (Fig. 10. parameter spaceA(o/o;). Whena/o,<1, the Turing in-

In that case, the variables of the system would be given bystability is the first one to be observed. For large values of

O=pu/—[B]+ v/ IRE— &6/ H>+ H[v{cosb—u,’sir@],( )
26

0=—BH%—2y,RZH+Ri[v,sind +v;cosb]. (28
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Turing
LS
SubT
G000
SubHT
FIG. 13. Space-time map showil@ the periodic incursion of a
Hopt | sutHT mode into a pure Hopf mode in a system of size64 for
A=3, D,=10, o/0.=1.05 B=10.3 with periodic BC(point 2
in Fig. 9 during 25 units of time(b) The same dynamics becomes
100 o 0 80 unstable in a larger system of size=512.

In our second example, let us detail the bifurcation

FIG. 12. Numerical bifurcation diagram obtained for the valuesscheme atA, o/ o) =(3,1.05) (point 2 in Fig. 9. Near the
of parameters of Fig. 1{point 1 in Fig. 9. LS denotes localized threshold of instabilitszB'C", the Hopf mode prevails.
structureg(see Fig. 2 All other signs are as in Fig. 9. WhenB is increased, this Hopf mode becomes unstable: its
. L ._amplitude begins to oscillate periodically and alddbmode
A, the T-B-H scenario is at hand with its related dy”am'csappears transiently in timiFig. 13a)]. Such a periodic in-

such as Turing-Hopf fr_onts ‘?‘”d Iocalize_d structures. Foly,ion in time of the SUBT mode can be explained in terms
smallA’s, the T-MM-H bifurcation scheme is obtained. This ot 5 |imjt cycle instability of the four coupled amplitude
MM may give rise to phase chaos or localized structures iny, ations that would admit the 94 mode as solution. The
larger systems. The sIlIbmode_ exists for_lnter_medlatA’s period of appearance of the 45 mode decreases when
but smallero/ o' where the typical dynamics with two wave g jg jncreased. This dynamics is unstable with respect to the
numbers and one frequency is observed. Eventually, fop s when the size of the system is sufficiently Idfgg.
smallera/o, the pure Turing mode is the only stable one 13(b)]. WhenB=10.4, the system then evolves towards a
we get. . L ) stable Turing mode. This Turing mode further bifurcates to-
For o/o.>1, the Hopf instability is the f_|rst one to be wards a sub mode wherB is further increased. This siib
observed. For smaA's, the pure Hopf mode is the only one e [Fig. 14)] here also coexists with a drifting stib
existing. For intermediaté's, we get theH-B-T scenario  nqqeFig. 14b)]. Such a drifing mixed state was already
and the related Igcal|zeq structures. For hlglﬁés, the seen by Sangalli and Charigs] but in a Brusselator with
H-MM-T scheme is obtained near thdo.=1 line while itferential convection. In our case, the dynamics is obtained
the H-sulHT transition comes out for highes/o.. The  yithout convection, which shows that the drifting 3ub
situation on this side of the degeneracy line can neverthelesgoge is a solution totally intrinsic to the reaction-diffusion
become quite complex as several bifurcation scenarios Castem near a CTHI3Y]. It corresponds then to a mixed

mix at the same pointA,o/oc) whenB is increased. To  mgode solution of the set of equatiori€)—(8) for which
illustrate this, let us consider in detail three dynamical sce-

narios.

For (A,o/0¢)=(3,1.1) (point 1 in Fig. 9, the numerical al
bifurcation scenario obtained whé&his increased is the fol-
lowing (Fig. 12: starting from a homogeneneous Hopf
mode, a subharmonic instability towards the ldibmode of
Fig. 11(a) occurs. This is the scenario explained in Sec. IV
and which comes into play near criticality for several points
in the (A,o/ o) plane. In addition this siHbT mode coexists
with a traveling sublT mode[Fig. 11(b)]. Above a certain
value of B, the suldT mode enters a transient chaotic dy-
namics which eventually settles down on localized struc-
tures. These localized structures are bistable with the pure ., Space-time maps &) a sull mode with two wave
Turllng and Hopf ques for hlg_heB_ In the_ intermediate numbers and one frequency obtained fé&=3, D,=10,
region, a sulb mode is also obtained. Its existence could bea/aczl_OS, B=10.45, L =64, periodic BC and shown during 25
understood in terms of d-subl transition whenB is de-  nits of time running upwards. Remark thato.>1. Hence the
creased. Unexpectedly, tHesubl transition can thus also Hopf mode is the first to appear above the critical valuofrhis
be observed fo/o.>1 where the Hopf instability is the subT mode exists only for higher values 8 (b) In a system of
first to occur above criticality. We thus see that in a range otize L =80 with periodic BC, an asymmetric subharmonic Turing
values of the control paramet&, there is coexistence of mixed mode is obtained for the same values of parameters(as in
various types of spatiotemporal dynamics mixing several offhe dynamics is shown during 100 units of time.
the bifurcation schemes we have presented.
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of nonadiabatic effects accounts for behaviors such as the
stability of a simple Turing-Hopf front and of localized
structures or a stepwise progression of this front depending
on the values of parameters. Nonvariational effects contrib-
ute also to the existence of localized structures in the bista-
bility domain of the two pure solutions. The existence of
such a bistability domain and of the related localized struc-
tures has been obtained in the Brusselator model. Such lo-
calized structures have now been observed in several experi-
mental system§o—11].

(2) The Turing-Hopf mixed mode: spatial pattern charac-
terized by one wave number and oscillating in time with one
frequency. This mixed mode is generically observed in our
reaction-diffusion model where it may also become phase
unstable in large systems giving rise to spatiotemporal chaos.

The second major behaviors existing close to a CTHP
appear when the pure modes are subjected to subharmonic
instabilities. The resulting dynamics follow.

FIG. 15. Space-time map of a complex spatiotemporal dynamics (1) The subharmonic Turing mixed mode, i.e., a cellular
obtained by starting from a random initial condition when strycture with two wave numbers oscillating in time with one
A=25, D,=4.49, Dy=891, g/o,=1.1, B=8 (point 3 in Fig.  frequency. This sub mixed mode has been observed in the
10) and no-flux BC are applied. =512 and 300 units of time are  grsselator model where it may nevertheless appear as part
shown. The same dynamics results wHgris increased starting ot 5 much more complex overall bifurcation scheme. The
from a sulbiT mode stable foB<7.8. transition bwtween a Turing state and a Subode has also

been seen experimentally in a hydrodynamical system where
sin(pr— ¢ )#0 andRg#R_ . This conclusion is confirmed the subharmonic oscillating spatial pattern becomes phase
by numerical simulations of the Gray-Scott model near theunstable for higher values of the control parameter entering
CTHP by Rasmussen and MaZi8] who also find bistabil- then a spatiotemporally chaotic regirffs].
ity between the sub and the drifting sulb mode. The over- (2) The subharmonic Hopf-Turing mixed mode corre-
all bifurcation scheme for point 2 in Fig. 9 thus consists insponding to a biperiodic oscillation in time of a biperiodic
the following succession of states: pure Hopf mode—modulation in space. This sHiT mode exists in the Bruss-
heteroclinic appearance of the $lib mode—pure Turing elator where it is bistable with other dynamics. It has also
mode—sulb state coexisting with a traveling stilmode. been observed in a reaction-diffusion model of a semicon-

Our last example concerns the pointA,¢/o.) ductor devicd47].
=(2.5,1.1)(point 3 in Fig. 9. In this case, a change of the  In addition to these major bifurcation schemes, we have
control parameter scans successive transit{@® from a identified in the A,o/0.;) phase space of the Brusselator
Hopf mode towards a stbl mode followed by spatiotem- three bifurcation scenarios that mix up the above classifica-
poral chaos(Fig. 15 and eventually localized structures tion.
characteristic of a bistability regime. The same behavior ap- To conclude, we have shown here that the amplitude
pears in the Gray-Scott model. In that case, the spatiotemp@quation formalism is a good basis to predict the spatiotem-
ral chaos could be controlled to yield a stable Turing patterrporal dynamics that can be observed near a CTHP. The bi-
[49]. furcation schemes predicted are recovered in the numerical

The classification of the spatiotemporal dynamics near antegration of a reaction-diffusion model. These simulations
CTHP in four scenarios: bistability, MM, slibor sulHT  confirm the theoretical predictions but also show some pecu-
thus allows description of most of the dynamics featured byiarities of the dynamics that cannot be explained by the
a reaction-diffusion model. amplitude equations. In addition, the fact that different bifur-
cation schemes sometimes mixup when the control param-
eter is increased in the Brusselator points out the usefulness
of the simulation of a model in parallel with the use of am-

In this article, different bifurcation scenarios existing nearPlitude equations. As some of the spatiotemporal regimes
a CTHP have been studied in the framework of amplitude’r€Sented here have been observed in experimental systems,
equation formalism and used to understand and classify th&® hope that the additional scenarios we have described will
numerical simulations of a reaction-diffusion model for val- P& observed in some physico-chemical systems featuring a
ues of parameters close to a CTHP. Two major families O]d.egeneracy point .where two njsta_blhtles breaking, respec-
spatiotemporal dynamics have been presented: those due $¥€ly; space and time symmetries interact.
the interplay between the pure Turing and Hopf modes and
those related to subharmonic instabilities of these modes.

When a Turing mod& (k.,0) interacts with a Hopf mode
H(O,w.) near a CTHP, two types of behaviors can be ob- D.L. is supported by the CNPQ/Brazil. A.D., G.D., and
tained in addition to the existence of the pure modes. P.B. acknowledge financial support from the FNREeI-

(1) The Turing-Hopf bistability: in that case, the existence gium).
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