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Structure of strongly dipolar fluids at low densities
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We propose a simple statistical mechanical theory for a strongly dipolar fluid at low densities, based on the
analogy between a polymer chain and a chain formed by strongly polar particles. The general methods
developed in the theory of semiflexible polymers enable one to obtain simple expressions for the energy and
conformational entropy of a long dipole chain. We then consider the equilibrium between chains of different
lengths and derive a general expression for the free energy as a functional of the chain length distribution. Both
steric and dipolar interactions between long chains are shown to be weak and as a result the rarefied fluid of
strongly dipolar spheres resembles the ideal gas of noninteracting polydisperse chains. It is shown that the
chain length distributions found in simulations are compatible with the assumption of very weak interchain
interactions if strong finite-size effects are taken into account. We also investigate whether sufficiently strong
attractive van der Waals forces between particles can cause dissociation of the chains. Finally, we discuss the
case of a dipolar fluid in an applied field and argue that the coexistence between two aligned phases of chains,
as observed by computer simulation, is unlikely to occur in an infinite sy§®h63-651X96)10109-4

PACS numbeps): 61.20.Gy, 75.50.Mm, 64.76p

I. INTRODUCTION a head-to-tail configurationin particular, the role of dipolar
forces in the stabilization of different fluid phases is only
Dipolar fluids are a widely studied model in statistical poorly understood. Indeed, contrary to the predictions of a
mechanic$1]. Not only are dipolar interactions omnipresent number of theorie$10-19 and to early simulation$20],
in nature, they also occur, and play a prominent role, inmore recent numerical work on the dipolar hard-sphere
many artificial systems, such as ferrofluids and electrorheoDHS) [21], dipolar soft-spheréDSS [22-24, and Stock-
logical fluids. Ferrofluids are stable colloidal dispersions ofmayer [22,25 fluids suggests that a minimum amount of
ferromagnetic particles coated with surfactants and dispersadotropic attractive energy may be necessary to stabilize the
in a host liquid, such as water or paraffi]; these are in- liquid-vapor coexistence in a zero applied field. Moreover,
teresting by virtue of their high magnetic susceptibility. Elec-simulations further indicate that, at low densities, dipoles
trorheological fluids, on the other hand, are colloidal dispertend to associate into chains akin to living polymers
sions of highly polarizable particles in solvents with low [22,24,26,27.
dielectric constant, whose rheological and mechanical prop- The limited success achieved in the theoretical description
erties change dramatically when an electric field is appliedf strongly dipolar fluids can be traced back to the nature of
[3]. the approximations employed, namely, angular averages of
Quite apart from their potential applicability, dipolar flu- the dipole-dipole potentigl10,15, or various types of per-
ids also raise a number of intriguing fundamental questionsturbation expansion in the dipole momémwith [12] or with-
relating to (i) the intrinsically long-range character of the out[6,7,12,14,17,19,28,2%aderesummation Whereas the
dipole-dipole interaction, which leads to a dependence oformer average out all orientational correlations, the latter
some physical properties on the shape of the sy$ten), are restricted to small values of the dipole moment. Both
and(ii) its anisotropyand especially the strong coupling be- strategies neglect the very strong short-range correlations fa-
tween the orientations of a pair of interacting dipoles andvoring head-to-tail alignment of dipoles, which are effective
that of the interdipole vectatwo parallel dipoles will repel even at very low density and lead to the formation of chains.
each other if placed side by side, but attract each other if iis discussed by Wertheim {i80], highly directional forces
tend, if attractive, to promote association into aggregates
whose shape depends on the geometry of the repulsion and
“Permanent address: Institute of Crystallography, Russian Acadhe directional attraction. Higher-order terms in the usual ex-
emy of Sciences, Leninski Prospect 59, 117 333 Moscow, Russiapansion in the one-particle denspiythen contain an increas-
Present address: Cavendish Laboratory, Madingley Road, Caning number of “strong bonds,” which correspond to strong
bridge CB3 OHE, United Kingdom. interactions between neighboring molecules. As a result, the
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free energy of such a system can only be calculated after Ap*
o , : 2(3) (4)
infinite resummations of these terms, a mathematically very 812" 23¢ )

complicated procedure. Consider as a simple example a fluid

of hard spheres with one dimerizing site, in an attraCtivewherea*~1 and ¢(x) is the Riemann zeta functiof86].
mean field. For sufficiently strong site-site interactions, tthsing this criterion, Stevens and Gre$p4] found
fraction of monomers will be very low even in the vapor «__7g-4 for A=6.25, in qualitative agreement with their
phase[31] and the thermodynamics will be dominated by oo mnyter simulation results. Note that, at such low densities,
dimers. Strongly dipolar fluids present the additional compli-;,o only aggregates present geesmall number dfdimers:
cation that the dipole-dipole interaction is long ranged anqOng chains only appear whert A>1.

thus does not saturate when chains are formed. In this case it p¢ already noted by Jordan, there is not, in general, a

is therefore essential to separate short-range effects, lead'r%%ase transition between a simple fluid and a phase of
h

to chaining, from long-range ones responsible for interchainyy, i rather, the length of the chains grows continuously,
Interactions. o ¢ validity of th | 1oy 2S SEen in recent simulations of living polym¢gy]. At a

We can estimate the range of validity of the usual low-gi,en gensity(chemical potentia) the onset of chain forma-
density expansions in the following simple way. Consider &ion is signaled by a maximum in the specific heat at the

fluid of spherical molecules of diameter and dipole mo- o4y merization temperature, but the thermodynamic func-
ment u. The second term in the Mayer expansion of thejjong are analytic over the whole range of temperatures. In
equation of state is line with current usage, we call the temperature that sepa-
1 41 d2 rates the high-temperature ordinary fluid from the low-
_ - Dl _ _ temperature isotropistructuredfluid, a Lifshitz temperature.
b;=pB2= ZVPJ a7 a7 OHTBAA21- @) ) phase transition from a high-temperature disordered phase
into a low-temperature structured phase inofinitely long
whereB, is the second virial coefficien¥ is the volume of chains[38—-41 may also occur in these systems gtaaticu-
the system, 1 and 2 denote the complete set of position arldr value of the chemical potential. Although a detailed de-
orientation coordinates of particles 1 andp2is the density, scription of the polymerization transition is beyond the scope
B=(kgT) %, and ¢(12) is the sum of the dipole-dipole in- of this paper, in Sec. Il we shall discuss the conditions under

teraction which it might obtain.
We are now faced with the paradox of a low-density re-
w? o L gime where the usual low-density approximations are inap-
¢dd(12)=—r—3[3(ﬂ1'flz)(ltzflz)—ltl'ﬂz], r1o>0 plicable. However, this is only a paradox if we insist on
12

@) describing the system in terms of the one-particle density
p: for sufficiently strong dipoles, the chains are fairly stable
and can be treated as “molecules” themselves. All strong

and some short-range repulsive potential. In &y, u, and . . ) .
{1, are unit vectors along the dipole moments of particles 1short-range correlations are thus absorbed into the intrachain

. T ; ; structure. The formation of stable chains preempts an
and 2, respectively, and,,=r,/r1, is a unit vector along

the intermolecular axis. For strongly DHSs, the integral carLS otr(_)plc-to-fer_roelect_nc transition at low _d_en3|ty; this wil
: : e discussed in detail elsewhgr?]. In addition, as argued
be evaluated asymptotically to giy&0]

in Sec. Il B below, the chains are essentially noninteracting

N and consequently do not order ferroelectrically themselves.
b2~—i3e2*, 3) This is consistent with the absence of orientational order
18n found in simulations of semiflexible, noninteractifgxcept
for the excluded volumelattice polymerq43|.
wherep* =po? is the reduced density and=u?/kgTo? is In this paper we adopt an approach that is rigorous in the

the reduced dipole moment, respectivgd2]. While in the  case of very long chains of strong dipoles at low densities
case of hard or soft spheres the Mayer-expansion parametge., if p* A>1 but p*<1). In this regime, chains are lo-
is the packing fraction{~(1/2)p*, for DHSs it is cally rigid and can be treated by the standard methods of
mp* exp(2)/18\3: the dipolar interaction contributes an ad- polymer theory, which yield simple expressions for the free
ditional factor of orderA = exp(2)/18\3, which can be energy. Obviously our treatment will be quantitatively less
very large ifA>1. The density at which the Mayer expan- accurate if the chains are shorter, but it results in a major
sion breaks down due to chaining can now be estimated fromsimplification and enables one to derive the free-energy
p*A~1; for A\=9, this yields as low a density as functional for the phase of chains in terms of the length and
p*~10"4. orientation distribution functions. More importantly, inter-
The first theory of dipolar fluids to include chains was thatchain interactions can readily be included at the lowest level
of Jordan[33,34], who, following DolezaleK 35], described of approximation in a mean-field fashion. We shall use this
clustering as an equilibrium chemical reaction. Jordan studfunctional to investigate the structure and phase behavior of
ied in detail the properties and length distribution of nonin-equilibrium dipole chains, including possible polymerization,
teracting dipole chains, the main advantage of his theorprientational(ferroelectrig¢ transitions, and phase separation
being that it is not restricted to small dipole moments. On then an applied field.
other hand, the equations for tiemer densities are very This paper is organized as follows. In Sec. Il we develop
complex in the limit of largeN. Here the onset of chain the statistical mechanical theory of the fluid of long nonin-
formation is given by teracting dipole chains. We start by deriving an expression
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for the free energy of a singléorientationally disordered where Z,(a,r,) is the partition function of the firsk seg-
chain using the theory of semiflexible polymers; in the Ap-ments, such thaa, andr, are, respectively, the orientation
pendix we generalize this to allow for possible orientationaland position of théth segment|@/=1). In the spirit of the
order and for an applied field. We argue that interchain in-statistical theory of long polymer chains, we write the recur-
teractions are weak in the low-density regime and obtain thgion relation for the partition functio,(ay,ry),

chain length distribution for the fluid of noninteracting )

chains. This is shown to be compatible with Stevens and Zdlarn=vz._q(ar), )
Grest's datd 23] if one takes into account the fact that the

number of particles in the simulation is rather small. WewnhereW is the integral operator

compare our predictions for the mean chain lengths with

Weis and Levesque’s simulation results and thereby illustrate R

the importance of finite-size effects at large dipole moments. \IfZ(a,r):f da’f , o dr’

In Sec. lll we extend our formalism to consider the steric, r=r'ze

dipole-dipole, and van der Waals interactions between chains Xexd —Bogq(r—r';a,a )] 2@ ,r'). (8)
and discuss the dissociation of long chains as a function of R

the strength of the isotropic attraction between dipolar parit is convenient to normalise the operatér and introduce
ticles. Finally, in Sec. IV we tackle the general issue of phasgew functionszk=||xif||k*1§k_ Equation(7) becomes
equilibria and orientational order in low-density strongly di-

polar fluids and contrast our theory with various other theo- Z=VoZ_1, 9)
retical approaches to this problem.

whereWw,=W/||¥|| and the norm of¥ is defined as

Il. STATISTICAL MECHANICS OF LONG L1 .
NONINTERACTING CHAINS ||\If||:vJ daf dr(a,r)
OF DIPOLAR SPHERES

A. Free energy of a single long chain _ VJ dada’f / drdr’exd — Bebgy(r—r1';a,a")]
The statistical mechanical theory of semiflexible polymers Ir=r'|=o

with orientational degrees of freedom was originally intro-

duced by Khokhlov and Semend44,45. This formalism =f dada’f . d(r=r’)

and some of its subsequent developments have been re- Ir=r'|zo

viewed by Dijkstra(see[46], Appendix to Chap. 2 We note Xexg —Boqgq(r—r';a,a")]. (10

that the original theory was developed for a simple model

interaction potential between monomers that are rigidlyif the reduced dipole momentA>1, the kernel
bound in a chain. Still the general methods employed enablexd — 8¢4412)] is strongly peaked and we can transform
one to use any interaction potential provided the same i¢he integral equationi9) into a differential equation by per-
strongly peaked for the relative position and orientation offorming a gradient expansion &k;

two neighboring particles that correspond to them being part

of a chain. Here we shall consider this in more detail and Zk(a’,r’)=z7k(a,r)+(a’—a)-Vaék(a,r)

present the derivation of an expression for the free energy of

a single chain in the case where the only interaction between +(r'=r)- Vrzk(a,r)

constituent particlegbesides excluded volumés of the di- 1

polar type. +I[(a —a)-V.12Z.(ar
In a first approximation, we neglect all interactions be- 2[( )-Val"2dar)

yond nearest neighbof40] and write the partition function

: ) 1 ~
of an N-particle chain N>1) as +§[(r’—r)-Vr]ZZk(a,r)
Zn= L | }d1d2~--dN exd — Bdqd(1,2 +[(a’—a)-Va][(r’—r)-V,]Z’k(a,r)nL--~,
k= Tk+1l=0o
11
~Bad 23— —Boa(N-1N)], (5 v

whereV , is the gradient on the surface of the unit sphere of
orientationsa. Insertion of Eq.(11) into Eq.(9) and integra-

where 1... N denote the complete set of position and ori- tion by parts yield

entation coordinates of particles 1 kband ¢yq(k,k+1) is
the dipolar interaction between two consecutive particles.

Z _Z _ 27 2 27
Z., can also be written in the form 2= 2 1= OV 2+ 0OV 2 g+, (12

where Vi is the angular part of the Laplacian and
Q=(2\) 1. Taking the segment indekto be a continuous
ZCh:f dakJ{lrk—rkHZo}drkzk(ak’rk)ZNk“(ak’rk)’ variable, we make the approximatio%k—zk,lmaEk/c?k
(6) and obtain a partial differential equation f&j, :
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agk ~ phas€g47]. Thus only higher-order correlations contribute to
W=Q(V§+ aZV,Z)Zk. (13)  the free energy, which in a first approximation are propor-
tional to (p*\)?<1 and therefore very weak.
When the azimuthal variation is irrelevant, the solution of (i) The interaction between two parallel, infinitely long
Eq. (13) is chains of dipoles vanishes identically.
(iv) At very low densities, excluded volume effects are
- - - negligible and the dominant contribution to the free energy is
Zk(a,r)=|2 ZW(a)Z™(r)ehmk, (14 that of the single chaifisee Sec. Il for detai)s
i In what follows we shall derive the distribution of chain
lengths in a fluid of noninteracting chains. For sufficiently
large dipole moments as have been used in the simulations,
)\fi'é(l)(a)zﬂvg'é(l)(a), (15) the chains that form at low densities are fairly stable; the
free-energy density can then be written[ef Eg. (A8)]

where 2()(a) and Z(™(r) satisfy the eigenvalue equations

A ZM(r)=g2QVZZ(M(r). (16) F
- Bt=By =2 p(N)INp(N)=1]= X p(N)InZy,
Explicitly, N=1 N=1
(21
= 21+1 . _ _ _
ZW(a)= ?P,(cosa), (170  wherep(N) is the density of chains of length and 2y is

the partition function of theN-sphere chain. Here we have
adhered to the convention of Cates and Carn{dag[48], Eq.

Z(m(p)= \ﬁcos{im>. (18  2.1. The distribution functiorp(N) can be found by mini-
\ o mizing the free energy Eq21) subject to the constraint

The ground-state eigenvalue is\y;=Aj+\|=—-3Q
= —3/2\. At large chain length® only the ground state of N§=:l Np(N)=p, (22

W, contributes significantly and we can retain only the first

term in Eq.(14) (higher-order terms give finite-chain correc- \yhere we recall thap is the density ofnoleculesspheres
tions, which are exponentially smalleSubstituting Np(N) is the density of molecules in chains of length

A ~ ~ whence the mean chain length is
Z(an~[[¥|<ZV@Z0(mne Mk (19 g

and the equivalent expression f8f_ 1(a,r) into Eq. (6) > Np(N)
and recalling that the eigenfunctions ¥, are normalized, o Nt _ P 23)
we obtain, for the free energy of the long dipole chain, BP’

2 p(N)

- N
Fen=—KkgT InZy~—(N—1)k T(In ||+ =—=A
ch 8 Gl ks Il N—-171 P being the pressure. Fotr>1 we approximate the free

energy of a chain by

NN (20)
18\3 2\

where we have used the asymptotic expressiofjf| for

large X, which coincides with the asymptotic expression for \oia that Eq(24) gives the right limit wherN—1: indeed

the second virial coefficient of the DHS flu[d0]. We see . expect;.i:)lgor a singlegspher(a'.e. a mondme)rin a,

that the second term in square brackets in @@), the con- o ayternal field. It is also correct at zero temperature,

formational entropy of the long chain, is a small correction alhere InZ. is just the sum oN—1 bond energies. Minimi-
large X, in which case the free energy is simply the sum of, .. the'; yields '

average bond energieg,=In[ woexp(A)/18\3] at finite
temperature. p(N)=eNSot g%, (25

~—(N—1)kgT ,

|nzN~(N—1)|n< fs‘;geﬂ) “(N-1)Sy. (24

B. Distribution of chain lengths wherev is a Lagrange multiplie(it is essentially the chemi-

At low densities, interchain interactions are expected tg-@l Potential for monomers divided big T [49)). From Eq.
be weak and can be neglected. Here we shall summarize (8> We readily recover van Roij's resulsee[50], Egs.(3)

few semiquantitative results in support of this statement an@nd (@]
refer the reader to Sec. Ill for details of the theory.

(i) The interaction energy between two dipoles belonging LN) — é: (N-1)Sg (26)
to different chains at average separation is of the order of [p(DIN 27 '
pu?. Takingh=9, pu?lkgT=p*\<1 if p* <\~ 1~10"L.

(i) Because of symmetry, the dipole-dipole interactionleading to the identification ekN—1)S]=V/Vy, where
between different chains averages to zero in the isotropit’y is the thermal volume of aiN-mer [51]. Note that this
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TABLE I. Mean chain lengths from Weis and Levesque’s simu-

lation (Ng;) [26] and from the present theorN(,0 . @
— — 0.50 : : ;
P* A Nsim Ncalc
0.3 4.0 2.7 2.1
0.3 6.25 5.2 8.1 040 1
0.3 9.0 16.5 69.2
0.3 12.25 27.0 1115.8 030 | |
0.2 12.25 24.6 911.2 §
0.1 4.0 2.6 1.5 =
0.1 6.25 6.7 4.9 0.20 ]
0.1 9.0 245 40.1
0.1 12.25 24.2 644.4 010 |
0.05 12.25 30.4 455.8 '
0.02 4.0 2.3 1.1
0.02 12.25 8.4 288.5 0.00
0.0 40.0
differs from Jordan’s result, who has, however, used a
slightly different definition of the partition function. (b)
Insertingp(N) from Eq.(25) into the constraint E¢22),
we obtain 0.0015 : : :
p(1) e’
P= 1 =5 27 (1 _aStn 2 (27)
[1-e®p(1)]® (1-eX™7)
whence we must have=S,+v<0. This is an implicit 0.0010 I
equation for the density of monomers, of the same form asg
van Roij's[50], which also yields the chemical potential %
For large| |, we have = v_
1803|172 0.0005 ff /% .
~—(pe%) Yo~ — e M 28
a=—(pe%) ok (29
Np(N)/p, the fraction of particles in chains of length has
a maximum forN=|«| 1. This result is very close to that of 0.0000, 5 20000 40000 60000 30000  10000.0

Jordan, who obtained upper and lower bounds for the mean N
chain lengthN (N~Ngy, the most probable chain length,
when the distribution is strongly peaked hese are of order
|a| ™1 in the limit of large\ (see[34], Appendi¥. Note that
No~|a| "1 is very large already at very low densities: if we
taker=9, Ny~ 130(p* )¥? and Ny~ 13 for p* =0.01. More
accurate estimates for chain lengths can be obtained by solv-
ing Eq.(27) numerically forv and then inserting(N) from  broad range of densities 0.08p* <0.7 [24]. The shape of
Eq. (25 into Eq.(23). This gives their distributions is similar tdNexp(—|a|N), but the most
probable chain length is very sm@—10 spheresThis is in
contradiction with the theoretical result that the most prob-
able chain length should be greater than or equal to 13 al-
ready atp* =0.01 and grow asg*)*2 In the absence of
The resulting mean chain lengths are compared with Weiiteractions, we would thus expect an eightfold increase
and Levesque’$26] in Table I. when p* goes from 0.01 to 0.7. The discrepancy at low
In Fig. 1 we plotNp(N)/p for different densities and densities is not related to the approximate character of the
dipole moments. Increasing the dipole moment at constarfiresent simple theory: the same qualitative results can be
density [Fig. 1(a)] causes chains to grow dramatically and obtained using the expression for the lower bound of the
the distribution to flatten and broaden. At constanfFig. mean chain lengtN given by Jordan. This suggests that the
1(b)], the most probable chain length decreases with decreashain length distributions extracted from simulation data are
ing density, while the distribution becomes more sharplyaffected by strong finite-size effects, which are very difficult
peaked. to estimate accurately. Already at very low densities the
Stevens and Grest have calculated chain length distribunost probable chain length is of the order of the size of the
tions from their computer simulation data far=9 in the  simulation box and at higher densities chain lengths are se-

FIG. 1. Fraction of particles itnoninteracting chains of length
N. (@ p*=0.1. Solid line, \=4.0; dashed lineA=6.25. (b)
A=12.25. Solid line,p* =0.3; dashed linep* =0.2; dotted line,
p*=0.1; dot-dashed liney* =0.05; short-dashed ling,* =0.02.

— 1
C1-eY

(29
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TABLE IlI. Pressures and chemical potentials from simulationment to be due, in part, to the fact that we are dealing with

and theory foi =4.5. The simulation data are from Table I[21].  relatively small dipole moments, whereof the implications

are twofold. First, any chains will be shotalthough no

BPo Psim A(Brsim)  BPcac  A(Bvcad chain lengths are reported in Caillol's papehus rendering
015 0.3585 053 01231 0.4085  Our long-chain theory less applicable. Second, the asymptotic
013 0351 0475 01216 0.4041 ©xpression fof| V|| we usedsee Eq.(20)] will be less ac-
0.11 0.317 0.385 0.1143 0.3822 curate(see also the discussion in Sec) .V

0.09 0.2965 0.34 0.1097 0.3673 We_end this sectior_1 by_ briefly d_is_,cus_,sing the possibi_lity of
0.08 0295 0315 01094 03661 @ continuous polymerization transition in the strongly dipolar

fluid. In a system of living or equilibrium polymers, a con-

0.07 0.2765 0.255 0.1051 0.3511 tinuous phase transition occurs when the initiation equilib-

8'82 00'2235315 g'igi g'ggjg gzgg rium constant vanishd88-41. In this case the thermody-
' : ' ' ‘ namic functions exhibit singularities characterized by
0.04 0.216 0.125 0.0901 0.2897

nontrivial critical exponents that belong to a universality
class determined by some of the details of the system. The
0.0275  0.1365 0.035 0.0669 0.1551  derivation of the present theory neglects interactions and
0.025  0.1255 0.025 0.0633 0.1273  flyctuations(cf. the ground-state approximation for the par-
0.0225  0.1225 0.015 0.0623 0.1191 tition function) and thus it would be equivalent, in the event
0.02 0.0885 0.00 0.0499 0.0000  of such a transition in a dipolar fluid, to a mean-field ap-
proximation. We can, however, identify the small parameter
. (or field) in this problem asy, which is the difference be-
verely constrainedsee Sec. IV, _ _ . tween the free energy per particleS, and the chemical
The pressure of the fluid of noninteracting chains is giveryotential of the monomers. A continuous phase transition
by is thus expected to occur as—0~, at which value of the
. chemical potential the system undergoes a transition from a
BP-= 2 (N)= (30 _high—te_mperature ordinary fluid phase to a_loyvftemperature
& p 1—e’ S0’ isotropic structured fluid one characterized ibfinite mean
chain length[cf. Eq. (29)]. The condition is then-v=S,.

where we have used E5). Our pressures and chemical By recalling thatS; is minus the _free energy per particle, we

potentials are compared with Caillol's simulatiofl] in ~ conclude that the phase transition may only occur at zero

Tables Il and I1l: whereveN,>1 (more than one class of density (pressurgfor all dipolar systems.

states per state pojptthe simulation result quoted is the

arithmetic mean of the corresponding entries in Caillol's ll. INTERACTION BETWEEN CHAINS

tables. To avoid any ambiguity related to different choices of AND CHAIN DISSOCIATION

the zero of v (see also[49]), we present A(Bv)

= B(v— 1), Wherer, is the chemical potential at the lowest  In the preceding section we considered the distribution of

density in each table. The present theory predicts too weak @hain lengths for a system of noninteracting chains. As dis-

density dependence for the pressure and the chemical potegissed above, this approximation is correct at low densities.

tial. (But note the considerable uncertainty in the simulationHowever, at liquid densities excluded-volume and long-

data, especially for the pressyr&Ve believe the disagree- range effects must obviously be important and this can result

in chain dissociatiorfindeed, the chains are not observed in

TABLE IIl. Pressures and chemical potentials from simulation Simulations at densities higher than 027]). Furthermore, it

and theory forA=5.5% . ... Thesimulation data are from Table IS reasonable to expect that dissociation of chains can also be

0.03 0.1835 0.085 0.0812 0.2451

14

IV in [21]. caused by additional attractive interactions between dipolar
particles. According to the simulations by van Leeuwen and
BP, Paim A(BVsim) BPeac  A(BVead Smit [22], a sufficiently strong attraction between DSSs in-

duces a gas-liquid phase separation, which is absent if the

0.11 0.413 0.46 0.0709 0.18059 4y qitional attractive interaction is too weak. Thus it is nec-
0.09 0.3715 0.525 0.0669 0.17039 essary also to discuss the influence of attractive interactions
0.07 0.354 0.3 0.0651  0.16556  petween dipolar particles on the chain length distribution.
0.05 0.2725 0.265 0.0563  0.13726  Thjs will be done in Sec. Il B. Next we shall examine the
0.03 0.303 0.26 0.0598  0.14918  steric and dipole-dipole interactions between long chains and
0.02 0.3015 0.18 0.0596  0.14863  estimate the corresponding contributions to the free energy.
0.01 0.2545 0.22 0.0542 0.12925
0.005 0.221 0.21 0.0501 0.11182 . . .
0.003 0.218 0.1 0.0497 0.11007 A. Dipolar and excluded-volume interactions
0.001  0.1935 0.11 0.0465  0.09427 between long chains
5x10°4 0.181 0.065 0.0447 0.085 It follows from the semiquantitative arguments presented
3x10°4 0.119 0.125 0.0351 0.01939  at the beginning of Sec. Il B that interactions between chains
2x10°%  0.1067 0.00 0.0329 0.00000 are expected to be weak and therefore it is reasonable to treat

them at the level of the mean-field approximation. For sim-
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plicity we consider first the case of monodisperse chains; theontainsNo// such rigid segments. Now the first term in
chain length distribution will be introduced in Sec. Il B. The Eq. (31) can be rewritten ap45]

contribution from interchain interactions to the free energy
density is then 1,
EpcthT

2
7 sz f(a;)B(ay,ay)f(ay)da,day,, (33

1
fintzngthTf {exd — By, )] -1} .
where a; and a, are unit vectors along the two rods and

Xf(Fl)%(Fz)dfldFZ B(a;,ay) is their excluded volume

1 B(ay,8,)~2/?c]siny,, (34
+ EP(Z:hJ exf — BPse(I'1,1'2) JPga(I'1,I'2)

with y,,=cos Y(a;-a,) the angle between the two rot=nd
X (T f(T,)dT,dT,. (31  corrections have been neglectethsertion of(34) into (33)
gives
Here p¢, is the number density of chain$;; denotes the
position of a chain in phase space, i.e., the positions and
orientations of all spheres in chainf(I';) is the one-chain
orientational distribution functiofODF); ®y.(I";,I') is ‘
the short-range repulsive part of the interaction potential bewhich does not depend o, the length of the rigid seg-
tween chains, which is determined by the repulsion betweements. In the isotropic phad¢a;) =1/4x, and this reduces
hard or soft spheres; an®y4(I"1,I',) is the sum of all to
dipole-dipole interactions between spheres in different
chains.

As discussed in detail ii2,52, we now need to separate
the second term on the right-hand sidies) of Eq. (31) into
short- and long-range parts. This is because the long-rangghere &.,= (7a°%/6)Np, is the volume fraction of chains.
part of the dipole-dipole interaction yields a contribution to The total number of particles in chains per unit volume is, of
the free energy that is dependent of system size, shape, agdurse,Np.,. This is a purely repulsive contribution to the
boundary conditions if the overall polarization is nonzero. Itfree energy.
is, however, given exactly by Maxwell's equations and Now let us consider the contribution from the dipole-
equals the electrostatic energy of the average electric field iflipole interaction between chains. In a uniform system, the
the volume of the fluid. In the present case this separation ifirst term in expressiof32) reduces to
straightforward: it suffices to add to and subtract from Eq.

pAksTNZG f f(ay)|siny.df(a)dayda,,  (35)

T 5 2 3_3
chthTN o :EpchNkBchhy (36)

(31) the integral over the dipole-dipole interaction without 1, o 5
the steric cutoff. The second term on the rhs of E2f) 5PenN“Dpo, (37
becomes
1 where p=fda;uf(a) is the orientational average of the di-
Epihf {exd — B®ge(I'1,T5)]—1} pole moment vector of a rod and
X ad T, T)F(T (AT dT, Peg-3 f drlzﬂ 38
Vexc 12

1, A -
" 2p°hf Paal 1 ) (T ()Tl is the integral of the dipole-dipole interaction over the ex-
(32) cluded volume of two chains. Since, as mentioned above, the
chains are locally similar to rigid rods, this excluded volume
The second term in the foregoing expression can be trangs locally platelike. In general, it will have some ribbonlike
formed into— [E(r) - P(r)dr, the energy of the electrostatic shape. The elementary “fragment” of the excluded volume
field in the volume of a fluid of polarizatioR. This vanishes of two chains, however, is that of two rigid rods of length
when the average fiel# is zero(i.e., when the sample is /" it has length and width of ordef and thickness of order
surrounded by a conducting mediunThe first term is the o. Thus the integral in Eq(38) is approximately equal to
integral of the dipole-dipole potential within the excluded that over some flat thin layer. In this cage,is exactly the
volume of two chains; this is the same excluded volume as iepolarization factor of such a layér of a thin disk. The
the first term on the rhs of Eq31). depolarization factor of an infinitely thin disk is known to be
For large dipole moments the local intersection of twozero when the polarization is in the plane of the disk, whence
chains is the same as that of two rods since the chains af2 is also expected to be very small for sufficiently long
locally rigid. Then, as is known from the theory of nematic chains (where the dipole moments are directed along the
polymers, the excluded volume of two long chains can beigid segments D for spheroids has been calculated numeri-
expressed in terms of the excluded volume of two rods. Letally by Terentjev and Petsch¢k3] and found to be pro-
us introduce the relatively rigid chain segment of lengtHf portional to the inverse aspect raiildl, for |/d>1. In the
N is the total number of spheres in a chain, then each chainase of chains we expett to be even smaller.
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The above arguments enable us to conclude that the dipo- . - -
lar contribution to the free energy of a system of interacting U0=J drlzdaldazf_ dr o 55 (8) dan( 112 F(3)
chains is negligibly small at sufficiently low densities be- F12 (41)
cause it is proportional to two small parameters: the square
of the chain volume fractiod ;<1 and the depolarization and, as before’;,=r;,/r;,. U, can be estimated in the fol-
factor D~a//. Furthermore, it should be noted that this lowing way. Taking the attraction potential to be of the
contribution is nonvanishing only in the presence of an eXsimple van der Waals fornp,.(12)= — e,(a/r 15, one ob-
ternal electric field or of spontaneous polarization, sinceains
p=0 in the isotropic phasgcf. Eq. (37)].

The contribution from the excluded-volume interaction o 5 6006H73
between long chains is also proportional to the square of the L drigl 1p¢andr12) =~ —3 =1z - (42)
chain volume fractiorg,,. The relative significance of inter- T
chain interactions in the isotropic phase is determined by theollowing van der Meetsee[54], p. 43, we write down the
balance between the total bond energy of all chtins sec-  simplest interpolation expression fers,?,
ond term on the rhs of EqA8)] and the average interchain
interaction[given by the last term in EJA8)]. The ratio of I . I
these two terms is of ord&,(p*) " '>1 whenp* <1. Thus Erp =0 "+5(17 =0 (& 12"+ (8 11)7],
in a first approximation the excluded-volume interaction is (43
important only at liquid densitieg* ~ 1.

which is exact fora ||a, 1, and foray|a,||f,. Finally, this

B. Dissociation of chains caused by interparticle attraction yields

We now come back to the general case of a mixture of 8mego’

chains of different lengths in “chemical” equilibrium. In the Uo~— 9
Appendix we generalize the expressions obtained in the pre-

ceding section and write down the free-energy functional forvhere we have taken into account thé o3,
a polydisperse fluid of long dipole chains in an external field The free-energy density of the fluid of interacting chains
[Eq. (A8)]. This can readily be extended to include an addi-is now

tional attractiong{(12) by supplementing it with the term

(44)

1 oo f=kgT >, p(N)[Inp(N)—1]—kgT >, p(N)(N-1)S,
5 2 Np(N)N’p(N )f drydayday N=1 N=1

N,N"=1
a
_ A~ ~ - ’ ’ 3
XH(r-E1f(a) dal121(22), (39 +g 2 No(NN'p(NkaTo
where H(r,— E15) is the step functiofH(x)=1 if x<0 L1 No(NIN 0N’
and zero otherwige which determines the steric cutoff for 2N,N2’:l P(N)N'p(N")Uo, (45)

two interacting spheres belonging to different chains, and we

neglect intrachain interactions. The functiblfr,,— =,,) is  where we have neglected the dipole-dipole contribution,
zero if the two chains with spheres at fixed positions andvhich is small at low densities as discussed above. The last
orientations 1 and 2 penetrate each other, i.e., within théwo terms, the steric and attractive contributions, can be
excluded volume of two chains. If the chains are locallycombined by defining an effective interaction strength
rigid, then= 1,= E(r1,,a,,a,) is highly anisotropic: it is the U&= (7/2)kgTa®+U,, whereupon they becomip?UE" .
distance of minimum approach between spheres 1 and 2 thas we shall see below, the inclusion of repulsions has no
belong to different chains. In the most general case it dequalitative effect on the dissociation of chains; we retain
pends on the orientation of the two dipolar spheres and othem for consistency and with a view to a future treatment of
the configuration of the two chains. We note, however, thatondensation and points, where they will play a crucial
the attractive potential in Eq39) is short ranged and there- role.

fore only small interparticle separations contribute. Conse- We note that the last two terms in E@5), coming from
quently, 4, is approximately equal to the correspondingthe interchain interactions, are strongly oversimplified. The
function for two rigid rods of length (>0¢) and diameter attractive term describes correctly only the interaction be-

o and takes values betweenandl. tween very long chainéwhich correspond tdNI/o>1). By
With these simplifications, Eq39) can be rewritten in contrast, the repulsive term is the simplest contribution aris-
the form ing from the excluded volume of two hard rods, which we

took as chain subunifsee above the derivation of E®6)].
1 The absolute value of the interchain interactions is, however,
Np(N)N’p(N’)UO=§p2U0, (40)  largely irrelevant in what follows. As long as the parameter
USff is independent oN, the form of the chain length distri-
bution is unchanged from the noninteracting cp&®. One
where the constan, characterizes the strength of the at- needs, however, to refine these estimates if a description of
tractive interaction phase transitions is also required.

N| =

N,N"=1
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For shorter chains one has to take into accourd gnend 0.10 . .
effects, and other corrections that are of orde?|}® or
a/L, wherelL is the length of thgshor) chain. These cor-
rections are not expected to be very large even for dimers %%
and, in principle, one can neglect them at this stage. How-
ever, the interaction betweanonomeraeeds to be consid- 0.06 |
ered separately. For this purpose it is useful to single out the &
term withN=N'=1 in the interaction part. We thus rewrite E
the free-energy density as 0.04 |-
f~kaT 2 p(N)[Inp(N) 1] —kaT X p(N)(N-1)Sp 002 |
£2 S Np(NIN'p(NUST 2 p(1)2(US—Ugh 0.00 ' . .
2 p p 0T3P roFon 0.0 5.0 100 15.0 20.0

N,N"=1
N

(46)
. . FIG. 2. Effect of isotropic attraction on the fraction of particles
‘G’Cﬂe‘l p/(;)k TIS3 tSe Ude_nSIt); /gf r‘r;orlomhers. and in chains of lengthN, for p* =0.1 and\ =6.25. Solid line, nonin-
1 = (4m3)kgTo +U;. Uy=—(4m/3)€oo” is the inte- o acting chains: dotted linggey= 20.
grated attractive potential between two spheres and we have

tr.e.ated the rgpulgve Conmbgftflon OQﬁth.e level of thg sepondN_ As a result, all long dipole chains are dissociated due to a
virial approximation. Now|Ug"|<|Uf"| if the attraction is

sufficiently strong isotropic attraction between particles. The

zgif;;zntly strong, in which case chains are expected to d'séffect of the interaction constarﬁ(l)(USﬁ— Uiff) on the

Minimization of the free energy Eq46) again yields E chain length distribution is illustrated in Fig. 2: the fraction
(25) for the density of chains of%)éngﬂid>1gandy 9 of particles in chains of lengtN decays marginally faster at

large N, while the system is enriched with monomers. In
D =exd — Sa+ a— 1)(usf—yefy. 4 addition, for largeBey/S, the set of equationgl7) and(49)
p(L) HL=Sota=Bp(1)(Us 0] “7 can have one other physical solution corresponding to the
for the density of monomers:= S,+ v, with v the chemical ~ System being composed almost exclusively of monomers,

potential, is determined from the normalization condition  i-€., to complete dissociation of chains. This is precisely what
van Roij found[50], which is not surprising given the close

similarity of the two theories. The question of the global

p= |\1§=:1 NP(N):NZZ Np(N)+p(1), (48) stability of the phase of chains, as well as of the nature of the
transitions between chain- and monomer-dominated phases,
whence is currently under investigation and will be discussed else-
where.
So"" | 1 1 Ueff_Ueff
pe Q:W_JA_EBP( )(Ug 1), (49
(1-e) IV. DISCUSSION AND CONCLUSIONS
where we have taken into account thkaimust be negative. We have developed a theory for fluids of dipolar soft or
Equations(47) and(49) can be solved simultaneously for  hard spheres, with and without additional isotropic interac-
andp(1) andp(N) is obtained from Eq(25). tions, in the limit of low densities and large dipole moments.

We now compare Eq49) with the corresponding equa- The very strong and highly directional short-range correla-
tion (27) for noninteracting chains. In the context of the tions between particles have been taken into account by as-
present simple model, the interaction between chains manguming that they associate into chains, which are then treated
fests itself only in the second term of E@9). If the inter-  within the formalism of polymer theory. Furthermore, we
action constantg(1)Uy andp(1)U, are small, we basically have argued that interchain interactions are negligibly weak
recover Eq(27) and Eq.(49) has practically the same solu- and derived the chain length distribution for a system of
tion as in the case of non-interacting chains., « is very  noninteracting chains by assuming that the kinetics of chain
small, «®>~p~te~%). On the other hand, if the interaction growth is dominated by an equilibrium scission-
constantp(1)UE" is large (we recall thaj US™|>|UE"), the  recombination mechanism. Although in simulations rings
last term in Eq(49) can be of the same order ag™. This  have been observg@d6,27, they are relatively rare; hence in

relation can be expressed more quantitatively as the structured phase it suffices to take into account long lin-
ear chains. Our approach yields an exponential form for the
peSoNeBP(WUSﬁ—Ufﬂ)_ (500  chain length distribution E(25). For long chainga| ! is

the mean chain length, given in terms of model parameters
In this case, which corresponds to a strong van der Waalsy Eq. (28), where \=pu?/kgTo®=2E/kgT, with
attraction between particles, E49) has a solutiona of  E=2u? ¢ equal to(minug the bond energy af=0. This
order unity. This means that the chain length distributionresult is identical to the mean-field chain length distribution
function p(N)=exp(—|a|N) decays rapidly with increasing of living polymers, whereE is the scission-recombination
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energy, i.e., the energy required to break a bond. systematic computer simulation study of the condensation
As discussed in Sec. Il, the chain length distributionstransition of the Stockmayer fluid has been carried out re-
given by Egs(25) and(28) do not agree guantitatively with cently by van Leeuwen and Snji22], the global phase dia-
the computer simulation results of Weis and Levesf6. grams of the DHS and DSS fluids remain, to a large extent,
This may cast doubts on the validity of our approach tounexplored.
describe the static equilibrium properties of a system of liv- We conclude by making some remarks on the phase tran-
ing polymers, as the low-density phase of strongly dipolarsitions that are expected to occur in strongly dipolar fluids,
fluids appears to be. We note, however, that recent Montbased on computer simulation studies of living polymers and
Carlo simulations by Rouault and Milch¢87] on a(lattice) recent theories of chain formation. It was shown some years
model of living polymergof completely flexible chains, with ago that long-ranged orientational order is absertatiice)
zero nonbonding interactiondave revealed that the distri- models of living polymers if the nonbonding interaction is
bution of chain lengths is indeed exponential, in agreemenset to zerg43] or if the chains are totally flexiblg56]. A
with the mean-field prediction and with E(®5). Moreover, more recent stud{55] of a simple(lattice) model of semi-
simulations indicate that the mean chain length increaseexible living polymers with nonbonding(monomer-
with density as a power law, with an exponent that is close tanonomey interactions revealed the existence of a first-order
0.5, except for chains in the noninteracting regime where th@olymerization order-disorder transition between a low-
exponent is exactly 0.5 as given by mean-field theory and byemperature ordered state of stiff parallel rods and a high-
Eq. (28). Finally, another prediction of mean-field theory, temperature disordered state due to disorientation of the
also confirmed by simulation, is that the Lifshitz point chains. This research also confirms the expected exponential
(which separates the high-temperature isotropic ordinaryorm of the equilibrium chain length distribution, although
fluid from the low-temperature isotropic structured fluit-  the density and temperature dependence of the mean chain
curs ate/4. length deviate from their expected behavior. The situation
Despite the fact that Rouault and Milch¢87] did not  for dipole chains with additional attractions is much less
compare the absolute values of their mean chain lengths witblear, but it is likely that a fluid phase with long-range ori-
theoretical predictions, the agreement between mean-fielentational order is preempted by the solid.
theory and simulation appears to be much better than the A better understood phase diagram obtains when the
comparison of our results for the dipole chains with simula-liquid-vapor critical point occurs in the neighborhood of the
tion, discussed in Sec. Il, seems to suggest. We believe thatfshitz point. In that regime, isotropic interactions may in-
the main reason for this discrepancy is that in Rouault andhibit the formation of chains, and consequently clustering of
Milchev's simulations care was taken to ensure equilibriumthe particles is driven by the usual energy-entropy mecha-
conditions at all temperatures. This was implemented by renism. This mechanism is ultimately responsible for the con-
stricting the lowest temperature studied for a given systentlensation of the gas at a critical density and temperature. The
size, in order to guarantee the presence of monomers in ttmpetition between chain formation and clustering was ad-
simulation box. Although for the smallest system sizes thisdressed recently by van R§B0] within a free-energy ansatz
condition severely restricts the range of temperatures that cahat combines the original van der Waals theory of liquid
be studied, it does allow equilibrium to be reached amongondensation and the association theory of ideal particles.
chains of all sizes. The same, however, cannot be said of thEhe resulting phase diagrams indicate that liquid-vapor con-
published simulations of dipole chaif24,2€, which may densation becomes metastable if the tendency to form
be affected by strong finite-size effects, and therefore no firmveakly interacting chains is sufficiently strof§7]. In his
conclusions on the validity of the living polymer approach totreatment van Roij assumes the chains to be noninteracting
describe the behavior of the low-density strongly dipolaron the basis of plausible intuitive arguments, but without a
fluid may be drawn at present. supporting quantitative estimate. Moreover, his estimation of
In our treatment of the dipolar fluid we have also includedthe semiphenomenological parameters in his theory on the
the effects of the excluded volume of the semiflexible chaindasis of separating the dipole-dipole interaction into an av-
and of additional isotropic interactions between DHSs. Ourerage isotropic attraction and a remaining anisotropic contri-
study of the model with attractive interactions was restrictecbution is, in our view, not correct. Indeed, the unweighted
to the effects of these interactions on chain dissociation. Waverage of the dipole-dipole interaction over the orientations
have not discussed the liquid-vapor condensation that is ol®sf the intermolecular vector is zero and therefore, in the low-
served in these systems when the relative strength of theemperaturdisotropig phase of chains, the net isotropic at-
isotropic attractior{with respect to the dipole-dipole interac- traction of the dipolar fluid vanishes. Only at higher tempera-
tion) exceeds a critical threshold or the order-disordertures can the dipoles rotate freely and the Boltzmann-
polymerization transition that was investigat@xktensively  averaged isotropic interaction then becomes nonzero, while
in a recent computer simulation of a differdtattice) model  the bonding(directiona) energy vanishes. Although in van
of semiflexible(living) polymers with nonbonding attractive Roij's work both condensation and chaining are treated in
interactions[55]. These interactions cause the system togualitative terms, the ansatz does capture the two competing
phase separate into dense and rarefied phases. The nature arethanisms. A connection with the underlying model inter-
location of the transitions depend on the relative strengths adictions is nevertheless missing.
the energies that characterize the chain: the bonding energy, An approach that is very close to ours, but does not ex-
the chain bending rigidity, and the nonbonding interactionplicitly address the issue of phase transitions, is that of Sear
between monomers. In the dipole chain, however, the bond58]. This author has proposed an explanation for the failure
ing and bending energies are not independent. Although to find liquid-vapor condensation in simulations of D]
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and DHS[26] fluids. His argument is based on the observa-two chains in the field are very weak and can be neglected.
tion that chains form in low-density dipolar fluids, which Then(apart from excluded-volume effegtsve are left with
then by assumption interact only weakly. In this theory, thea model of noninteracting semiflexible polymers, which do
configurational energy and the mean chain length of a lownot phase separate in the absence of a fi&dl So the usual
density DHS fluid are calculated from the equation of stateexcluded-volume argument that drives the orientational
obtained from the activity expansion of the pressure. Seagphase transition in nematic polymers does not seem to be
neglected all interactions between monomers beyond nearespplicable to the system of dipole chains: at these very low
neighbors and assumed that the pressure of a fluid of nonipacking fractions, semiflexible rods would only order nem-
teracting chains is given by the infinite sum of linear chainatically (i.e., separate into paranematic and nematic phases
graphs containing bonds(wheref is the Mayer function  if they were straight on the length scale of the simulation box
between successive spheres. His derivation is very simplgize (see[46] and references cited therginvhich is not the
and elegant because the chain integrals factorize, yielding @ase. Note that mixtures of long and shadid rods may
closed-form expression, but whether this is a realistic apseparate into two nematic phages9] due to competition
proximation for the pressure of a fluid of chains is, in ourbetween orientational entropy and entropy of mixing. It is
view, an open theoretical question. It actually amounts tdempting to suggest a connection between the transition in
replacing a chain by a collection of pairs of monomers, sincdhe field and nematic demixing, but as argued above we can-
all steric effects involving more than two nearest neighborsiot identify the mechanism that drives the phase transition in
are lost. For the present model and large dipole momentshe field, at least for a system with no additional isotropic
Sear’s predictions are very similar to ours, but we do not seattractions, and thus for the moment we feel that this transi-
why this should be the case in general. In particular, he doeon remains to be understood.

recover mean-field results such as tp& X*? dependence of
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By contrast, the main advantage of our treatment is that ijateria Condensada, where part of this work was performed.
can be easily generalized; in this paper we have discussqflieractions with Jean-Jacques Weis have been greatly ap-

two such generalizations. The most straightforward describeﬁreciated. We thank Rénean Roij and Richard Sear for
an orientationally ordered fluid and is elaborated in the Ap'communicating their results prior to publication and, to-

pendix. This allows a more detailed treatment of the fe”o'gether with Bela Mulder and Daan Frenkel, for a critical

electric phase transition by taking chains into account, 8%eading of the manuscript.

will be presented elsewhere. The second generalization is the

inclusion of interactions between chains: excluded-volume

and attractive interactions were considered in Sec. I, which

allowed us to delimit the noninteracting chain regime. We

have been able to describe chain dissociation, and in future In Sec. Il we derived the free energy of a single long

work we hope to address the condensation and polymerizatipole chain and in Sec. Ill that of the isotropic phase of a

tion transitions in a more realisti@nd self-consistepiman-  fluid of interacting long dipole chains. In this appendix we

ner. generalize our theory to allow for orientational order of the
Finally, Stevens and Grest have performed Gibbs enehains. This order can either be induced by an external field

semble simulations of the DSS fluid in a field and found aor appear self-consistently if the system undergoes a transi-

coexistence between two very low-density phases of longion to the ferroelectric state.

polarized chains aligned along the fi¢RB]. As discussed in The fluid of partially ordered chains is characterized by

previous paragraphs, at such low densities as considered jRe one-particle ODF(a,r) of a sphere in a chain. It can be

this work (p* ~102), no ordinary liquid-vapor separation is ritten as

seen in zero field: instead, DSSs associate into chains that are

entangled and thus exhibit no global orientational order. A Z(a,rZy_rr1(ar)

When a field is applied the chains become more or less flar)= £ - (A1)

straight; in an infinite system at zero temperature, or in an ¢

infinite field, they would be infinitely long. Since the dipolar The same principle of ground-state dominance then leads to

interaction between two parallel, infinitely long, dipolar R

chains is zero, no phase separation would ensue. Now the f(a,r)~¢§(a,r), (A2)

longest chains seen in the simulations actually span the sys-

tem and thus are “infinite” by virtue of the periodic bound- Where yry(a,r)= 2" (a) Z(Y)(r) is the ground-state eigen-

ary conditions usedthere are also a number of shorter function of the operatoV2+ o2V ? (we assume all spheres in

chaing. This suggests that the dipolar interactions betweera chain to be equivalent

APPENDIX: DENSITY-FUNCTIONAL THEORY
OF A FLUID OF DIPOLE CHAINS
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Consider now a dipole chain in an aligning external po-ever, depend on the nature of the external fiéld If this is
tential U¢(a,r). We require the free energy of the chain in not an electric field and the average electric fiEld 0, the
the field as a functional of the ODF. This was first derived byfree-energy functional reads
Lifshitz [60], and the resulting functional is called Lifshitz
entropy[61]. From Eqgs.(13) and(14) we get

1 -
v LPen.f@an]==(N=1)pksTS

. VZ 2v2 ,
)\11: ff( ,r)( a+0— r)'r/fl(ar)

dadr. (A3 -
y1(a,r) (A3) +Npchf dadrUJ(ar)f(ar)
If the ground state gives the predominant contribution, 3 NkaT
f(ar) is related toy(a,r) via Eq.(53), whence the entropy pc“ B jd dr
of a chain is
z 2 x [Vaf(a,r)]z+02[Vr?(a,r)]2
Su=— NQkBJ d w f(ar) f(ar)
f(ar)
NQkBO'2 [Vr%(a,r)]z +p§thTN20-3f f(a1)|sin712|
——f [— . (A4)
4 f(ar)

A(az)daldaz (AB)

We finally obtain, for the free-energy functional of one long \yhere the first term is the sum ¢hverage bond energies,

dipole chain in an external field, the second is the energy associated with the external field,
the third is the orientational entropy from E@4), and the
last one the excluded-volume contribution from E8H). It
follows from Sec. Il A that the dipolar contribution is neg-
ligibly small. When the system is in the external electric field
N NQkBTJ da.d E., one has to include also the electrostatic enerdy- P.

4 adr The external field term in Eq/A6) should then be replaced
by

% Ch[;‘(a,r)]z—(N—l)kBTS)JrNjdadrUe(a,r)?(a,r)

><[[V f(an? g2 LIV, f(ar)]?
f(a,r) f(ar)

where, as before, the first term is the intrachain en¢afly R
discussion following Eq(24)]. whereP(r)=Np..f uf(a,r)da andE is the average electric
Combining these results with those of Sec. Ill A, we ar-field in the medium. For a spherical samples (47/3)E,.
rive at the expression for the free-energy density of a fluid of We now allow for chains of different lengths. LefN) be
long, interacting dipole chains at low density. It will, how- the density of chains of length (cf. Sec. Il B; we then have

], (A5)
—f E(r)-P(r)dr, (A7)

Ff(ar),p(N )
Fian. /) (a\r,) P TS p(N)Inp(N) — 11 ke T S, p(N)(N-1)Sp+ S, Np(N)fdadrUe(a,r)f(a,r)
N=1 N=1 N=1

| [V.i(a, r>]2+02[vr?<a,r>]2]
ar) f(a,r)

+hoTo? 3 Np(NIN'p(N') [ T(aplsinsd ey day da (A8)
N,N'=1

Likewise, if the system is in an external electric field, the A~ 1<p* <1. Note that it is a functional of two distribution
term containingJ, should be replaced by functionsf(a,r) andp(N), both of which are determined by
R minimization. In the absence of any external fiéld, the
- E Np(N)f pn-E(r)f(a,r)dadr. (A9) system is isotropic and characterized by the chain length dis-
Nt tribution p(N) alone; the latter is subject to the constraint

Equation(A8) is the free-energy functional of a fluid of Ed.(22) that the total number of particles per unit volume, in
long chains at low density, corresponding x>1 and chains of all lengths, must equal the particle number density.
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