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We propose a simple statistical mechanical theory for a strongly dipolar fluid at low densities, based on the
analogy between a polymer chain and a chain formed by strongly polar particles. The general methods
developed in the theory of semiflexible polymers enable one to obtain simple expressions for the energy and
conformational entropy of a long dipole chain. We then consider the equilibrium between chains of different
lengths and derive a general expression for the free energy as a functional of the chain length distribution. Both
steric and dipolar interactions between long chains are shown to be weak and as a result the rarefied fluid of
strongly dipolar spheres resembles the ideal gas of noninteracting polydisperse chains. It is shown that the
chain length distributions found in simulations are compatible with the assumption of very weak interchain
interactions if strong finite-size effects are taken into account. We also investigate whether sufficiently strong
attractive van der Waals forces between particles can cause dissociation of the chains. Finally, we discuss the
case of a dipolar fluid in an applied field and argue that the coexistence between two aligned phases of chains,
as observed by computer simulation, is unlikely to occur in an infinite system.@S1063-651X~96!10109-4#

PACS number~s!: 61.20.Gy, 75.50.Mm, 64.70.2p

I. INTRODUCTION

Dipolar fluids are a widely studied model in statistical
mechanics@1#. Not only are dipolar interactions omnipresent
in nature, they also occur, and play a prominent role, in
many artificial systems, such as ferrofluids and electrorheo-
logical fluids. Ferrofluids are stable colloidal dispersions of
ferromagnetic particles coated with surfactants and dispersed
in a host liquid, such as water or paraffin@2#; these are in-
teresting by virtue of their high magnetic susceptibility. Elec-
trorheological fluids, on the other hand, are colloidal disper-
sions of highly polarizable particles in solvents with low
dielectric constant, whose rheological and mechanical prop-
erties change dramatically when an electric field is applied
@3#.

Quite apart from their potential applicability, dipolar flu-
ids also raise a number of intriguing fundamental questions,
relating to ~i! the intrinsically long-rangecharacter of the
dipole-dipole interaction, which leads to a dependence of
some physical properties on the shape of the system@4–9#,
and~ii ! its anisotropyand especially the strong coupling be-
tween the orientations of a pair of interacting dipoles and
that of the interdipole vector~two parallel dipoles will repel
each other if placed side by side, but attract each other if in

a head-to-tail configuration!. In particular, the role of dipolar
forces in the stabilization of different fluid phases is only
poorly understood. Indeed, contrary to the predictions of a
number of theories@10–19# and to early simulations@20#,
more recent numerical work on the dipolar hard-sphere
~DHS! @21#, dipolar soft-sphere~DSS! @22–24#, and Stock-
mayer @22,25# fluids suggests that a minimum amount of
isotropic attractive energy may be necessary to stabilize the
liquid-vapor coexistence in a zero applied field. Moreover,
simulations further indicate that, at low densities, dipoles
tend to associate into chains akin to living polymers
@22,24,26,27#.

The limited success achieved in the theoretical description
of strongly dipolar fluids can be traced back to the nature of
the approximations employed, namely, angular averages of
the dipole-dipole potential@10,15#, or various types of per-
turbation expansion in the dipole moment~with @12# or with-
out @6,7,12,14,17,19,28,29# Padéresummation!. Whereas the
former average out all orientational correlations, the latter
are restricted to small values of the dipole moment. Both
strategies neglect the very strong short-range correlations fa-
voring head-to-tail alignment of dipoles, which are effective
even at very low density and lead to the formation of chains.
As discussed by Wertheim in@30#, highly directional forces
tend, if attractive, to promote association into aggregates
whose shape depends on the geometry of the repulsion and
the directional attraction. Higher-order terms in the usual ex-
pansion in the one-particle densityr then contain an increas-
ing number of ‘‘strong bonds,’’ which correspond to strong
interactions between neighboring molecules. As a result, the
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free energy of such a system can only be calculated after
infinite resummations of these terms, a mathematically very
complicated procedure. Consider as a simple example a fluid
of hard spheres with one dimerizing site, in an attractive
mean field. For sufficiently strong site-site interactions, the
fraction of monomers will be very low even in the vapor
phase@31# and the thermodynamics will be dominated by
dimers. Strongly dipolar fluids present the additional compli-
cation that the dipole-dipole interaction is long ranged and
thus does not saturate when chains are formed. In this case it
is therefore essential to separate short-range effects, leading
to chaining, from long-range ones responsible for interchain
interactions.

We can estimate the range of validity of the usual low-
density expansions in the following simple way. Consider a
fluid of spherical molecules of diameters and dipole mo-
ment m. The second term in the Mayer expansion of the
equation of state is

b25rB252
1

2V
rE d1

4p

d2

4p
$exp@2bf~12!#21%, ~1!

whereB2 is the second virial coefficient,V is the volume of
the system, 1 and 2 denote the complete set of position and
orientation coordinates of particles 1 and 2,r is the density,
b5(kBT)

21, andf(12) is the sum of the dipole-dipole in-
teraction

fdd~12!52
m2

r 12
3 @3~m̂1• r̂12!~m̂2• r̂12!2m̂1•m̂2#, r 12.s

~2!

and some short-range repulsive potential. In Eq.~2!, m̂1 and
m̂2 are unit vectors along the dipole moments of particles 1
and 2, respectively, andr̂125r12/r 12 is a unit vector along
the intermolecular axis. For strongly DHSs, the integral can
be evaluated asymptotically to give@10#

b2'2
pr*

18l3e
2l, ~3!

wherer*5rs3 is the reduced density andl5m2/kBTs3 is
the reduced dipole moment, respectively@32#. While in the
case of hard or soft spheres the Mayer-expansion parameter
is the packing fraction j'(1/2)r* , for DHSs it is
pr* exp(2l)/18l3: the dipolar interaction contributes an ad-
ditional factor of orderD5p exp(2l)/18l3, which can be
very large ifl@1. The density at which the Mayer expan-
sion breaks down due to chaining can now be estimated from
r*D;1; for l59, this yields as low a density as
r*;1024.

The first theory of dipolar fluids to include chains was that
of Jordan@33,34#, who, following Dolezalek@35#, described
clustering as an equilibrium chemical reaction. Jordan stud-
ied in detail the properties and length distribution of nonin-
teracting dipole chains, the main advantage of his theory
being that it is not restricted to small dipole moments. On the
other hand, the equations for theN-mer densities are very
complex in the limit of largeN. Here the onset of chain
formation is given by

4pr*

81a* l3e
2lz~3!;1, ~4!

wherea*;1 and z(x) is the Riemann zeta function@36#.
Using this criterion, Stevens and Grest@24# found
r*;1024 for l56.25, in qualitative agreement with their
computer simulation results. Note that, at such low densities,
the only aggregates present are~a small number of! dimers;
long chains only appear whenr*D@1.

As already noted by Jordan, there is not, in general, a
phase transition between a simple fluid and a phase of
chains: rather, the length of the chains grows continuously,
as seen in recent simulations of living polymers@37#. At a
given density~chemical potential!, the onset of chain forma-
tion is signaled by a maximum in the specific heat at the
polymerization temperature, but the thermodynamic func-
tions are analytic over the whole range of temperatures. In
line with current usage, we call the temperature that sepa-
rates the high-temperature ordinary fluid from the low-
temperature isotropicstructuredfluid, a Lifshitz temperature.
A phase transition from a high-temperature disordered phase
into a low-temperature structured phase ofinfinitely long
chains@38–41# may also occur in these systems at aparticu-
lar value of the chemical potential. Although a detailed de-
scription of the polymerization transition is beyond the scope
of this paper, in Sec. II we shall discuss the conditions under
which it might obtain.

We are now faced with the paradox of a low-density re-
gime where the usual low-density approximations are inap-
plicable. However, this is only a paradox if we insist on
describing the system in terms of the one-particle density
r: for sufficiently strong dipoles, the chains are fairly stable
and can be treated as ‘‘molecules’’ themselves. All strong
short-range correlations are thus absorbed into the intrachain
structure. The formation of stable chains preempts an
isotropic-to-ferroelectric transition at low density; this will
be discussed in detail elsewhere@42#. In addition, as argued
in Sec. II B below, the chains are essentially noninteracting
and consequently do not order ferroelectrically themselves.
This is consistent with the absence of orientational order
found in simulations of semiflexible, noninteracting~except
for the excluded volume! lattice polymers@43#.

In this paper we adopt an approach that is rigorous in the
case of very long chains of strong dipoles at low densities
~i.e., if r*D@1 but r*!1). In this regime, chains are lo-
cally rigid and can be treated by the standard methods of
polymer theory, which yield simple expressions for the free
energy. Obviously our treatment will be quantitatively less
accurate if the chains are shorter, but it results in a major
simplification and enables one to derive the free-energy
functional for the phase of chains in terms of the length and
orientation distribution functions. More importantly, inter-
chain interactions can readily be included at the lowest level
of approximation in a mean-field fashion. We shall use this
functional to investigate the structure and phase behavior of
equilibrium dipole chains, including possible polymerization,
orientational~ferroelectric! transitions, and phase separation
in an applied field.

This paper is organized as follows. In Sec. II we develop
the statistical mechanical theory of the fluid of long nonin-
teracting dipole chains. We start by deriving an expression
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for the free energy of a single~orientationally disordered!
chain using the theory of semiflexible polymers; in the Ap-
pendix we generalize this to allow for possible orientational
order and for an applied field. We argue that interchain in-
teractions are weak in the low-density regime and obtain the
chain length distribution for the fluid of noninteracting
chains. This is shown to be compatible with Stevens and
Grest’s data@23# if one takes into account the fact that the
number of particles in the simulation is rather small. We
compare our predictions for the mean chain lengths with
Weis and Levesque’s simulation results and thereby illustrate
the importance of finite-size effects at large dipole moments.
In Sec. III we extend our formalism to consider the steric,
dipole-dipole, and van der Waals interactions between chains
and discuss the dissociation of long chains as a function of
the strength of the isotropic attraction between dipolar par-
ticles. Finally, in Sec. IV we tackle the general issue of phase
equilibria and orientational order in low-density strongly di-
polar fluids and contrast our theory with various other theo-
retical approaches to this problem.

II. STATISTICAL MECHANICS OF LONG
NONINTERACTING CHAINS

OF DIPOLAR SPHERES

A. Free energy of a single long chain

The statistical mechanical theory of semiflexible polymers
with orientational degrees of freedom was originally intro-
duced by Khokhlov and Semenov@44,45#. This formalism
and some of its subsequent developments have been re-
viewed by Dijkstra~see@46#, Appendix to Chap. 2!. We note
that the original theory was developed for a simple model
interaction potential between monomers that are rigidly
bound in a chain. Still the general methods employed enable
one to use any interaction potential provided the same is
strongly peaked for the relative position and orientation of
two neighboring particles that correspond to them being part
of a chain. Here we shall consider this in more detail and
present the derivation of an expression for the free energy of
a single chain in the case where the only interaction between
constituent particles~besides excluded volume! is of the di-
polar type.

In a first approximation, we neglect all interactions be-
yond nearest neighbors@10# and write the partition function
of anN-particle chain (N@1) as

Zch5E
$urk2rk11u>s%

d1 d2•••dN exp@2bfdd~1,2!

2bfdd~2,3!2•••2bfdd~N21,N!#, ~5!

where 1, . . . ,N denote the complete set of position and ori-
entation coordinates of particles 1 toN andfdd(k,k11) is
the dipolar interaction between two consecutive particles.
Zch can also be written in the form

Zch5E dakE
$urk2rk11u>s%

dr kZk~ak ,r k!ZN2k11~ak ,r k!,

~6!

whereZk(ak ,r k) is the partition function of the firstk seg-
ments, such thatak and r k are, respectively, the orientation
and position of thekth segment (uaku51). In the spirit of the
statistical theory of long polymer chains, we write the recur-
sion relation for the partition functionZk(ak ,r k),

Zk~a,r !5ĈZk21~a,r !, ~7!

whereĈ is the integral operator

ĈZ~a,r !5E da8E
ur2r8u>s

dr 8

3exp@2bfdd~r2r 8;a,a8!#Z~a8,r 8!. ~8!

It is convenient to normalise the operatorĈ and introduce
new functionsZk5uuĈuuk21Z̃k . Equation~7! becomes

Z̃k5Ĉ0Z̃k21 , ~9!

whereĈ05Ĉ/uuĈuu and the norm ofĈ is defined as

uuĈuu5
1

VE daE drĈ~a,r !

5
1

VE dada8E
ur2r8u>s

drdr 8exp@2bfdd~r2r 8;a,a8!#

5E dada8E
ur2r8u>s

d~r2r 8!

3exp@2bfdd~r2r 8;a,a8!#. ~10!

If the reduced dipole momentl@1, the kernel
exp@2bfdd(12)# is strongly peaked and we can transform
the integral equation~9! into a differential equation by per-
forming a gradient expansion ofZ̃k :

Z̃k~a8,r 8!5Z̃k~a,r !1~a82a!•“aZ̃k~a,r !

1~r 82r !•“ rZ̃k~a,r !

1
1

2
@~a82a!•“a#

2Z̃k~a,r !

1
1

2
@~r 82r !•“ r#

2Z̃k~a,r !

1@~a82a!•“a#@~r 82r !•“ r#Z̃k~a,r !1•••,

~11!

where“a is the gradient on the surface of the unit sphere of
orientationsa. Insertion of Eq.~11! into Eq. ~9! and integra-
tion by parts yield

Z̃k2Z̃k215V¹a
2Z̃k211s2V¹ r

2Z̃k211•••, ~12!

where ¹a
2 is the angular part of the Laplacian and

V5(2l)21. Taking the segment indexk to be a continuous
variable, we make the approximationZ̃k2Z̃k21']Z̃k /]k
and obtain a partial differential equation forZ̃k :
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]Z̃k
]k

5V~¹a
21s2¹ r

2!Z̃k . ~13!

When the azimuthal variation is irrelevant, the solution of
Eq. ~13! is

Z̃k~a,r !5(
l ,m
Z̃ ~ l !~a!Z̃ ~m!~r !el lmk, ~14!

whereZ̃( l )(a) andZ̃(m)(r ) satisfy the eigenvalue equations

l l
aZ̃ ~ l !~a!5V¹a

2Z̃ ~ l !~a!, ~15!

lm
r Z̃ ~m!~r !5s2V¹ r

2Z̃ ~m!~r !. ~16!

Explicitly,

Z̃ ~ l !~a!5A2l11

4p
Pl~cosu!, ~17!

Z̃ ~m!~r !5A2

V
cosS zs mD . ~18!

The ground-state eigenvalue isl115l1
a1l1

r 523V
523/2l. At large chain lengthsN only the ground state of
Ĉ0 contributes significantly and we can retain only the first
term in Eq.~14! ~higher-order terms give finite-chain correc-
tions, which are exponentially smaller!. Substituting

Zk~a,r !'uuĈuuk21Z̃ ~1!~a!Z̃ ~1!~r !e2l11k ~19!

and the equivalent expression forZN2k11(a,r ) into Eq. ~6!
and recalling that the eigenfunctions ofĈ0 are normalized,
we obtain, for the free energy of the long dipole chain,

Fch52kBT lnZch'2~N21!kBTS lnuuĈuu1
N

N21
l11D

'2~N21!kBTF lnS ps3

18l3e
2lD2

3

2l G , ~20!

where we have used the asymptotic expression ofuuĈuu for
largel, which coincides with the asymptotic expression for
the second virial coefficient of the DHS fluid@10#. We see
that the second term in square brackets in Eq.~20!, the con-
formational entropy of the long chain, is a small correction at
largel, in which case the free energy is simply the sum of
average bond energiesS05 ln@ps3exp(2l)/18l3# at finite
temperature.

B. Distribution of chain lengths

At low densities, interchain interactions are expected to
be weak and can be neglected. Here we shall summarize a
few semiquantitative results in support of this statement and
refer the reader to Sec. III for details of the theory.

~i! The interaction energy between two dipoles belonging
to different chains at average separation is of the order of
rm2. Takingl59, rm2/kBT5r* l!1 if r*!l21;1021.

~ii ! Because of symmetry, the dipole-dipole interaction
between different chains averages to zero in the isotropic

phase@47#. Thus only higher-order correlations contribute to
the free energy, which in a first approximation are propor-
tional to (r* l)2!1 and therefore very weak.

~iii ! The interaction between two parallel, infinitely long
chains of dipoles vanishes identically.

~iv! At very low densities, excluded volume effects are
negligible and the dominant contribution to the free energy is
that of the single chain~see Sec. III for details!.

In what follows we shall derive the distribution of chain
lengths in a fluid of noninteracting chains. For sufficiently
large dipole moments as have been used in the simulations,
the chains that form at low densities are fairly stable; the
free-energy density can then be written as@cf. Eq. ~A8!#

b f5b
F

V
5 (

N51
r~N!@ lnr~N!21#2 (

N51
r~N!lnZN ,

~21!

wherer(N) is the density of chains of lengthN andZN is
the partition function of theN-sphere chain. Here we have
adhered to the convention of Cates and Candau~see@48#, Eq.
2.1!. The distribution functionr(N) can be found by mini-
mizing the free energy Eq.~21! subject to the constraint

(
N51

Nr~N!5r, ~22!

where we recall thatr is the density ofmolecules~spheres!.
Nr(N) is the density of molecules in chains of lengthN,
whence the mean chain length is

N̄5

(
N51

Nr~N!

(
N51

r~N!

5
r

bP
, ~23!

P being the pressure. Forl@1 we approximate the free
energy of a chain by

lnZN'~N21!lnS ps3

18l3e
2lD5~N21!S0 . ~24!

Note that Eq.~24! gives the right limit whenN→1: indeed,
one expectsZ151 for a single sphere~i.e., a monomer! in a
zero external field. It is also correct at zero temperature,
where lnZN is just the sum ofN21 bond energies. Minimi-
zation then yields

r~N!5eN~S01n!e2S0, ~25!

wheren is a Lagrange multiplier~it is essentially the chemi-
cal potential for monomers divided bykBT @49#!. From Eq.
~25! we readily recover van Roij’s result@see@50#, Eqs.~3!
and ~4!#

r~N!

@r~1!#N
5
ZN
Z1N

5e~N21!S0, ~26!

leading to the identification exp@(N21)S0#5V1N/VN , where
VN is the thermal volume of anN-mer @51#. Note that this
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differs from Jordan’s result, who has, however, used a
slightly different definition of the partition function.

Insertingr(N) from Eq. ~25! into the constraint Eq.~22!,
we obtain

r5
r~1!

@12eS0r~1!#2
5

en

~12eS01n!2
, ~27!

whence we must havea5S01n,0. This is an implicit
equation for the density of monomers, of the same form as
van Roij’s @50#, which also yields the chemical potentialn.
For largeuau, we have

a'2~reS0!21/2'2S 18l3

pr*
D 1/2e2l. ~28!

Nr(N)/r, the fraction of particles in chains of lengthN, has
a maximum forN5uau21. This result is very close to that of
Jordan, who obtained upper and lower bounds for the mean
chain lengthN̄ (N̄'N0, the most probable chain length,
when the distribution is strongly peaked!. These are of order
uau21 in the limit of largel ~see@34#, Appendix!. Note that
N0'uau21 is very large already at very low densities: if we
takel59, N0;130(r* )1/2 andN0'13 for r*50.01. More
accurate estimates for chain lengths can be obtained by solv-
ing Eq. ~27! numerically forn and then insertingr(N) from
Eq. ~25! into Eq. ~23!. This gives

N̄5
1

12ea . ~29!

The resulting mean chain lengths are compared with Weis
and Levesque’s@26# in Table I.

In Fig. 1 we plotNr(N)/r for different densities and
dipole moments. Increasing the dipole moment at constant
density @Fig. 1~a!# causes chains to grow dramatically and
the distribution to flatten and broaden. At constantl @Fig.
1~b!#, the most probable chain length decreases with decreas-
ing density, while the distribution becomes more sharply
peaked.

Stevens and Grest have calculated chain length distribu-
tions from their computer simulation data forl59 in the

broad range of densities 0.001<r*<0.7 @24#. The shape of
their distributions is similar toNexp(2uauN), but the most
probable chain length is very small~5–10 spheres!. This is in
contradiction with the theoretical result that the most prob-
able chain length should be greater than or equal to 13 al-
ready atr*50.01 and grow as (r* )1/2. In the absence of
interactions, we would thus expect an eightfold increase
when r* goes from 0.01 to 0.7. The discrepancy at low
densities is not related to the approximate character of the
present simple theory: the same qualitative results can be
obtained using the expression for the lower bound of the
mean chain lengthN̄ given by Jordan. This suggests that the
chain length distributions extracted from simulation data are
affected by strong finite-size effects, which are very difficult
to estimate accurately. Already at very low densities the
most probable chain length is of the order of the size of the
simulation box and at higher densities chain lengths are se-

TABLE I. Mean chain lengths from Weis and Levesque’s simu-
lation (N̄sim) @26# and from the present theory (N̄calc).

r* l N̄sim N̄calc

0.3 4.0 2.7 2.1
0.3 6.25 5.2 8.1
0.3 9.0 16.5 69.2
0.3 12.25 27.0 1115.8
0.2 12.25 24.6 911.2
0.1 4.0 2.6 1.5
0.1 6.25 6.7 4.9
0.1 9.0 24.5 40.1
0.1 12.25 24.2 644.4
0.05 12.25 30.4 455.8
0.02 4.0 2.3 1.1
0.02 12.25 8.4 288.5

FIG. 1. Fraction of particles in~noninteracting! chains of length
N. ~a! r*50.1. Solid line, l54.0; dashed line,l56.25. ~b!
l512.25. Solid line,r*50.3; dashed line,r*50.2; dotted line,
r*50.1; dot-dashed line,r*50.05; short-dashed line,r*50.02.
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verely constrained~see Sec. IV!.
The pressure of the fluid of noninteracting chains is given

by

bP5 (
N51

`

r~N!5
en

12en1S0
, ~30!

where we have used Eq.~25!. Our pressures and chemical
potentials are compared with Caillol’s simulations@21# in
Tables II and III: whereverNf.1 ~more than one class of
states per state point!, the simulation result quoted is the
arithmetic mean of the corresponding entries in Caillol’s
tables. To avoid any ambiguity related to different choices of
the zero of n ~see also @49#!, we present D(bn)
5b(n2n0), wheren0 is the chemical potential at the lowest
density in each table. The present theory predicts too weak a
density dependence for the pressure and the chemical poten-
tial. ~But note the considerable uncertainty in the simulation
data, especially for the pressure.! We believe the disagree-

ment to be due, in part, to the fact that we are dealing with
relatively small dipole moments, whereof the implications
are twofold. First, any chains will be short~although no
chain lengths are reported in Caillol’s paper!, thus rendering
our long-chain theory less applicable. Second, the asymptotic
expression foruuĈuu we used@see Eq.~20!# will be less ac-
curate~see also the discussion in Sec. IV!.

We end this section by briefly discussing the possibility of
a continuous polymerization transition in the strongly dipolar
fluid. In a system of living or equilibrium polymers, a con-
tinuous phase transition occurs when the initiation equilib-
rium constant vanishes@38–41#. In this case the thermody-
namic functions exhibit singularities characterized by
nontrivial critical exponents that belong to a universality
class determined by some of the details of the system. The
derivation of the present theory neglects interactions and
fluctuations~cf. the ground-state approximation for the par-
tition function! and thus it would be equivalent, in the event
of such a transition in a dipolar fluid, to a mean-field ap-
proximation. We can, however, identify the small parameter
~or field! in this problem asa, which is the difference be-
tween the free energy per particle2S0 and the chemical
potential of the monomersn. A continuous phase transition
is thus expected to occur asa→02, at which value of the
chemical potential the system undergoes a transition from a
high-temperature ordinary fluid phase to a low-temperature
isotropic structured fluid one characterized byinfinite mean
chain length@cf. Eq. ~29!#. The condition is then2n5S0.
By recalling thatS0 is minus the free energy per particle, we
conclude that the phase transition may only occur at zero
density~pressure! for all dipolar systems.

III. INTERACTION BETWEEN CHAINS
AND CHAIN DISSOCIATION

In the preceding section we considered the distribution of
chain lengths for a system of noninteracting chains. As dis-
cussed above, this approximation is correct at low densities.
However, at liquid densities excluded-volume and long-
range effects must obviously be important and this can result
in chain dissociation~indeed, the chains are not observed in
simulations at densities higher than 0.2@27#!. Furthermore, it
is reasonable to expect that dissociation of chains can also be
caused by additional attractive interactions between dipolar
particles. According to the simulations by van Leeuwen and
Smit @22#, a sufficiently strong attraction between DSSs in-
duces a gas-liquid phase separation, which is absent if the
additional attractive interaction is too weak. Thus it is nec-
essary also to discuss the influence of attractive interactions
between dipolar particles on the chain length distribution.
This will be done in Sec. III B. Next we shall examine the
steric and dipole-dipole interactions between long chains and
estimate the corresponding contributions to the free energy.

A. Dipolar and excluded-volume interactions
between long chains

It follows from the semiquantitative arguments presented
at the beginning of Sec. II B that interactions between chains
are expected to be weak and therefore it is reasonable to treat
them at the level of the mean-field approximation. For sim-

TABLE II. Pressures and chemical potentials from simulation
and theory forl54.5. The simulation data are from Table I in@21#.

bP0 rsim* D(bnsim) bPcalc D(bncalc)

0.15 0.3585 0.53 0.1231 0.4085
0.13 0.351 0.475 0.1216 0.4041
0.11 0.317 0.385 0.1143 0.3822
0.09 0.2965 0.34 0.1097 0.3673
0.08 0.295 0.315 0.1094 0.3661
0.07 0.2765 0.255 0.1051 0.3511
0.06 0.251 0.205 0.0990 0.3279
0.05 0.2335 0.175 0.0946 0.3099
0.04 0.216 0.125 0.0901 0.2897
0.03 0.1835 0.085 0.0812 0.2451
0.0275 0.1365 0.035 0.0669 0.1551
0.025 0.1255 0.025 0.0633 0.1273
0.0225 0.1225 0.015 0.0623 0.1191
0.02 0.0885 0.00 0.0499 0.0000

TABLE III. Pressures and chemical potentials from simulation
and theory forl55.555 . . . . Thesimulation data are from Table
IV in @21#.

bP0 rsim* D(bnsim) bPcalc D(bncalc)

0.11 0.413 0.46 0.0709 0.18059
0.09 0.3715 0.525 0.0669 0.17039
0.07 0.354 0.3 0.0651 0.16556
0.05 0.2725 0.265 0.0563 0.13726
0.03 0.303 0.26 0.0598 0.14918
0.02 0.3015 0.18 0.0596 0.14863
0.01 0.2545 0.22 0.0542 0.12925
0.005 0.221 0.21 0.0501 0.11182
0.003 0.218 0.1 0.0497 0.11007
0.001 0.1935 0.11 0.0465 0.09427

531024 0.181 0.065 0.0447 0.085
331024 0.119 0.125 0.0351 0.01939
231024 0.1067 0.00 0.0329 0.00000
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plicity we consider first the case of monodisperse chains; the
chain length distribution will be introduced in Sec. III B. The
contribution from interchain interactions to the free energy
density is then

f int5
1

2
rch
2 kBTE $exp@2bFster~G1 ,G2!#21%

3 f̂ ~G1! f̂ ~G2!dG1dG2

1
1

2
rch
2 E exp@2bFster~G1 ,G2!#Fdd~G1 ,G2!

3 f̂ ~G1! f̂ ~G2!dG1dG2 . ~31!

Here rch is the number density of chains;G i denotes the
position of a chain in phase space, i.e., the positions and
orientations of all spheres in chaini ; f̂ (G i) is the one-chain
orientational distribution function~ODF!; Fster(G1 ,G2) is
the short-range repulsive part of the interaction potential be-
tween chains, which is determined by the repulsion between
hard or soft spheres; andFdd(G1 ,G2) is the sum of all
dipole-dipole interactions between spheres in different
chains.

As discussed in detail in@42,52#, we now need to separate
the second term on the right-hand side~rhs! of Eq. ~31! into
short- and long-range parts. This is because the long-range
part of the dipole-dipole interaction yields a contribution to
the free energy that is dependent of system size, shape, and
boundary conditions if the overall polarization is nonzero. It
is, however, given exactly by Maxwell’s equations and
equals the electrostatic energy of the average electric field in
the volume of the fluid. In the present case this separation is
straightforward: it suffices to add to and subtract from Eq.
~31! the integral over the dipole-dipole interaction without
the steric cutoff. The second term on the rhs of Eq.~31!
becomes

1

2
rch
2 E $exp@2bFster~G1 ,G2!#21%

3fdd~G1 ,G2! f̂ ~G1! f̂ ~G2!dG1dG2

1
1

2
rch
2 E Fdd~G1 ,G2! f̂ ~G1! f̂ ~G2!dG1dG2 .

~32!

The second term in the foregoing expression can be trans-
formed into2*E(r )•P(r )dr , the energy of the electrostatic
field in the volume of a fluid of polarizationP. This vanishes
when the average fieldE is zero ~i.e., when the sample is
surrounded by a conducting medium!. The first term is the
integral of the dipole-dipole potential within the excluded
volume of two chains; this is the same excluded volume as in
the first term on the rhs of Eq.~31!.

For large dipole moments the local intersection of two
chains is the same as that of two rods since the chains are
locally rigid. Then, as is known from the theory of nematic
polymers, the excluded volume of two long chains can be
expressed in terms of the excluded volume of two rods. Let
us introduce the relatively rigid chain segment of lengthl . If
N is the total number of spheres in a chain, then each chain

containsNs/l such rigid segments. Now the first term in
Eq. ~31! can be rewritten as@45#

1

2
rch
2 kBTSN

l
D 2s2E f̂ ~a1!B~a1 ,a2! f̂ ~a2!da1da2 , ~33!

where a1 and a2 are unit vectors along the two rods and
B(a1 ,a2) is their excluded volume

B~a1 ,a2!'2l 2susing12u, ~34!

with g125cos21(a1•a2) the angle between the two rods~end
corrections have been neglected!. Insertion of~34! into ~33!
gives

rch
2 kBTN

2s3E f̂ ~a1!using12u f̂ ~a2!da1da2 , ~35!

which does not depend onl , the length of the rigid seg-
ments. In the isotropic phasef̂ (ai)51/4p, and this reduces
to

p

4
rch
2 kBTN

2s35
3

2
rchNkBTjch, ~36!

where jch5(ps3/6)Nrch is the volume fraction of chains.
The total number of particles in chains per unit volume is, of
course,Nrch. This is a purely repulsive contribution to the
free energy.

Now let us consider the contribution from the dipole-
dipole interaction between chains. In a uniform system, the
first term in expression~32! reduces to

1

2
rch
2 N2Dp2s3, ~37!

wherep5*dam f̂ (a) is the orientational average of the di-
pole moment vector of a rod and

D5s23E
Vexc

dr12
123cos2u

r 12
3 ~38!

is the integral of the dipole-dipole interaction over the ex-
cluded volume of two chains. Since, as mentioned above, the
chains are locally similar to rigid rods, this excluded volume
is locally platelike. In general, it will have some ribbonlike
shape. The elementary ‘‘fragment’’ of the excluded volume
of two chains, however, is that of two rigid rods of length
l : it has length and width of orderl and thickness of order
s. Thus the integral in Eq.~38! is approximately equal to
that over some flat thin layer. In this case,D is exactly the
depolarization factor of such a layer~or of a thin disk!. The
depolarization factor of an infinitely thin disk is known to be
zero when the polarization is in the plane of the disk, whence
D is also expected to be very small for sufficiently long
chains ~where the dipole moments are directed along the
rigid segments!. D for spheroids has been calculated numeri-
cally by Terentjev and Petschek@53# and found to be pro-
portional to the inverse aspect ratiod/ l , for l /d@1. In the
case of chains we expectD to be even smaller.
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The above arguments enable us to conclude that the dipo-
lar contribution to the free energy of a system of interacting
chains is negligibly small at sufficiently low densities be-
cause it is proportional to two small parameters: the square
of the chain volume fractionjch!1 and the depolarization
factor D;s/l . Furthermore, it should be noted that this
contribution is nonvanishing only in the presence of an ex-
ternal electric field or of spontaneous polarization, since
p50 in the isotropic phase@cf. Eq. ~37!#.

The contribution from the excluded-volume interaction
between long chains is also proportional to the square of the
chain volume fractionjch. The relative significance of inter-
chain interactions in the isotropic phase is determined by the
balance between the total bond energy of all chains@the sec-
ond term on the rhs of Eq.~A8!# and the average interchain
interaction@given by the last term in Eq.~A8!#. The ratio of
these two terms is of orderS0(r* )

21@1 whenr*!1. Thus
in a first approximation the excluded-volume interaction is
important only at liquid densitiesr*;1.

B. Dissociation of chains caused by interparticle attraction

We now come back to the general case of a mixture of
chains of different lengths in ‘‘chemical’’ equilibrium. In the
Appendix we generalize the expressions obtained in the pre-
ceding section and write down the free-energy functional for
a polydisperse fluid of long dipole chains in an external field
@Eq. ~A8!#. This can readily be extended to include an addi-
tional attractionfattr(12) by supplementing it with the term

1

2 (
N,N851

Nr~N!N8r~N8!E dr12da1da2

3H~r 122J12! f̂ ~a1!fattr~12! f̂ ~a2!, ~39!

whereH(r 122J12) is the step function@H(x)51 if x,0
and zero otherwise#, which determines the steric cutoff for
two interacting spheres belonging to different chains, and we
neglect intrachain interactions. The functionH(r 122J12) is
zero if the two chains with spheres at fixed positions and
orientations 1 and 2 penetrate each other, i.e., within the
excluded volume of two chains. If the chains are locally
rigid, thenJ125J(r12,a1 ,a2) is highly anisotropic: it is the
distance of minimum approach between spheres 1 and 2 that
belong to different chains. In the most general case it de-
pends on the orientation of the two dipolar spheres and on
the configuration of the two chains. We note, however, that
the attractive potential in Eq.~39! is short ranged and there-
fore only small interparticle separations contribute. Conse-
quently, J12 is approximately equal to the corresponding
function for two rigid rods of lengthl (@s) and diameter
s and takes values betweens and l .

With these simplifications, Eq.~39! can be rewritten in
the form

1

2 (
N,N851

Nr~N!N8r~N8!U05
1

2
r2U0 , ~40!

where the constantU0 characterizes the strength of the at-
tractive interaction

U05E dr̂12da1da2E
J12

`

dr12r 12
2 f̂ ~a1!fattr~r 12! f̂ ~a2!

~41!

and, as before,r̂125r12/r 12. U0 can be estimated in the fol-
lowing way. Taking the attraction potential to be of the
simple van der Waals formfattr(12)52e0(s/r 12)

6, one ob-
tains

E
J12

`

dr12r 12
2 fattr~r 12!52

e0s
6

3
J12

23 . ~42!

Following van der Meer~see@54#, p. 43!, we write down the
simplest interpolation expression forJ12

23 ,

J12
235s231

1

2
~ l232s23!@~a1• r̂12!

21~a2• r̂12!
2#,

~43!

which is exact fora1ia2' r̂12 and fora1ia2i r̂12. Finally, this
yields

U0'2
8pe0s

3

9
, ~44!

where we have taken into account thatl 3@s3.
The free-energy density of the fluid of interacting chains

is now

f5kBT(
N51

r~N!@ lnr~N!21#2kBT(
N51

r~N!~N21!S0

1
p

4 (
N,N851

Nr~N!N8r~N8!kBTs3

1
1

2 (
N,N851

Nr~N!N8r~N8!U0 , ~45!

where we have neglected the dipole-dipole contribution,
which is small at low densities as discussed above. The last
two terms, the steric and attractive contributions, can be
combined by defining an effective interaction strength
U0
eff5(p/2)kBTs31U0, whereupon they become12r2U0

eff .
As we shall see below, the inclusion of repulsions has no
qualitative effect on the dissociation of chains; we retain
them for consistency and with a view to a future treatment of
condensation andu points, where they will play a crucial
role.

We note that the last two terms in Eq.~45!, coming from
the interchain interactions, are strongly oversimplified. The
attractive term describes correctly only the interaction be-
tween very long chains~which correspond toNl/s@1). By
contrast, the repulsive term is the simplest contribution aris-
ing from the excluded volume of two hard rods, which we
took as chain subunits@see above the derivation of Eq.~36!#.
The absolute value of the interchain interactions is, however,
largely irrelevant in what follows. As long as the parameter
U0
eff is independent ofN, the form of the chain length distri-

bution is unchanged from the noninteracting case@48#. One
needs, however, to refine these estimates if a description of
phase transitions is also required.
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For shorter chains one has to take into account inU0, end
effects, and other corrections that are of order (s/ l )3 or
s/L, whereL is the length of the~short! chain. These cor-
rections are not expected to be very large even for dimers
and, in principle, one can neglect them at this stage. How-
ever, the interaction betweenmonomersneeds to be consid-
ered separately. For this purpose it is useful to single out the
term withN5N851 in the interaction part. We thus rewrite
the free-energy density as

f'kBT(
N51

r~N!@ lnr~N!21#2kBT(
N51

r~N!~N21!S0

1
1

2 (
N,N851

Nr~N!N8r~N8!U0
eff1

1

2
r~1!2~U1

eff2U0
eff!,

~46!

where r(1) is the density of monomers and
U1
eff5(4p/3)kBTs31U1. U152(4p/3)e0s

3 is the inte-
grated attractive potential between two spheres and we have
treated the repulsive contribution on the level of the second-
virial approximation. NowuU0

effu,uU1
effu if the attraction is

sufficiently strong, in which case chains are expected to dis-
sociate.

Minimization of the free energy Eq.~46! again yields Eq.
~25! for the density of chains of lengthN.1 and

r~1!5exp@2S01a2br~1!~U1
eff2U0

eff!#, ~47!

for the density of monomers.a5S01n, with n the chemical
potential, is determined from the normalization condition

r5 (
N51

Nr~N!5 (
N52

Nr~N!1r~1!, ~48!

whence

reS01uau5
1

~12e2uau!2
211ebr~1!~U0

eff
2U1

eff
!, ~49!

where we have taken into account thata must be negative.
Equations~47! and ~49! can be solved simultaneously forn
andr(1) andr(N) is obtained from Eq.~25!.

We now compare Eq.~49! with the corresponding equa-
tion ~27! for noninteracting chains. In the context of the
present simple model, the interaction between chains mani-
fests itself only in the second term of Eq.~49!. If the inter-
action constantsr(1)U0 andr(1)U1 are small, we basically
recover Eq.~27! and Eq.~49! has practically the same solu-
tion as in the case of non-interacting chains~i.e., a is very
small, a2;r21e2S0). On the other hand, if the interaction
constantr(1)U0

eff is large~we recall thatuU1
effu.uU0

effu), the
last term in Eq.~49! can be of the same order asreS0. This
relation can be expressed more quantitatively as

reS0;ebr~1!~U0
eff

2U1
eff

!. ~50!

In this case, which corresponds to a strong van der Waals
attraction between particles, Eq.~49! has a solutiona of
order unity. This means that the chain length distribution
function r(N)}exp(2uauN) decays rapidly with increasing

N. As a result, all long dipole chains are dissociated due to a
sufficiently strong isotropic attraction between particles. The
effect of the interaction constantr(1)(U0

eff2U1
eff) on the

chain length distribution is illustrated in Fig. 2: the fraction
of particles in chains of lengthN decays marginally faster at
large N, while the system is enriched with monomers. In
addition, for largebe0 /S0 the set of equations~47! and~49!
can have one other physical solution corresponding to the
system being composed almost exclusively of monomers,
i.e., to complete dissociation of chains. This is precisely what
van Roij found@50#, which is not surprising given the close
similarity of the two theories. The question of the global
stability of the phase of chains, as well as of the nature of the
transitions between chain- and monomer-dominated phases,
is currently under investigation and will be discussed else-
where.

IV. DISCUSSION AND CONCLUSIONS

We have developed a theory for fluids of dipolar soft or
hard spheres, with and without additional isotropic interac-
tions, in the limit of low densities and large dipole moments.
The very strong and highly directional short-range correla-
tions between particles have been taken into account by as-
suming that they associate into chains, which are then treated
within the formalism of polymer theory. Furthermore, we
have argued that interchain interactions are negligibly weak
and derived the chain length distribution for a system of
noninteracting chains by assuming that the kinetics of chain
growth is dominated by an equilibrium scission-
recombination mechanism. Although in simulations rings
have been observed@26,27#, they are relatively rare; hence in
the structured phase it suffices to take into account long lin-
ear chains. Our approach yields an exponential form for the
chain length distribution Eq.~25!. For long chainsuau21 is
the mean chain length, given in terms of model parameters
by Eq. ~28!, where l5m2/kBTs352E/kBT, with
E52m2/s3 equal to~minus! the bond energy atT50. This
result is identical to the mean-field chain length distribution
of living polymers, whereE is the scission-recombination

FIG. 2. Effect of isotropic attraction on the fraction of particles
in chains of lengthN, for r*50.1 andl56.25. Solid line, nonin-
teracting chains; dotted line,be0520.
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energy, i.e., the energy required to break a bond.
As discussed in Sec. II, the chain length distributions

given by Eqs.~25! and~28! do not agree quantitatively with
the computer simulation results of Weis and Levesque@26#.
This may cast doubts on the validity of our approach to
describe the static equilibrium properties of a system of liv-
ing polymers, as the low-density phase of strongly dipolar
fluids appears to be. We note, however, that recent Monte
Carlo simulations by Rouault and Milchev@37# on a~lattice!
model of living polymers~of completely flexible chains, with
zero nonbonding interactions! have revealed that the distri-
bution of chain lengths is indeed exponential, in agreement
with the mean-field prediction and with Eq.~25!. Moreover,
simulations indicate that the mean chain length increases
with density as a power law, with an exponent that is close to
0.5, except for chains in the noninteracting regime where the
exponent is exactly 0.5 as given by mean-field theory and by
Eq. ~28!. Finally, another prediction of mean-field theory,
also confirmed by simulation, is that the Lifshitz point
~which separates the high-temperature isotropic ordinary
fluid from the low-temperature isotropic structured fluid! oc-
curs atE/4.

Despite the fact that Rouault and Milchev@37# did not
compare the absolute values of their mean chain lengths with
theoretical predictions, the agreement between mean-field
theory and simulation appears to be much better than the
comparison of our results for the dipole chains with simula-
tion, discussed in Sec. II, seems to suggest. We believe that
the main reason for this discrepancy is that in Rouault and
Milchev’s simulations care was taken to ensure equilibrium
conditions at all temperatures. This was implemented by re-
stricting the lowest temperature studied for a given system
size, in order to guarantee the presence of monomers in the
simulation box. Although for the smallest system sizes this
condition severely restricts the range of temperatures that can
be studied, it does allow equilibrium to be reached among
chains of all sizes. The same, however, cannot be said of the
published simulations of dipole chains@24,26#, which may
be affected by strong finite-size effects, and therefore no firm
conclusions on the validity of the living polymer approach to
describe the behavior of the low-density strongly dipolar
fluid may be drawn at present.

In our treatment of the dipolar fluid we have also included
the effects of the excluded volume of the semiflexible chains
and of additional isotropic interactions between DHSs. Our
study of the model with attractive interactions was restricted
to the effects of these interactions on chain dissociation. We
have not discussed the liquid-vapor condensation that is ob-
served in these systems when the relative strength of the
isotropic attraction~with respect to the dipole-dipole interac-
tion! exceeds a critical threshold or the order-disorder-
polymerization transition that was investigated~extensively!
in a recent computer simulation of a different~lattice! model
of semiflexible~living! polymers with nonbonding attractive
interactions @55#. These interactions cause the system to
phase separate into dense and rarefied phases. The nature and
location of the transitions depend on the relative strengths of
the energies that characterize the chain: the bonding energy,
the chain bending rigidity, and the nonbonding interaction
between monomers. In the dipole chain, however, the bond-
ing and bending energies are not independent. Although a

systematic computer simulation study of the condensation
transition of the Stockmayer fluid has been carried out re-
cently by van Leeuwen and Smit@22#, the global phase dia-
grams of the DHS and DSS fluids remain, to a large extent,
unexplored.

We conclude by making some remarks on the phase tran-
sitions that are expected to occur in strongly dipolar fluids,
based on computer simulation studies of living polymers and
recent theories of chain formation. It was shown some years
ago that long-ranged orientational order is absent in~lattice!
models of living polymers if the nonbonding interaction is
set to zero@43# or if the chains are totally flexible@56#. A
more recent study@55# of a simple~lattice! model of semi-
flexible living polymers with nonbonding~monomer-
monomer! interactions revealed the existence of a first-order
polymerization order-disorder transition between a low-
temperature ordered state of stiff parallel rods and a high-
temperature disordered state due to disorientation of the
chains. This research also confirms the expected exponential
form of the equilibrium chain length distribution, although
the density and temperature dependence of the mean chain
length deviate from their expected behavior. The situation
for dipole chains with additional attractions is much less
clear, but it is likely that a fluid phase with long-range ori-
entational order is preempted by the solid.

A better understood phase diagram obtains when the
liquid-vapor critical point occurs in the neighborhood of the
Lifshitz point. In that regime, isotropic interactions may in-
hibit the formation of chains, and consequently clustering of
the particles is driven by the usual energy-entropy mecha-
nism. This mechanism is ultimately responsible for the con-
densation of the gas at a critical density and temperature. The
competition between chain formation and clustering was ad-
dressed recently by van Roij@50# within a free-energy ansatz
that combines the original van der Waals theory of liquid
condensation and the association theory of ideal particles.
The resulting phase diagrams indicate that liquid-vapor con-
densation becomes metastable if the tendency to form
weakly interacting chains is sufficiently strong@57#. In his
treatment van Roij assumes the chains to be noninteracting
on the basis of plausible intuitive arguments, but without a
supporting quantitative estimate. Moreover, his estimation of
the semiphenomenological parameters in his theory on the
basis of separating the dipole-dipole interaction into an av-
erage isotropic attraction and a remaining anisotropic contri-
bution is, in our view, not correct. Indeed, the unweighted
average of the dipole-dipole interaction over the orientations
of the intermolecular vector is zero and therefore, in the low-
temperature~isotropic! phase of chains, the net isotropic at-
traction of the dipolar fluid vanishes. Only at higher tempera-
tures can the dipoles rotate freely and the Boltzmann-
averaged isotropic interaction then becomes nonzero, while
the bonding~directional! energy vanishes. Although in van
Roij’s work both condensation and chaining are treated in
qualitative terms, the ansatz does capture the two competing
mechanisms. A connection with the underlying model inter-
actions is nevertheless missing.

An approach that is very close to ours, but does not ex-
plicitly address the issue of phase transitions, is that of Sear
@58#. This author has proposed an explanation for the failure
to find liquid-vapor condensation in simulations of DSS@24#
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and DHS@26# fluids. His argument is based on the observa-
tion that chains form in low-density dipolar fluids, which
then by assumption interact only weakly. In this theory, the
configurational energy and the mean chain length of a low-
density DHS fluid are calculated from the equation of state
obtained from the activity expansion of the pressure. Sear
neglected all interactions between monomers beyond nearest
neighbors and assumed that the pressure of a fluid of nonin-
teracting chains is given by the infinite sum of linear chain
graphs containingf bonds~where f is the Mayer function!
between successive spheres. His derivation is very simple
and elegant because the chain integrals factorize, yielding a
closed-form expression, but whether this is a realistic ap-
proximation for the pressure of a fluid of chains is, in our
view, an open theoretical question. It actually amounts to
replacing a chain by a collection of pairs of monomers, since
all steric effects involving more than two nearest neighbors
are lost. For the present model and large dipole moments,
Sear’s predictions are very similar to ours, but we do not see
why this should be the case in general. In particular, he does
recover mean-field results such as the (r* )1/2 dependence of
the mean chain length. This can be understood by noting that
Eq. ~5! in @58# can be rewritten in terms of our variables, as

bP5
en

12
en1S0

12en1S0

, ~51!

which coincides with our Eq.~30! in the limit of small
a5n1S0 ~largel).

By contrast, the main advantage of our treatment is that it
can be easily generalized; in this paper we have discussed
two such generalizations. The most straightforward describes
an orientationally ordered fluid and is elaborated in the Ap-
pendix. This allows a more detailed treatment of the ferro-
electric phase transition by taking chains into account, as
will be presented elsewhere. The second generalization is the
inclusion of interactions between chains: excluded-volume
and attractive interactions were considered in Sec. III, which
allowed us to delimit the noninteracting chain regime. We
have been able to describe chain dissociation, and in future
work we hope to address the condensation and polymeriza-
tion transitions in a more realistic~and self-consistent! man-
ner.

Finally, Stevens and Grest have performed Gibbs en-
semble simulations of the DSS fluid in a field and found a
coexistence between two very low-density phases of long,
polarized chains aligned along the field@23#. As discussed in
previous paragraphs, at such low densities as considered in
this work (r*;1022), no ordinary liquid-vapor separation is
seen in zero field: instead, DSSs associate into chains that are
entangled and thus exhibit no global orientational order.
When a field is applied the chains become more or less
straight; in an infinite system at zero temperature, or in an
infinite field, they would be infinitely long. Since the dipolar
interaction between two parallel, infinitely long, dipolar
chains is zero, no phase separation would ensue. Now the
longest chains seen in the simulations actually span the sys-
tem and thus are ‘‘infinite’’ by virtue of the periodic bound-
ary conditions used~there are also a number of shorter
chains!. This suggests that the dipolar interactions between

two chains in the field are very weak and can be neglected.
Then~apart from excluded-volume effects!, we are left with
a model of noninteracting semiflexible polymers, which do
not phase separate in the absence of a field@55#. So the usual
excluded-volume argument that drives the orientational
phase transition in nematic polymers does not seem to be
applicable to the system of dipole chains: at these very low
packing fractions, semiflexible rods would only order nem-
atically ~i.e., separate into paranematic and nematic phases!
if they were straight on the length scale of the simulation box
size ~see@46# and references cited therein!, which is not the
case. Note that mixtures of long and shortrigid rods may
separate into two nematic phases@59# due to competition
between orientational entropy and entropy of mixing. It is
tempting to suggest a connection between the transition in
the field and nematic demixing, but as argued above we can-
not identify the mechanism that drives the phase transition in
the field, at least for a system with no additional isotropic
attractions, and thus for the moment we feel that this transi-
tion remains to be understood.
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Matéria Condensada, where part of this work was performed.
Interactions with Jean-Jacques Weis have been greatly ap-
preciated. We thank Rene´ van Roij and Richard Sear for
communicating their results prior to publication and, to-
gether with Bela Mulder and Daan Frenkel, for a critical
reading of the manuscript.

APPENDIX: DENSITY-FUNCTIONAL THEORY
OF A FLUID OF DIPOLE CHAINS

In Sec. II we derived the free energy of a single long
dipole chain and in Sec. III that of the isotropic phase of a
fluid of interacting long dipole chains. In this appendix we
generalize our theory to allow for orientational order of the
chains. This order can either be induced by an external field
or appear self-consistently if the system undergoes a transi-
tion to the ferroelectric state.

The fluid of partially ordered chains is characterized by
the one-particle ODFf̂ (a,r ) of a sphere in a chain. It can be
written as

f̂ ~a,r !5
Zk~a,r !ZN2k11~a,r !

Zch
. ~A1!

The same principle of ground-state dominance then leads to

f̂ ~a,r !'c1
2~a,r !, ~A2!

where c1(a,r )5Z(1)(a)Z(1)(r ) is the ground-state eigen-
function of the operator¹a

21s2¹ r
2 ~we assume all spheres in

a chain to be equivalent!.
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Consider now a dipole chain in an aligning external po-
tential Ue(a,r ). We require the free energy of the chain in
the field as a functional of the ODF. This was first derived by
Lifshitz @60#, and the resulting functional is called Lifshitz
entropy@61#. From Eqs.~13! and ~14! we get

l115VE f̂ ~a,r !
~¹a

21s2¹ r
2!c1~a,r !

c1~a,r !
da dr . ~A3!

If the ground state gives the predominant contribution,
f̂ (a,r ) is related toc1(a,r ) via Eq.~53!, whence the entropy
of a chain is

Sch52
NVkB
4 E da dr

@“af̂ ~a,r !#
2

f̂ ~a,r !

2
NVkBs2

4 E da dr
@“ r f̂ ~a,r !#

2

f̂ ~a,r !
. ~A4!

We finally obtain, for the free-energy functional of one long
dipole chain in an external field,

1

V
Fch@ f̂ ~a,r !#52~N21!kBTS01NE da drUe~a,r ! f̂ ~a,r !

1
NVkBT

4 E da dr

3H @“af̂ ~a,r !#
2

f̂ ~a,r !
1s2

@“ r f̂ ~a,r !#
2

f̂ ~a,r ! J , ~A5!

where, as before, the first term is the intrachain energy@cf.
discussion following Eq.~24!#.

Combining these results with those of Sec. III A, we ar-
rive at the expression for the free-energy density of a fluid of
long, interacting dipole chains at low density. It will, how-

ever, depend on the nature of the external fieldUe . If this is
not an electric field and the average electric fieldE50, the
free-energy functional reads

1

V
F@rch, f̂ ~a,r !#52~N21!rchkBTS0

1NrchE da drUe~a,r ! f̂ ~a,r !

1
3rchNkBT

8l E da dr

3H @“af̂ ~a,r !#
2

f̂ ~a,r !
1s2

@“ r f̂ ~a,r !#
2

f̂ ~a,r ! J
1rch

2 kBTN
2s3E f̂ ~a1!using12u

3 f̂ ~a2!da1da2 , ~A6!

where the first term is the sum of~average! bond energies,
the second is the energy associated with the external field,
the third is the orientational entropy from Eq.~A4!, and the
last one the excluded-volume contribution from Eq.~35!. It
follows from Sec. III A that the dipolar contribution is neg-
ligibly small. When the system is in the external electric field
Ee , one has to include also the electrostatic energy2E•P.
The external field term in Eq.~A6! should then be replaced
by

2E E~r !•P~r !dr , ~A7!

whereP(r )5Nrch*m f̂ (a,r )da andE is the average electric
field in the medium. For a spherical sample,E5(4p/3)Ee .

We now allow for chains of different lengths. Letr(N) be
the density of chains of lengthN ~cf. Sec. II B!; we then have

F @ f̂ ~a,r !,r~N!#

V
5kBT(

N51
r~N!@ lnr~N!21#2kBT(

N51
r~N!~N21!S01 (

N51
Nr~N!E da drUe~a,r ! f̂ ~a,r !

1
3kBT

8l (
N51

Nr~N!E da dr H @“af̂ ~a,r !#
2

f̂ ~a,r !
1s2

@“ r f̂ ~a,r !#
2

f̂ ~a,r ! J
1kBTs3 (

N,N851

Nr~N!N8r~N8!E f̂ ~a1!using12u f̂ ~a2!da1 da2 . ~A8!

Likewise, if the system is in an external electric field, the
term containingUe should be replaced by

2 (
N51

Nr~N!E m•E~r ! f̂ ~a,r !da dr . ~A9!

Equation~A8! is the free-energy functional of a fluid of
long chains at low density, corresponding tol@1 and

D21!r*!1. Note that it is a functional of two distribution

functions f̂ (a,r ) andr(N), both of which are determined by
minimization. In the absence of any external fieldUe , the
system is isotropic and characterized by the chain length dis-
tribution r(N) alone; the latter is subject to the constraint
Eq. ~22! that the total number of particles per unit volume, in
chains of all lengths, must equal the particle number density.
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