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We have studied the bifurcations in a three-dimensional incompressible magnetofluid with periodic bound-
ary conditions and an external forcing of the Arnold-Beltrami-Childress~ABC! type. Bifurcation-analysis
techniques have been applied to explore the qualitative behavior of solution branches. Due to the symmetry of
the forcing, the equations are equivariant with respect to a group of transformations isomorphic to the octa-
hedral group, and we have paid special attention to symmetry-breaking effects. As the Reynolds number is
increased, the primary nonmagnetic steady state, the ABC flow, loses its stability to a periodic magnetic state,
showing the appearance of a generic dynamo effect; the critical value of the Reynolds number for the insta-
bility of the ABC flow is decreased compared to the purely hydrodynamic case. The bifurcating magnetic
branch in turn is subject to secondary, symmetry-breaking bifurcations. We have traced periodic and quasi-
periodic branches until they end up in chaotic states. In particular detail we have analyzed the subgroup
symmetries of the bifurcating periodic branches, which are closely related to the spatial structure of the
magnetic field.@S1063-651X~96!09309-9#.

PACS number~s!: 47.20.Ky, 47.65.1a, 47.27.Cn, 95.30.Qd

I. INTRODUCTION

The generation and maintenance of magnetic fields by the
motion of electrically conducting fluids is the subject of dy-
namo theory. One of its main objectives is to explain the
existence of long lasting cosmical magnetic fields such as,
for example, those of the Earth and the Sun. For a recent
account of dynamo theory we refer to Ref.@1#.

Usually the magnetohydrodynamic~MHD! equations are
employed to describe the dynamo effect. When the magnetic
energy is small compared to that of the velocity field, one
can consider the kinematic problem, that is, the induction
equation for a prescribed velocity field disregarding the re-
sponse to the motion of the fluid. In the kinematic frame the
question is whether a fluid motion can amplify and maintain
the weak seed of a magnetic field. One of the successful
examples to produce a dynamo effect are the ABC flows
~named after Arnold, Beltrami, and Childress!, first investi-
gated by Arnold@2#,

vABC5~Asink0z1Ccosk0y,Bsink0x1Acosk0z,Csink0y

1Bcosk0x!, ~1!

whereA,B,C denote constant coefficients andk0 is a ~also
constant! positive wave number. ABC flows are strongly he-
lical flows satisfying the Beltrami condition“3v5lv, with
l5k0, a necessary condition for the existence of chaotic
domains in the flow@2#. For these reasons, they have re-
ceived much interest@3,4#, notably in the kinematic context
as candidates for fast dynamos@5,6# ~for which the growth
rate remains bounded from below by a positive constant as
the magnetic diffusivity tends to zero!.

The ABC flows are steady solutions of the incompressible
Euler equation. They are also steady solutions of the incom-

pressible Navier-Stokes equation~NSE! @Eq. ~3! below with
the magnetic fieldB dropped# if an external body force

f52n¹2vABC5nk0
2vABC ~2!

is applied in order to compensate for viscous losses. But they
are only stable solutions below a critical strength of the forc-
ing or critical Reynolds number, respectively. Galloway and
Frisch @7# investigated their linear stability. The nonlinear
behavior of solutions to the NSE with the forcing given by
Eq. ~2! has been studied numerically by Zheligovsky and
Pouquet@8# and by Podvigina and Pouquet@9#. These au-
thors report various bifurcations that occur as the strength of
forcing ~or the Reynolds number! is raised and lead to quali-
tatively different and partially coexisting solution branches,
including chaotic ones.

Imposing the same kind of forcing, Galantiet al. @10#
investigated the complete system of MHD equations by
means of numerical simulations. From kinematic studies it is
known that for small Reynolds number the ABC flow with
no magnetic field is also a stable solution of the MHD equa-
tions. Galantiet al. found that at some critical value of the
Reynolds number, the ABC flow loses stability to time peri-
odic solutions with a magnetic field, indicating the occur-
rence of a dynamo effect.

Continuing these studies by Galantiet al. @10#, we have
investigated the MHD equations with the imposed ABC
forcing, for the special case ofA5B5C andk051, by ap-
plying methods of the numerical bifurcation analysis as well
as group-theoretical methods. The aim of the present paper is
to describe the bifurcation structure dependent on the Rey-
nolds number as the control parameter. The MHD equations
with our special forcing are equivariant with respect to a
group of transformations isomorphic to the octahedral group.
We have paid special attention to symmetry-breaking effects
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of the bifurcations. In particular, we have determined the
subsymmetries of bifurcating solution branches. In a com-
panion paper@11# a generalized ABC forcing is applied to
investigate the influence of the degree of helicity in the forc-
ing on the character of the first bifurcation of the primary
nonmagnetic stationary state.

In Sec. II we cast the three-dimensional MHD equations
into spectral form and explain the kind of truncation used,
while in Sec. III the external forcing and its associated sym-
metries are explained. In Sec. IV we present the results of
our numerical bifurcation analysis, i.e., the bifurcations and
their symmetry-breaking effects. Then, in Sec. V the spatio-
temporal structure of the magnetic field, as well as its sym-
metry properties, is considered. Finally, Sec. VI contains a
brief discussion.

II. BASIC EQUATIONS AND TRUNCATION

We start from the equations for a nonrelativistic, incom-
pressible, electrically conducting fluid with constant material
properties~cf., e.g.,@12#!:

rF]v]t 1~v•“ !vG5rn¹2v2“p2
1

2m0
“B21

1

m0
~B•“ !B

1f, ~3!

]B

]t
1~v•“ !B5h¹2B1~B•“ !v, ~4!

“•v50, ¹•B50, ~5!

wherer is the mass density,p the thermal pressure,n the
kinematic viscosity,m0 the magnetic permeability in a
vacuum,h the magnetic diffusivity@h5(m0s)

21, s denot-
ing the electrical conductivity#, andf an external body force.
The third and fourth terms on the right-hand side of Eq.~3!
constitute the Lorentz force. Transforming to nondimen-
sional quantities according to

x→x/L, t→tY L2

n
, v→vY n

L
,

p→pY rn2

L2
, f→fY rn2

L3
, B→BY n

L
Am0r, ~6!

Equations~3! and ~4! become

]v

]t
1~v•“ !v5¹2v2“p2

1

2
“B21~B•“ !B1f, ~7!

]B

]t
1~v•“ !B5Pm

21¹2B1~B•“ !v, ~8!

wherePm is the magnetic Prandtl numberPm5n/h.
We impose periodic boundary conditions and consider the

equations in the domainV5@2p32p32p#, where the
mean values ofv, B, p and consequently off are assumed to
vanish. The solutions can be expanded into the complete set
of orthogonal eigenfunctions of the Stokes operator

v~x!5 (
kPZ3
kÞ0

~vk
~1!ek

~1!1vk
~2!ek

~2!!exp~ ik•x!, ~9!

B~x!5 (
kPZ3
kÞ0

~Bk
~1!ek

~1!1Bk
~2!ek

~2!!exp~ ik•x!, ~10!

f~x!5 (
kPZ3
kÞ0

~ f k
~1!ek

~1!1 f k
~2!ek

~2!!exp~ ik•x!, ~11!

p~x!5 (
kPZ3

pkexp~ ik•x!, ~12!

where we have used polarization vectorsek
(1),ek

(2) perpen-
dicular tok,

ek
~ i !
•k50, ek

~1!
•ek

~2!50,

ek
~ i !
•ek

~ i !51, e2k
~ i ! 5ek

~ i ! for i51,2, ~13!

such that Eq.~5! is satisfied automatically. Because of the
last condition in Eq.~13! we have

v2k
i 5vk

i* , B2k
i 5Bk

i* ~14!

~an asterisk indicates the complex conjugate!. By means of
the above Fourier ansatz@Eqs.~9!–~12!#, we easily get rid of
both the thermal“p and magnetic“B2/2, pressure terms in
Eq. ~3! and arrive at the system of ordinary differential equa-
tions ~ODEs!

dvk
~ j !

dt
52k2vk

~ j !2 i (
pPZ3
pÞ0,k

(
a,b51

2

~ep
~a!
•ek

~ j !!~ek2p
~b!

•k!@vp
~a!vk2p

~b!

2Bp
~a!Bk2p

~b! #1 f k
~ j ! , ~15!

dBk
~ j !

dt
52Pm

21k2Bk
~ j !2 i (

pPZ3
pÞ0,k

(
a,b51

2

~ep
~a!
•ek

~ j !!~ek2p
~b!

•k!

3@Bp
~a!vk2p

~b! 2vp
~a!Bk2p

~b! #. ~16!

In the numerical calculations we have applied an isotropic
truncation in wave-number space and taken into account
wave numbersk with k2<12. This corresponds to 89k vec-
tors, which amounts to studying a system of 712 ODEs.

III. FORCING AND SYMMETRY

In order to compensate for viscous and Ohmic losses,
some kind of external forcing has to be applied in Eq.~3!.
We have used the~nondimensional! forcing

f5k0
2vABC , ~17!

vABC defined by Eq.~1!, with the restriction

A5B5C5R, k051. ~18!
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In the following, theR introduced here will be referred to as
the Reynolds number~in accordance with the definition of
the Reynolds number used in previous studies@10,9#!. In the
numerical calculations we have restricted ourselves to the
casePm51 andR has been our bifurcation parameter.

For this special ABC forcing the MHD equations are
equivariant with respect to a discrete transformation group
that contains 24 elements and is isomorphic to the octahedral
groupO ~the rotation group of a cube! @2,13,4#. For details
of the group, namely, a list of the coordinate transformations,
comments on the general group structure, as well as an ex-
plicit group table, we must refer to the Appendix. The whole
symmetry group is, for instance, generated by the two trans-
formationsT2 andT5 ~see in the Appendix!. A number of
bifurcations observed in the system are related to the sym-
metries.

Each transformationT is a combination of a rigid rotation
with a translation and can be written as

x85Tx5Dx1a, ~19!

where a prime denotes transformed quantities,D is an or-
thogonal 333 matrix, anda is a constant vector. Associated
with this transformation of the position vectorx is a trans-
formation of the vector fieldv(x) @B(x) is transformed in the
same way# according to

v8~x!5Dv~T21x!. ~20!

In Fourier space Eq.~20! takes the form

vk85Dvk̃exp~2 ik•a!, ~21!

where

k̃5D21k, ~22!

and for the quantitiesvk
(1) andvk

(2) one obtains

v8k
~ j !5exp~2 ik•a! (

a51

2

v k̃
~a!

~Dek̃
~a!

!•ek
~ j ! . ~23!

By using this relation~and the corresponding one for the
magnetic field! it can be checked numerically with respect to
which transformations of the symmetry group, if any, a par-
ticular solution is symmetric.

IV. BIFURCATION STRUCTURE

Table I gives an overview of the detected stable-solution
branches and their symmetries. For small Reynolds numbers
~weak forcing! only the directly forced modes~with
uku51) are excited and the pure ABC flow with vanishing
magnetic field is a stable stationary solution. In our trunca-
tion ~with 89 k vectors!, the ABC flow loses stability at
R55.7 and a stable periodic solution with a nonvanishing
magnetic field is born. Since only a single pair of complex-
conjugate eigenvalues crosses the imaginary axis at this
Hopf point, the new periodic branch, period-1, retains the
full symmetry. More precisely, the solution is no longer
point symmetric with respect to all symmetry transforma-
tions; under the action of some of them a time shift is pro-

duced, but the periodic orbit as a whole is invariant. In this
special case the time shift can be interpreted as the action of
the reflection groupZ2 mapping the orbit onto itself. In our
numerical calculations we mainly examined the symmetry
properties of the orbits as a whole, not the time shifts in
detail, and thus Table I refers only to the total symmetry of
the orbits. The numbers in the branch designations in Table I
indicate the multiplicity of the branches, i.e., the number of
coexisting branches that can be transformed into each other
by elements ofO. So, for instance, period-3 stands for three
coexisting branches.

For R57.8 a new~threefold! periodic branch~period-3!
appears. This branch is from the beginning only partially
symmetric. Each orbit is invariant with respect to one of the
three conjugate subgroups~cf. the Appendix!

D4
15$T1 ,T2 ,T3 ,T4 ,T6 ,T22,T9 ,T20%, ~24!

D4
25$T1 ,T5 ,T6 ,T7 ,T3 ,T24,T9 ,T23%, ~25!

D4
35$T1 ,T8 ,T9 ,T10,T3 ,T19,T6 ,T21%. ~26!

These subgroups are isomorphic to the dihedral groupD4
~the rotations and reflections of a square in a plane that leave
the square invariant!. Namely, the first four elements corre-
spond to rotations about one coordinate axis and form a sub-
group isomorphic to the cyclic groupZ4, while the remaining
elements correspond to the four reflections of the square per-
pendicular to the rotational axis of the first four elements. In
the octahedral groupO ~rotation group of the cube!, which
does not contain reflections, these last four elements actually
correspond to rotations by 180° about axes lying on the
plane of the square.

When traced backwards~i.e., for decreasing Reynolds
number!, the branches period-3 disappear forR57.7, prob-
ably due to saddle-node bifurcations~turning points! for the
periodic solutions. For increasing values of the Reynolds
number, the branches period-3 undergo secondary Hopf bi-
furcations atR516.0, generating the torus branches torus-3.
Figure 1 shows a corresponding torus solution, namely, the
projection of a trajectory onto a plane spanned by one veloc-
ity and one magnetic field~Fourier! component. AtR520
these torus branches lose stability to chaotic states~see Fig.
2!. The chaoticity of the solutions has been verified by cal-
culating the largest Lyapunov exponents for selected values
of the bifurcation parameter using an algorithm by Shimada
and Nagashima@14#. For instance, Fig. 3 shows, for the
branch chaos-3 atR520.0, the cumulative value of the five

TABLE I. Overview of the different solution branches.

Interval of
Branch stability forR Symmetry

ABC flow 0,R,5.7 O
period-1 5.7,R,11.5 O
period-3 7.7,R,16.0 D4

period-4 11.5,R,17.3 D3

torus-3 16.0,R,20.0
torus-4 17.3,R,17.9
chaos-3 R>20.0
chaos-4 R>17.9
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largest Lyapunov exponents dependent on the integration
time. It demonstrates a good convergence and that at least
one of the exponents is positive.

We now return to the periodic branch period-1, which in a
symmetry-breaking bifurcation atR511.5 splits up into four
periodic solutions forming the new branches period-4. The
symmetry-breaking bifurcation retains the invariance of the
solutions with respect to the following conjugate subgroups,
each of which is isomorphic to the dihedral groupD3:

D3
15$T1 ,T11,T12,T22,T19,T24%, ~27!

D3
25$T1 ,T13,T14,T20,T24,T21%, ~28!

D3
35$T1 ,T16,T15,T22,T21,T23%, ~29!

D3
45$T1 ,T18,T17,T20,T23,T19%. ~30!

The branches period-4 bifurcate to the torus branches
torus-4, which are stable only for a relatively small interval
of the Reynolds number, with a final transition to chaos at
R517.9 ~generation of branches chaos-4!. For a certain in-
terval of the Reynolds number these chaotic solutions exist
simultaneously with the torus branch torus-3. An overview
of the whole bifurcation structure is depicted schematically
in Fig. 4.

To test the sensitivity with respect to the degree of trun-
cation, we calculated the critical Reynolds number of the
first Hopf bifurcation for different truncations. There is a
tendency to higher values of the critical Reynolds number for
weaker truncation~more modes taken into account!; a more
detailed description for the dependence on the number of
included modes is given in Ref.@15#. For comparison, we
have also made calculations by means of a pseudospectral
code, with the~compared to the spherical truncation! rela-
tively high resolution of 163 grid points in real space. In
these calculations the first bifurcation was observed at
R58.9. This value coincides with the critical Reynolds num-
ber for the magnetic instability in the corresponding kine-
matic dynamo problem@5#.

We have restricted ourselves to the forcing of the largest
modesk051 @cf. Eq.~2!# and have observed an instability of
the ABC flow on this largest scale. It should be noted that a
forcing of higher modesk0.1 reduces the critical value of
the Reynolds number by an order of magnitude, which has
been demonstrated for the MHD equations by Galantiet al.
@10# and for the purely hydrodynamic case by Wirthet al.
@16#. For instance, Wirthet al. have found a negative-
viscosity large-scale instability atR51.92.

FIG. 3. Five largest Lyapunov exponents versus integration time
for the branch chaos-3 atR520.

FIG. 4. Schematic bifurcation diagram.

FIG. 1. Torus solution forR516 ~branch torus-3!.

FIG. 2. Trajectory on chaotic attractor forR520 ~branch chaos-
3!.
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Zheligovsky and Pouquet@8# and Podvigina and Pouquet
@9# studied a related problem, namely, the purely hydrody-
namic instabilities of the ABC forced NSE~without mag-
netic field!. They described bifurcations, different stable-
solution branches, and symmetry-breaking effects.
Especially, they determined the value of the Reynolds num-
ber where the primary ABC flow~for the caseA5B5C)
loses its stability:R'13.044. Since for the MHD equations
already for a smaller value ofR a magnetic mode becomes
unstable, their resulting bifurcation structure is different
from that in the case of the NSE. But a common feature of
the bifurcation properties of both systems~MHD and NSE!
is that the dihedral groupD4 is a relevant subgroup, leaving
invariant some secondary branches, such as, e.g., period-3 in
Table I.

Another interesting point in the comparison of both sys-
tems is the occurrence of a relaminarization window for the
NSE, as reported in Refs.@8# and @9#. A second stable sta-
tionary solution, denoted byA2, different from the ABC
flow, was found there.A2 coexists first with the stable ABC
flow and then, after the ABC flow has become unstable, with
time-dependent solutions, including chaotic ones, that have
bifurcated from the ABC flow. For further increasedR, A2
becomes attractive even for solutions with initial conditions
close to the~unstable! ABC flow ~called relaminarization!.
We must state here that we have not yet been able to find a
second stable stationary branch for the MHD equations, yet
we cannot exclude its existence, and numerical investiga-
tions with a much higher resolution using the pseudospectral
method are going on.

V. SPATIAL STRUCTURE OF THE MAGNETIC FIELD

In this section we describe the structure of the magnetic
field in real space and its changes under the influence of
symmetry-breaking bifurcations. In a kinematic dynamo
study using the ABC flow withA5B5C, Galloway and
Frisch @7# observed ‘‘cigarlike’’ concentrations of the mag-
netic field about velocity stagnation points. The ABC flow
for the caseA5B5C has eight unstable stagnation points.
The corresponding eigenvalues are real and have signs
(1,2,2) or (2,1,1). The topological structure of the
ABC flow and, in particular, the intersections of the stable
and unstable manifolds of the stagnation points, which form
a complicated web of heteroclinic lines, were comprehen-
sively discussed by Dombreet al. @4#. Stagnation points with
a two-dimensional stable manifold have been denoted asa
type and those with a two-dimensional unstable manifold as
b type. There are four stagnation points of each type and any
two points of different type are connected by a straight line,
forming a one-dimensional heteroclinic orbit. The cube diag-
onal through the points (0,0,0) and (2p,2p,2p), for ex-
ample, is a one-dimensional invariant manifold belonging to
the stagnation points (3p/4,3p/4,3p/4) (b type! and
(7p/4,7p/4,7p/4) (a type!. The rest of the ensemble of
stagnation points and associated one-dimensional invariant
manifolds may be obtained by applying the symmetry trans-
formationsT2 ,T3 ,T4. The cigarlike structures of the mag-
netic field, observed by Galloway and Frisch@7# as well as
by Galantiet al. @10# for the kinematic problem, are local-
ized about the stagnation points ofa type.

For the nonlinear problem, i.e., for the full MHD equa-
tions, one expects that after the first bifurcation, where the
ABC flow loses its stability and a magnetic field appears, the
structure of the fields differs at first only weakly from that of
the kinematic problem. In Sec. IV we already mentioned that
this Hopf bifurcation retains the original symmetry for the
newly created periodic branch period-1. This symmetry has
also an essential influence on the spatial structure of the cor-
responding magnetic and velocity fields, briefly discussed
here. A surprising feature of the new branch is that the eight
stagnation points of the ABC flow survive, i.e., they remain
time-independent zero-velocity points with the same location
as for the original ABC flow. In Fig. 5 isosurfaces of the
magnetic field strength for a level of 65% of the maximum
value are drawn. The cigarlike structure are clearly recogniz-
able also in the nonlinear regime. Due to the temporal peri-
odicity, the magnetic field oscillates and the shape of the
isosurfaces depends also on the time of a snapshot; some-
times they look much more like blobs. To give an impression
of the dynamics, we consider the fields on the diagonal line.
As already mentioned, the stagnation points remain un-
changed. Furthermore, their invariant one-dimensional mani-
folds are formed by the same straight lines. For the diagonal
line, containing two stagnation points, this follows directly
from the symmetry of the branch. Namely, as a consequence
of the symmetry with respect to the cyclic groupZ3 as a
subgroup of the full symmetry group, the velocity field has to
be aligned with the diagonal direction. The same holds for
the magnetic field.

In Fig. 6 the component of the magnetic field along the
diagonal line is shown for different instants of a time period
~stagnation points are marked by asterisks!. Strong oscilla-
tions with a large amplitude occur around the stagnation
point ofa type and the magnetic energy is mainly located in
its neighborhood. The velocity field along the diagonal line
oscillates only relatively weakly about the original ABC
flow.

Figure 7 shows a contour plot of the modulus of the mag-
netic field in a particular plane through the cube
z51/2(x1y), which contains also the~main! diagonal axis

FIG. 5. Isosurfaces of the magnetic field with 65% of the maxi-
mal modulus for the symmetric branch (R510) in the periodic box
(x,y,z between 0 and 2p).
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and its stagnation points. Thick lines correspond to levels
above 65% of the maximum value and the cigarlike structure
again becomes visible.

For the asymmetric branch period-4 only two of the stag-
nation points together with their invariant straight line sur-
vive. The others disappear, but they remain stagnation points
for other branches obtained by symmetry transformations.
The spatial structure of the magnetic field has also changed.
For some instant of time just one bloblike structure located
about the onea-type stagnation point is visible. Then it is
shrinking and the three other cigarlike field concentrations
emerge, but without any stagnation points. This process and
its reversal can be observed two times within one period.

For the other asymmetric branch, period-3, no stagnation
points are present, but four cigarlike field concentrations may
again be recognized. In contrast to the structures seen in Fig.
5, they are now deformed and shifted away from the location
of the former stagnation points. The whole structure is oscil-
lating and at some instants the magnetic energy seems to be
distributed over the whole cube.

It is not the aim of this section to describe the structural
properties of the magnetic field for all branches listed in
Table I, but at last we would like to discuss briefly the cha-
otic branch chaos-3. It is interesting that also for this branch,
the magnetic energy is on average mainly concentrated in
four tubelike structures. These oscillate and move irregularly
through the cube. The appearance of just four strong-field
regions is still reminiscent of the foura-type stagnation
points of the original ABC flow.

VI. DISCUSSION

In this paper we have described in detail symmetry-
breaking bifurcations for the three-dimensional MHD equa-
tions with ABC forcing. Periodic and quasiperiodic branches
that bifurcate from the steady nonmagnetic ABC flow as the
strength of the forcing is raised have been traced until they
eventually end up in chaotic states. Furthermore, we have
analyzed the relation between subgroup symmetries of bifur-
cating branches and the spatial structure of the magnetic
field.

The majority of the results of our bifurcation analysis
were obtained by applying a spherical truncation in Fourier
space retaining 89k vectors, which amounts to studying a
system of 712 ODEs. To test the sensivity of our results with
respect to the degree of truncation in Fourier space, we par-
tially used a much higher resolution by means of a pseu-
dospectral method. The bifurcation structure seems to be the
same or at least similar for all truncations. For instance, the
instability of the primary ABC flow with respect to a peri-
odic solution with nonvanishing magnetic field and the ap-
pearance of other coexisting periodic branches, denoted by
period-3 in Table I, together with their described symmetry
properties, have been confirmed in high-resolution simula-
tions. Quasiperiodic and periodic solutions have also been
found applying the pseudospectral technique, but we have
not yet been able to classify all solution branches as system-
atically as given in Table I. We plan to continue the bifurca-
tion analysis for high resolutions, i.e., to determine the cor-
responding bifurcation diagram and to describe the
symmetry-breaking effects.

For the case of the~nonmagnetic! NSE, Podvigina and
Pouquet@9# have found a steady-state branch different from
the ABC flow and coexisting with it~or with solutions bifur-
cating from it!. The existence of a similar steady-state branch
for the MHD equations remains an open problem, which we
also plan to attack by means of high-resolution pseudospec-
tral techniques.
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APPENDIX

Here we give a complete list of the symmetry transforma-
tions for which the MHD equations with the ABC forcing

FIG. 7. Contour plot of the modulus of the magnetic field in the
planez51/2(x1y) (R510). The plane is parametrized by the co-
ordinatesx and y. The stagnation points on the diagonal line are
marked by asterisks. Thick lines correspond to contour levels above
65% of the maximum value.

FIG. 6. Magnetic field component along the diagonal axis at
different instants of time (R510). Stagnation points are marked by
asterisks.
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(A5B5C5R, k051) given by Eqs.~1!, ~17!, ~18!, and~7!
are equivariant~transformations of the local coordinates
modulo 2p):

T1: identity

T2: x1→x11p/2, x2→x32p/2, x3→2x21p/2;
T3: x1→x11p, x2→2x2, x3→2x31p;
T4: x1→x12p/2, x2→2x31p/2, x3→x21p/2;
T5: x1→2x31p/2, x2→x21p/2, x3→x12p/2;
T6: x1→2x11p, x2→x21p, x3→2x3;
T7: x1→x31p/2, x2→x22p/2, x3→2x11p/2 ;
T8: x1→x22p/2, x2→2x11p/2, x3→x31p/2 ;
T9: x1→2x1, x2→2x21p, x3→x31p;
T10: x1→2x21p/2, x2→x11p/2, x3→x32p/2 ;

T11: x1→x31p, x2→2x1, x3→2x21p;
T12: x1→2x2, x2→2x31p, x3→x11p;
T13: x1→x2, x2→x3, x3→x1;
T14: x1→x3, x2→x1, x3→x2;
T15: x1→x21p, x2→2x3, x3→2x11p;
T16: x1→2x31p, x2→x11p, x3→2x2;
T17: x1→2x3, x2→2x11p, x3→x21p;
T18: x1→2x21p, x2→x31p, x3→2x1;

T19: x1→x21p/2, x2→x12p/2, x3→2x31p/2;

T20: x1→2x12p/2, x2→2x32p/2, x3→2x22p/2;

T21: x1→2x22p/2, x2→2x12p/2, x3→2x32p/2;
T22: x1→2x11p/2, x2→x31p/2, x3→x22p/2;
T23: x1→x32p/2, x2→2x21p/2, x3→x11p/2;
T24: x1→2x32p/2, x2→2x22p/2, x3→2x12p/2.

In the list the transformations have been arranged so as to
make visible the group structure of of the octahedral group
O, the rotations that leave a cube invariant. It is known@17#
that the group can be decomposed according to

O5ø
•

3Z4ø
•

4Z3ø
•

6Z2 .

The elementsT2 , . . . ,T10 correspond to rotations by 90° of a
cube about the three axes through the middle points of its
faces and form together withT1 three copies of the cyclic
groupZ4. The elementsT11, . . . ,T18 may be interpreted as
rotations by 120° about the four diagonal axes~four copies
of Z3). Finally each element of the last block is, together
with T1, isomorphic toZ2 and is related to rotations by
180° about the axes crossing opposite edges~all axes men-
tioned here also cross the middle point of the cube!. Table II
is the group table for the octahedral groupO, calculated from
the transformations by means of theMATHEMATICA package
@18#.

TABLE II. Group table.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24

T1 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24
T2 T2 T3 T4 T1 T16 T20 T11 T13 T22 T18 T23 T10 T19 T7 T8 T24 T5 T21 T15 T9 T12 T6 T14 T17
T3 T3 T4 T1 T2 T24 T9 T23 T19 T6 T21 T14 T18 T15 T11 T13 T17 T16 T12 T8 T22 T10 T20 T7 T5
T4 T4 T1 T2 T3 T17 T22 T14 T15 T20 T12 T7 T21 T8 T23 T19 T5 T24 T10 T13 T6 T18 T9 T11 T16
T5 T5 T13 T23 T12 T6 T7 T1 T17 T24 T16 T8 T20 T22 T10 T4 T19 T21 T2 T14 T15 T11 T18 T9 T3
T6 T6 T22 T9 T20 T7 T1 T5 T21 T3 T19 T17 T15 T18 T16 T12 T14 T11 T13 T10 T4 T8 T2 T24 T23
T7 T7 T18 T24 T15 T1 T5 T6 T11 T23 T14 T21 T4 T2 T19 T20 T10 T8 T22 T16 T12 T17 T13 T3 T9
T8 T8 T11 T21 T17 T13 T19 T15 T9 T10 T1 T20 T5 T23 T4 T24 T2 T22 T7 T3 T16 T6 T14 T12 T18
T9 T9 T20 T6 T22 T23 T3 T24 T10 T1 T8 T16 T13 T12 T17 T18 T11 T14 T15 T21 T2 T19 T4 T5 T7
T10 T10 T16 T19 T14 T12 T21 T18 T1 T8 T9 T2 T23 T5 T22 T7 T20 T4 T24 T6 T11 T3 T17 T13 T15
T11 T11 T21 T17 T8 T2 T16 T20 T23 T14 T7 T12 T1 T3 T15 T9 T18 T13 T6 T24 T10 T5 T19 T4 T22
T12 T12 T5 T13 T23 T21 T18 T10 T4 T15 T20 T1 T11 T17 T9 T14 T6 T3 T16 T22 T7 T2 T24 T8 T19
T13 T13 T23 T12 T5 T19 T15 T8 T22 T18 T2 T9 T16 T14 T1 T17 T3 T6 T11 T4 T24 T20 T7 T10 T21
T14 T14 T10 T16 T19 T4 T17 T22 T7 T11 T23 T18 T3 T1 T13 T6 T12 T15 T9 T5 T21 T24 T8 T2 T20
T15 T15 T7 T18 T24 T8 T13 T19 T20 T12 T4 T6 T17 T11 T3 T16 T1 T9 T14 T2 T5 T22 T23 T21 T10
T16 T16 T19 T14 T10 T20 T11 T2 T5 T17 T24 T13 T9 T6 T18 T1 T15 T12 T3 T7 T8 T23 T21 T22 T4
T17 T17 T8 T11 T21 T22 T14 T4 T24 T16 T5 T15 T6 T9 T12 T3 T13 T18 T1 T23 T19 T7 T10 T20 T2
T18 T18 T24 T15 T7 T10 T12 T21 T2 T13 T22 T3 T14 T16 T6 T11 T9 T1 T17 T20 T23 T4 T5 T19 T8
T19 T19 T14 T10 T16 T15 T8 T13 T6 T21 T3 T22 T24 T7 T2 T5 T4 T20 T23 T1 T17 T9 T11 T18 T12
T20 T20 T6 T22 T9 T11 T2 T16 T12 T4 T15 T5 T8 T21 T24 T10 T7 T23 T19 T18 T1 T13 T3 T17 T14
T21 T21 T17 T8 T11 T18 T10 T12 T3 T19 T6 T4 T7 T24 T20 T23 T22 T2 T5 T9 T14 T1 T16 T15 T13
T22 T22 T9 T20 T6 T14 T4 T17 T18 T2 T13 T24 T19 T10 T5 T21 T23 T7 T8 T12 T3 T15 T1 T16 T11
T23 T23 T12 T5 T13 T3 T24 T9 T14 T7 T11 T10 T2 T4 T8 T22 T21 T19 T20 T17 T18 T16 T15 T1 T6
T24 T24 T15 T7 T18 T9 T23 T3 T16 T5 T17 T19 T22 T20 T21 T2 T8 T10 T4 T11 T13 T14 T12 T6 T1
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