PHYSICAL REVIEW E VOLUME 54, NUMBER 3 SEPTEMBER 1996
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We have studied the bifurcations in a three-dimensional incompressible magnetofluid with periodic bound-
ary conditions and an external forcing of the Arnold-Beltrami-ChildresBC) type. Bifurcation-analysis
techniques have been applied to explore the qualitative behavior of solution branches. Due to the symmetry of
the forcing, the equations are equivariant with respect to a group of transformations isomorphic to the octa-
hedral group, and we have paid special attention to symmetry-breaking effects. As the Reynolds number is
increased, the primary nonmagnetic steady state, the ABC flow, loses its stability to a periodic magnetic state,
showing the appearance of a generic dynamo effect; the critical value of the Reynolds number for the insta-
bility of the ABC flow is decreased compared to the purely hydrodynamic case. The bifurcating magnetic
branch in turn is subject to secondary, symmetry-breaking bifurcations. We have traced periodic and quasi-
periodic branches until they end up in chaotic states. In particular detail we have analyzed the subgroup
symmetries of the bifurcating periodic branches, which are closely related to the spatial structure of the
magnetic field[ S1063-651X%96)09309-9.

PACS numbgs): 47.20.Ky, 47.65+a, 47.27.Cn, 95.30.Qd

I. INTRODUCTION pressible Navier-Stokes equatiGiSE) [Eq. (3) below with
the magnetic fiel® dropped if an external body force

The generation and maintenance of magnetic fields by the
motion of electrically conducting fluids is the subject of dy- f=—1vV?Vpgc= ngVABC 2
namo theory. One of its main objectives is to explain the
existence of long lasting cosmical magnetic fields such ass applied in order to compensate for viscous losses. But they
for example, those of the Earth and the Sun. For a recerdre only stable solutions below a critical strength of the forc-
account of dynamo theory we refer to REE). ing or critical Reynolds number, respectively. Galloway and

Usually the magnetohydrodynamiMHD) equations are Frisch [7] investigated their linear stability. The nonlinear
employed to describe the dynamo effect. When the magnetibehavior of solutions to the NSE with the forcing given by
energy is small compared to that of the velocity field, oneEq. (2) has been studied numerically by Zheligovsky and
can consider the kinematic problem, that is, the inductiorPouquet[8] and by Podvigina and Pouqugd]. These au-
equation for a prescribed velocity field disregarding the rethors report various bifurcations that occur as the strength of
sponse to the motion of the fluid. In the kinematic frame theforcing (or the Reynolds numbgrs raised and lead to quali-
guestion is whether a fluid motion can amplify and maintaintatively different and partially coexisting solution branches,
the weak seed of a magnetic field. One of the successfuhcluding chaotic ones.
examples to produce a dynamo effect are the ABC flows Imposing the same kind of forcing, Galargt al. [10]

(named after Arnold, Beltrami, and Childresfirst investi-  investigated the complete system of MHD equations by

gated by Arnold 2], means of numerical simulations. From kinematic studies it is
known that for small Reynolds number the ABC flow with

Vage= (Asirkyz+ Ccokoy, Bsinkox + Acoyz, Csinkoy no magnetic field is also a stable solution of the MHD equa-
tions. Galantiet al. found that at some critical value of the

+Bcokox), (1) Reynolds number, the ABC flow loses stability to time peri-

odic solutions with a magnetic field, indicating the occur-

where A,B,C denote constant coefficients akgis a (also  rence of a dynamo effect.
constant positive wave number. ABC flows are strongly he-  Continuing these studies by Galaeti al. [10], we have
lical flows satisfying the Beltrami conditioW X v=\v, with investigated the MHD equations with the imposed ABC
A =ky, a necessary condition for the existence of chaotidorcing, for the special case &=B=C andky=1, by ap-
domains in the flow{2]. For these reasons, they have re-plying methods of the numerical bifurcation analysis as well
ceived much interegi3,4], notably in the kinematic context as group-theoretical methods. The aim of the present paper is
as candidates for fast dynamf@6] (for which the growth  to describe the bifurcation structure dependent on the Rey-
rate remains bounded from below by a positive constant asolds number as the control parameter. The MHD equations
the magnetic diffusivity tends to zero with our special forcing are equivariant with respect to a

The ABC flows are steady solutions of the incompressiblegroup of transformations isomorphic to the octahedral group.
Euler equation. They are also steady solutions of the incomWe have paid special attention to symmetry-breaking effects
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of the bifurcations. In particular, we have determined the

subsymmetries of bifurcating solution branches. In a com- V(X)= 23 (v e+ e )explik-x), 9)
panion papefl1l] a generalized ABC forcing is applied to kkizo

investigate the influence of the degree of helicity in the forc-
ing on the character of the first bifurcation of the primary

nonmagnetic stationary state. B(x)= 23 (BVe!+BPdP)expik-x),  (10)
In Sec. Il we cast the three-dimensional MHD equations kk%

into spectral form and explain the kind of truncation used,
while in Sec. Il the external forcing and its associated sym-

metries are explained. In Sec. IV we present the results of f)= 2 (FPeP+0d?)expik-x), (13)
our numerical bifurcation analysis, i.e., the bifurcations and kkizo

their symmetry-breaking effects. Then, in Sec. V the spatio-

temporal structure of the magnetic field, as well as its sym-

metry properties, is considered. Finally, Sec. VI contains a pP(X)= > pexp(ik-x), 12
brief discussion. kez?

where we have used polarization vect&f®,e{?) perpen-

II. BASIC EQUATIONS AND TRUNCATION dicular tok

We start from the equations for a nonrelativistic, incom- : 1) (2
pressible, electrically conducting fluid with constant material & -k=0, & Q< =
properties(cf., e.g.,[12]): o . .
el -g’'=1, =6 fori=12, (13)

ov 1 1
pl 5 T(v-V)v =prV?v—Vp- 2—M0V82+ M_O(B'V)B such that Eq(5) is satisfied automatically. Because of the

last condition in Eq(13) we have

+f, (3 . . _ .
v =, BL, =B (14
J
- T(v-V)B= 7V?B+(B-V)v, (4)  (an asterisk indicates the complex conjugaBy means of
the above Fourier ansdiggs.(9)—(12)], we easily get rid of
V.v=0. V.B=0 (5) both the thermaV p and magneti®’ B%/2, pressure terms in
' ' Eq. (3) and arrive at the system of ordinary differential equa-
wherep is the mass density the thermal pressure; the  10ns (ODES
kinematic viscosity, uo the magnetic permeability in a do)
vacuum, z the magnetic diffusivityf 7= (uqo) !, o denot- Uk . S 38 (1)_ (@) (B) K)o @y (m
ing the electrical conductivilly andf an external body force. dt Ipez/ az (& e" )(q )[v
The third and fourth terms on the right-hand side of ). p#0.k
constitute the Lorentz force. Transforming to nondimen- _B@®g®B) ]+f(j) (15)
sional quantities according to p Tkopd Tk
(i)
L2 dB
x—Xx/L, t—>t/ —, V—>V/ K, T_ 1sz(J) [ 2 2 Q<J) (q(<ﬁ) K)
14 L peZ a,B 71
p#0,k
P—’p/[;_—z, f—>f/[;_—3, BHB/EVMOP, (6) By vic=p™ p] (19
In the numerical calculations we have applied an isotropic
Equations(3) and (4) become truncation in wave-number space and taken into account

wave number with k?<12. This corresponds to 89vec-

oV tors, which amounts to studying a system of 712 ODEs.
(v V)v= Vv—Vp— —VBZ+(B V)B+f, (7)

lll. FORCING AND SYMMETRY

JB _p-lp2 In order to compensate for viscous and Ohmic losses,
TV-V)B=Py VIBH(B-V)V, ® some kind of external forcing has to be applied in ER).
We have used théhondimensionalforcing

whereP,, is the magnetic Prandtl numb&,= v/ .

We impose periodic boundary conditions and consider the f=k3Vagc, (17
equations in the domaifl=[27X27X 2], where the
mean values o¥, B, p and consequently dfare assumed to vgc defined by Eq(1), with the restriction
vanish. The solutions can be expanded into the complete set
of orthogonal eigenfunctions of the Stokes operator A=B=C=R, kqo=1. (18
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In the following, theR introduced here will be referred to as TABLE 1. Overview of the different solution branches.
the Reynolds numbefin accordance with the definition of

the Reynolds number used in previous studlié9)). In the Interval of

numerical calculations we have restricted ourselves to th8ranch stability forR Symmetry

caseP,,=1 andR has been our bifurcation parameter.

For this special ABC forcing the MHD equations are .
equivariant with respect to a discrete transformation grou erde'l S-FR<1L5 ©
that contains 24 elements and is isomorphic to the octahedrBFr!Od'3 7-~R<16.0 D4
group O (the rotation group of a cubg2,13,4. For details period-4 11.5R<17.3 Ds
of the group, namely, a list of the coordinate transformationst®"us-3 16.6cR<20.0
comments on the general group structure, as well as an efgrus-4 17.3R<17.9
plicit group table, we must refer to the Appendix. The wholechaos-3 R=20.0
symmetry group is, for instance, generated by the two transshaos-4 R=17.9
formationsT, and T5 (see in the Appendjx A number of

bifurcations observed in the system are related to the symyyced, but the periodic orbit as a whole is invariant. In this

ABC flow 0<R<5.7 O

metries. L o o _ special case the time shift can be interpreted as the action of
_Each transformatiofi is a combination of a rigid rotation  the reflection grougZ, mapping the orbit onto itself. In our
with a translation and can be written as numerical calculations we mainly examined the symmetry

properties of the orbits as a whole, not the time shifts in
detail, and thus Table | refers only to the total symmetry of
the orbits. The numbers in the branch designations in Table |
indicate the multiplicity of the branches, i.e., the humber of
coexisting branches that can be transformed into each other
by elements oD. So, for instance, period-3 stands for three
coexisting branches.
For R=7.8 a new(threefold periodic branch(period-3

x'=Tx=Dx+a, (19

where a prime denotes transformed quantit2sis an or-
thogonal 3x 3 matrix, anda is a constant vector. Associated
with this transformation of the position vectgris a trans-
formation of the vector field(x) [B(x) is transformed in the
same way according to

V' (x)=Dv(T ). (20) appears. This branc'h.is'from the peginning only partially
symmetric. Each orbit is invariant with respect to one of the
In Fourier space Eq20) takes the form three conjugate subgrougsf. the Appendix
1_
v, =Dvgexp —ik-a), (21) Ds={T1,T2,T3,T4,T6,T22,Tg, Toq}, (24
where D§={Tl,T5,T6,T7,T3,T24,T9,T23}, (25
~ D3={T,, T, T0.T10, T3, T10, g, Tor}. 26
k:Dflk, (22) 4 { 1,'8,19,110,'3,119, 16 21}> ( )

These subgroups are isomorphic to the dihedral gioup

and for the quantities{") andv{?) one obtains (the rotations and reflections of a square in a plane that leave
) the square invariaht Namely, the first four elements corre-
e i (@), () i) spond to rotations about one coordinate axis and form a sub-

vk —exp(—|k~a)z,l vie (D) & (23 group isomorphic to the cyclic growgy, while the remaining

elements correspond to the four reflections of the square per-
By using this re|ati0n(and the Corresponding one for the pendicular to the rotational axis of the first four elements. In
magnetic fieldl it can be checked numerically with respect to the octahedral group (rotation group of the cubewhich

which transformations of the symmetry group, if any, a par-does not contain reflections, these last four elements actually
ticular solution is symmetric. correspond to rotations by 180° about axes lying on the

plane of the square.

When traced backward§.e., for decreasing Reynolds
numbey, the branches period-3 disappear R+ 7.7, prob-

Table | gives an overview of the detected stable-solutiorably due to saddle-node bifurcatioftsirning pointsg for the
branches and their symmetries. For small Reynolds numbeysgeriodic solutions. For increasing values of the Reynolds
(weak forcing only the directly forced modesiwith  number, the branches period-3 undergo secondary Hopf bi-
|k|=1) are excited and the pure ABC flow with vanishing furcations atR=16.0, generating the torus branches torus-3.
magnetic field is a stable stationary solution. In our truncafigure 1 shows a corresponding torus solution, namely, the
tion (with 89 k vectorg, the ABC flow loses stability at projection of a trajectory onto a plane spanned by one veloc-
R=5.7 and a stable periodic solution with a nonvanishingity and one magnetic fieldFourie) component. AtR=20
magnetic field is born. Since only a single pair of complex-these torus branches lose stability to chaotic stétes Fig.
conjugate eigenvalues crosses the imaginary axis at th@). The chaoticity of the solutions has been verified by cal-
Hopf point, the new periodic branch, period-1, retains theculating the largest Lyapunov exponents for selected values
full symmetry. More precisely, the solution is no longer of the bifurcation parameter using an algorithm by Shimada
point symmetric with respect to all symmetry transforma-and Nagashimd14]. For instance, Fig. 3 shows, for the
tions; under the action of some of them a time shift is pro-branch chaos-3 &= 20.0, the cumulative value of the five

IV. BIFURCATION STRUCTURE
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FIG. 1. Torus solution foR= 16 (branch torus-B FIG. 3. Five largest Lyapunov exponents versus integration time

for the branch chaos-3 &= 20.

largest Lyapunov exponents dependent on the integration

time. It demonstrates a good convergence and that at least 10 test the sensitivity with respect to the degree of trun-
one of the exponents is positive. cation, we calculated the critical Reynolds number of the

We now return to the periodic branch period-1, which in afirst Hopf bifurcation for different truncations. There is a
symmetry-breaking bifurcation &= 11.5 splits up into four tendency to higher values of the critical Reynolds number for
periodic solutions forming the new branches period-4. Theveaker truncatiorimore modes taken into accoina more
symmetry-breaking bifurcation retains the invariance of thed€tailed description for the dependence on the number of

solutions with respect to the following conjugate subgroupsincluded modes is given in Ref15]. For comparison, we
each of which is isomorphic to the dihedral groDg: have also made calculations by means of a pseudospectral

code, with the(compared to the spherical truncatjorela-
D§={T1,T11,T12,T22,T19,Tz4}, (27 tively high resolution of 18 grid points in real space. In
these calculations the first bifurcation was observed at

(289  R=8.9. This value coincides with the critical Reynolds num-
ber for the magnetic instability in the corresponding kine-
matic dynamo problen5].

We have restricted ourselves to the forcing of the largest
4_ modesky=1 [cf. Eq.(2)] and have observed an instability of
D3={T1.T18:T17. T20,T23. Taoh- (30 the ABC flow on this largest scale. It should be noted that a

The branches period-4 bifurcate to the torus brancheforcing of higher mode&,>1 reduces the critical value of
torus-4, which are stable only for a relatively small interval the Reynolds number by an order of magnitude, which has
of the Reynolds number, with a final transition to chaos af?€€n demonstrated for the MHD equations by Galandl.
R=17.9 (generation of branches chaos-&or a certain in- L10] and for the purely hydrodynamic case by Wikthal.
terval of the Reynolds number these chaotic solutions exidit6): For instance, Wirthet al. have found a negative-
simultaneously with the torus branch torus-3. An overviewViScosity large-scale instability &=1.92.

of the whole bifurcation structure is depicted schematically

D5=1{T1,T13.T14,T20, Toa: To1},

D3={T1,T16.T15.T22, T21, Tog}, (29

in Fig. 4.
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Zheligovsky and Pouqu¢8] and Podvigina and Pouquet
[9] studied a related problem, namely, the purely hydrody-
namic instabilities of the ABC forced NSEwithout mag-
netic field. They described bifurcations, different stable-
solution branches, and symmetry-breaking effects.
Especially, they determined the value of the Reynolds num-
ber where the primary ABC flowfor the caseA=B=C) z
loses its stabilityR~13.044. Since for the MHD equations
already for a smaller value d&® a magnetic mode becomes
unstable, their resulting bifurcation structure is different
from that in the case of the NSE. But a common feature of
the bifurcation properties of both systerfddHD and NSH
is that the dihedral group, is a relevant subgroup, leaving
invariant some secondary branches, such as, e.g., period-3 in %
Table I. X

Another interesting point in the comparison of both sys-
tems is the occurrence of a relaminarization window for the
NSE, as reported in Ref§8] and[9]. A second stable sta- FIG. 5. Isosurfaces of the magnetic field with 65% of the maxi-
tionary solution, denoted byd,, different from the ABC mal modulus for the symmetric brancR+€ 10) in the periodic box
flow, was found thereA, coexists first with the stable ABC (X,y,Z between 0 and 2).
flow and then, after the ABC flow has become unstable, with
time-dependent solutions, including chaotic ones, that have Eq; the nonlinear problem, i.e., for the full MHD equa-
bifurcated from the ABC flow. For further increas&d A, {ions, one expects that after the first bifurcation, where the
becomes attractive even for solutions with initial conditionsagc flow loses its stability and a magnetic field appears, the
close to the(unstabl¢ ABC flow (called relaminarization  sirycture of the fields differs at first only weakly from that of
We must state here that we have not yet been able to find @e kinematic problem. In Sec. IV we already mentioned that
second stable stationary branch for the MHD equations, y&hjs Hopf bifurcation retains the original symmetry for the
we cannot exclude its existence, and numerical investiganeyly created periodic branch period-1. This symmetry has
tions with a much higher resolution using the pseudospectraj|sg an essential influence on the spatial structure of the cor-

method are going on. responding magnetic and velocity fields, briefly discussed
here. A surprising feature of the new branch is that the eight
V. SPATIAL STRUCTURE OF THE MAGNETIC EIELD stagnation points of the ABC flow survive, i.e., they remain

time-independent zero-velocity points with the same location

In this section we describe the structure of the magnetias for the original ABC flow. In Fig. 5 isosurfaces of the
field in real space and its changes under the influence ahagnetic field strength for a level of 65% of the maximum
symmetry-breaking bifurcations. In a kinematic dynamovalue are drawn. The cigarlike structure are clearly recogniz-
study using the ABC flow withA=B=C, Galloway and able also in the nonlinear regime. Due to the temporal peri-
Frisch[7] observed *“cigarlike” concentrations of the mag- odicity, the magnetic field oscillates and the shape of the
netic field about velocity stagnation points. The ABC flow jsosurfaces depends also on the time of a snapshot; some-
for the caseA=B=C has eight unstable stagnation points. times they look much more like blobs. To give an impression
The corresponding eigenvalues are real and have signsf the dynamics, we consider the fields on the diagonal line.
(+,—,—) or (—,+,+). The topological structure of the As already mentioned, the stagnation points remain un-
ABC flow and, in particular, the intersections of the stablechanged. Furthermore, their invariant one-dimensional mani-
and unstable manifolds of the stagnation points, which fornfolds are formed by the same straight lines. For the diagonal
a complicated web of heteroclinic lines, were compreheniine, containing two stagnation points, this follows directly
sively discussed by Dombe al.[4]. Stagnation points with  from the symmetry of the branch. Namely, as a consequence
a two-dimensional stable manifold have been denoted as of the symmetry with respect to the cyclic grodg as a
type and those with a two-dimensional unstable manifold asubgroup of the full symmetry group, the velocity field has to
B type. There are four stagnation points of each type and ane aligned with the diagonal direction. The same holds for
two points of different type are connected by a straight line the magnetic field.
forming a one-dimensional heteroclinic orbit. The cube diag- In Fig. 6 the component of the magnetic field along the
onal through the points (0,0,0) and €2,27), for ex-  diagonal line is shown for different instants of a time period
ample, is a one-dimensional invariant manifold belonging to(stagnation points are marked by asterjsi&rong oscilla-
the stagnation points (®4,37/4,37/4) (B type) and tions with a large amplitude occur around the stagnation
(7714, 7wl4,77/4) (« type). The rest of the ensemble of point of « type and the magnetic energy is mainly located in
stagnation points and associated one-dimensional invariaits neighborhood. The velocity field along the diagonal line
manifolds may be obtained by applying the symmetry transescillates only relatively weakly about the original ABC
formationsT,,T3,T4. The cigarlike structures of the mag- flow.
netic field, observed by Galloway and FrisiH as well as Figure 7 shows a contour plot of the modulus of the mag-
by Galantiet al. [10] for the kinematic problem, are local- netic field in a particular plane through the cube
ized about the stagnation points @ftype. z=1/2(x+Yy), which contains also thémain diagonal axis
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diagonal axis

_FIG. 6. Magnetic field component along the diagonal axis at  fiG. 7. Contour plot of the modulus of the magnetic field in the
different instants of timeR=10). Stagnation points are marked by planez=1/2(x+y) (R=10). The plane is parametrized by the co-
asterisks. ordinatesx andy. The stagnation points on the diagonal line are

marked by asterisks. Thick lines correspond to contour levels above

) .
and its stagnation points. Thick lines correspond to Ievels65/0 of the maximum value.

above 65% of the maximum value and the cigarlike structure

again becomes visible. . . . .
For the asymmetric branch period-4 only two of the stag- The brpajorcljtyb of th? _results ?]f Qurl t;)lfurcatt]on .an't:alys[s

nation points together with their invariant straight line syr- WEre obtained by applying a sphérical truncation in Fourier

vive. The others disappear, but they remain stagnation poinl%Dace retaining 8% vectors, which amounts to studying a
for other branches obtained by symmetry transformations>Y €M of 712 ODEs. To test thg sensivity c_>f our results with
espect to the degree of truncation in Fourier space, we par-

The spatial structure of the magnetic field has also changegi. I d h high lution b f
For some instant of time just one bloblike structure locate lally used a much higner resolution by means ol a pseu-
about the onex-type stagnation point is visible. Then it is dospectral method. The bifurcation structure seems to be the

shrinking and the three other cigarlike field concentrations 2 M€ or at least similar for all truncations. For instance, the

emerge, but without any stagnation points. This process an'(!l]s‘.tab'IIty .Of th? primary ABC flow with .reslpect to a per-
its reversal can be observed two times within one period. odic solution with nonvanishing magnetic field and the ap-

For the other asymmetric branch, period-3, no stagnatior?earance of other coexisting periodic branches, denoted by

points are present, but four cigarlike field concentrations ma f(;'ogr:[.ge'sn :;Zbée géte%gect:;.rrvmvgz t_r:]eg_ dﬁ_srgrs'g?(i.szrg%etg_
again be recognized. In contrast to the structures seen in Fi pertes, hav ! n g U™ imu

5, they are now deformed and shifted away from the locatio ons. Quasi_periodic and periodic solutions have also been
of the former stagnation points. The whole structure is oscil—Ound applying the pseudospectral technique, but we have

lating and at some instants the magnetic energy seems to pgt yet been able to classify all solution branches as system-
distributed over the whole cube aftically as given in Table I. We plan to continue the bifurca-

It is not the aim of this section to describe the structural’®" analysis for high resolutions, i.e., to determine the cor-

properties of the magnetic field for all branches listed inresponc;.[iingb bifkgrcati;n tdiagram and to describe the
Table I, but at last we would like to discuss briefly the cha-SYmMetry-breaxing etects.

) i o . . For the case of thénonmagnetic NSE, Podvigina and
otic branch chaos-3. It is interesting that also for this branch ouquef9] have found a steady-state branch different from

the magnetic energy is on average mainly concentrated i o A ) ) .

four tubelike structures. These oscillate and move irregularl e ABC ﬂO\.N and coexisting with |(c_or_W|th solutions bifur-

through the cube. The appearance of just four strong-fiel ating from iy. The _eX|stence _ofaS|m|Iar steady-state pranch
or the MHD equations remains an open problem, which we

regions is still reminiscent of the fous-type stagnation : .
points of the original ABC flow. also plan _to attack by means of high-resolution pseudospec-
tral techniques.

VI. DISCUSSION
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strength of the forcing is raised have been traced until they

eventually end up in chaotic states. Furthermore, we have APPENDIX

analyzed the relation between subgroup symmetries of bifur-

cating branches and the spatial structure of the magnetic Here we give a complete list of the symmetry transforma-
field. tions for which the MHD equations with the ABC forcing
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TABLE Il. Group table.
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(A=B=C=R, ky=1) given by Egs(1), (17), (18), and(7)

are equivariant(transformations of the local coordinates T,;:

modulo 2r):

Ty identity

Ty X1—Xq+ 72,
Tj: X1—Xq+ 7,
Ty X1— X1 — 72,
Ts: X1— — Xzt 7/2,
Te: X1— — X1+,
T X1—Xg+ 72,
Tg: X1—Xo— 7/2,
To: X1— —Xq,
T1o X1— —Xo+ /2,
Ty X1—Xz+ T,
Tio X1— =Xy,
Tis X1— X2,

Tia X1— X3,

Tis X1— X+ 77,
T X1— — Xzt 7,
Tz X1~ X3,
Tig X1— — Xo+ 7,

X1—Xo+ 72,

Xo—X3— /2,
Xo— = Xa,
Xo— — X+ /2,
Xo— Xo+ /2,
Xo—Xo+ T,
Xo—Xo— 7l2,
Xo— — Xq+ 7/2,
Xo— — X+,
Xo—Xq+ 72,

Xo— — X1,
Xo— —Xg+ 1,
Xo— X3,
Xo— X1,
Xo— — X3,
Xo— X+,
Xo— — X+,
Xo— Xz + T,

Xo—Xq— 72,

Xz— —Xo+ 7/2;
X3— — X3+ T,
Xg— X+ 7/2;
Xg— X — 7/2;

X3— — X3;

X3— — X1+ 72 ;

X3—Xg+ 72 ;
X3— X3+ ;
Xz3—Xz— /2 ;

Xgz— —Xp+
Xg— X1+ T,
X3 Xy,
X3— Xo;
Xz3— — X+,
X3— — Xa}
X3—Xo+
Xg— —Xq;

Xz— — X3+ 7/2;

Ty

X1— —Xq1— 77/2,

X1— —Xo— 7/2,

Xo— — Xg— 7/2,
Xo— — Xy — 72,

X3—> - X2_ 77/2,
X3— —Xg— 7/2;

T22 Xl—’7X1+ 7T/2, X2—>X3+ 77'/2, X3—>X27‘7T/2;
Tog X1—Xz— 72, Xo— —Xo+ 7/2, Xg3—Xq+ 7/2;
T24 X1—>_X3_7T/2, X2—>_X2_7T/2, X3—>_X1_7T/2.

In the list the transformations have been arranged so as to
make visible the group structure of of the octahedral group
O, the rotations that leave a cube invariant. It is kndi/]
that the group can be decomposed according to

0=U5%Z,U%Z,U%Z,.

The elementd,, ..., Tiocorrespond to rotations by 90° of a
cube about the three axes through the middle points of its
faces and form together with, three copies of the cyclic
groupZ,. The elementd 4, ...,T13 may be interpreted as
rotations by 120° about the four diagonal axésur copies

of Z3). Finally each element of the last block is, together
with T4, isomorphic toZ, and is related to rotations by
180° about the axes crossing opposite edgdsaxes men-
tioned here also cross the middle point of the quable I

is the group table for the octahedral grdDpcalculated from
the transformations by means of theTHEMATICA package
[18].
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