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The principle of extreme physical information~EPI! places physics on an information-theoretic footing. It
yields many of the fundamental wave equations of physics~of Klein-Gordon, Dirac, etc.!. EPI is based upon
the measurement of particle four-vectorsun with random errorsxn , n51,...,N. This leads to an additive Fisher
information form whose extremization provides the derivations. However, the model measurement procedure
was, in the past, overly restrictive: the real and imaginary partsqn(x!, n51,...,N of the probability amplitude
functions for the fluctuations were required to have nonoverlapping support regions. Here we rederive the
requisite information form without this restriction. Our model measurement procedure is simply the efficient
collection of four-data, that is,N independent measurements of four-coordinates of particles of the field. In
effect, each measurement defines a different degree of freedomqn(x! of the scenario.
@S1063-651X~96!02707-9#

PACS number~s!: 05.40.1j, 03.65.Bz, 89.70.1c

INTRODUCTION

Consider the following measurement scenario@1#. An ob-
server wants to define with optimum accuracy four-vectors
un ~say, on position!, n51,...,N, for one or more particles.
Thus he measures theun . Measurements are necessarily im-
perfect The imperfect data must imply a finite amount of
informationI , by some suitable measure. To satisfy his goal,
the observer forms optimum estimates of theun from the
measurements, in the presence of the finite scalarI . The
purpose of this paper is todefinethe informationI that is
appropriate to the measurement scenario.

The physics of the scenario lies in the fluctuations~called
x below! of the data from the ideal valuesun . The preceding
epistemological setting gives rise to a zero-sum mathemati-
cal game of information maximization between the observer
and nature@1#. The payoff point of the game establishes the
probability density function~PDF! on the required fluctua-
tions x.

The game arises as follows. DesignateJ as the physical
manifestation of data informationI @2#. The zero-sum nature
of the game follows from the fact that the observer and na-
ture form a closed system, so that any informationdI gained
by the observer is at the expensedJ of nature~the physical
phenomenon under study!. Thus dI5dJ or, equivalently,
d(I2J)50 so thatI2J5extrem.

This extremization problem also implies a game in which
both the observer and nature ‘‘want’’ to maximize their in-
formation states: the observer, because he seeks maximal
knowledge of the physical scenario; and nature, because the
observer is part of nature and, hence, must be mirroring na-
ture’s ‘‘attitude.’’ ~Nature’s attitude leads to a situation of
maximal disorder for the observer, as is discussed next.!

As we saw, the payoff point of the game is defined by a
variational problem of information distance (I2J)[K ex-
tremization.K is also called the ‘‘physical information.’’
Extremization of K via the Euler-Lagrange equation gives

the wave equation appropriate to the particle measured.
~The solution also minimizes@3# informationI , which means
maximally broad wave functions and hence maximal disor-
der in the space-time predictability of the particles. This
agrees with the second law.! In this way, the wave equations
of Schrödinger, Dirac, Klein-Gordon, Helmhotz@1,3,4#, etc.,
have been found to derive from an idealized measurement
procedure.

All such derivations are based upon use of an additive
form @Eqs.~19! or ~20! below# for information I . Previously
@1,4#, this form was derived under the assumption of asingle
data four measurement. We also assumed that the underlying
probability density function onx consists of a sequence of
functions@the amplitude functionsqn(x! defined in Eq.~18!
below# that do not have overlapping support regions. The
latter restriction is overly restrictive. It would be good to
avoid making it.

We show here that this restriction can be lifted. As will be
seen, the solution lies in replacing the previous scenario of a
single four measurement with one ofN independentfour
measurements.

DERIVATION OF INFORMATION FORM

In the measurement scenario,N four-vectors@4# of any
physical nature~positions or potentials, etc.! are observed,

yn5un1xn , n51,...,N. ~1!

Vectoryn denotes thenth four measurement of thenth four-
parameter vectorun in the presence of thenth error four-
fluctuationxn .

In accord with the observer’s aim, the datayn are to be
collected efficiently, i.e., independently. This can be accom-
plished by two different experimental procedures:~a! N in-
dependent experiments upon a single particle, measuring its
un at each repetition of the experiment; or~b! one experi-
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ment uponN particles, measuring theN different parameters
un that ensue from one set of initial conditions. In scenario
~a!, independence is automatically satisfied. In scenario~b!,
the particles must be assumed to haveun values that are
sufficiently separated to give the required independence in
the datayn .

Each component of every four-vector is, in general, either
purely real or purely imaginary@5#.

It is convenient to define ‘‘grand’’ vectorsu, y, dy over
all n as

u5~u1 ,...,uN!,

y5~y1 ,...,yN!,

dy5dy1 ••• dyN . ~2!

One can delineate two general reasons for taking data
y: ~i! when the goal is to estimate afunctionof ideal posi-
tions ~say! u, e.g., the electromagnetic four-potentialA~un!;
or ~ii ! when the goal is to estimate theu per se, as when the
u are the four positions of a material particle. For either
scenario~i!, ~ii !, we want to evaluate the information that
resides in all the datay.

Optimum, unbiased estimates

The observer’s aim is to learn as much as possible about
the parametersu. For this purpose, an optimum estimate

ûn[ûn~y! ~3!

of each four-parameterun is fashioned. Each estimate is,
thus, a general function of all the data. An example of such
an estimator is simplyyn , i.e., the corresponding data, but
this will usually not be optimum. One class of optimum es-
timators is ‘‘maximum likelihood’’ estimators@6#.

As with the case of ‘‘good’’ experimental apparatus, the
estimators are assumed to be unbiased, i.e., to obey

^ûn~y!&[E dyûn~y!p~yuu!5un , ~4!

wherep~yuu! is the conditional probability of all datay in the
presence of all parametersu. Equation~4! says that, although
a given estimate will generally be in error, on the average it
will be correct. Howsmall the error may be, is next estab-
lished. This introduces the vital concept of information.

Cramer-Rao inequality

We temporarily suppress indexn and focus attention on
the four components of any one~n fixed! foursome ofscalar
valuesun ,yn ,xn , n50,1,2,3. The mean-square errors from
the true valuesun are

en
2[E dy@ ûn~y!2un#2p~yuu!. ~5!

It is known @6# that each mean-square error obeys comple-
mentarily with an ‘‘information’’ quantityI n ,

en
2I n>1, ~6!

where

I n[E dyF] lnp~yuu!

]un
G2p~yuu!. ~7!

Equations~6! and ~7! comprise the ‘‘Cramer-Rao’’ inequal-
ity. They hold for either realor imaginary componentsun ;
see@5#. When equality is attained in~6!, the minimum pos-
sible erroren

2 is attained. Then the estimator is called ‘‘effi-
cient.’’ The I n thus comprise avectorof informations.

Stam’s information

We are now in a position to decide how to construct a
single scalar information quantityI out of the vector of in-
formationsI n . Regaining subscriptsn and summing on Eq.
~6! gives

(
n

(
n

1/enn
2 <(

n
(

n
I nn . ~8!

The left-hand sum of ‘‘intrinsic accuracies’’~as termed by
Fisher! equates to Stam’s proposed@7# information measure

I S[(
n

(
n

1/enn
2 <(

n
(

n
I nn ~9!

by Eq.~8!. ~We parenthetically note that Stam’s information,
in depending explicitly upon the error variances, ignores all
possible error cross correlations. But it is easily shown that,
for our additive error case~1!, where the datayn are inde-
pendent and the estimators are unbiased~4!, all error cross
correlations are zero.! We adapt Stam’s information to our
purposes.

The right-hand side of Eq.,~9! is a kind of ‘‘channel
capacity’’ C of the problem: when efficient estimators are
usedI s5C. Therefore, as in standard communication theory,
we adaptC as the measure of system information perfor-
mance. Then Eq.~9! becomes

I[C5(
n
E dy p~yuu!(

n
S ] lnp~yuu!

]unn
D 2 ~10!

in view of ~7!. This is the trace of the Fisher information
matrix @6#. The information form further simplifies, as fol-
lows.

Independent data and additivity of the information

As mentioned before, the data are collected indepen-
dently. Then the joint probability of all the data separates
into

p~yuu!5 )
n51

pn~ynuu!5 )
n51

pn~ynuun!. ~11!

This is a product of marginal laws. The latter equality fol-
lows since, by Eq.~1!, um has no influence onyn , mÞn.
Taking the logarithm of Eq.~11! and differentiating then
gives
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] ln p~yuu!

]unm
5

1

pn

]pn
]unm

, pn[pn~ynuun!. ~12!

Substitution of Eqs.~11! and ~12! into Eq. ~10! gives

I5(
n
E dy )

m
pm~ymuum!(

n

1

pn
2 S ]pn

]unn
D 2, ~13!

5(
n
E dynpn~ynuun!(

n

1

pn
2 S ]pn

]unn
D 2 ~14!

after integrating outdym for terms inmÞn, using normal-
ization of each probabilitypm . After an obvious cancella-
tion, we get

I5(
n
E dyn

1

pn
(

n
S ]pn
]unn

D 2. ~15!

Gallilean invariance

In the preceding, the parametersun are assumed to be
unknown andfixed, as was implied by the notation~ynuun!.
Then, because of the additive nature of the random compo-
nentsxn in Eq. ~1!, it must be that fluctuations inyn follow
those ofxn . Hence@8#

pn~ynuun!5pXn~yn2unuun!5pXn~yn2un!5pXn~xn!,

xn[yn2un , ~16!

assuming Galilean invarince. Then thepXn(xn) are indepen-

dent of absolute originsun . Substituting thePXn
(xn) into Eq.

~15! and changing the integration variables toxn , gives

I5(
n
E dxn

1

pXn~xn!
(

n
S ]pXn~xn!

]xnn
D 2. ~17!

Observing the disappearance of absolute origins@8# un from
the expression, the information likewise obeys Galilean in-
variance.

Use of probability amplitudes

Equation~17! further simplifies if we introduce real prob-
ability ‘‘amplitudes’’ qn~xn!,

I54(
n
E dxn(

n
S ]qn
]xnn

D 2, pXn~xn![qn
2~xn!. ~18!

The subscriptn of x can now be suppressed, since eachxn
ranges over the same values. Then Eq.~18! becomes

I54E dx(
n
“qn–“qn ,

x5~x0 ,...,x3!, dx[udx0udx1dx2dx3 ,

¹[]/]xn , n50,1,2,3. ~19!

Derivation of this equation was the aim of the paper. This is
the form of I that was used in all extreme physical informa-
tion ~EPI! based derivations of physical laws@1,3,4,9#.

Semicovariant form for the information

It is interesting to go one step further, using the fact thatx
is a four-vector, so that its first component is linear in the
imaginary unit i . Then the first term in the sum in~19! is
negative, and using covariant notation,~19! becomes

I54E d4xqn,lqn
,l . ~20!

We see that the derivative indicesl in this equation form a
covariant pair. Moreover, since indexn is merely a measure-
ment number, and not~yet! indicative of a vector component
~as it becomes in the applications of EPI!, ~20! is formally
covariant. However, once the vector connection is made, the
equation becomes noncovariant in indexn. Nevertheless, the
Euler-Lagrange solution that follows from the use of~20! in
EPI is generally covariant in indexn @1,4#, as well as in
coordinatesx. Evidentally, the fact that thederivatives in
~20! occur covariantly is sufficient to yield covariant solu-
tions to the EPI principle.

NET PROBABILITY p„x… FOR A PARTICLE

The measurement scenario also makes a prediction on the
overall PDFp(x! for a single particle. The single particle
case was scenario~a! as previously defined. Hence imagine
one particle to be repeatedly measured. Then we may drop
subscriptn in xn in Eqs.~16! and ~18!, which now give

pn~ynuun!5pX~xuun!5qn~x!2. ~21!

Here we want the netp~x! for all possibleun , in contrast
to Eqs.~16! and~18! which express it as conditional uponN
specific valuesun . To eliminate the dependence uponun
requires a Bayesian viewpoint@6#, whereby a probability law
for the ‘‘prior’’ parametersun is to be assigned. The param-
eters are fixed by the initial conditions of the experiment.
With the lack of any prior information on how the physical
system is constrained, the initial conditions must be assumed
to be random, such that theun are equally probable,

P~un![Pn5
1

N
~22!

by normalization. This may be regarded as an ‘‘equal
weights’’ or maximum ignorance property, analogous to that
of quantum mechanics.

Equations~21! and ~22! may be combined, via the parti-
tion law of statistics@10#, to give the net PDF onx as
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p~x!5(
n

pX~xuun!Pn5
1

N (
n

qn
2. ~23!

We specialize, next, to the case of the relativistic electron.
Define complex amplitudes as@1,4#

cn[
1

AN
~q2n211 iq2n!, i5A21, n51,...,N/2. ~24!

Fluctuationsx are now, in particular, those of the space-time
coordinates of the electron. Using Eq.~24! and then Eq.~23!
gives

(
n51

N/2

cn*cn5
1

N (
n

qn
25p~x!. ~25!

Hence the familiar dependence~25! of p(x! uponcn(x! is
a straightforward expression of the partition law of statistics
@10#. By ~25!, thecn(x! also have the significance of being
complex probability amplitudes. The Born assumption to
this effect does not have to be made. A further property of
thecn(x! defined in~24! is that they are found, via EPI@1,4#,

to obey the Dirac equation, which is of course the correct
result.

DISCUSSION

The key informationI form ~19! for the use of EPI has
been shown to derive from a realistic measurement
procedure—the independent and efficient collection of four-
vector data. The assumption thatI5C, the system channel
capacity, is justified by the success of EPI in deriving physi-
cal laws @1,3,4,9#. By our formulation, each measurement
yn provides a degree of freedomqn(x! in the information
sum~19! and in the PDF~25!. As examples,N58 measure-
ments define the quantum mechanics of the electron@1#;
while N51 defines classical Maxwell-Boltzmann statistics
@9#. This agrees nicely with the EPI view that ‘‘smart’’ mea-
surement~measurement followed by optimum estimation!
elicits physical law.

Galilean invariance effect~16!, ~17! is built into the
theory. In the special case where thex are space-time coor-
dinates, the Galilean invariance becomes relativistic invari-
ance as well. Finally, when information~19! is used in EPI,
as supplemented by definition~24! of complex amplitudes,
both the complex Dirac equation and the usual formula~25!
for the PDF of the electron result.
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