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Foundation for Fisher-information-based derivations of physical laws
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The principle of extreme physical informati@¢&Pl) places physics on an information-theoretic footing. It
yields many of the fundamental wave equations of phy&€«Klein-Gordon, Dirac, etg. EPI is based upon
the measurement of particle four-vect@swith random errors,,, n=1,... N. This leads to an additive Fisher
information form whose extremization provides the derivations. However, the model measurement procedure
was, in the past, overly restrictive: the real and imaginary pg(ts), n=1,... N of the probability amplitude
functions for the fluctuations were required to have nonoverlapping support regions. Here we rederive the
requisite information form without this restriction. Our model measurement procedure is simply the efficient
collection of four-data, that idN independent measurements of four-coordinates of particles of the field. In
effect, each measurement defines a different degree of freedyfx) of the scenario.
[S1063-651%96)02707-9

PACS numbds): 05.40:+j, 03.65.Bz, 89.70tc

INTRODUCTION the wave equation appropriate to the particle measured
(The solution also minimizegS] information!, which means

Consider the following measurement scenétip An ob-  maximally broad wave functions and hence maximal disor-
server wants to define with optimum accuracy four-vectorgler in the space-time predictability of the particles. This
0, (say, on positioh n=1,...,N, for one or more particles. agrees with the second Iawn this way, the wave equations
Thus he measures tfé} . Measurements are necessarily im- Of Schralinger, Dirac, Klein-Gordon, Helmhof2,3,4, etc.,
perfect The imperfect data must imply a finite amount ofhave been found to derive from an idealized measurement
informationl, by some suitable measure. To satisfy his goalProcedure. -
the observer forms optimum estimates of the from the All such derivations are based upon use of an additive
measurements, in the presence of the finite scalafhe  form[Egs.(19) or (20) below] for informationl. Previously
purpose of this paper is tdefinethe information! that is  [1.4] this form was derived under the assumption sfragle
appropriate to the measurement scenario. data four measurement. We also assumed that the underlying

The physics of the scenario lies in the fluctuatiécalled ~ Probability density function orx consists of a sequence of
x below) of the data from the ideal valug . The preceding functions[the amplitude functlonqn_(x) defined in Eq.(lS)
epistemological setting gives rise to a zero-sum mathematf2€!ow] that do not have overlapping support regiorhe
cal game of information maximization between the observefatter restriction is overly restrictive. It would be good to
and naturd1]. The payoff point of the game establishes the@void making it. _ o . _
probability density functionfPDF) on the required fluctua- We show here that this restriction can be lifted. As will be
tions x. seen, the solution lies in replacing the previous scenario of a

The game arises as follows. Designdtas the physical Single four measurement with one df independenfour
manifestation of data information[2]. The zero-sum nature Mmeasurements.
of the game follows from the fact that the observer and na-

ture form a closed system, so that any informatfbrgained DERIVATION OF INFORMATION FORM

by the observer is at the expendé of nature(the physical

phenomenon under studyThus 8l =8J or, equivalently, In the measurement scenari, four-vectors[4] of any

&1 —J)=0 so thatl —J=extrem. physical naturdpositions or potentials, ejcare observed,
This extremization problem also implies a game in which

both the observer and nature “want” to maximize their in- Yn= 0 +X,, n=1,...N. (1)

formation states: the observer, because he seeks maximal
knowledge of the physical scenario; and nature, because théectory,, denotes thath four measurement of theth four-
observer is part of nature and, hence, must be mirroring ngparameter vecto#, in the presence of thath error four-
ture’s “attitude.” (Nature’s attitude leads to a situation of fluctuationx, .
maximal disorder for the observer, as is discussed next. In accord with the observer’s aim, the dataare to be

As we saw, the payoff point of the game is defined by acollected efficiently, i.e., independently. This can be accom-
variational problem of information distancé{J)=K ex-  plished by two different experimental proceduresa) N in-
tremization.K is also called the “physical information.” dependent experiments upon a single particle, measuring its
Extremization of K via the Euler-Lagrange equation gives#, at each repetition of the experiment; @) one experi-
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ment uponN particles, measuring th different parameters where

6, that ensue from one set of initial conditions. In scenario

(@), independence is automatically satisfied. In scendmip

the particles must be assumed to hafjevalues that are |V5f d
sufficiently separated to give the required independence in

the datay, Equations(6) and(7) comprise the “Cramer-Rao” inequal-

Each component qf every four-vector is, in general, eitherity_ They hold for either reabr imaginary componentsy,
purely real or purely imaginarfs].

i ) define © 4 6 v d see[5]. When equality is attained it6), the minimum pos-
tis convenient to define “grand™ vector8, y, dy over  qjpje errore? is attained. Then the estimator is called “effi-

2

ol )
21O i), @

a0,

alln as cient.” The |, thus comprise aectorof informations.
0=(6,,....0y),
Stam’s information
y= (Y1, In), We are now in a position to decide how to construct a
dv=dv. ---d 5 single scalar information quantitly out of the vector of in-
y=ay1 Y- 2) formationsl ,. Regaining subscripts and summing on Eq.

One can delineate two general reasons for taking datge) gives
y: (i) when the goal is to estimatefanction of ideal posi-
tions (say 6, e.g., the electromagnetic four-potent&é,,); > 1/eﬁys2 > - (8)
or (ii) when the goal is to estimate tifeper se as when the nov nov

0 are the four positions of a material particle. For either e ,
scenario(i), (i), we want to evaluate the information that The left-hand sum of “intrinsic accuracies(as termed by
resides in all the datg. Fishe) equates to Stam’s proposgd information measure

Optimum, unbiased estimates ISEE 2 1/eﬁy$2 E . (9)
The observer’s aim is to learn as much as possible about "o "o

the meter#. For thi ose, an optimum estimate _ . .
para s 'S pUrpos ptmum est by Eq.(8). (We parenthetically note that Stam’s information,

0.=0 (y) 3) in depending explicitly upon the error variances, ignores all
neon possible error cross correlations. But it is easily shown that,
of each four-paramete#), is fashioned. Each estimate is, for our additive error casel), where the daty, are inde-
thus, a general function of all the data. An example of suctPendent and the estimators are unblg@d all error cross
an estimator is simply,,, i.e., the corresponding data, but correlations are zerpWe adapt Stam'’s information to our

this will usually not be optimum. One class of optimum es-PUrposes.

timators is “maximum likelihood” estimator§g]. The right-hand side of Eq(9) is a kind of “channel
As with the case of “good” experimental apparatus, the¢apacity” C of the problem: when efficient estimators are
estimators are assumed to be unbiased, i.e., to obey usedl ;= C. Therefore, as in standard communication theory,

we adaptC as the measure of system information perfor-

- - mance. Then Eq9) becomes
(0y(y))= J dy6(y)p(y|0)= 6, (4)

J Inp(y|0)|?
wherep(y|6) is the conditional probability of all datain the 'ECZEH: f dy p(y| 0)2;4 <—c90n (10)
presence of all parameteisEquation(4) says that, although .
a given estimate will generally be in error, on the average it

. : in view of (7). This is the trace of the Fisher information
will be correct. Howsmall the error may be, is next estab- . . . N
: o . ! . matrix [6]. The information form further simplifies, as fol-
lished. This introduces the vital concept of information.

lows.

Cramer-Rao inequalit
quatlty Independent data and additivity of the information

We temporarily suppress indax and focus attention on . .
b Y SUpp As mentioned before, the data are collected indepen-

the four components of any orie fixed) foursome ofscalar S .
values,,y,.x,, v=0,1,2,3. The mean-square errors from dently. Then the joint probability of all the data separates
viJdviNp It Ll A |nt0

the true value9, are

e]z}zf dy[by(y)— gv]zp(y| 0). (5) p(y| 0):nl:[1 pn(yn|0):nl:[1 pn(ynlon)- (1)

It is known [6] that each mean-square error obeys compleThis is a product of marginal laws. The latter equality fol-
mentarily with an “information” quantityl ,, lows since, by Eq(1), 8, has no influence ory,, m#n.
) Taking the logarithm of Eq(11) and differentiating then
el,=1, 6 gives
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dInp(yl®) 1 dpn
30, Pn 96n,’

anpn(yn|0n)- (12 |:4f dX; Vaq,-Va,,

Substitution of Egs(11) and(12) into Eqg.(10) gives X=(Xo,-. Xa),  dx=|dxo|dx,dx0dxs,
V=al9x,, v=0,1,23. (19
1 (dp,\2
I= ; f dy 1;[ pm(ym|0m)2y 02 (W) (13 Derivation of this equation was the aim of the paper. This is
" m the form ofl that was used in all extreme physical informa-
tion (EPI) based derivations of physical lays,3,4,9.

B 1 [ dpn)\?
_; fdynpn(y”w“)z aﬁ 36, (14) Semicovariant form for the information

It is interesting to go one step further, using the fact that
is a four-vector, so that its first component is linear in the
imaginary uniti. Then the first term in the sum if19) is
negative, and using covariant notatigh9 becomes

after integrating outly,, for terms inm=n, using normal-
ization of each probabilityp,,. After an obvious cancella-
tion, we get

|=4f d*XQn 20 - (20)

1 apn \ 2
l=2jdyn—2( p”). 19
n We see that the derivative indicasin this equation form a
covariant pair. Moreover, since indexis merely a measure-
ment number, and ndyet) indicative of a vector component
Gallilean invariance (as it becomes in the applications of ERR0) is formally
In the preceding, the paramete#ls are assumed to be covariant. However, once the vector connection is made, the
unknown andfixed as was implied by the notatioty,|,). equation becomes noncovariant in indexN\evertheless, the
Then, because of the additive nature of the random compd=uler-Lagrange solution that follows from the use(26) in
nentsx, in Eq. (1), it must be that fluctuations ip, follow ~ EPIis generally covariant in index [1,4], as well as in

those ofx,,. Hence[8] coordinatesx. Evidentally, the fact that thelerivativesin
(20) occur covariantly is sufficient to yield covariant solu-
Pn(Ynl 6h) = Px_(Yn— Ol 61) = Px_(Yn— 6h) =Px_(Xn), tions to the EPI principle.

NET PROBABILITY p(x) FOR A PARTICLE
Xn=Yn— on ’ (16)
The measurement scenario also makes a prediction on the
) ) ) ) ) overall PDF p(x) for a single particle. The single particle
assuming Galilean invarince. Then thg (x,) are indepen- case was scenari@) as previously defined. Hence imagine

dent of absolute origing, . Substituting thé®x (x,) into Eq.  one particle to be repeatedly measured. Then we may drop

(15) and changing the integration variablesxp, gives subscriptn in X, in Egs.(16) and (18), which now give
2 pn(yn|0n):px(x|0n)ZQn(X)2- (21
1 5an(Xn)
|:; f dx, Dy (X 2 ) (17) Here we want the ngi(x) for all possibled, , in contrast

to Eqgs.(16) and(18) which express it as conditional updh
specific valuesé,. To eliminate the dependence up@h

Observing the disappearance of absolute orif#}, from requires a Bayesian viewpoifti], whereby a probability law

the expression, the information likewise obeys Galilean infOr the “prior” parameters#, is to be assigned. The param-
variance. eters are fixed by the initial conditions of the experiment.

With the lack of any prior information on how the physical
system is constrained, the initial conditions must be assumed
Use of probability amplitudes to be random, such that th#, are equally probable,

Equation(17) further simplifies if we introduce real prob-

ability “amplitudes” g,(x,), P(6,)=P,= (22

1
N

On |2
|:4; J anEV ((9Xm) L P, (%) =000%). (18) by normalization. This may be regarded as an “equal
weights” or maximum ignorance property, analogous to that
of quantum mechanics.
The subscriph of x can now be suppressed, since eagh Equations(21) and (22) may be combined, via the parti-
ranges over the same values. Then B&) becomes tion law of statisticd10], to give the net PDF om as
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1 ) to obey the Dirac equation, which is of course the correct
PO =2 Px(X| ) Po=1 2 . (23 resul.

o o DISCUSSION
We specialize, next, to the case of the relativistic electron. ) )
Define complex amplitudes #4,4] The key informationl form (19) for the use of EPI has

been shown to derive from a realistic measurement
1 procedure—the independent and efficient collection of four-
=__ i - = vector data. The assumption tHat C, the system channel
¥ JN (Gan-2+1020), 1=V=1, n=1.. N2 (24 capacity, is justified by tr?e success of EPI ?;1 deriving physi-
cal laws[1,3,4,9. By our formulation, each measurement
Fluctuationsx are now, in particular, those of the space-timey,, provides a degree of freedom,(x) in the information
coordinates of the electron. Using E@4) and then Eq(23)  sum(19) and in the PDR25). As examplesN=8 measure-

gives ments define the quantum mechanics of the elecfddn
while N=1 defines classical Maxwell-Boltzmann statistics
N/2 1 [9]. This agrees nicely with the EPI view that “smart” mea-
E ot l//“:N E qﬁ=p(x). (25) sqrgment(measurement followed by optimum estimadion
n=1 n elicits physical law.

Galilean invariance effect16), (17) is built into the
Hence the familiar dependen¢b) of p(x) upon,(X) is  theory. In the special case where thare space-time coor-
a straightforward expression of the partition law of statisticsdinates, the Galilean invariance becomes relativistic invari-
[10]. By (25), the ,(x) also have the significance of being ance as well. Finally, when informatidd9) is used in EPI,
complex probability amplitudes. The Born assumption to as supplemented by definitiqg24) of complex amplitudes,
this effect does not have to be made. A further property oboth the complex Dirac equation and the usual form@g
the ¢,(x) defined in(24) is that they are found, via EP1,4], for the PDF of the electron result.
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