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We investigate the relaxation of a strongly turbulent fluid to metastable states, in times much shorter than the
dissipation time scale. Several simulations of decaying two-dimensional Navier-Stokes flows were performed,
which show the relaxation to organized states dominated by coherent vortex structures of length scales com-
parable to the size of the system. In the case of periodic boundary conditions, the organized state is charac-
terized by a strong correlation between vorticity and stream function, the second of which satisfies a sinh-
Poisson equation quite accurately. However, in the case of free-slip boundary conditions the relaxed state does
not display any significant correlation between its vorticity and its stream function. Notwithstanding, in both
cases the role of nonlinearities is found to be essential even at these late stages of the evolution. However, we
show that even severe truncations of a few~short wave number! nonlinearly coupled Fourier modes provide an
accurate description of the long-term dynamics of the fluid. Therefore the dynamics of the flow in these
metastable states is somewhere in between a strong turbulent regime and a~mostly linear! dissipative relax-
ation stage.@S1063-651X~96!03506-4#

PACS number~s!: 47.27.Jv

I. INTRODUCTION

Thanks to the increasing computational resources avail-
able in recent years, it has become possible to study long-
standing problems like the decay of two-dimensional turbu-
lent Navier-Stokes flows at very long times. Numerical
simulations of this process show the formation of coherent
vortex structures@1# at times much shorter than the viscous
dissipation time scale. Thismetastablestate relaxes slowly
toward the final trivial state, with zero fluid velocity every-
where.

In the coherent, nontrivial state, the system is dominated
by the largest scales, with concentration of vorticity in a few
cores. The simulations performed in@2#, which correspond to
periodic boundary conditions, show a state with two cores
that can be adequately described by the sinh-Poisson equa-
tion. This behavior has been related to the negative tempera-
ture state of the discrete inviscid line vortex model@3# by a
two-fluid formulation of the continuous Navier-Stokes flow
@4#.

The temporal decay of two-dimensional turbulence has
been studied with high spatial resolution by Brachetet al.
@5#, Mc Williams @6#, and Montgomeryet al. @4#. The simu-
lations in @5# display the early formation of macrovortices
together with small-scale structures, such as vorticity-
gradient sheets, associated with an initial inverse cascade
process~to large scales! for the energy and a direct cascade
~to small scales! for the enstrophy. The direction of these
cascades is consistent with those obtained for an externally
driven two-dimensional turbulent flow. However, these
simulations do not extend to times long enough to study the
relaxation of the system to metastable states.

Mc Williams @6# claims that, when vorticity concentra-
tions are sufficiently intense, the cascade processes are vir-
tually suppressed: there is a cessation of spectral transfer and
nonlinearities can be neglected. However, as reported by

Montgomeryet al. @7#, the long-time behavior of the flow,
characterized by the formation of two macrovortices, still
displays features characteristic of a turbulent flow, like a
broadband spectrum and cascading processes.

Nonetheless, even though the energy spectrum at these
long times follows a power law that varies ask27 or steeper,
it is sharply peaked at small wave numbers. It is therefore
arguable whether these steep spectra can be considered
broadband, as expected for strong turbulent regimes. This
suggests that we can describe the long-time behavior of the
system with relatively few Fourier modes, taking, however,
their nonlinear interactions into account.

Our simulations show that a Fourier truncation to a few
long-wavelength modes describes very well the dynamics of
the system in this coherent nontrivial stage of the turbulence
decay. In the case of periodic boundary conditions, the sinh-
Poisson equation is also verified for the truncated system,
and the parameters governing the equation evolve in time in
very good agreement with the full, nontruncated system.

The organization of the paper is as follows. In Sec. II we
present the dynamic equations and describe the characteris-
tics of the numerical code. The properties of the metastable
states described by the sinh-Poisson equation are summa-
rized in Sec. III. The results for periodic boundary conditions
and free-slip boundary conditions are shown in Sec. IV. Sec-
tion V is dedicated to the study of long-wavelength trunca-
tions. The conclusions are listed in Sec. VI.

II. MODEL EQUATIONS AND NUMERICAL
SIMULATIONS

Given a two-dimensional incompressible flow in the
(x,y) plane, the evolution equation for the scalar vorticity is

] tw5@c,w#1n¹2w, ~1!
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which is obtained by taking the curl of the Navier-Stokes
equation. In Eq.~1!, n is the kinematic viscosity,c(x,y) is
the stream function, which is related to the two-dimensional
velocity field by vx5]yc, vy52]xc, and
w(x,y)5]xvy2]yvx is the scalar vorticity field, which sat-
isfies

w52¹2c. ~2!

The Poisson bracket in Eq.~1! is defined as

@c,w#5]xc]yw2]yc]xw. ~3!

We consider the flow in a square box of sidesL52p and
assume periodic boundary conditions in both directions. Due
to the periodicity, the fields can be expanded in a Fourier
series,

c5(
k

cke
ik•x, c2k5ck* , ~4!

w5(
k
wke

ik•x, w2k5wk* , ~5!

wherek is a two-dimensional vector of integers and the as-
terisk denotes complex conjugation. We numerically solve
~1! and ~2! with a dealiased pseudospectral method, i.e.,
working in Fourier space, with implicit time integration in
the linear term~the dissipative term! and an explicit, two-
step Adams-Bashforth@8# technique in the nonlinear term.
The initial conditions were chosen so as to simulate a highly
turbulent state. The modal energy for the initial state is

E~k!5H C@11~k/6!4#21 if k,k0 ,

0 if k.k0 , ~6!

whereC and k0 are constants. Thus the energy spectrum
@2pkE(k)# is initially broad, varying ask23 at small wave-
lengths, which in a stationary turbulent regime corresponds
to the energy spectrum in the enstrophy inertial range. The
modulus of the initial stream function in Fourier space is
obtained from

E~k!5k2ucku2. ~7!

The complex phase is chosen randomly with a uniform dis-
tribution law in @0,2p#. The Reynolds number for this flow
is

R5
^v2&1/2l

n
, ~8!

where ^v2&1/2 is the rms velocity andl is a typical length,
both depending on initial conditions. Working with dimen-
sionless units, and choosing a mean velocity and a typical
length of order 1, the Reynolds number is of order 1/n,
which is also the time by which the system decays to the
trivial (v50) state. We have performed simulations for Rey-
nolds numbers of the order of 1000.

III. FORMATION OF COHERENT VORTEX
STRUCTURES: SINH-POISSON EQUATION

For freely decaying two-dimensional turbulence, energy
and enstrophy are inviscid invariants, i.e., conserved quanti-
ties if no dissipation is present. Indeed, they satisfy the equa-
tions @9#

dE

dt
522nV, ~9!

dV

dt
522nP, ~10!

whereV is the enstrophy (V5(k4ucku2) andP the palin-
strophy (P5(k6ucku2).

Also, it can be demonstrated@10# that the ratioV/E de-
cays monotonically in time. This ratio can be interpreted as a
mean square wave number of the flow, since expandingV
andE in their Fourier components, it becomes

V

E
5

(k4ucku2

(k2ucku2
;^k2&. ~11!

Thus the monotonic decrease of this ratio can be interpreted
as an increase of the average wavelength. In other words, the
system evolves in time toward states dominated by the larg-
est scales available~the largest allowed by the boundary con-
ditions!.

A first atempt at understanding these organized states has
been the mechanism ofselective decay@11#. Because enstro-
phy decays faster than energy, a variational principle is in-
voked, minimizing enstrophy with the constraint of constant

energy. Writing enstrophy asV5 1
2 *w2d2x and energy as

E5 1
2 *cwd2x, the variational principledV2ldE50, with

l a Lagrange multiplier, leads to a linear equation,

w52¹2c5lc. ~12!

Then vorticity is proportional to the stream function in these
states. The solutions of Eq.~12! are single Fourier modes,
and the one which ensures minimumV/E is a superposition
of modes withuku51.

However, Montgomeryet al. @2# showed in their simula-
tions that vorticity and stream function in the coherent states
can be described by the relationship

w52¹2c5csinh~bc!, ~13!

which is known as the sinh-Poisson equation. The param-
etersc andb are obtained by a fitting procedure. This rela-
tionship can be explained in terms of an alternative varia-
tional principle ~see, for instance,@12#!. Let us define a
positive vorticity fieldw1 and a negative vorticity fieldw2

in such a way thatw6>0 andw5w12w2. Let us assume
that these fields are respectively proportional to the number
of positive and negative vorticesn6, each of which satisfies
passive scalar evolution equations. Therefore for this gas of
vortices we can define the entropy as

S52E w1lnw1d2x2E w2lnw2d2x. ~14!
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Let us further assume that the total positive and negative
vortices are approximate invariants at large Reynolds num-
bers (W65*w6d2x5 const, andW15W2), as well as the

energy of the system [E5 1
2 * u¹cu2d2x5 1

2 *c(w1

2w2)d2x#. Maximization ofS subject to these constraints
leads to

w5w12w25c1e
bc2c2e

2bc. ~15!

Since w52¹2c, the change c→2c implies that
w→2w and thereforec15c25c/2. Thusw5csinh(bc).

The above variational principle is a simplified version of
the variational principle proposed by Mongtomeryet al. @4#.
These authors define positive and negative vorticities in the
following way: at t50 they are the positive and negative
parts of the total vorticity; fort.0 they are the solutions of
evolution equations analogous to Eq.~1!. These equations
assure exact conservation of total positive and negative vor-
ticity, for both the inviscid and the viscous cases. Moreover,
these invariants are also conserved in any arbitrary truncation
in Fourier space.

Other studies of equilibrium statistical mechanics applied
to two-dimensional flows can also be found in@12–14#. For
instance, Robert and Sommeria@14# seek for maximal en-
tropy states with the constraints of all the constants of mo-
tion of the Euler equations. Their approach provides a rela-

tionship between vorticity and stream function,w5 f (c),
which characterizes the steady state. This functionf displays
an exponential behavior and is such that its second derivative
has the same sign asc, therefore behaving very much like a
sinh function.

IV. NUMERICAL RESULTS

A. Periodic boundary conditions

In this section we display the results of numerical simu-
lations of Eqs.~1! and ~2! for periodic boundary conditions
in a square box of sides 2p and using a spatial resolution of
96396 gridpoints. This moderate resolution allowed us to
perform several simulations, for different types of initial con-
ditions.

In the early stages of the evolution~betweent50 and
t510) the decay is indeed governed by an inverse energy
cascade associated with the formation of macrovortices, and
a direct enstrophy cascade connected to the generation of
vorticity-gradient sheets, as reported by Brachetet al. @5#
and Mc Williams@6#. At longer times, as reported by Mont-
gomeryet al. @1#, the flow is increasingly dominated by the
larger structures. The vortices of the same sign merge until
just two vorticity cores of opposite sign are left. This behav-
ior is clearly observed in Fig. 1, which displays the stream

FIG. 1. Stream function contours at different times. Dotted
~solid! lines indicate negative~positive! values of stream function.
The thickest lines correspond to zero values. The square boxes have
sides of length 2p.

FIG. 2. Velocity field over a coded image of scalar vorticity at
different times. Light tones correspond to positive values of vortic-
ity and dark tones to negative ones. The square boxes have sides
2p.
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function contour lines at different times, and in Fig. 2, which
shows the velocity vector field over a halftone of the vortic-
ity field.

As mentioned above, in this case the coherent state is well
described by the sinh-Poisson equation~13!. The correlation
between vorticity and stream function can be seen in Fig. 3,
which shows a scatter plot of the vorticity versus stream
function for different times. Byt560 we can perform a fit-
ting of the two parameters of Eq.~13! and their evolution in
time. We also calculated the correlation betweenw and
sinh(bc), which becomes better than 99% byt.200.

Due to the periodic boundary conditions, we can tile the
plane with copies of the 2p32p square domain on which
the simulations have been carried out~see Fig. 1!. If we do
this, we observe that the characteristic length scale of the
vortices is such that four vortices, two with positive and two
with negative vorticities, fit into a tilted square domain. The

sides of this square are rotated by 45° with respect to the
original axes and thus have a length equal to 2A2p. This
arrangement is consistent with two properties that the as-
ymptotic state must satisfy: on one hand, the conservation of
total vorticity, which is exactly equal to zero inside each
square; on the other hand, the tendency of the system to
reach a state of maximum wavelength, compatible with the
size of the domain. It is clear that the diagonal is the largest
length that can fit into a square, and this is probably the
reason why the vortices organize themselves along the di-
agonals.

The vorticity and the stream function are very small at
any point on the sides of the tilted squares. Had we obtained
a perfectly symmetrical state, one with four vortices of iden-
tical shapes, the vorticity and the stream function would be
exactly equal to zero at these sides. For this reason we de-
cided to perform numerical simulations on a square domain

FIG. 3. Scatter plots ofw vs c at different
times. By t560 the correlation betweenw and
csinh(bc) is better than 95%.
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with a combination of periodic and free-slip boundary con-
ditions on the stream function, i.e.,c50 at the borders.

B. Free-slip boundary conditions

The combination of periodic and free-slip boundary con-
ditions ~also called Dirichlet boundary conditions! is
achieved by imposing the conditionc50 at the borders in
the expansion~4!, which implies that

c5(
i , j

ai jsin~ ix !sin~ jy !, ~16!

wherei , j run over the positive integers. It can be shown that
the subspace spanned by the functions sin(ix)sin(jy) is invari-
ant under the evolution given by Eqs.~1! and ~2!.

We have performed a second set of numerical simulations
of Eq. ~1! with the same choice of initial conditions as in the
previous section but only allowing the valuesp and 0 for the
initial phases. We had two motivations for carrying out these
simulations. On one hand, we expected to obtain an evolu-
tion similar to the one observed in the tilted square of the
previous section. Furthermore, we expected it to be easier to
analyze in terms of analytical solutions of the sinh-Poisson
equation, which are known for Dirichlet boundary condi-
tions.

On the other hand, due to the symmetry that any function
of the form~16! has on the (0,2p)3(0,2p) domain, solving

the Navier-Stokes equation on this domain amounts to solv-
ing it simultaneously in four squares of lengthp with Di-
richlet or free-slip boundary conditions~see, e.g., Fig. 4!.
Free-slip boundary conditions are physically relevant for in-
viscid fluids. Since we are interested in the evolution for
times much shorter than the dissipation time scale in flows
with high Reynolds numbers and we are not looking at the
dynamics in the boundary layer, we think they are also rel-
evant to our analysis.

The results of the simulations are shown in Fig. 4. The
four independent boxes of sidesL5p can clearly be seen.
The mirror antisymmetry of the stream function, imposed by
~16!, is also apparent in this figure. The flow in this case is
also increasingly dominated by the largest structures allowed
by the boundary conditions, which at long times consist of
four vorticity cores.

This evolution from an initially disordered state to a
rather organized state is shown in the scatter plots of vortic-
ity versus stream function of Fig. 5. This figure convincingly
shows that the ordered state cannot be described by the sinh-
Poisson equation, or by any other functional dependence be-
tweenw andc.

Given this particular behavior, which is clearly different
from the one achieved in the previous section, it seems natu-
ral to ask the following two questions. First, why does this
happen? Second, since these simulations are a subcase of
those with periodic boundary conditions, how typical or how
peculiar are these departures from the relaxation to a sinh-
Poisson state? As mentioned above, the subspace spanned by
the functions sin(ix)sin(jy) is an invariant subspace of the
space of periodic functions. However, we have found nu-
merically that is not attracting. Indeed, we have simulated
Eqs. ~1! and ~2!, considering an initial condition in this in-
variant subspace plus a small addition of white noise. The
solution remained close to the invariant space for a while but
finally moved away from it. Furthermore, the simulation
showed that the system relaxed to a sinh-Poisson state. There
are lots of other invariant subspaces in the space of periodic
functions, such as those spanned by functions of the form
sin(inx)sin(jny) with n an arbitrary integer, or the tilted
square described above. However, they seem to be all un-
stable under a small perturbation. Therefore, if we consider
arbitrary initial conditions in the space of periodic functions
~with initially broad energy spectrum and random phases!, it
is highly plausible that we will end up relaxing to a final
state described by the sinh-Poisson equation.

Since free-slip boundary conditions are physically rel-
evant, it is important to understand why in this case we did
not get a relaxation to a final sinh-Poisson state. As men-
tioned above, the relaxation to a sinh-Poisson state can be
explained through a variational principle: entropyS @see the
definition in Eq.~14!# is maximized subject to various con-
straints. One of these constraints is the conservation of en-
ergy, which is only approximately conserved in the dissipa-
tive case. We find that in the case with free-slip boundary
conditions, energy decays much faster than in the case with
periodic boundary conditions. Without the constraint of con-
servation of energy, the variational principle leads only to a
trivial state (w50). Therefore we conclude from our simu-

FIG. 4. Stream function contours at different times, for a com-
bination of free-slip and periodic boundary conditions (c50) at the
borders. The square boxes have sides 2p.
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lations that in the case of free-slip boundary conditions the
system does not reach a metastable nontrivial state described
by the sinh-Poisson equation.

There is an interesting fact, though, which indicates that
the relaxation to the sinh-Poisson state plays a role also in
this case. Att560 we observe in Fig. 4 that there are eight
vortices of two different shapes, four in the middle region
and four at the bottom and top of the square. On the other
hand, Fig. 5 looks like the plot of two functions, as if there
were two possible functional relations betweenw and c.
Moreover, one of them looks like a sinh-type curve. In fact,
we have found that points coming from the vortices at the
top and bottom of Fig. 4 fall into this curve, which can be
fitted by one of the formc sinh(bc), at least for values of
c away from zero. Therefore some of the vortices that are
formed in the case of free-slip boundary conditions do relax

to a sinh-Poisson state. However, the dissipation enters into
play much sooner than in the case with periodic boundary
conditions and this effect seems to destroy the correlation
betweenw andc.

V. LONG-WAVELENGTH TRUNCATIONS

We return to the case of periodic boundary conditions to
study a long-wavelength truncation of the system in the co-
herent stage of the evolution.

Figure 6 shows the energy spectra at three different times.
We can see that, however broad, byt560 it is sharply
peaked, with a decaying exponential law ofk27 at short
wavelengths. This suggests that we perform a truncation of
Fourier modes~besides the truncation imposed by the finite
resolution!, and test how it affects the dynamics of the sys-

FIG. 5. Scatter plots ofw versusc at differ-
ent times for the case withc50 at the borders.
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tem at this late stage of the evolution.
In order to do this comparison, we evolve the whole sys-

tem up to t5100. At that time we truncate the system to
Fourier modes withuku<4 and evolve only those modes for
t.100. The spectra obtained for this drastically truncated
system are compared in Fig. 7 to the spectra of the complete
system at timest5150 andt5250. The agreement is very
good.

Figure 8 shows the stream function of the truncated sys-
tem at different times, as well as a comparison with the
stream function for the complete system. The only noticeable
difference between the two evolving systems is just a slight
rigid shift of the patterns of the truncated system with respect
to the complete system.

The truncated system also evolves to a sinh-Poisson state
as shown in Fig. 9, where we have plottedw vs c for both
the truncated and the complete systems at different times.
Moreover, the parametersc andb coincide within the fitting
procedure error.

The energy transfer between modes and indirectly the de-
gree of approximation made by the truncation can be quan-
titatively measured by means of the following procedure.
Suppose we consider a truncated system with modes up to a

certain k5k0 . It follows from the evolution equation
~Navier-Stokes! written in Fourier space that the energy bal-
ance equation for this reduced system is

] tEk0
5Pk0

22nVk0
, ~17!

whereEk0
5 1

2 (k<k0
k2ucku2 is the energy of the truncated

system,Pk0
5Re@(k<k0

k2ck* @c,w#k# represents the nonlin-

ear energy transfer from modes withk.k0 ~the modes out of
the truncated system!, and 2nVk0

is the dissipation term,

with Vk0
5 1

2 (k<k0
k4ucku2 the enstrophy of the truncated

system.

FIG. 6. Energy spectrum for the whole system at three different
times.

FIG. 7. Energy spectrum for the truncated system~dashed line!,
with maximum wave number of order 4 and for the complete sys-
tem ~solid line!, with maximum wave number of order 40, at times
t5150 andt5250. The truncation starts att5100.

FIG. 8. Stream function contours for the truncated system and
for the complete system, at different times, for the case with peri-
odic boundary conditions. The square boxes have sides 2p.

FIG. 9. Evolution of the sinh-Poisson state in the truncated sys-
tem compared to the complete system, for periodic boundary con-
ditions.
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The ratioPk0
/2nVk0

is a measure of the importance of

the nonlinear exchange of energy between modes ofk.k0
and modes withk<k0 compared to the dissipative term.

A similar equation can be obtained for the enstrophy bal-
ance,

] tVk0
5Gk0

22nPk0
, ~18!

where Gk0
5Re(k<k0

k4ck* @c,w#k represents the nonlinear

enstrophy transfer from modes withk.k0 , and 2nPk0
is the

dissipation term, withPk0
5 1

2 (k<k0
k6ucku2 the palinstrophy

of the truncated system. The importance of the nonlinear
exchange of enstrophy between modes ofk.k0 and modes
with k<k0 compared to the dissipative term can be mea-
sured by the ratioGk0

/2nPk0
.

The energy transfer and enstrophy transfer ratios can be
seen in Fig. 10 and Fig. 11. In Fig. 10 the ratios are plotted
as functions of time fork054. By t5100 both ratios are
smaller than 0.06; thereforek054 is a reasonable choice for
truncating the system. In Fig. 11 the ratios are plotted as
functions ofk0 for two different times.

VI. CONCLUSIONS

We have studied the relaxation of strongly turbulent two-
dimensional incompressible flows via numerical simulations
of the Navier-Stokes equations. We have performed these
simulations for periodic boundary conditions and for free-
slip boundary conditions. We have observed a relaxation to a
sinh-Poisson state in the first case. In the second case, how-
ever, the system did not reach any metastable state in which
vorticity could be approximated by any function of the
stream function. We think this is due to the fact that energy
is dissipated much faster in this second case, thus preventing

the system from reaching the above mentioned metastable
state. Although the case of Dirichlet boundary conditions
considered in this paper is a subcase of the more general case
of periodic boundary conditions, we have found that the in-
variant subspace of solutions which satisfy our free-slip
boundary conditions is not stable. Furthermore, an initial
condition arbitrarily close to this invariant space finally re-
laxes to a sinh-Poisson state. For this reason we believe that
most initial conditions with arbitrary periodic boundary con-
ditions will reach the metastable state in which the stream
function satisfies the sinh-Poisson equation.

For the general periodic case, we performed a truncation
to a few long-wavelength modes, neglecting the interaction
with the remaining modes~modes withk.k0). The nonlin-
ear interactions among these long-wavelength modes were
consistently taken into account. The truncated system ap-
proximates very well the dynamics of the complete system in
the coherent stage of the evolution, as can be seen by com-
paring energy spectra and stream function. Moreover, the
evolution of the sinh-Poisson state is very well reproduced,
as can be seen by comparing the parametersc and b at
different times.

We calculated the energy and enstrophy nonlinear transfer
rates between the truncated system and the discarded modes
and found that, after a certain time much smaller than the
dissipation time, and for a certain~small! k0 , they are neg-
ligible compared to the dissipation terms. This result indi-
cates that the state of the flow is intermediate between a fully
developed turbulent regime and a linear dissipative stage.
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