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Effective boundary extrapolation length to account for finite-size effects
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The crossing probability functionr,(H,W,p) for bond percolation on a square lattice with rectangular
boundaries up tdd X W=1024x 256 in size is determined numerically to high precision using a hull-walk
simulation technique. Ap= p. it is found that the finite-size corrections to Cardy’s formula can be accurately
accounted for simply by assuming that the effective aspect ratio of the systeg=igH +h)/(W+w) with
h~w=0.36, without any additional correction terms. The consthrasdw are essentially twice the extrapo-
lation lengths to the effective location of the boundary by the continuum percolation field. Resuits &br
p#p. and fordm,/dp at p. verify that =,(H,W,p) scales aSsz)l)(H/W,(p—pC)Wl”’) or equivalently as
7P (H/IW, (p— pe) (HW) V%), [S1063-651X96)13609-§

PACS numbe(s): 64.60Ak, 05.70.Jk

[. INTRODUCTION is also calledP(p) and p’(p); the notations,(p) has be-
come especially common in the mathematical literature on
The function,(p), which gives the probability of cross- this subjec{12-14 and is adopted here.
ing a rectangular system between opposite boundaries in In the past few years there has been particular interest in
(say the vertical direction, is central to the theory of perco-the behavior ofm, at and near the infinite system critical
lation. In the limit of an infinitely large systemr, (p) goes thresholdp,. Langlands and co-workefd2,13 carried out
over to a step function, demonstrating the discontinuous ns&Xtensive Monte Carlo simulations for rectangular systems
ture of the percolation process and defining its transitiorPf various sizes and aspect ratiogequal to the height di-
point p.. exactly. For finite systems, the behavior of(p) vided by width, and Cardyf 14] developed an exact theoreti-

near p. reflects finite-size scaling, and is relevant to g‘?‘! formulagorrvfgr,p&) forr]thce_dcasg ofrf]re? bF’U”fd_’C“fY poIn-
renomalization-grougRG) theory. itions on the left and right sides, in the limit of infinitely

The behavior of this function has been the subject of nu_large systems, using conformal invariance theory. Cardy

merous investigations over the years. Bernasgbhshowed found good agreement between his predictions and the nu-

that a properly defined square boundary for bond ercolatiomerical results of Langlands and co-workers, with some
broperly d d y P '%8mall deviations which he attributed to finite-size effects. In
on a square lattice produces a perfectly symmetric functio

. 1 ; _ rf15] we showed that Cardy’s formula can be written in an
,(p) about the poinp=3 for systems of all siz&, imply-

i C ) X ! explicit convergent series form, the first three terms of which
ing ,(p.) = p.= 3 whenL—oo. This result is supportive of yield

the one-parameter RG constructien(prg) = Prg first pro-

posed by Young and Stinchcom[i&], since in this case the Wf(f,pc)

RG gives the critical point exactly. Extensive Monte Carlo

simulations of,(p) for various systems have been carried 4 2

out by many authors, starting with Kirkpatri¢B] and Rey- b( e "R_ e T34 g 13, ) r<1

nolds, Stanley and Kleif4]. The latter author§4] also in- 7 13

troduced a variety of important estimates mf for finite 1—b(e‘”’3r— ie‘7”’3’+ ie—l%/sr...) (=1
7 , ;

systems that derive fronr,(p) [which they callR(p)], in- 13

cluding p,y, the average under the distributio,/dp; (1)
Pmax. the maximum in this distribution; ang._., the cell-

to-cell RG fixed point; as well as the RG fixed poimts.  where b=2%33T"(2)/T(3)?>~1.426 348 256, and the super-
Stauffer and co-workers investigated percolation in manyscript C is used here to indicate Cardy’s result explicitly;
situations using a method in which the distribution of valuesthese three terms are sufficient to calculate to at least

of p where percolation first occurs is determined; that distri-eight significant figures for all.

bution is precisely,/dp [see[5], wherell(p) is used to In general,7,(r,p.) for an infinite system is a universal
indicate the crossing probabilityln more recent work, Hu quantity that is independent of the underlying lattice and type
and co-workers developed a Monte Carlo histogram techef percolation, but dependent upon the type of boundary con-
nique that allows,(p) [which Hu called the existence dition on the sides and upon the dimensionality. Thus the
probability E(p)] to be efficiently determined over a wide type of lattice does not affect the asymptotic universal be-
range ofp [6—10. Monetti and Albano studied a criterion havior (as long as the lattice has an isotropic sgalmit it

for percolation related to the crossing probabilitwhich  does influence the nature of the finite-size corrections. For
they called the percolation probability P.p){ for some the study of the latter, each system has to be investigated
rectangular systemd1]. Note that the crossing probability independently.
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(a) (b) (c)

FIG. 1. (8 The hull-generating walk for bond percolation on a
square lattice(b) The construction of the equivalent hull configu-
ration on the bond lattice, with heavier lines representing occupied
bonds. The dual lattice is also shown by dotted lines, with the
heavier ones representing dual-lattice boridsAn alternative rep-

resentation of the bond lattice that is often used; the dangling bondrsati'(jl(ieze. i-;hetr:\zlli \(/)Vfa:EeOPn:xirr?](ijt;nﬁzliahs{;et\?E:t/vrz]all‘cl](hr:;ss;
on the right-hand side do not contribute to vertical percolation, butoefo.re bei[;lg%rapped on the right-hand s?de allawsto be deter-

r ful to make a mor mmetri lit nstruction hown, .
are useful to make a more symmetric duality construction as sho Mined for allH.

In [16], the author investigatestt,(p.) for site percolation (rule R; of [4]). We find 7, by a simple hull-generating
on a square lattice within square systems of different sizesandom walk that yields results simultaneously for rectangles
L XL, both analytically forlL<7 and numerically for larger of all widths W and heightH from a single simulation. For
L. It was found thatr, (L,p.) — 3 asL—o, with an apparent the behavior ap=p,, we show that very precise agreement
correction of order 1. In [16] it was also pointed out that with Cardy’s analytical formula can be achieved by using an
the resultw,(p.) = 3 evidently conflicts with the predictions effective lattice-boundary offset constant for both the width
of a RG analysis, since the RG fixed pointds,pre) limits ~ and height dimensions; no additional correction terms of the
to (p¢,pc), where p.=0.59274 ... when L—«, and type proposed by Aharony and Hovi appear to be necessary.
therefore predicts that, should be 0.592 ®t. . . instead of These lattice offset constants represent a continuum extrapo-
1. However, as discussed ii7] and[18] and more recently lation length to the effective location of the boundary, and
in [19], this conflict more accurately concerns the single-introduce analytic correction terms of orde¥\into m, (ex-
parameter RG theory or the position-space RG, rather thacept whenH =W, when these finite-size corrections disap-
the complete formal RG theory which can include “irrel- pear for bond percolationWe also carry out simulations of
evant” variables as well as normal finite-size effects. In anyrw, atp#p. and ofdw, /dp atp., and find that the expected
case, the one-parameter RG fixed paannotin general be scaling behavior can be achieved to high precision by includ-
used to determiner, . In [16] it was also shown that differ- ing only the lattice offset constants.
ent estimates op. deduced fromr,(p) for finite systems

behave quite differgntly, and, in particular, that,, Pmax: Il ALGORITHM
P._c, and other estimates convergepioan order oL more
quickly thanpgg doesfor this particular systentsite perco- Hull walks were first introduced ifi25] for site percola-

lation, square lattice, square boundary, free gidBsis rapid  tion, and in[26] for bond percolation on square latticgdso
convergence for some of these quantities was obseiwetd  see walks of Gunn and Ortai27] and Ruijgrok and Cohen
not well understoodpreviously[4,20]. Further work on the [28], and references if29]). That hull walks can be used to
question of 7, (p.) for different boundary conditions and find =, directly was first pointed out by Grassberg&0].
higher-dimensional systems has been recently carried o@ur previous simulation§16] considered the case of site

[21-24. percolation only. Here we consider bond percolation, on a
In a very recent publication — while the present work square underlying lattice.
was being completed — Hovi and Aharofi9] reported on The procedure for findingr, for this system is illustrated

extensive work investigating and expanding upon the point$ Fig. 1. The walk takes place on a square lattice whose sites
first put forth in[17]. One of the main predictions ifl7]  are at thecentersof the bonds on the actual percolation lat-
was that a confluent singularity yields a leading finite-sizetice. The walker begins at the lower-left-hand corner of this
correction term of ordek ~ ¥ to 7, , where®,;~0.85. How- lattice and moves only along diagonals. At each site it turns
ever, these authors also allowed for the analytic correctionby 90°, either in the counter-clockwisgCCW) direction

of orderL ™! as suggested ifil6], so the existence of the with probability p or the clockwise(CW) direction with
confluent term is difficult to show numerically. [A9] Hovi  probability 1—p, except when a site has previously been
and Aharony provided some numerical evidence that theisited, in which case the walker always turns either CW or
confluent term is necessary, for the case of site percolatio©CW so as not to cross its path “kinetic self-avoiding

on square systemsee especially their Fig.)5but in our  trail” [31,32). The bottom and left-hand boundaries of the
opinion the existence of such a term has not been showsystem are reflecting, and the top and right-hand boundaries
unequivocally. are adsorbing and terminate the walk.

In the present work we investigate bond percolation on a This walk generates a path that bounces back and forth
square lattice with rectangular system boundaries over a coetween the centers of the occupied bonds of the hull and the
tinuous range of aspect ratios. We consider a vertical crossenters of the vacant bonds surrounding the tardlequiva-
ing and assume free boundary conditions on the two sidelently the bonds on the dual lattigeturning CCW corre-
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FIG. 3. A plot of m,(H,W,p.) — 7;(r,pc) vs r=H/W, show- FIG. 4. A plot of m,(H,W,p.)/@S(r,pc) vs r, showing that

ing a discrepancy with Cardy's formula due to finite-size effects. the relative discrepancy increases with increasing

sponds to hitting an occupied bond, and CW a vacant or Il RESULTS

dual-lattice bond. If the top boundary is reached first, then A. Comparison with Cardy’s formula at p=p,
the underlying bond system has percolated top-to-bottom as
shown in Fig. 1, while if the right-hand side is first reached,

then it has np(or, equalenyly, Fhe dual lattice has perco- computer. The results are plotted in relation to Cardy’s for-
lated left to righf, as shown in Fig. 2 for a rectangular sys- mula in Figs. 35

f[em. Clearlly', by the symmetry of this construction, the cross- In Figs. 3 and 4 we show the difference and ratio, respec-
ing probgbmty must Pe_ exactly one-ha_lf for square s_?/stemsﬁvely, of the two quantitiesr,(H,W,p.) and Wf(r,pc), as a
of any size wherp=3, in agfee_me”t W'th Berna'tsconl's '®" function of r=H/W, for the four values oW. While the
sult. In the example shown in Fig. 1, with @55 simulation  itterence in Fig. 3 is small and goes to zero for larges
lattice, one effectlvely s!mul_ates bond percolation on theypserved by Cardy14] using the data of Langlandst al.
2X 2 bond lattice shown in Figs.() or 1(c). To denote the [12] (with much lower precision than given hgréhe ratio in
lattice size in this paper, the bond dimension@in this  Fig. 4 is seen to increase linearly with increasingvith a
case will be used. slope that depends upon system size. Although larger sys-
To generalize this method to rectangles in a way that altems have lower slopes and give closer agreement with
lows all aspect ratios to be considered simultaneously, weheory, clearly for a system of any finite size that ratio can be
carry out this walk on a rectangular system of high aspeciade arbitrarily large by making sufficiently large.
ratio, keeping track of the maximum height the walk attains The deviations shown in Figs. 3 and 4 are finite-size ef-
before reaching the right-hand side, as shown in Fig. 2. Sydects which we attribute to an uncertainty in the size of the
tems of height less than this maximum walk height percolatesystem, or equivalently in the location of its boundary. To
top to bottom, while those of greater height do not. Thus, byaccount for this uncertainty, we consider that the effective
accumulating the number of runs in which the maximumaspect ratio should not be simpy/W but instead be given
height ranges fronH to the maximum of the system, we by
determine the probability of percolating for a system of
heightH. Furthermore, in the same simulation we keep track
of the rightmost position that the walk has gone, and in doin

A sample of 100 000000 systems was simulated at
p=p.=3, requiring a few weeks of time on a workstation

reii=(H+h)/(W+w), (2)

. . Yvhereh andw are phenomenological constants. These con-
so also find, (H, W, p) for all widthsW. A sample program tants represent a correction for the discretization of con-

and explanation which describes in detail how this is carrie inuum space by a lattice and can be interpreted as twice the

out is available from the auth¢83]. , distance to the effective location of the boundary, extrapo-
~ The simulations were performed on an actual lattice Ofiated from the continuumlike behavior found deep within the
dimensions 2048512 lattice points, which represents a system. This length is analogous to the extrapolation length
bond lattice of HXW=1024x256. The random number that appears when relating discrete random walks to con-
generator that was used is described in the Appendix. Whilenuum diffusion in a system with an adsorbing boundary
the procedure in principle allows the determination of[34], and the Milne extrapolation length that appears in neu-
w(H,W,p.) for all H andW up to these maximum values, tron adsorption. For such an idea to make physical sdnse,
the resulting output would be rather large, so we retaineéindw should be of order of the lattice spacing, and should be
data only forW=32, 64, 128, and 256, artd<4W. independent of lattice size for larger lattices. They will, how-
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FIG. 6. A plot ofH—r W vs r 4 calculated from the measured
values of, through(3). The dashed line has slope and negative
intercept of 0.36.

FIG. 5. A plot of m,(HW,p)/75(Fe,Pe) VS e =
(H+h)/(W+w) with h=w=0.36. The deviations from unity for
W=64, 128, and 256 are within statistical error, while those for
W=32 atr<1 are small but statistically significant. Their vertical

scale here is magnified five times over that of Fig. 4. asymptotic valuesr/3 andb, respectively, for finite systems.

By substitutingr o=r/(1+w/W)+h/(W+w) in place ofr

ever depend upon the choice of lattice, percolation tgite N this exponential, it can be seen that in general one might
or bond, and boundary condition. have to adjush andw independently to fit both the coeffi-

Figure 5 shows the results wheg is used in place of cient and decay of the leading exponential term precisely.
r, takingh=w=0.36. Now, in contrast to what was seen in Nevertheless, we found that an excellent fit of the large-
Fig. 4, the agreement between the simulation and theoreticRehavior could be achieved with=w. Forr<1, some de-
results is within statistical error, except for small deviationsViations for the smallest lattice are apparent, and the data for
for W=32. However, deviations for such small are ex- this range are hardest to fit §9). For even smaller lattices,
pected, and these results show téaneed only be of order it May be necessary to allotv#w in order to fit the large-

100 for an infinite system to be very accurately approxi-l behavior well, in which case the value for=1 would not
mated, ifr o« is used for the aspect ratio. be matched precisely. However, this would be for quite small

The value 0.36 foh andw was determined both empiri- lattices where finite-size corrections are not expected to be
cally [adjusting to get the best agreement with] and by ~ Simple. Note that the correction term proposed by Aharony
the following procedure. For each measured value oft"d Hovi[17] would also not be useful here, since it would
7,(H,W,p.), the corresponding value of the effective aspecthave its strongest effect on larger, not smaller, systems, rela-

ratio r .4 was determined from the inverse () tive to the 1W correction implied by(2). .
The above results imply that the largebehavior of the

3 curves in Fig. 4 should be exprq/3)/expmt/3)
- ;ln(t+ HI+SR ), =exd —(@/3)(rw—h)/(W+w)] ~1+7rw/3W for large
Feft= 1 (3) W, orlinear with sloperw/3W~0.377MW. The slopes of the
lines in Fig. 4 agree with this formula.
' The use of2) implies that the effective lattice dimensions
are larger than the actual ones by the amotnésdw. For
where t=1,/b, and u=(1—,)/b. These values of 4 the case of bond percolation with free boundaries on the
were used to construct a plot 6f—r W versusr.s. Be-  sides, the lattice dimensions are thus effectively 0.36 greater
cause(2) impliesH —r W= —h+r 4w, it follows that such in each dimension, or, equivalently, the extrapolation of the
a plot should yield a straight line with slope and intercept percolation field to where it reaches the zero value overhangs
—h. The results of this plot for the four values W are the boundary by 0.18 lattice spacing on each of the four
shown in Fig. 6. The data fall nicely on a single straight line,sides. Thus, for example, a 78A00 bond percolation sys-
verifying (2), and yieldh~w=0.36 within an error of about tem is effectively 100.38 100.36 in size, and therefore still
+0.01. It is consistent with these data to tdkandw equal has an effective aspect ratio of unity. A 20Q00 system is
to each other, which allows,(W,W,p.) =73 to be satisfied effectively 200.36< 100.36 in size, and has an effective as-
exactly. Note that this choice makes the fitted line throughpect ratio 1.9964, while a 204100 system has an effective
the data in Fig. 6 pass precisely through the p¢ing). aspect ratio of 2.0064. Note that no finite-size system has an
While fixing h=w thus guarantees that, at r=1 is effective aspect ratio of exactly 2.
matched exactly, it does not necessarily follow that the large- The use ofr . also implies that the corrections te,(r)
r behavior of#, could also be simultaneously fit. This is are analytic. To see this, writ€2) as rqg=r+ 35, where
because the asymptotic behaviormf for larger is of the  é=(h—rw)/(W+w), and expand the crossing function
form Bexp(—Ar), with A andB differing slightly from their  about the nominal value of the aspect ratieH/W:

3
I
N

\%
N

—|=In(u+3u"+ 2B, )|, =,
T
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FIG. 7. A plot of 7,(H,W,p) vs res for the four parameter FIG. 8. Plot as in Fig. 7 but for all eight values pfand four
values W,p) = (256,0.50}, (128,0.501 68p, (64,0.502 828 and  values ofw, with the 32 different plots falling on 14 distinct curves
(32,0.504 757 [all satisfying @—p)W>”=—0.064, which are  with (from bottom to top (p—p.)WY* = 0.304 437, 0.181 019,
collapsed to the upper curve, and for the four valuesp) = 0.107 635, 0.064, 0.038 055, 0.022 627, 0.013 454, and continuing
(256,0.499, (128,0.498 318 (64,0.497 172 and (32,0.495 248  with negative values in reverse order. The ratio of these numbers is
[all satisfying (—p.)WY"=0.064, which are collapsed to the 234

lower curve, showing scaling to high precision. .
Runs were carried out atp=0.501, 0.501 682,

52 0.502 828, and 0.504 757, and at 0.499, 0.498 318,
7 (H W) = 70, (1) + 87 (F) + —7,"(F) -+~ 0.497 171, and 0.495 243. These values were chosen so that
v Y v 2 " |p—p/ W all have the same valug.064 for W= 256,
128, 64, and 32, respectively, for each of these two sets of
=, (r)+ _ 7' (r) four cases(Note here we useWV rather thanw+w to cal-
v W+w/ culate the values gb; includingw changes only slightly.)
5 Approximately 2 000 000 runs were carried out at each value
1 h_ﬂ o (r)e-- (4) of p.
2\ W+w v ' In Fig. 7 we show the plot of the eight values pfeach

with the single corresponding value oV such that

Here the derivatives omr, are taken with respect tg, and  |P— P/ W*”=0.064. The four runs fop>0.5 all collapse on
we assum@=p,. Clearly, this result is analytic itV for a  the upper curve, and the four runs fo0.5 all collapse on
fixed r, containing terms of order M+w), the lower curve. Deviations from the expected scaling form
1(W+w)2 . . ., orequivalently of orders W, 1M\? . .. . are ne{arly imperceptible, even on a much-expanded plqt.
Whenr=1, (4) gives no correction for bond percolation In Fig. 8 we plot the data of all 32 curves for these eight

sinceh=w implies 6= 0, but for other systemuch as site values ofp and all four values ofN. The 32 curves fall on
N R : 14 different scaling curves corresponding to 14 different val-
percolation on a square latticé# 0 and(4) gives O(1/\W) ! g curv ponding ! v

: _ ues ofJ p—p/WY". These curves represent the scaling func-
corrections even when=1 as seen i16]. Note that, at oy (1) 555 function of its first argument with its second
r=1, we haver,(1)=—m,(1)=-052024% ... [15] argument fixed to 14 different values. No corrections to scal-

ing, other than the use ofy for the aspect ratio, were nec-
B. Scaling behavior for p# p, essary to make a precise collapse.
While the data collapse shown in these two figures is
For p away fromp,, one expectsr,(H,W,p) to depend  expected according to the simple scaling arguments, this is
universally upon two ratios of the three length quantitiesthe first time that such behavior has been shown explicitly as
H, W, andé~A|p—pc| ", werew is the correlation-length  a function ofr (except for the casp=p., which was given
exponent E4/3 in two dimensionsand A is a lattice- in[12,13). Previous studies of scalinge.,[9-11,19) have
dependent constar(i=rom this point on we will not mention generally dealt with a fixed value ofand variablep — that
finite-size corrections explicitly, although in the analysis ofis, the behavior ofr{") with respect to its second variable.
our results we will generally continue to use Use-h and  Note that scaling in a different system has been studied by
W-+w for H andW, respectively. One could write this ex- Bercheet al.[35].
pected behavior as,gl)(H/W, (p—po) W), or as an equiva-
lent but more symmetric form as 7752)(H/w,(p
— pc)(H\/v)”z”). For convenience we have incorporated the As a second approach to demonstrate scaling, and to test
constantA into these two scaling functions, so they are nofor finite-size corrections, we considered the derivative of
longer universal17]. To investigate this expected behavior, m, With respect tgp evaluated ap.. . According to the above
we carried out runs at different values pf and also mea- scaling, one would expect
sured the derivative ofr, with respect top evaluated at
( aﬂ.”) :(HW)]'/ZV(

1
ap e

C. Determination of (0a-rv/0p)pC

awg”(H/w,y))

% NG

Pc=3.
y=0
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FIG. 9. Plots of ¢, /dp), determined from simulation data FIG. 10. (I—|VV)’1’2”((9qrv/ﬁp)pc vs Inrgg for the four values of

using (7), vs lrrg, for W=32, 64, 128, and 25@o0p to botton). W, showing collapse of the data in Fig. 9 to a single symmetric
scaling curve as predicted k).

where y=(p—pc)(HW)V?, implying that

—1/2v H

(HW) (‘Q?Tv/ap)pc should be a func_t|on df'_”W o_nly. making this plot, we actually useti+h and W+w for

' The quantityd,/dp can _be found directly in a simula- 4 gng W, and res for r — had we not, the collapse

tion. Formally, 7, can be written as of the curves would not have been so precise. The plot
in Fig. 10 is a bell-shaped curve but apparently not quite a

=2, G (1—p)™, (6)  Gaussian since a fit givesHW) V> (dm,/dp),, =
0.5763exp—0.828(Irr)>—0.111(Im)*. . . 7.
where the sum is over all possible walk,, is unity for Itis interesting to note that r(Jm,/dr),_is also a sym-

those walks that reach the top and zero otherwiseaadd  metric bell-shaped but non-Gaussian curve when plotted as a
m are the number of occupied and vacant bonds, respe¢ynction of Irr. with behavior about r=1 given

tively, in a given hull. Differentiating6) with respect top, by 0.520 246 exp-0.649 106 (In)>—0.161 994 (Im)*

we find +0.031 382 (Im®...]. (This follows analytically from
P n m n m Cardy’s formula using Eq11) of [15].) These two functions
apU: > (5_ rp) B1opP"(1—p) "= < (5 _ﬁ) 0t0p> are evidently different. Note that the area under the curve of

7) —r(dm,1dr)p, vs Inr is exactly unity, which follows by

simple integration. It is not clear whether this should also be
where the average is weighted by the walk’s probability ofthe case for the function plotted in Fig. 10, although numeri-
occurrencep”(1—p)™. Now, we approximate the average cally the integral is close to on@.033 using the above it
over all walks by an average over a run of the hull-walk  There is yet a third situation for the crossing problem
simulation, which generates a sampling of this ensembleyhere non-Gaussian behavior occurs: the quantity
Then(n6,) is simply given by the total number of occupied (47 /gp),_, for a squard. X L system, as a function of the
bonds in walks that hit the top divided by the total number Ofscaling variablex=LY*(p—p,), is a symmetric bell-shaped
walks, and(méy,y) is given by the total number of vacant . ,e of normalized areal (), but non-Gaussian with

bonds for walks that hit the top divided by the total numberkurtosis,u / u2~3.17 rather than 3, whepe, are the central
of walks. This procedure can also be generalized for reCtanrhoments[418 129 24'} In this case nén-Gaugsian behavior has
gular systems by keeping track of the quantitiesndm for R '

each value of the maximum height, and then accumulating algeen proven rigorously by Berlyand and Weld6], who

in o, , allowing 9, /dp to be found for allr. Note that the SHOW thatm, ~exp(~L/¢)=exp(-cons x") for x>1 (see

above procedure can in principle be extended for higher de2!SC Appendix B of[19]). Note that here the independent
rivatives; however, simulations show that it is difficult to get V&riable isx or p while in the above two cases it isrinso
accurate results because of high statistical noise. these are quite different functions. If, however, an expression
In Fig. 9 we show the results fowgr,/dp),_ determined for r,(r,p) for all r andp could be found, then these three
from (7) using data from 100 000 000 hulls plotted as gdifferent bell-shaped curves could presumably be related to

function of Irr for the four values ofV. These curves are €ach other.
of different magnitude, and are not symmetric abosutl.
In Fig. 10, we plot these results divided bii\V)?”, and
indeed, now find collapse to a single curve as predicted by IV. CONCLUSIONS
(5). This curve is symmetric aboutrs0 on this plot which
follows from the expected symmetry behavior when We have shown the following.
r<1/r. Note that only when the scale factor in the form (1) 7,(H,W,p) over a range oH andW (at one value of
(HW)Y?” is used does a curve with this symmetry follow. In p) can be found efficiently from a single hull-walk simula-
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tion — run many times, of course, to obtain the necessarghould be of higher order. Further discussion of these points

statistics. will be given in future papers.
(2) The ratio of the simulation results to the predictions of
Cardy’s formula grows linearly with increasing=H/W ACKNOWLEDGMENTS

(with slope 7w/3W) for a finite system of any siz@V. If, , o
however, the effective aspect ratigg=(H + h)/(W+w) This material is based upon work supported by the U.S.

with h~w~0.36 is used in Cardy’s formula, then the agree-National Science Foundation under Grant No. DMR-

ment with theory is obtained to high accuracy. These con9520700.
stants say that the percolation field extrapolates to a bound-
ary 0.18 lattice spacings beyond the edges of the system — APPENDIX: RANDOM NUMBER GENERATOR USED

both fordthe. frei boudndgries onhthe lett %ng ri%rrlkt‘_sLdes, and The random number generator used for this work was the
the con Illjcf.'lr(]gf OUTD arlt(ajs on the top aln g;( ('jc ar®  shift-register sequence general88] based upon the recur-
essentially like free boundariedThese values di andw are oo =0~ ol T Sl T as T here thes is

specific to this system; that is, bond percolation on a squarg,e eyclusive-or operatiofaddition modulo twd carried out
lattice with a rectangular boundary and open boundary cong, aach bit of the integers,, independently. This four-tap

ditions on _the S|des_. . e generator is equivalent to choosing every seventh ré€gult
(3) The introduction of o for r introduces analytic finite- decimation from the two-tap generatorx,=x
size corrections tor, ; no correction term of the type™ "+ - oo, and is of the same maximum c;clex_léalgth
n— 1 1
proposed by Aharony and Hold 7] appears to be necessary 96891 "5 the undecimated generator. The numbers gener-
to fit the_3|_mulat|_on _resglts. Howeyer, we did not make 4ated from this generator have a built-in five-point correlation
systematic investigation into the finite-size corrections to Unyver a span of 9689 determined directly by the generator's

equivocally rule out such a term. ta . ' o o
. ps, and four- and three-point correlations with significantly
(4) For p#p., the scaling form m,(H,W,p) greater spreads9)].

_ (1) _ vy — . (2) _ 1/2v . . X X .

=, (HIW,(p—po)W™") = 7, (H/W,(p—pc) (HW) ") At first the simulations were carried out using the more
was precisely verified using eight different valuespoéind compact generatox, =X, _ 11 X,_ 39® Xy 95® X 21 Which
four values ofW, for H taking on all values<4W. derives from a 7-decimation of,=X,_ 1, X,_»1g, but we

(5). The derivative ¢, /dp),_ for all r was also found  foynd systematic errors fdd =W (where we know thatr,
directly from the hull-walk simulation. Its behavior also veri- should be exactly 1j2that appeared to grow linearly with
fies scaling and leads to a symmetric non-Gaussian belincreasingw. For W= 256 the observed crossing probability
shaped curve when divided byH{V)*? and plotted as a was 0.500 30+0.000 05 forN=100 000 000 runs. A study
function of Irr. of different generators showed that this systematic error di-

For different types of percolation systems and differentminishes rapidly with increasing sizenaximum offsex of
boundary conditions on the sides, one would expect@at the generator, and by size 300 for four-tap generators, errors
remains valid, but that the constaritsandw will vary. In-  could not be observed in a reasonable amount of computer
deed, for site percolation on a square lattice with rectangulatime.
boundaries and free boundaries on the sides, we findithat To be (presumably completely safe, we used a four-tap
and w differ from each other, implying by(4) that generator of the much larger size 9689 in this work. While
m,(L,L,p.) differs from 1/2 by a term proportional toll/  this generator requires a large array to store previous mem-
as was found numerically ifil6]. For periodic boundary bers(we used a list of size 16 384 to make the coding sim-
conditions on the left and right sides, one would expect thapler), it is still fast and simple to program.

w should be zero, but that an offset constanwill still be Note that, for smaller generators, and especially two-tap
needed in the vertical direction because of the effectivelyones such as the notoriol89—-42 generatorx,=X,_ 103
open boundary, so consequently these systemsaifeee of  @®x,_ .5 Of Kirkpatrick and Stoll[43], the error in7, was
such analytic corrections as suggested by Hovi and Aharoninmediately obvious(giving m,=0.441 for H=W=512).
[19]. Preliminary results verify this withh~0.39 and Two-tap generators have inherent asymmetric three-point
w=0. A system that may be free of analytic corrections duecorrelations over the span of the generator $2%0 in this

to lattice offsets is one that is periodic [oth directions, as cas@, and evidently these short-ranged correlations are very
recently considered by Hu and co-work¢i®),37. Because detrimental for this problem. Indeed, the simulation carried
there is no boundary to the system anywhere, and evidentlgut here appears to be a particularly good test for the shift
no place for an extrapolation length to enter, correctiongegister sequence random number generator.
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