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The crossing probability functionpv(H,W,p) for bond percolation on a square lattice with rectangular
boundaries up toH3W510243256 in size is determined numerically to high precision using a hull-walk
simulation technique. Atp5pc it is found that the finite-size corrections to Cardy’s formula can be accurately
accounted for simply by assuming that the effective aspect ratio of the system isr eff5(H1h)/(W1w) with
h'w'0.36, without any additional correction terms. The constantsh andw are essentially twice the extrapo-
lation lengths to the effective location of the boundary by the continuum percolation field. Results forpv at
pÞpc and for ]pv /]p at pc verify that pv(H,W,p) scales aspv

(1)
„H/W,(p2pc)W

1/n
… or equivalently as

pv
(2)
„H/W,(p2pc)(HW)1/2n…. @S1063-651X~96!13609-6#

PACS number~s!: 64.60Ak, 05.70.Jk

I. INTRODUCTION

The functionpv(p), which gives the probability of cross-
ing a rectangular system between opposite boundaries in
~say! the vertical direction, is central to the theory of perco-
lation. In the limit of an infinitely large system,pv(p) goes
over to a step function, demonstrating the discontinuous na-
ture of the percolation process and defining its transition
point pc exactly. For finite systems, the behavior ofpv(p)
near pc reflects finite-size scaling, and is relevant to
renomalization-group~RG! theory.

The behavior of this function has been the subject of nu-
merous investigations over the years. Bernasconi@1# showed
that a properly defined square boundary for bond percolation
on a square lattice produces a perfectly symmetric function
pv(p) about the pointp5 1

2 for systems of all sizeL, imply-
ing pv(pc)5pc5

1
2 whenL→`. This result is supportive of

the one-parameter RG constructionpv(pRG)5pRG first pro-
posed by Young and Stinchcombe@2#, since in this case the
RG gives the critical point exactly. Extensive Monte Carlo
simulations ofpv(p) for various systems have been carried
out by many authors, starting with Kirkpatrick@3# and Rey-
nolds, Stanley and Klein@4#. The latter authors@4# also in-
troduced a variety of important estimates ofpc for finite
systems that derive frompv(p) @which they callR(p)#, in-
cluding pav, the averagep under the distribution]pv /]p;
pmax, the maximum in this distribution; andpc2c , the cell-
to-cell RG fixed point; as well as the RG fixed pointpRG.
Stauffer and co-workers investigated percolation in many
situations using a method in which the distribution of values
of p where percolation first occurs is determined; that distri-
bution is precisely]pv /]p @see@5#, whereP(p) is used to
indicate the crossing probability#. In more recent work, Hu
and co-workers developed a Monte Carlo histogram tech-
nique that allowspv(p) @which Hu called the existence
probability E(p)# to be efficiently determined over a wide
range ofp @6–10#. Monetti and Albano studied a criterion
for percolation related to the crossing probability~which
they called the percolation probability P.P.(p)# for some
rectangular systems@11#. Note that the crossing probability

is also calledP(p) and p8(p); the notationpv(p) has be-
come especially common in the mathematical literature on
this subject@12–14# and is adopted here.

In the past few years there has been particular interest in
the behavior ofpv at and near the infinite system critical
thresholdpc . Langlands and co-workers@12,13# carried out
extensive Monte Carlo simulations for rectangular systems
of various sizes and aspect ratiosr ~equal to the height di-
vided by width!, and Cardy@14# developed an exact theoreti-
cal formula forpv(r ,pc) for the case of free boundary con-
ditions on the left and right sides, in the limit of infinitely
large systems, using conformal invariance theory. Cardy
found good agreement between his predictions and the nu-
merical results of Langlands and co-workers, with some
small deviations which he attributed to finite-size effects. In
@15# we showed that Cardy’s formula can be written in an
explicit convergent series form, the first three terms of which
yield

pv
C~r ,pc!

5H bS e2pr /32
4

7
e27pr /31

2

13
e213pr /3••• D , r<1

12bS e2p/3r2
4

7
e27p/3r1

2

13
e213p/3r••• D , r>1,

~1!

where b524/33G( 23)/G(
1
3)
2'1.426 348 256, and the super-

script C is used here to indicate Cardy’s result explicitly;
these three terms are sufficient to calculatepv to at least
eight significant figures for allr .

In general,pv(r ,pc) for an infinite system is a universal
quantity that is independent of the underlying lattice and type
of percolation, but dependent upon the type of boundary con-
dition on the sides and upon the dimensionality. Thus the
type of lattice does not affect the asymptotic universal be-
havior ~as long as the lattice has an isotropic scale!, but it
does influence the nature of the finite-size corrections. For
the study of the latter, each system has to be investigated
independently.
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In @16#, the author investigatedpv(pc) for site percolation
on a square lattice within square systems of different sizes
L3L, both analytically forL<7 and numerically for larger
L. It was found thatpv(L,pc)→ 1

2 asL→`, with an apparent
correction of order 1/L. In @16# it was also pointed out that
the resultpv(pc)5

1
2 evidently conflicts with the predictions

of a RG analysis, since the RG fixed point (pRG,pRG) limits
to (pc ,pc), where pc50.592 746 . . . when L→`, and
therefore predicts thatpv should be 0.592 746 . . . instead of
1
2. However, as discussed in@17# and@18# and more recently
in @19#, this conflict more accurately concerns the single-
parameter RG theory or the position-space RG, rather than
the complete formal RG theory which can include ‘‘irrel-
evant’’ variables as well as normal finite-size effects. In any
case, the one-parameter RG fixed pointcannotin general be
used to determinepv . In @16# it was also shown that differ-
ent estimates ofpc deduced frompv(p) for finite systems
behave quite differently, and, in particular, thatpav, pmax,
pc2c , and other estimates converge topc an order ofL more
quickly thanpRG doesfor this particular system~site perco-
lation, square lattice, square boundary, free sides!. This rapid
convergence for some of these quantities was observed~but
not well understood! previously@4,20#. Further work on the
question ofpv(pc) for different boundary conditions and
higher-dimensional systems has been recently carried out
@21–24#.

In a very recent publication — while the present work
was being completed — Hovi and Aharony@19# reported on
extensive work investigating and expanding upon the points
first put forth in @17#. One of the main predictions in@17#
was that a confluent singularity yields a leading finite-size
correction term of orderL2q1 to pv , whereq1'0.85. How-
ever, these authors also allowed for the analytic corrections
of order L21 as suggested in@16#, so the existence of the
confluent term is difficult to show numerically. In@19# Hovi
and Aharony provided some numerical evidence that the
confluent term is necessary, for the case of site percolation
on square systems~see especially their Fig. 5!, but in our
opinion the existence of such a term has not been shown
unequivocally.

In the present work we investigate bond percolation on a
square lattice with rectangular system boundaries over a con-
tinuous range of aspect ratios. We consider a vertical cross-
ing and assume free boundary conditions on the two sides

~rule R1 of @4#!. We find pv by a simple hull-generating
random walk that yields results simultaneously for rectangles
of all widthsW and heightsH from a single simulation. For
the behavior atp5pc , we show that very precise agreement
with Cardy’s analytical formula can be achieved by using an
effective lattice-boundary offset constant for both the width
and height dimensions; no additional correction terms of the
type proposed by Aharony and Hovi appear to be necessary.
These lattice offset constants represent a continuum extrapo-
lation length to the effective location of the boundary, and
introduce analytic correction terms of order 1/W into pv ~ex-
cept whenH5W, when these finite-size corrections disap-
pear for bond percolation!. We also carry out simulations of
pv at pÞpc and of]pv /]p at pc , and find that the expected
scaling behavior can be achieved to high precision by includ-
ing only the lattice offset constants.

II. ALGORITHM

Hull walks were first introduced in@25# for site percola-
tion, and in@26# for bond percolation on square lattices~also
see walks of Gunn and Ortun˜o @27# and Ruijgrok and Cohen
@28#, and references in@29#!. That hull walks can be used to
find pv directly was first pointed out by Grassberger@30#.
Our previous simulations@16# considered the case of site
percolation only. Here we consider bond percolation, on a
square underlying lattice.

The procedure for findingpv for this system is illustrated
in Fig. 1. The walk takes place on a square lattice whose sites
are at thecentersof the bonds on the actual percolation lat-
tice. The walker begins at the lower-left-hand corner of this
lattice and moves only along diagonals. At each site it turns
by 90°, either in the counter-clockwise~CCW! direction
with probability p or the clockwise~CW! direction with
probability 12p, except when a site has previously been
visited, in which case the walker always turns either CW or
CCW so as not to cross its path~a ‘‘kinetic self-avoiding
trail’’ @31,32#!. The bottom and left-hand boundaries of the
system are reflecting, and the top and right-hand boundaries
are adsorbing and terminate the walk.

This walk generates a path that bounces back and forth
between the centers of the occupied bonds of the hull and the
centers of the vacant bonds surrounding the hull~or equiva-
lently the bonds on the dual lattice!; turning CCW corre-

FIG. 1. ~a! The hull-generating walk for bond percolation on a
square lattice.~b! The construction of the equivalent hull configu-
ration on the bond lattice, with heavier lines representing occupied
bonds. The dual lattice is also shown by dotted lines, with the
heavier ones representing dual-lattice bonds.~c! An alternative rep-
resentation of the bond lattice that is often used; the dangling bonds
on the right-hand side do not contribute to vertical percolation, but
are useful to make a more symmetric duality construction as shown.

FIG. 2. The hull walk on a rectangular system of high aspect
ratio. Keeping track of the maximum height that the walk reaches
before being trapped on the right-hand side allowspv to be deter-
mined for allH.
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sponds to hitting an occupied bond, and CW a vacant or
dual-lattice bond. If the top boundary is reached first, then
the underlying bond system has percolated top-to-bottom as
shown in Fig. 1, while if the right-hand side is first reached,
then it has not~or, equivalently, the dual lattice has perco-
lated left to right!, as shown in Fig. 2 for a rectangular sys-
tem. Clearly, by the symmetry of this construction, the cross-
ing probability must be exactly one-half for square systems
of any size whenp5 1

2, in agreement with Bernasconi’s re-
sult. In the example shown in Fig. 1, with a 53 5 simulation
lattice, one effectively simulates bond percolation on the
232 bond lattice shown in Figs. 1~b! or 1~c!. To denote the
lattice size in this paper, the bond dimensions (232 in this
case! will be used.

To generalize this method to rectangles in a way that al-
lows all aspect ratios to be considered simultaneously, we
carry out this walk on a rectangular system of high aspect
ratio, keeping track of the maximum height the walk attains
before reaching the right-hand side, as shown in Fig. 2. Sys-
tems of height less than this maximum walk height percolate
top to bottom, while those of greater height do not. Thus, by
accumulating the number of runs in which the maximum
height ranges fromH to the maximum of the system, we
determine the probability of percolating for a system of
heightH. Furthermore, in the same simulation we keep track
of the rightmost position that the walk has gone, and in doing
so also findpv(H,W,p) for all widthsW. A sample program
and explanation which describes in detail how this is carried
out is available from the author@33#.

The simulations were performed on an actual lattice of
dimensions 20483512 lattice points, which represents a
bond lattice ofH3W510243256. The random number
generator that was used is described in the Appendix. While
the procedure in principle allows the determination of
p(H,W,pc) for all H andW up to these maximum values,
the resulting output would be rather large, so we retained
data only forW532, 64, 128, and 256, andH<4W.

III. RESULTS

A. Comparison with Cardy’s formula at p5pc

A sample of 100 000 000 systems was simulated at
p5pc5

1
2, requiring a few weeks of time on a workstation

computer. The results are plotted in relation to Cardy’s for-
mula in Figs. 3–5.

In Figs. 3 and 4 we show the difference and ratio, respec-
tively, of the two quantitiespv(H,W,pc) andpv

C(r ,pc), as a
function of r5H/W, for the four values ofW. While the
difference in Fig. 3 is small and goes to zero for larger , as
observed by Cardy@14# using the data of Langlandset al.
@12# ~with much lower precision than given here!, the ratio in
Fig. 4 is seen to increase linearly with increasingr with a
slope that depends upon system size. Although larger sys-
tems have lower slopes and give closer agreement with
theory, clearly for a system of any finite size that ratio can be
made arbitrarily large by makingr sufficiently large.

The deviations shown in Figs. 3 and 4 are finite-size ef-
fects which we attribute to an uncertainty in the size of the
system, or equivalently in the location of its boundary. To
account for this uncertainty, we consider that the effective
aspect ratio should not be simplyH/W but instead be given
by

r eff5~H1h!/~W1w!, ~2!

whereh andw are phenomenological constants. These con-
stants represent a correction for the discretization of con-
tinuum space by a lattice and can be interpreted as twice the
distance to the effective location of the boundary, extrapo-
lated from the continuumlike behavior found deep within the
system. This length is analogous to the extrapolation length
that appears when relating discrete random walks to con-
tinuum diffusion in a system with an adsorbing boundary
@34#, and the Milne extrapolation length that appears in neu-
tron adsorption. For such an idea to make physical sense,h
andw should be of order of the lattice spacing, and should be
independent of lattice size for larger lattices. They will, how-

FIG. 3. A plot of pv(H,W,pc)2pv
C(r ,pc) vs r5H/W, show-

ing a discrepancy with Cardy’s formula due to finite-size effects.
FIG. 4. A plot of pv(H,W,pc)/pv

C(r ,pc) vs r , showing that
the relative discrepancy increases with increasingr .
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ever depend upon the choice of lattice, percolation type~site
or bond!, and boundary condition.

Figure 5 shows the results whenr eff is used in place of
r , takingh5w50.36. Now, in contrast to what was seen in
Fig. 4, the agreement between the simulation and theoretical
results is within statistical error, except for small deviations
for W532. However, deviations for such smallW are ex-
pected, and these results show thatW need only be of order
100 for an infinite system to be very accurately approxi-
mated, ifr eff is used for the aspect ratio.

The value 0.36 forh andw was determined both empiri-
cally @adjusting to get the best agreement with~1!# and by
the following procedure. For each measured value of
pv(H,W,pc), the corresponding value of the effective aspect
ratio r eff was determined from the inverse of~1!:

r eff5H 2
3

p
ln~ t1 4

7 t
71 194

91 t
13 . . . !, pv<

1
2

2F 3p ln~u1 4
7u

71 194
91 u

13 . . . !G21

, pv>
1
2 ,

~3!

where t5pv /b, and u5(12pv)/b. These values ofr eff
were used to construct a plot ofH2r effW versusr eff . Be-
cause~2! impliesH2r effW52h1r effw, it follows that such
a plot should yield a straight line with slopew and intercept
2h. The results of this plot for the four values ofW are
shown in Fig. 6. The data fall nicely on a single straight line,
verifying ~2!, and yieldh'w'0.36 within an error of about
60.01. It is consistent with these data to takeh andw equal
to each other, which allowspv(W,W,pc)5

1
2 to be satisfied

exactly. Note that this choice makes the fitted line through
the data in Fig. 6 pass precisely through the point~1,0!.

While fixing h5w thus guarantees thatpv at r51 is
matched exactly, it does not necessarily follow that the large-
r behavior ofpv could also be simultaneously fit. This is
because the asymptotic behavior ofpv for large r is of the
form Bexp(2Ar), with A andB differing slightly from their

asymptotic valuesp/3 andb, respectively, for finite systems.
By substitutingr eff5r /(11w/W)1h/(W1w) in place ofr
in this exponential, it can be seen that in general one might
have to adjusth andw independently to fit both the coeffi-
cient and decay of the leading exponential term precisely.
Nevertheless, we found that an excellent fit of the large-r
behavior could be achieved withh5w. For r,1, some de-
viations for the smallest lattice are apparent, and the data for
this range are hardest to fit by~2!. For even smaller lattices,
it may be necessary to allowhÞw in order to fit the large-
r behavior well, in which case the value forr51 would not
be matched precisely. However, this would be for quite small
lattices where finite-size corrections are not expected to be
simple. Note that the correction term proposed by Aharony
and Hovi @17# would also not be useful here, since it would
have its strongest effect on larger, not smaller, systems, rela-
tive to the 1/W correction implied by~2!.

The above results imply that the large-r behavior of the
curves in Fig. 4 should be exp(2preff/3)/exp(2pr/3)
5exp@2(p/3)(rw2h)/(W1w)# '11prw/3W for large
W, or linear with slopepw/3W'0.377/W. The slopes of the
lines in Fig. 4 agree with this formula.

The use of~2! implies that the effective lattice dimensions
are larger than the actual ones by the amountsh andw. For
the case of bond percolation with free boundaries on the
sides, the lattice dimensions are thus effectively 0.36 greater
in each dimension, or, equivalently, the extrapolation of the
percolation field to where it reaches the zero value overhangs
the boundary by 0.18 lattice spacing on each of the four
sides. Thus, for example, a 1003100 bond percolation sys-
tem is effectively 100.363100.36 in size, and therefore still
has an effective aspect ratio of unity. A 2003100 system is
effectively 200.363100.36 in size, and has an effective as-
pect ratio 1.9964, while a 2013100 system has an effective
aspect ratio of 2.0064. Note that no finite-size system has an
effective aspect ratio of exactly 2.

The use ofr eff also implies that the corrections topv(r )
are analytic. To see this, write~2! as r eff5r1d, where
d5(h2rw)/(W1w), and expand the crossing function
about the nominal value of the aspect ratior5H/W:

FIG. 5. A plot of pv(H,W,pc)/pv
C(r eff ,pc) vs r eff 5

(H1h)/(W1w) with h5w50.36. The deviations from unity for
W564, 128, and 256 are within statistical error, while those for
W532 at r,1 are small but statistically significant. Their vertical
scale here is magnified five times over that of Fig. 4.

FIG. 6. A plot ofH2r effW vs r eff calculated from the measured
values ofpv through~3!. The dashed line has slope and negative
intercept of 0.36.
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pv~H,W!5pv~r !1dpv8~r !1
d2

2
pv9~r !•••

5pv~r !1S h2rw

W1w Dpv8~r !

1
1

2 S h2rw

W1w D 2pv
9~r !••• . ~4!

Here the derivatives onpv are taken with respect tor , and
we assumep5pc . Clearly, this result is analytic inW for a
fixed r , containing terms of order 1/(W1w),
1/(W1w)2 . . . , or equivalently of orders 1/W, 1/W2 . . . .
When r51, ~4! gives no correction for bond percolation
sinceh5w impliesd50, but for other systems~such as site
percolation on a square lattice! dÞ0 and~4! givesO(1/W)
corrections even whenr51 as seen in@16#. Note that, at
r51, we havepv8(1)52pv9(1)520.520 246 . . . @15#.

B. Scaling behavior for pÞpc

For p away frompc , one expectspv(H,W,p) to depend
universally upon two ratios of the three length quantities
H, W, andj;Aup2pcu2n, weren is the correlation-length
exponent (54/3 in two dimensions! and A is a lattice-
dependent constant.~From this point on we will not mention
finite-size corrections explicitly, although in the analysis of
our results we will generally continue to use useH1h and
W1w for H andW, respectively.! One could write this ex-
pected behavior aspv

(1)
„H/W,(p2pc)W

1/n
…, or as an equiva-

lent but more symmetric form aspv
(2)
„H/W,(p

2pc)(HW)1/2n…. For convenience we have incorporated the
constantA into these two scaling functions, so they are no
longer universal@17#. To investigate this expected behavior,
we carried out runs at different values ofp, and also mea-
sured the derivative ofpv with respect top evaluated at

pc5
1
2 .

Runs were carried out atp50.501, 0.501 682,
0.502 828, and 0.504 757, and at 0.499, 0.498 318,
0.497 171, and 0.495 243. These values were chosen so that
up2pcuW1/n all have the same value~0.064! for W5256,
128, 64, and 32, respectively, for each of these two sets of
four cases.~Note here we usedW rather thanW1w to cal-
culate the values ofp; includingw changesp only slightly.!
Approximately 2 000 000 runs were carried out at each value
of p.

In Fig. 7 we show the plot of the eight values ofp each
with the single corresponding value ofW such that
up2pcuW1/n50.064. The four runs forp.0.5 all collapse on
the upper curve, and the four runs forp,0.5 all collapse on
the lower curve. Deviations from the expected scaling form
are nearly imperceptible, even on a much-expanded plot.

In Fig. 8 we plot the data of all 32 curves for these eight
values ofp and all four values ofW. The 32 curves fall on
14 different scaling curves corresponding to 14 different val-
ues ofup2pcuW1/n. These curves represent the scaling func-
tion pv

(1) as a function of its first argument with its second
argument fixed to 14 different values. No corrections to scal-
ing, other than the use ofr eff for the aspect ratio, were nec-
essary to make a precise collapse.

While the data collapse shown in these two figures is
expected according to the simple scaling arguments, this is
the first time that such behavior has been shown explicitly as
a function ofr ~except for the casep5pc , which was given
in @12,13#!. Previous studies of scaling~i.e., @9–11,19#! have
generally dealt with a fixed value ofr and variablep — that
is, the behavior ofpv

(1) with respect to its second variable.
Note that scaling in a different system has been studied by
Bercheet al. @35#.

C. Determination of „­pv /­p…pc
As a second approach to demonstrate scaling, and to test

for finite-size corrections, we considered the derivative of
pv with respect top evaluated atpc . According to the above
scaling, one would expect

S ]pv

]p D
pc

5~HW!1/2nS ]pv
~2!~H/W,y!

]y D
y50

, ~5!

FIG. 7. A plot of pv(H,W,p) vs r eff for the four parameter
values (W,p) 5 ~256,0.501!, ~128,0.501 682!, ~64,0.502 828!, and
~32,0.504 757! @all satisfying (p2pc)W

1/n520.064#, which are
collapsed to the upper curve, and for the four values (W,p) 5
~256,0.499!, ~128,0.498 318!, ~64,0.497 172!, and ~32,0.495 243!
@all satisfying (p2pc)W

1/n50.064#, which are collapsed to the
lower curve, showing scaling to high precision.

FIG. 8. Plot as in Fig. 7 but for all eight values ofp and four
values ofW, with the 32 different plots falling on 14 distinct curves
with ~from bottom to top! (p2pc)W

1/n 5 0.304 437, 0.181 019,
0.107 635, 0.064, 0.038 055, 0.022 627, 0.013 454, and continuing
with negative values in reverse order. The ratio of these numbers is
23/4.
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where y5(p2pc)(HW)1/2n, implying that
(HW)21/2n (]pv /]p)pc should be a function ofH/W only.

The quantity]pv /]p can be found directly in a simula-
tion. Formally,pv can be written as

pv5( u topp
n~12p!m, ~6!

where the sum is over all possible walks,u top is unity for
those walks that reach the top and zero otherwise, andn and
m are the number of occupied and vacant bonds, respec-
tively, in a given hull. Differentiating~6! with respect top,
we find

]pv

]p
5( S np2

m

12pD u topp
n~12p!m5 K S np2

m

12pD u topL
~7!

where the average is weighted by the walk’s probability of
occurrence,pn(12p)m. Now, we approximate the average
over all walks by an average over a run of the hull-walk
simulation, which generates a sampling of this ensemble.
Then^nu top& is simply given by the total number of occupied
bonds in walks that hit the top divided by the total number of
walks, and^mu top& is given by the total number of vacant
bonds for walks that hit the top divided by the total number
of walks. This procedure can also be generalized for rectan-
gular systems by keeping track of the quantitiesn andm for
each value of the maximum height, and then accumulating as
in pv , allowing ]pv /]p to be found for allr . Note that the
above procedure can in principle be extended for higher de-
rivatives; however, simulations show that it is difficult to get
accurate results because of high statistical noise.

In Fig. 9 we show the results for (]pv /]p)pc determined
from ~7! using data from 100 000 000 hulls, plotted as a
function of lnreff for the four values ofW. These curves are
of different magnitude, and are not symmetric aboutr51.

In Fig. 10, we plot these results divided by (HW)1/2n, and
indeed, now find collapse to a single curve as predicted by
~5!. This curve is symmetric about lnr50 on this plot which
follows from the expected symmetry behavior when
r↔1/r . Note that only when the scale factor in the form
(HW)1/2n is used does a curve with this symmetry follow. In

making this plot, we actually usedH1h and W1w for
H and W, and r eff for r — had we not, the collapse
of the curves would not have been so precise. The plot
in Fig. 10 is a bell-shaped curve but apparently not quite a
Gaussian since a fit gives (HW)21/2n (]pv /]p)pc 5

0.5763exp@20.828(lnr)220.111(lnr)4 . . . #.
It is interesting to note that2r (]pv /]r )pc is also a sym-

metric bell-shaped but non-Gaussian curve when plotted as a
function of lnr, with behavior about r51 given
by 0.520 246 exp@20.649 106 (lnr)220.161 994 (lnr)4

10.031 382 (lnr)6 . . . ]. ~This follows analytically from
Cardy’s formula using Eq.~11! of @15#.! These two functions
are evidently different. Note that the area under the curve of
2r (]pv /]r )pc vs lnr is exactly unity, which follows by

simple integration. It is not clear whether this should also be
the case for the function plotted in Fig. 10, although numeri-
cally the integral is close to one~1.033 using the above fit!.

There is yet a third situation for the crossing problem
where non-Gaussian behavior occurs: the quantity
(]pv /]p) r51 for a squareL3L system, as a function of the
scaling variablex5L1/n(p2pc), is a symmetric bell-shaped
curve of normalized area (L21/n), but non-Gaussian with
kurtosism4 /m2

2'3.17 rather than 3, wheremn are the central
moments@18,19,24#. In this case, non-Gaussian behavior has
been proven rigorously by Berlyand and Wehr@36#, who
show thatpv;exp(2L/j)5exp(2const3 xn) for x@1 ~see
also Appendix B of@19#!. Note that here the independent
variable isx or p while in the above two cases it is lnr, so
these are quite different functions. If, however, an expression
for pv(r ,p) for all r andp could be found, then these three
different bell-shaped curves could presumably be related to
each other.

IV. CONCLUSIONS

We have shown the following.
~1! pv(H,W,p) over a range ofH andW ~at one value of

p) can be found efficiently from a single hull-walk simula-

FIG. 9. Plots of (]pv /]p)pc determined from simulation data
using ~7!, vs lnreff , for W532, 64, 128, and 256~top to bottom!.

FIG. 10. (HW)21/2n(]pv /]p)pc vs lnreff for the four values of
W, showing collapse of the data in Fig. 9 to a single symmetric
scaling curve as predicted by~5!.
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tion — run many times, of course, to obtain the necessary
statistics.

~2! The ratio of the simulation results to the predictions of
Cardy’s formula grows linearly with increasingr5H/W
~with slopepw/3W) for a finite system of any sizeW. If,
however, the effective aspect ratior eff5(H1h)/(W1w)
with h'w'0.36 is used in Cardy’s formula, then the agree-
ment with theory is obtained to high accuracy. These con-
stants say that the percolation field extrapolates to a bound-
ary 0.18 lattice spacings beyond the edges of the system —
both for the free boundaries on the left and right sides, and
the conducting boundaries on the top and bottom~which are
essentially like free boundaries!. These values ofh andw are
specific to this system; that is, bond percolation on a square
lattice with a rectangular boundary and open boundary con-
ditions on the sides.

~3! The introduction ofr eff for r introduces analytic finite-
size corrections topv ; no correction term of the typeL2q1

proposed by Aharony and Hovi@17# appears to be necessary
to fit the simulation results. However, we did not make a
systematic investigation into the finite-size corrections to un-
equivocally rule out such a term.

~4! For pÞpc , the scaling form pv(H,W,p)
5pv

(1)
„H/W,( p2pc)W

1/n
…5 pv

(2)
„H/W,( p2pc)(HW)1/2n…

was precisely verified using eight different values ofp and
four values ofW, for H taking on all values<4W.

~5!. The derivative (]pv /]p)pc for all r was also found
directly from the hull-walk simulation. Its behavior also veri-
fies scaling and leads to a symmetric non-Gaussian bell-
shaped curve when divided by (HW)1/2n and plotted as a
function of lnr.

For different types of percolation systems and different
boundary conditions on the sides, one would expect that~2!
remains valid, but that the constantsh andw will vary. In-
deed, for site percolation on a square lattice with rectangular
boundaries and free boundaries on the sides, we find thath
and w differ from each other, implying by~4! that
pv(L,L,pc) differs from 1/2 by a term proportional to 1/L,
as was found numerically in@16#. For periodic boundary
conditions on the left and right sides, one would expect that
w should be zero, but that an offset constanth will still be
needed in the vertical direction because of the effectively
open boundary, so consequently these systems arenot free of
such analytic corrections as suggested by Hovi and Aharony
@19#. Preliminary results verify this withh'0.39 and
w50. A system that may be free of analytic corrections due
to lattice offsets is one that is periodic inbothdirections, as
recently considered by Hu and co-workers@10,37#. Because
there is no boundary to the system anywhere, and evidently
no place for an extrapolation length to enter, corrections

should be of higher order. Further discussion of these points
will be given in future papers.
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APPENDIX: RANDOM NUMBER GENERATOR USED

The random number generator used for this work was the
shift-register sequence generator@38# based upon the recur-
sionxn5xn2471%xn21586%xx26988%xn29689, where the% is
the exclusive-or operation~addition modulo two! carried out
on each bit of the integersxn independently. This four-tap
generator is equivalent to choosing every seventh result~7-
decimation! from the two-tap generatorxn5xx2471
%xn29689, and is of the same maximum cycle length,
2968921, as the undecimated generator. The numbers gener-
ated from this generator have a built-in five-point correlation
over a span of 9689 determined directly by the generator’s
taps, and four- and three-point correlations with significantly
greater spreads@39#.

At first the simulations were carried out using the more
compact generatorxn5xn211%xn239%xx295%xn2218 which
derives from a 7-decimation ofxn5xx211%xn2218, but we
found systematic errors forH5W ~where we know thatpv
should be exactly 1/2! that appeared to grow linearly with
increasingW. ForW5256 the observed crossing probability
was 0.500 3060.000 05 forN5100 000 000 runs. A study
of different generators showed that this systematic error di-
minishes rapidly with increasing size~maximum offset! of
the generator, and by size 300 for four-tap generators, errors
could not be observed in a reasonable amount of computer
time.

To be ~presumably! completely safe, we used a four-tap
generator of the much larger size 9689 in this work. While
this generator requires a large array to store previous mem-
bers~we used a list of size 16384 to make the coding sim-
pler!, it is still fast and simple to program.

Note that, for smaller generators, and especially two-tap
ones such as the notorious@39–42# generatorxn5xx2103
%xn2250 of Kirkpatrick and Stoll@43#, the error inpv was
immediately obvious~giving pv50.441 for H5W5512).
Two-tap generators have inherent asymmetric three-point
correlations over the span of the generator size~250 in this
case!, and evidently these short-ranged correlations are very
detrimental for this problem. Indeed, the simulation carried
out here appears to be a particularly good test for the shift
register sequence random number generator.
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