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Barkhausen noise: Elementary signals, power laws, and scaling relations

Djordje Spasojevi¢ Srdjan Bukvig! Sava Milo®vic,%? and H. Eugene Stanléy
'Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade, Serbia
2Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 29 January 1996; revised manuscript received 7 Jung 1996

We report extensive measurements, with sufficiently large statistics, of the BarkhauseriBivisa the
case of the commercial VITROVAC 6025 X metal glass sample. Applying a very scrutinized numerical
procedure, we have extracted over one million of the BN elementary signals from the raw experimental data,
whereby we made a rather precise estimation of the relevant power law exponents. In conjunction with the
experimental part of the work, we have recognized a generic shape of a single BN elementar{BHNE®)
and we have put forward, without invoking any existing model of BN, a simple mathematical expression for
BNES. Using the proposed expression for BNES in a statistical analysis, we have been able to predict scaling
relations and an elaborate formula for the power spectrum. We have also obtained these predictions within the
generalized homogeneous function approach to the BNES's probability distribution function, which we have
substantiated by the corresponding data collapsing analysis. Finally, we compare all our findings with results
obtained within the current experimental and theoretical research of 8MN63-651X96)13409-7

PACS numbg(s): 05.40+j, 75.60.Ej, 05.90+m, 02.50.Wp

[. INTRODUCTION BN has been raised which initiated many different studies
and even antagonistic interpretations. The applicability of the
The Barkhausen nois@BN) is a classical physical phe- SOC concept to BN was investigated by Meisel and Cote
nomenon which is manifested as a series of jumps in mad-16,17] who offered qualitative arguments and specific mea-
netization of a ferromagnetic sample when it is exposed to gurementgin various materials, starting with a metal glass
varying external magnetic field. These changes induce voltsampl¢ in support to the relevance of the SOC concept for
age changes in a surrounding coil, and consequently they cdhe explanation of BN. They augmented their arguments by
be transformed into acoustic noise. Since its discoyéty performing the Jensen, Christensen, and Fog¢dBy type
BN has been incessantly investigat@ge, for instance, the of analysiq18] of statistical characterization of the observed
reviews[2—4]) because of its vast practical importarisech ~ BN. Besides, the avalanchelike topological rearrangements
as for various types of magnetic recordin&$ and for non-  of cellular domain patterns in magnetic garnet films were
invasive material characterization techniqUég) and be- investigated by Babcock and Westervglt9], who inter-
cause of its major conceptual importance for understandingreted the obtained findings in the framework of the SOC
dynamics of ferromagnets on the magnetic domain scalezoncept. Finally, BN has been investigated as a fractal time
These investigations have shown that BN is a very complesignal [20] and subsequently simulated via a SOC model
physical phenomenon with many different appearancef21] by Geoffroy and Porteseil.
which depend on kind of ferromagnetic specimen under Concurrently, there are approaches that put under doubt
study, character of quenched in defects, external field drivinghe relevance of the SOC concept to BN. Thus, O’'Brien and
rate, thermal effects, strength of the demagnetization fieldd)Veissman[22] have pointed out that the fl/noise and
and other experimental details. power-law distributions are not necessarily evidences of
At present there are several conceptually diffefamid to  SOC, but rather the consequences of scaling properties of
a certain extent incoherertheoretical approaches to the ex- quenched disorder in material. In this spirit, they have per-
planation of BN. The first of the current theoretical ap-formed experimental and computational analyses of the
proaches we would like to bring forward here is that onefourth-order signal correlationglubbed the second spegtra
which analyzes BN as a consequence of the domain-waiihich was expected to reveal violations of the detailed bal-
(DW) motion. Accordingly, BN has been investigated via aance in self-organization caused by an external driving. The
single-degree-of-freedom modél] in which individual DW  main conclusion of these analyses is that the most statistical
is moving (in a random walk manngrthrough a spatially characterization of BN is consistent with the single-degree-
random coercive field. The Langevin equation apprdagh of-freedom models of Allesandret al. [7]. On the other
has been developed further in a number of paf@rd0 and hand, within a many-degree-of-freedom model approach
thoroughly reviewed by Bertot{il1,12. In a different ap- [23-25, it has been recently argued that features of BN can
proach, the DW motion and domain nucleation have beete adequately described by the zero-temperature random-
experimentally and theoretically investigated in relation tofield Ising (RFI) model, and that the observed scaling in BN
BN in ultrathin ferromagnetic film$13]. should be a consequence of the vague proximity to a plain
Recently, the concept of the self-organized criticalityold critical point(which in the model studied is determined
(SOQ [14,15 has acquired a distinguished role in the con-by a critical value of the width of the random-field distribu-
temporary BN investigations. Since the appearance of th&on [24]). The role of material defects for the explanation of
SOC concept, many questions related to its application t8N has been also emphasized in the approach of Urbach
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et al. [26], who exploited concept of rough-surfaces growth

to describe the DW motion, with the conclusion that long- | -Z5RVALLOY CHAMBER

rBaI\rige demagnetization fields strongly affect the character of W\:E ¢ i DIFFERENTIAL
Despite the vast list of the BN facets that have been in-

vestigated, so far the question whether the BNES's probabil-

ity function is a generalized homogeneous functi@HF) |

has not been widely attacked and analyzed. Similarly, there 2008 i 61ZBTT AD

has been a little attention payed to the form of individual BN CONVERTER

signals and consequences which their form might have to the | @Pc 5US

PC

global BN. In this paper, we report on extensive measure- I I —+
ments(with sufficiently large statistigsof BN in the case of SIGNAL SCOPE Q -
a commercial VITROVAC 6025-X metal glass sample. In GENERATOR Ro23z| COMPUTER
the course of these measurements, we have introduced many
experimental precautions and scrutinized numerical methods
in order to eliminate effects of the extrinsic noise. In this
way, we .have been_able to extract a proper average form c?‘Lental course of this work. The ballast resistor of ZDtas been

the 'nqw'dual B,N signals from the_eXpe”_memal data and'used to reduce the influence of Barkhausen noise on the current
what is more important, to provide evidences that thegpich flows through the driving soleno

BNES'’s probability distribution is a GHF. Our theoretical

treatment of the prOblem has been first focused on investigéB) provided sinusoidal current for the driving solendid

tion of power-law behaviors of BN and their relations with \yhich produced a magnetic field,= Hosin(2sf ), that con-

an analytical expression which describes the obtained avefinyously drew a specimetiocated within the pickup coil
age shape of BNES's. After providing qualitative theoreticalcy through a B-H loop. A small driving frequency
arguments which support the accepted signal form, we havg — 0,03 Hz has been used to prevéot, more precisely, to
carried out an analysis of the JCE8] type (which does not  reduce significantly overlapping of the Barkhausen pulses.
take into account any specific origin of the noise sigrad  The |ength of the solenoi® was 20 cm, while its inner
we have obtained various scaling relatiofsatisfied upon  gigmeter was 5 cm, and it consisted of 675 turns of a copper
inserting the experimental values of scaling exponers  yjre (0.5 mm in diameter The maximal strength of the
well as an expression for the power spectrum whose ”Umeriﬁagnetic fieldHo, produced byS, was about 160 A m?

cal presentation is in agreement with our experimental reyyhich is approximately four times larger than the mean

sults. Then, we have analyzed the hypothesis that thggh magnetic field and this small field was oriented or-
BNES's probability distribution function is a GHF and we thogonally to the local Earth magnetic field.

have expounded on consequences which such an assumptionyye have performed our measurements on a quasi-two-
implies. Thus, it appears that power-law behaviors of BN gimensional as-cast metal glass sanaleommercial VIT-
and, in particular, all scaling relations can be obtained agovAC 6025 X produced by Vacuum Schme|taith lin-
consequences of the GHF property of the BNES's probabilear dimensions 4 crx 1 cm X 0.003 cm. The Barkhausen
ity distribution function and that other consequences, such aSulseq see Fig. 23)], which correspond to the jumps in mag-
the data collapsing of numbers of events, can serve as aflutization of the specimen, were collected as induced voltage
equate experimental confirmations of the GHF hypothesis. pulses via the pickup coiC (of length 5.5 cm, with rectan-
Thl_s paper is or.gamzed as follows. In Sec. Il we f'rStguIar cross section 12 mm 2 mm). The specimen was
describe our experimental setup. Then we elaborate on g, inside the coil in such a way that there was no me-
numerical procedure utilized for analysis of the recorded.hanical tension. The pickup coC, with the resistance
data, and present our experimental results. In Sec. llI W& =30 0 comprised of 300 turns ,of copper wire and its

develop our i_nductive theoretical approag:h to BN a‘ndmagnetic coupling witts was weak. The pickup cofC, as
present a detailed comparison of the theoretically and eXPerliall as the inserted specimen, were placed in the middle of
mentally obtained results. In Sec. 1V, we provide evidenceqhe solenoids.

that the BNES'’s probability distribution function is a gener-
alized homogeneous function which enable us to rederive at\/vi

scaling relaitions(obtained in SQC' i in th? spirit of the ._fier. Trains of the Barkhausen pulses were monitored, to-
standard critical phenomena. Finally, we give an overall dis- ether with the driving current, on a HAMEG 205-3 digital

cussion c_)f t_he utilized experimental method and the unfolde torage scope. In order to improve quality and the duration of
theory within the present knowledge about the BarkhauseEhe recorded signal, an analog-to-digita/D) converter

noise. (made by Electronic Design, model ED 2000 with high-
speed module ED 2019, compatible with the Burr-Brown
Il. EXPERIMENTAL ANALYSIS card, model PCI-20023M)1with the 12-bit resolution, has
been used for the data collection. The A/D converter had the
input range—5 V to +5 V, with the maximal rate of 300 000
We have used the experimental setup which is schematsamples per second, permitting, in a single run, collection of
cally depicted in Fig. 1, and here we give a brief descriptionas many samples as the computer memory could accept. We
of the parts of the setup. A signal generatérohn-hite 5400 have found that the sampling rate of 200 000 samples per

FIG. 1. A schematic depiction of the setup used in the experi-

Electric signal from the pickup cofL has been amplified
th a gain of 200D through a low-noise differential ampli-

A. Experimental setup
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FIG. 2. (a) A typical train of Barkhausen pulses observed in an as-cast commercial VITROVAC 6025 X metallic glasqwitthdinear
dimensions 4 crr 1 cmx 0.003 cm). The train is presented by the line drawn through 4096 pdiitsligitized voltage, recorded at the
sampling rate of 200 000 samples per segoiithe unit on the ordinate axis is 1 count of the A/D converter, which is equivalent to the
voltage of 5/2048 V. The huge offset, of about 2000 counts, appears as a consequence of the fact that thé @dhageresponds to the
2048th count of the A/D converter. For the sake of comparison, an elementary signal of th@)fasmresented in the inséwhere the time
and voltage units are arbitraryb) Power spectruniin arbitrary unit$ of the train of Barkhausen pulses shown in the preceding graph. The
high value(close to 16) of the f=0 harmonic is a consequence of the huge offset of the recorded train of pals&he positions of
baseline(the lower horizontal line parallel to the time axand the discrimination levéthe upper horizontal linefor a nontypical train of
Barkhausen pulses. The nontypical train of small Barkhausen pulses has been chosen here intentionally since théhedéinselne and
the discrimination levelwould be otherwise indistinguishable in a figure that would present a typical train of Barkhausen (olildgsuge
single Barkhausen signal which lasted 0.002 @ecated, approximately, between 0.0075 sec and 0.0095 sec

second provided a good balance between resolution of pealentire set of data at the constant temperature equal to

and the number of peaks recorded during a single run. Witl20 °C.

respect to this problem, we would like to emphasize that the

amplifier cutoff frequency100 kH2 has been chosen to pre- B. Numerical processing of recorded data

vent aliasing effect in the power spectriv].

The achieved quality of the Barkhausen noise measure;

) . . e

ment, obtained in the way described above, was accompa:

nied by undesirable sensitivity to the low-level electric and

magnetic extrinsic noise. To minimize this concomitantt d at the valuél=0). which | th di
noise, the driving solenoid, the pickup coilC, and the ered at the valuéi=0), which encloses the corresponding

amplifier, were enclosed in a double-wall Permalloy Cham-0ercive fieldH. owing to the fact that our specimen is a soft
ber(made by Vacuum Schmeltavhich reduced the external Magnet. During a single recording, which lasted about 0.6
magnetic fields(including the Earth’s magnetic fieldat ~ S€C, we got 128 kB of datél31 072 points of the digitized
least by a factor of 10 000. Finally, a copper chamverich voltage, and we present here results of statistical averaging
is not shown in Fig. Lhas been used as an additional Fara-0ver 200 successive single recordings obtaivéthin 2 h of

day cage to minimize external electric fields. As a resultmeasurementunder identical experimental conditions. In
amplitude of the overall extrinsic noise was not larger than 47ig. 2@ we present a typical train of Barkhausen pulses by
counts of the A/D converter, that is, signal-to-noise ratio waghe line drawn through a set of 4096 successively recorded
about 500. Finally, the care was taken so as to record thpoints. The presented set belongs to one of the 200 single

We drove the sample studied throuBkH loop for 10 h
fore any recording was done, in order to achieve the sta-
nary regime of the hysteresis loop cycling. Then, we have
collected our experimental data in a small intervaHofcen-
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recordings, while the time counting has been shifted, for thdine, and, in particular, we can thereby estimate the corre-
sake of convenience, to the beginning of the train of pulsessponding extrinsic noise standard deviation(supposing
One can notice that in the recorded train there are sever#iat the noise is symmetrical in respect with the basglifie
clusters of big pulses and a multitude of small pulses hardlgliscriminate the BN pulses from the extrinsic noise, we es-
distinguishable from the concomitant extrinsic noise. tablish a discrimination level at the valbg=Db,+ &4, where
After the data collection, we have performed numericaldy is @ quantity that is proportional te [see Fig. )]. In
processing of the raw recorded data. There are several re@hat follows, we present all our results f§/o=1 (with a
sons for this processing. First, the data collected by th&éomment that our analysis for the power law exponents has
pickup coil were of millivolts in magnitude, and they had to Shown that they are not sensitive to particular values of the
be amplified in order to be adjusted to the input range of thdatio 4/0). Finally, we define as a single BN signal each
analog-to-digital converter. The applied signal amplificationP@'t of the recorded line of pulses above the discrimination
inevitably introduces various types of distortions since thd€vel that ranges between its two consecutive intersections
amplified signal is the convolution of the amplifier charac-With the discrimination leve[see, for instance, a huge BN
teristic and of the input signal power spectrum. These distorSignal presented in Fig(@]. Applying the foregoing proce-
tions are potentially of the greatest influence on the mosfUre, we have extracted 1078 796 elementary signals from
frequent short-lasting, and sm4ih magnitudg, signals. To  the experimental data, which has rendered the basis for our
eliminate these distortions, we have performed a deconvoltatistical analysis.
tion procedure, using the fast Fourier transfor(fFT)
method, based on known characteristic of the amplifier used. C. Experimental results

Within this procedure, it was possi_ble to introduce cutoff at  Three basic physical quantities that describe a single BN
any desired frequencybelow the imposed hardware fre- signal are signal duration, area of the signal, and energy re-
quency cutoff, and we have investigated the influence of thejeased during the signal occurrence. To define these quanti-
frequency cutoff choice. Thus, we have found that the databies, we denote BN byF(t) as a function of timet. The
important for the further analysis, remain stable under varia—signa| duratioriT is the time interval, between the fistand

tion of the frequency cutoff, and, for this reason, in whatihea |ast moment; , in which the signal is above the discrimi-

follows we present our results obtained for the deconvolved,4tion level. The area of a signalis the area between signal
data with the cutoff frequency set at the hardware value 10Q,4 the baselind,, which can be written in the form

kHz. o L .

The necessity for the numerical processing of the originalb‘_ftf[F(t) ~Dbi]dt, and which is proportional to the sum of
data stems also from the inevitable presence of undesirabl8e ordinates of the discrete form of the functiB(t) —b .
extrinsic noise. There are many kinds of extrinsic noise, sucfPhysically, the area of a signal is proportional to the change
as the exterior fields, the thermal noise, the electric networl the specimen magnetization occurring during the signal
noise, and the noise that originates from the computer confluration. Finally, the signal enerdy is proportional to the
ponents. The presence of the undesirable noise can be nintegrated squared signal, thatl‘sqcfi'f[F(t)—b,]zdt.
ticed in the power spectrum of the typical unprocessed Sig- The self-similar appearance of the experimental results
nal, which appears as the white noise at frequencies highgg, gN [Fig. 2a)] implies that there should exist various
than 50 kHz[see Fig. 2)]. In order to reduce the effect of gc4jing Jaws, and in this spirit one can expect that the prob-
the extrinsic noise, we have applied the Wiener fllterlngabi”ty distributions P(T), P(A), and P(E), of the three

method[27], but it turned out to be an excessive step, that isqantities defined in the preceding paragraph, should be of
it did not change final results, which can be explained by thg,o power-law type

relatively high signal-to-noise ratio. One can also see in Fig.

2(b) that there is no so-called aliasing effe@thich was P(T)~T™ ¢ P(A~A""7, P(E)~E"¢, D)
eliminated by the suitable choice of the amplifier cutoff fre-
guency. where «, 7, and € are the corresponding critical exponents.

In the concluding part of this subsection, we shall provideOur experimental results related to these distributions are
a usable definition of a single BN signal within the recordedpresented in Figs. 3-5, respectively, from which we obtain
trains of pulses. To this end, we first have to define baselinéhe following values for the critical exponents
of a train of pulses. It appears to be most appropriate to
choose for a baseline the horizontal line, in the coupfs a=2.22+0.08, 7=1.77+0.09, €=1.56+0.05. (2)
voltage vs time plane, which has maximum number of in-
tersects with the train line. In other words, the baseline cor- Besides the distributiongl), within a complete analysis,
responds to the cou; of the A/D converter that most fre- it iS important to establish the joint distributions, which in
guently occurs in a given train of pulséthis definition is  practice means to find joint histograms. Thus, in Fig. 6 we
correct only in a case of a slowly varying external field present a log-log plot of our experimental results in the form:
Having defined the baseline, we point out that above this linsignal area vs signal duration, which means that every point
there are both the BN pulses and the extrinsic noise pulse#) the figure represents a single BN signal. Similarly, in Fig.
whereas below the baseline one can find only pulses of thé and Fig. 8 we present joint histograms for energy-duration
extrinsic noise(if we neglect the inverse BN pulses, which and energy-area distributions, respectively. From these three
appear to be almost improbable events under the describdigures, one may gain insight into the joint probabilities
experimental conditions Hence, we can numerically ana- P(A,T), P(E,T), and P(E,A), as they are approximately
lyze the extrinsic noise pulses which appear below the basgroportional to the number of points per unit area in the
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FIG. 3. Experimental data for the distribution of signal durations . . . .
FIG. 5. Experimental data for the distribution of signal energies

(diamond$ and the pertinent best fit of the for(d5)—(16) (solid . ! :

line). The scaling region, almost two decades long, can be recog(-dlamondssfnd thebeStfm cuzrvéoth:e pqwerl-law type, v_\ntlh;ge
nized, and can be described by the critical exponent2.22. To gorre(_:;)lon r?ctor (I)' the qrmi 7] The critical exponent=1.
obtain this distribution of signal durations, the original data were escribes the scaling region.

first grouped into logarithmically spaced bins, and one can notice o _ _
that, despite the huge number of collected data, there appears ¥Me have tested the validity of assumpti), that is, of the
unavoidable scattering of the points in the region of signals havingorresponding linearity in the log-log plots, by evaluating the
short durations. This fact is a consequence of the incompatible digaertinent linear correlation Pearson’s coefficients
creteness of the two quantities — the originally measured signal
duration and the magnitude of bins. r(A,T)=0.946, r(E,T)=0.871, r(E,A)=0.988,

&)
respective planes. In addition, from the same figures, one can

see that the corr_espondmg pairs of quantltles_are not relatevghich appears to be satisfactorily high since in the ideal case
by single functions[for instance, in the simple form

a hese coefficients should be equal to ¢@&]. Furthermore,
A_f(T)].' a_lthough, on th?‘ othe_r hand, one may see tha\%\/e have calculated the more informative Spearman rank-
each pair displays a significant linear correlation in the lo

g_ . . .
log plot. Therefore, it is appropriate to assume validity of theOrder correlation coefficients

following power laws:
r<(A,T)=0.886, r¢(E,T)=0.783, r4E,A)=0.985,

A~T7, E~T%, E~A%, 3) ©

. . . which again turns out to be satisfactorily high, as it is known
The least-square fit of our data gives the following values folthat in an ideal case these coefficients should be equal to one
the critical exponents:

_6_
y,=1.51+0.01, 7,=2.03+0.02, y;=1.36-0.01. 10
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FIG. 6. Area vs duration data of the BN signébs the so-called
10100_10 109 100 1 (']_7 100 joint area-duration distributionAlmost all experimentally obtained

points (dot9 lie within the domain bounded by the two solid lines,
Area(Vsec) which correspond to the estimatgg,i,=1.3 andyy.,=1.63 that
were achieved using these data and the theoretical predi@jon
FIG. 4. Experimental data for the distribution of signal areasWe point out here that the presented data are taken from the first 50
(diamond$ and the best fit curvgof the power-law type, with the single recordinggof the total number of 200 single recordings
correction factor of the forng22)]. The critical exponent=1.77 because a presentation of all available data would give a completely
describes the scaling region. black central region.
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FIG. 7. Energy vs duration data of the BN sign&s the so- FIG. 9. Power spectrun®(w) (in arbitrary unit3 of the ob-

called joint energy-duration distributibnAlmost all experimentally ~ Served BN signals. The set of poirittots is calculated via the FFT

obtained pointsdots lie within the domain bounded by the two method and represent experimental findings, whereas the solid

solid lines obtained throughL0) and the estimateg,,, and yn.,  CUrve represents numerical evaluation(®).

quoted in the caption of Fig. 6. The comment made at the end of the

Fig. 6 caption applies here as well. noise (3=1) nor the Brownian type noise3=2). A com-
parison of this result with results found by other authors will

[27]. Thus, we may conclude that resul& and(6) of both  be given in Sec. IV.

tests confirm that our experimental data do satisfy the power

laws (3). . - . Ill. THEORETICAL ANALYSIS
Finally, one of the main characteristics of BN is a power-
law spectrum of the typ&(f)~ 1/fA. In Fig. 9 we present In this section, we propose a theoretical approach per-

the power spectrum of the observed Bileconvolved from  formed along the lines of the approach developed by Jensen,
the amplifier characteristicwhich has been obtained by ap- Christensen, and Fogedb$8], which has been widely used
plying the FFT method. More specifically, we have appliedin previous analyses of experimental results in the case of
the numerical procedure described in the b@K under the  systems that exhibit SOC-like behavior. This is an inductive
name SPCTRMusing the option that assumes signal over-approach whose virtues will be discussed in the next section,
lapping and the Parzen wind@wwithin this procedure we simultaneously with expounding a phenomenological scaling
have worked on the 4096-point segments, obtaining therebgpproach. Accordingly, let us consider the famBlyof the
2048 harmonics in the power spectrum. Our final results dispertinent uncorrelate@elementarytime signals each labeled
play linearity, over almost two decades in the log-log plotby indexi, with time profilef;(t") (wheret’ is supposed to
(see Fig. 9, with a slight curvature at the beginniritn the  be measured from the moment of beginning of the elemen-
low-frequency region We have estimated that the exponenttary signa), and the(total) recorded time signaf(t) (which

B, which should describe the linearity region, lies betweernis a stochastic sum of the elementary signals that start at
1.6 and 1.7. This shows that BN is neither the pink typerandom times with overall rate). Then, if p;(né) is the
indicator function(which is equal to one if an elementary
signal of the type has started at the instant of time, and

-8
10 otherwise it is equal to zeypF(t) can be expressed in the
10k form
10710}

5 1M <

= F=2 2 fit=ndpi(nd), 7

E.) 10-12._ i n=—o

& o1}

w W which shows thaF(t) is a stochastically stationary time sig-
107 nal. In our study, we accept that BN is a time signal of type
10"k (7), assuming that BN is observed in a time interval which is,
1016 e R el on the one hand, practically infinitu.ompared to average

101 10°  10% 107 10° duration of BN elementary signajsand, on the other hand,
Area (Vsec) short enoughicompared to the period of the driving mag-

netic field that one can consider the observational conditions
FIG. 8. Energy vs area data of the BN sign@s the so-called  Uniform and elementary signals uncorrelated. Furthermore,
joint energy-area distributionin this case, one can also notice that W& assume that the experimentally recorded single BN sig-
almost all experimentally obtained pointsots lie within the do-  hals are effectively elementary BN signals, which should be
main bounded by the four solid lines, which were obtained usingcorrect if the number of those single signals that are com-
relation(12) and the estimates,,;, and ymax quoted in the caption prised of several elementary signals glued together is statis-
of Fig. 6. tically irrelevant.
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0 BNES's are on average of the same typee Fig. 10 For
the corresponding analytical form we propose

25 |- s experimental points

fitting curve

Ct'" g(t’/T), t'>0

f(t')= 0, <0,

8

whereC is a proportionality constant; is the corresponding
signal exponent, angl(t’'/T) is some function which is close
to one for small values of the argument and falls rapidly to
zero for large values df /T. Here,t’ is the time measured
from the moment of the beginning of the elementary signal,
L andT is a characteristic time that can be thought of as the
0 50 100 150 200 250 300 duration of the elementary signal. Here we would like to
Time (Counts) point out that our analysis will show that the final results are
most sensitive to the raising part of the signal, that is, to the

FIG. 10. The average form of BNES(solid squaresobtained factort’”~*. In other words, it will turn out that a specific
through an analysis of the experimental data, whose main step coform of g(t’/T) does not have an essential role, and, for the
sisted in rescaling of the BNES's shapes to the s#cmmstart  Sake of completeness, in the later numerical investigations
duration and the sam@onstank area. The continuous line repre- We shall use the exponential decay fogiix) = exp(—x). The
sents the accepted analytical fori®), with y=1.51, andT=119  accepted kind of elementary signal is depicted in the inset of
time counts ing(t’/T)=exp(—t'/T). the Fig. Za), where it can be compared with the recorded

signals (this type of the signal is also in accordance with

Power-law behavior related to the time sighdt) of the  forms experimentally observed by other authors; see, for in-
type (7) depends on the characteristics of the distribution ofstance, Fig. 10 of the second paper of O'Brien and Weiss-
elementary signals. It may happen that there exists som@an[22], and Fig. 1 presented by Urbaeh al. [26]).
prominent subfamily of elementary signdlsaving specific Physical reasons for choosifg) for the average shape of
shape such that it has a dominant statistical weight in theBNES can be complemented by the following qualitative
distribution of elementary signals. In such a case, performingrguments. In the study of BN we follow changes in the
statistical analysis, one can neglect the presence of elemefiomain structure caused by changes in external magnetic
tary signals which do not belong to the subfamily and try tofield. First, we observe that the domain structure of a mag-
relate the properties of the time sigrfa(t) to the specific  netic specimen is stochastically organized due to the com-
shape of the subfamily elementary signals. A visual inspecplex interplay of local fields, internal stresses, and bulk and
tion of the typical train of elementary signdisee Fig. 23)]  surface defects. For a given field the structure is stationary,
can hardly detect existence of a subfamily of specific signalsyhereas small changes of the field are prone to trigger ava-
However, a more elaborate numerical investigation of th@anchelike rearrangements of clusters of domains, which is
available experimental data can demonstrate that a subfamilysually initiated at a single domain. There are experimental
in fact exists. To this end, one should first rescale eaclvidenceqsee, for instance, RefEl3] and[19]) that lead us
BNES fi(t") (by appropriate dilation, or contraction, of its to assume that the clusters which take part in an avalanche-
duration time and voltage amplitudso that the rescaled |ike process comprise a fractal pattern, whose fractal dimen-
signal f/(t") acquires unit duration and area, which eventu-sion we identify with the signal exponemt Furthermore, we
ally makes signals’ shapes suitable for mutual comparisoraccept that an avalanchelike process is recorded as a single
Then, one should perform a straightforward averaging of th@&N signal, and that the time evolution of the avalanche de-
rescaled signals within its own set, so that the vdly¢’) of  termines the shape of an elementary signal. The raising part
the function obtained in this way, at the momehtis the  of the signal is dominated by the advancement of the ava-
average off{ (t"). lanche front(whose fractal dimension is equal 46- 1), and

In practice, we have analyzed all BNES’s which belong toconsequently there appears the fattdr * in (8). Of course,
the scaling regiorisee Fig. 3, that is, which have durations after the rapid growth, the signal has eventually to die out,
between 16 and 256 time counts of the used A/D converterand the way it halts is described by the factrt’'/T). An
Then, we have rescaled all BNES'’s to the duration of 256exponential decay form fay(t'/T) might be associated with
time counts, by linear interpolation, and we have dilatedthe eddy-current damping, while the constabtcan be
(contractedl them along the voltage axis, in such a way thatthought of as a quantity proportional to the velocity of the
the maximal height of the rescaled BNES’s must not exceeddvancement of the avalanche front.

256 voltage counts, and, furthermore, so that the all rescaled The first three predictions that follow from the assumption
BNES's acquire a same area. Finally, we have performed thés) are the relations between duration, area, and energy, of an
averaging of the rescaled BNES’s and the resulting shapelementary signal:
[function f4(t")] we present in Fig. 10 as a set of 256 dis-

crete points.

The conclusion of the described analysis emerges as the
statement — although the shapes of BNES's appear irregu-
lar, there exists a generic smooth signal form such thaand

Voltage (Rel. Units)

A=CTT(y), ©)]
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T 2y—-1
E=C2(—) r2y-1), (10 0.30 - o (T=0.050 ms)
2 ® o (T=0.080 ms)
025 A (T=0.126 ms)
where o (T=0.200 ms)
0.20 - m (T=0.317 ms)
% — o (T=0.502 ms)
P(n= | 0 g00dx a g o
0 0.10
which, for the specific forng(x) =exp(—x) is in fact the 0.05
standard gamma function. Then, eliminating durafioinom 0.00 |_ces? oo
(9) and (10), one obtains the relation ' " . , . . .
13 14 15 16 17
11y _
_ C''T(2y—-1) -1y (12 ¥
[2T ()" ’

FIG. 11. Distribution of the signal exponentfor six logarith-
between the energy and the area of an elementary signgmically spaced time bins which all belong to the scaling region of
Once derived, the relatiof®) may be considered as the de- the BN signal duration distribution. One should observe that, for all
fining relation the for signal exponentof BNES, providing specific vglues of, the p_resented distril_auti_ons c_ollapse on a single
that the constan€ is known[see Eq(13)]. Thus, the signal Curve. whl_ch r_]_as been fitted by the solid lif@btained through 'the
exponenty can be conceived as a quantity which discrimi- J.andel Scientific Table Curve 2D progranithe presented distribu-

nates between the possible shapes of BNES'’s, and in whﬁfn may be (ﬁthherhv‘ﬂ.;ﬁsgri.bed as "’ll tGiuZ;i%n diztgbg;ion with
follows we accept such an attitude. € mean and the haftwi €ing equatio . and 0.ts, respec-

Analyzing our experimental findings, we came to the con-t'vely'

clusion that the BN signal duratiohand the signal exponent collapse on the sinale curve. On these arounds. one can ius-
dimension y should be considered as the two stochastic P Y : g X Ju

guantities, and we denote their joint distribution by tlflabltyt_consider)rfl_arr]\dT as tlhe twc;)incﬁpinlgent StOCh?jStiC
P(7,T). By inspection of Figs. 6-8, one may also concluded4aniies, =~ whic implies - P(y|T)=P(y) = an

AL _ P(v,T)=P(y)P(T). As regards the distributiof(vy), it
that the distributionP(y)=[P(y,T)dT should be rather / ,
narrow, ranging between some lower limjt,.. and upper can be described as a Gaussfatth the mean and the half-

limit ynhax- Using the data for the joint distribution of the width o, equal to 1.4975 and 0.05, respectivelglthough

BN signal area and durationT (see Fig. 6, we have esti- its identification with some of known distributions is of no

. i major importance for our present analysis.
mated these two limits and the constéhof (8): Our further analysis can be simplified by the fact that we

- =1.30+0.03, —1.63+0.03, can identifyy,, given by(3) and(4), with the most probable
Ymin Ymax value of the signal exponent associated with the distribution
C=0.004+0.001. (13) P(v). This identification can be justified by the high value of

the relevant Pearson coefficient, given(8), as well as by

Thus, one may conclude that the BN signals should be didhe fact that the peak of the distributidA(y) occurs at
tributed, with respect to their area and duration, between th¢= 71 (See Fig. 11 Consequently, fronf9), (10), and(12),
two boundaries depicted in Fig. 6, which are obtained byfollow the power laws of the typ€3) and the scaling rela-
substituting the values @&, y,,, (for upper border linpand ~ tONs

Ymax (for lower border ling into (9). Furthermore, using 1

(10), (12), and(13), we have obtained, in the same manner, _ _ o

the boundaries depicted in Fig. 7 and Fig. 8 for the energy- v2=2yi—L ys=2- O 4
duration and energy-area joint distributions of the BN sig-

nals, respectively. The achieved rather precise prediction fdrlence, we can see that the values 2.02 and 1.34yf@nd
boundaries of the energy-duration and energy-area distribuys, respectively, which follow fron{14) and experimentally
tions of BN signals(obtained through quantities estimated found valuey,=1.51, are in a very good agreement with the
from the area-duration distributipiserves as a confirmation values quoted iti4), which corroborates the scaling relations
of validity of the assumed forr(8) for an elementary signal. (14).

The next question, which we are going to answer, is To complete the set of the expected scaling relations we
whether one may consider the two stochastic quantifies find it appropriate to specify the first power law @) by
andT as two independent stochastic quantities. With this airintroducing a correction factor
in view, we have evaluate®(v|T), the conditional prob-
abilities to observe an elementary signal with the signal ex- P(T)=B(T)T™ ¢, (15
ponenty under condition that its duration is equalTofrom
our experimental data and from the relati@. The result of  which is assumed to describe more accurately the signal dis-
the corresponding evaluation, for six logarithmically spacedribution with respect to the signal duratidn Here, the in-

T bins [chosen within the scaling region &(T) distribu-  troduced correction factoB,(T) should be constant in the
tion] is shown in Fig. 11. It should be observed that for all scaling region, while for largd it should depend o in
specific values ofT, the conditional probabilitied®(y|T) such a way to describe the observed cutoff behagee Fig.
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3). We are going to use the following phenomenologicalhand side of20) with y being replaced byy,. Performing
stretched-exponential form for the correction factor: this replacement, one can recognize t(20) is, in fact, of
the form (15), with

By(T)=Boexy — (T/Tc)" ], (16)
whereBy, is a constant] . is a characteristic cutoff time, and =1+ a1 , (22)
oy is the corresponding exponent. The stretched-exponential et
form (16) has been used in a similar content in the wd#], and
and its relevance to the phenomenon studied has been argued
also by Alessandret al. [7]. To assert values of the con- Ba(A)=Bg.exd — (A/A,)Yoa], (22)
stants in(16), we have minimizedy? of our experimental
data and the formil5) performing the Nelder-Mead downhill whereBg,= (Bo;/v1)[CT'(y1)]¢ V1 and
simplex method in multidimensionsee Ref[27] and the
program Amoeba given thergirHere we remind the reader A=CIl(y)TY,  0a=710¢ (23
that we have grouped our data into logarithmically spaced
bins, so that the numb@#(T,) of single BN signals in a bin  Inserting the best fit parameters for the duration distribution

centered afl, is given by (a, T, oy, andBgy) in (21) and (23) one finds7=1.81,
Boa=0.0144,A.=7.7x10 ' Vsec, ando,=0.42, whereas
Tol the best fit of the experimental data gives, respectively,
N(T0)~NL0“ P(T)dT, a7n 177 0.09[see(2)] and
whereN is the total number of signals, whilds the bin size. Boa=0.0141-0.003, A.=(6.1-2)x10 'V sec,
Hence, we have obtained the critical exponent2.22[see
(2)], and the correction factor parameters 0,=0.43%0.1, (24)

T.=(2.4+0.210 3sec, 0,=0.28+0.08, (18  Which has been obtained following the same numerical pro-
cedure[27] applied in the case of the duration distribution.
where the quoted errors were estimated via 100 Monte Carlo In a similar way, one can obtain the scaling relation
simulations with the confidence level being equal to 0.68
[27]. In Fig. 3 we present the curve of the forth5)—(16), =1+ a—1 25)
with T, and o; given by (18) and with «=2.22 and 2y,—1’
Bo:=0.47£0.07, and one can see that this curve fits the ex-
perimental data in a very satisfactory way. However, wefor the critical exponent of the energy distribution of the
would like to point out that the valued8) were extracted BN signal, as well as the scaling relation
from the distribution tail, that is, for signals of long durations
whose statistics is relatively meager, and, for this reason, one e=1+ (r=D(a—1) (26)
could expect a deviation frorfl8) in a experiment with a 2a—7-1 "
larger statistics. Similarly, it should be emphasized that the o ]
form (16) cannot stay valid in the entire region pertaining to that follows by eliminatingy, from (21) and(25). Inserting
signals of short durationén our case, foT<10 5 seg, so  the experimental findings for and y, in (25), we obtain
that an experiment performed in such a region would requiré =1.61, which is in a good agreement with the value
a different correction factor. €=1.56 found experimentallysee(2)]. Applying the same
The foregoing discussion of the duration distribution@PProach that led us to the formui@2), we obtain for the
tion (8) about the elementary BN signal shape, implies a

_ _ log
definite form for the area distributioR(A). To find it, we Be(E) =Boeexr — (E/Ec)™"], @7
start with the following equality where
P(Aly)dA=P(T|y)dT, (19 Boe=[Bo:2 %/(2y,—1)][C2T(2y,—1)](@~ V@11
which relates the conditional probabilitieB(Aly) and and
P(T|y)=P(T) to observe a BN signal of are@ and dura-
tion T (with a proviso that the signal exponent ig), E.=CT(2y,—1)(TJ/2)?"" Y, 0.=(2y,—1)0,.
whereby one can derive the expression (29
1 A\ Inserting the best fit parameters for the duration distribution
P(AlY =Bl Er (e in (28) one finds By,=0.004E,=4.0x10"° J, and

o.=0.56, whereas the best fit of the experimental data gives,
X[CI(y)]*~ VA~ (DY (20)  respectively,

Next, taking into account tha(A)= [P(A|y)P(y)dy, and Boe=(4.3t0.6)x10 3, E.,=(4+2)x10 19,
since the distributiorP(y) is narrow(see Fig. 11, one may
conjecture thatP(A) is approximately given by the right 0.=0.6:0.2, (29
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which has been obtained following again the same numericatiere, S, () is the power spectrum of the elementary sig-
procedure[27] applied in the case of the duration distribu- nal f,, +(t"),
tion. -

In the final part of this section, we would like to expound S, 1(w)=|f,1(w)]? (33
on our theoretical predictions about the power spectrum of
the BN signal. Thus, we start with the autocorrelation func-andfyT(“’) is the Fourier transform of the elementary signal
tion W(ty) of the total signal(t)

()= f H(tHe et'dy, (34

‘I’F(to):<F(t)F(t+to)>:Vf d)’f dTP(y, TV, 1(to),
(30) which for the exponentially decaying elementary signal fac-
tor g(x) =exp(—x) has the specific formi28]

- CT'T(y)
T(w)—mexp: iyarctafwT)]. (35

where

+ o0
Wort)= [t tgdr, @
- Hence, using our assumptid8), related to the shape of el-
which is the autocorrelation function of the elementary sig-ementary signals, we obtain
nal f, +. Therefore, the power spectru{w) of the total

signal F(t), as a function of the angular frequency : _f%w/on(“’O) r T T
w=2mf,is 7,T(w)_ ( w)y ) y,T(CU)_ T_O 7To T—Ow ,
+o0 ) wo
S(w)= J Ve(tg)e™ “lodtg= (S, () (36)
where we have introduced new time and frequency units
2 To and wg, respectively. Using the latter forms a in
:VJ dyJ dTP(y DIy r(w)|* (32 (3?2) onéogan olgtain g ’ i

2

T )_a T )
Bt(mT fﬂo(ﬂ“’f’ T\
® 2y—a+l (T_O
)
(TITy)
o8l (arag™

® 2y—a+1
wo

S(w)=VJ dvp(v)de

2

(37

:yfdyP(?’)f (TT)T (TTO)

~ T
f y’TO T_O (O]

If we now define dimensionless quantiti#s=T/T, and However, inserting data frort®) and (4) in (39) one finds
@=wlwy, we finally obtain our general expression for the that 5=1.80, which deviates from the experimentally ob-
power spectrum tained valueB=1.6—1.7. Therefore, in order to check the

validity of the expression38), we have evaluate®(w)
(with the time unitT, and the frequency unib, chosen so as
S(w)=vTg" f dy ~2'y— +1j dTBt to achieve stability in the corresponding numerical calcula-
tions) using(38) and approximatind?(y) with the best fit to

T R _ the Gaussian form. Results of this calculation are presented
X gTO)T”‘“H%TO(TwO)P. (38)  in Fig. 9 as a continuous line, whereby we have found the

corresponding power-law exponefit=1.67+0.01. The lat-

One might conclude fron{38) that the power spectrum ter value is in accord with experimental finding f8rand

exponent3 satisfies the scaling relation deviates from the valug=1.80 which followed from the
scaling relation39). The deviation can be now attributed to
B=2y,—a+1, (39 the assumptions that have brought ab@9). Hence, it ap-

pears that the integral ovérin (38) is weakly dependent on
providing one assumes th&(y) can be approximated by « andy. Besides, the second source of difference between
the delta functions(y— v,) and that the integral over in  the two values for8 (1.67 vs 1.80 springs from the finite
(38 is, for high frequencieso, approximately a constant. width of theP(y) distribution. Indeed, if we takP(+y) to be
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of a Gaussian typéinstead of being a delta functipnand P(b™YT,b* YA, b® YE,b?\)=b"P(T,A,E,\), (43
perform the requisite lengthy calculation, we get a negative

correction term on the right hand side(@9), so that instead where

of v, there appearsfl—oilnw. In other words,y, gets the

logarithmic correction term, and if we take,= 0.05 and, for W=Wo—3(X—Y), (44)

instance,w= 10", we getB=1.74, which is closer to the ) - - .

experimental finding3=1.6—1.7. which, withz=z/y andw=w/y, and with the another scal-
ing parametec=b ™Y, can be rewritten in a more convenient
form,

IV. DISCUSSION

In this work we have performed extensive measurements, P(cT,c?A,c%E,c®\)=c®P(T,A,E,\), (49
with reliably large statistics, of the Barkhausen ndid#l) in
the case of a commercial VITROVAC 6025-X metal glassWwhere
sample. We have demonstrated that the BN phenomenon can —~ _ —~ ~
be described by well defined critical exponetgse, for in- ap=1-x, ag=1-2x, a=-z, ap=-Ww.
stance, Figs. 395which satisfy a set of scaling relations. (46)
The observed power laws for the quantities\,E, and for
their joint distributions, may be interpreted as a manifesta
tion of the vicinity to some critical pointsee, for instance,
[23]). Although our findings may not be sufficient to either
validate existence of the critical point, or to locate it in terms

To prove (43), we start with the auxiliary relations be-
’tweeq the duratiofM, areaA, energyE, and Fourier trans-
form f(w) of the originali BNES and the scale§,i BNES,

N YT
of some relevant parameters, nevertheless the established T(SH=b"T(), (479
power-law behaviors, the set of scaling relati¢dhsing sat- N Xy
isfied with our experimental findingsand the data collaps- A(Spl) =™ 7A(D), (47b)
ing of the type presented in Fig. 11, make us wonder 2y
whether, in the BN case, there exists also a generalized ho- E(Syi)=b SOF (479

mogeneous functiofGHF) with a concomitant data collaps- - oA _
ing (in an analogy with the standard critical phenomena fsbi(‘*’):bx Mi(wb™Y), (479
[29]). Here we argue, and provide evidences, that the prob-
ability distribution of BNES's is a GHF. With this goal in Which can be verified in few steps. Indeed, to obtaa),
mind, we first introduce the scalir, (for b>0), within the ~ one has to notice that the duratidnof BNES is defined by
setB3 of all possible BNES's, such that when it is applied to T=t;—t;, wheret; andt, are the first and the last moments,
thei BNES of the shapé;(t’) it gives theS,i BNES of the ~ respectively, of the time interval when BNES is above the
shape discrimination levelby. Besides, one has to keep in mind
that T displays only minor changes if the discrimination
fsi(t")=b*fi(t'bY), (40 level by is changed. Thus, one can make the choice
by=b,+ 54b* (see Sec. Il B in the case of the scaleg,i
where b is the scaling parameter, while andy are the BNES, and thereby one obtaifd73. In order to obtain
scaling exponents. Next, we put forward the following scal-(47b)—(47d), one has to perform the change of the variable
ing hypothesis — ifp(i,\) denotes the probability density to t—t’=b¥t in the integrals which appear in definitions of
observe the BNES when the system is at the “distance” A, E, andf(w), given in Sec. Ill. Next, we return to the
A from the critical point, then for some specific exponentsproof of (43), and to this end we write
(x,y) [see Eq.(40)] there exist additional exponenzsand

W, such that P(b™YT,b* YA, bZ* YE,b?\)
dp(Spi, b2\ ) =b"odp(i,\), (41) _dP(b‘yT,bX‘yA,bzx‘yE,bZ)\) _ Jgdp(i,b*N)
T d(bYT)d(b* YA)d(b®*YE)  b3*YdTdAdE

which is, in fact, the GHF statement.

To acquire possibility to verify experimentally the above (48)
GHF statement, we introduce the probability density ) ) )
P(T,A,E,\) of obtaining BNES's with giverT, A, E, and ~ WhereS, image ofG is the setg’ of all BNES's havingT,
\ via A, and E within the limits b YT<T(i)<b™¥(T
+dT), b YA<A(i)<b* Y(A+dA), and bZ* VE<E(i)<
b Y(E+dE). Then, using41) and the relation

d i,b?A
(42 f dp(i,bZM:fMdp(i.x):bWofdp(i,m,
_ . . g g dp(i,n) g
whereg is the set of all BNES’s having, A, andE within (49)
the limits T<T(i)<T+dT, A<A(i)<A+dA, and
E<E(i)<E+dE. Accordingly, one may prove that the one obtaing43).
probability densityP(T,A,E,\) is the generalized homoge- In what follows we are going to demonstrate that the
neous function power laws(1) for the P(T), P(A), andP(E) distributions,

dP(T,A,E,\)=P(T,AE,\)dTdAdE= f dp(i,\),
g
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and all scaling relations of Sec. Ill, can be obtained fromtion of (50), and(54), we retrieve the scaling relatiori$4),

(43) if one chooses the scaling exponeats, ag, a,, and
ap in the following way:

_ eatTt2—€e—a—7T _1—a _l—a
BT T A1 W e
a)\:]./O'T, (50)

wherea, 7, ande are the scaling exponents @) ando is
the exponent of16). Indeed, for the duration distribution
P(T) we have

P(T)= f dAJ dEP(T,AE,N)
e 4o

whereby one can see tha{T) exhibits a power-law behav-
ior, with the correction ternfgiven by the integral of the last
relation and with the scaling exponent given by

'ﬁ’ ﬁyﬁ

A E x)
(51)

In a similar way, one can show that the distributidhgA)

andP(E) obey power-law behavior as well, with the expo-

nentsr and e given by

aptag+1
T=— €=
aa

aptantl

a (53

Finally, starting with Eqs(52) and(53), one can obtain the

first three relations of50). As regards the correction term of
the power law(16), one may conjecture that the fourth rela-

tion of (50) stays valid and that the cutoff paramefer of

(16) might serve as the parametemwhich measures distance
from the critical point(at which the system should exhibit

the pure power laws, with the cutoffs remoyeds to the
stretched-exponential forrfl6) for the correction term, we
can say that this forntbeing specific does not follow from
the general scaling hypothesil).

The power laws of the form3) also follow from the
scaling hypothesi$41) with the identification
y3=ag/aa, (54

Yi=aa, 7Y2=ag,

between the set of experimental exponempis y,, and y;

and the set of theoretical exponenatsandag, which can be
verified by recalling that the average ar¢A); of the

BNES's, of the duratiorT, satisfies

_ JAAfdEP(T,AE,N)A
(A)r= SdASdEP(T,A,E,\)
_ aAfdvzvzfdng(l,vz,v3,)\/Tak)

=T fdl}gdeg,P(lyvzaUSy)\/Ta)‘) ' (55)

whereby the first equality gb4) follows. The remaining two

(21), and(25). In a similar way one may also derive relations
(23) and(28), with the remark tha#. andE. might also play
the role of the parametex.

To make the present derivation of the scaling relations
complete, we are going to rederive the scaling relaf®s),
which relates the exponent; and the duration exponeit
with the exponenp of the power spectrum. To this end, we
start with

s<w>=vf dp(i \)[F ()2

Jdp(i N)|fi(@)2

=Vf de dAdeP(T,A,E,)\)

Jagdp(i,n)
(56)
and use(43), together with
[ apin=[_ dpioma
g Sp-1(Sp9)
[ dp(Sp-ai’ (bTHAN)
L e
—bvo | dp(syi.bn), 57
g
where\’=b*\ andi’=S;i, and
| avi 0o
g
—b200-Wo | dp(S,i,bA\)|fsi(bYw)|?, 58
| dpisi b g, o) (59
to obtain
S(w)=vb2<y*X>*Wf de dA
xJ dEP(bYT,b* YA ,b>* YE,b?\)
[ g:dp(Syi b\ [fi(bYw) 2
X , (59

J grdp(Spi,b\)

which for b=w %, and with the rescaled variables
v1=wT, vy,=w”A, andv;=w?2, becomes
S(w)=vw7(2717“+l)f dvlf dv,

X J dng(Ul,Uz,Ug,a)E)\’)

ng/(i’yw?)\’)ﬁi'(l”z
[o(i",@?N)

(60)

equalities of(54) follow in analogous way. Then, combining Hence, we can see thé89) can be obtained also within the
the first two relations of46), the second and the third rela- GHF approach.
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Having verified that the scaling relations obtained in the 014
Sec. Il follow also from the GHF hypothesigl), we are I
going to show that this hypothesis, as could have been ex- 012 ;D; o channel 1
pected, implies data collapsing in the case of the probability I channel 2
oo ) : . ) 010 | % B
distribution functions. Indeed, performing suitable integra- ¢ o o channel 3
tion of the distributionP(T,A,E,\) and with a change of T 008 oa © a channel 4
variables one can find Trz oos | S °
H00s
A A Z I o™ 2
P(AT)T M=y (AIT7) = f dvsp(lvﬁ’vs’ﬁ)' P .
(61) 002 | o %
E 000l o oo %Qonmﬁa: @
P(E,T)T“+72=¢2(E/T72)=f dv2P<1,vz,ﬁ,ﬁ), o001 e
(62 (a) AT
E N 0.14
P(E,A)ATersz o3(E/AY3)= J' dUlF)(Ulvl’mv Aax771) ) 0.12 _ Odaom o channel 1
(63) otol :: a 8 c:anne:i
L =} channe
which are correct for a fixed, and may be correct also in . gl on o Z channel 4
the case of a weak dependencexan §_ . o °
The first approach one might have in mind in order to F 006F : ° -
check whether our experimental data collapse in accordance % 0.04 L & A%
with the above relations is to study the quantity | o a
N|(A0,T0)Tg+yl, where N|(A0,T0):NdefdAP(A,T) is 0.02 |- &‘9 QE
the number of elementary signals which belong to a Ii.near 0.00 L o%@ﬁ Gﬂ@mmww am
bin centered at the valuels, and T,. Such a procedure is, o B T PPN,

however, inconvenient since the relevant distributions are of

a power-law type, so that all data practically lie in the first  (0) AT

linear bin. Therefore, in order to group experimental data in

a suitable form, one has to separate data in the logarithmi- FIG. 12. (a) Data collapsing of the quantitih(A,T), which is
cally spaced bins, that is, to integratd®(A, T) T*" 71 within related to the probability density function through the relatié4,
the limits Ag/ SA<A<A,SA and Ty /ST<T<T,sT, where with the exponentsu=2._22 andy1:1.51_ which were rgportec_i in
SA and ST determine the size of a logarithmic bin. In such a S€¢- !l (b) Data collapsing of the quantity(A,T), obtained with

way one obtains the following data-collapsing relations; ~ € éxponentsy=2.22 andy, =1.55 which were chosen so as to
produce visually the best data collapsing, that is, collapsing with the

N(A,T)T 1= (AIT™), (64) least possible scattering of the data points from a single curve. In
both casega) and (b), the N(A,T) data were taken from fouf

N(E,T)TY 1= ¢,(E/T2), (65) channels which belong to the scaling region of duration distribution
(cf. Fig. 3. More specifically, the channels 1-4 correspond to the

N(E,A)A™ 1= ¢ (E/A"), (66)  following values of T, (in sec$ 9.72< 10°°, 1.59x 10 %,
2.61x 1074, and 7.0%X 1074, respectively, while the “halfwidth”

where, for instance, of a channel is5T=1.28, which reflects a choice of 14 channels on
the entire duration axis of Fig. 3.
" AgdAIT,
$1(Ao/ Ty )_fAO,ToﬁAdvgol(U)' (67 \which definitely increases uncertainty of final results. For

instance, in the present case, according to the foregoing pro-
In Figs. 12—14 we present our experimental data scaled acedurelwhose final results are depicted in Figs()213(b),
cording to the relation§64)—(66), respectively. In each case and 14b)], we have found the following setx=2.22,
the data have been taken from four different “channels,”y;=1.55, y,=2.15, y3=1.46, andr=1.68 (in which only
that is, from four different families of logarithmic bins de- the critical exponentr coincides with the straightforward
fined by four corresponding values ©f andA,, which be- measurement, whereas the rest are somewhat charigesl
long to the pertinent power-law regions of Figs. 3 and 4. ltset of exponents, unfortunately, does not satisfy the scaling
follows that the degree of data collapsing depends on theelations to the same degree which was observed in the case
choice of values for the critical exponents. Thus, one couldf critical exponents derived directly from the joint distribu-
argue that the choice of the critical exponents values whiclions. The discrepancy may be ascribed to the accumulated
produces the best data collapsing is the most proper choigeumerical error during the course of determination of data
for the problem under study. Furthermore, one could clainthat were finally scaled, as well as to the possibility that the
that such a choice is, in fact, the best way to evaluate criticagntire experiment was not performed close enough to the
exponents. However, such a procedure of obtaining criticahssumed critical poinfwhich could have brought about in-
exponents involves a very intricate numerical calculationsaccurate critical exponentdn short, the above set of values
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FIG. 13. (a) Data collapsing of the quantitM(E, T), which is
related to the probability density function through the relatié®),
with the exponentsr=2.22 andy,=2.03 which were reported in  ith the exponents=1.77 andys=1.36 which were reported in
Sec. II. (b) Data collapsing of the quantitf(E, T), obtained with  gec_ || (b) Data collapsing of the quantit¥(E,A), obtained with
the exponentsr=2.22 andy,=2.15 which were chosen so as 10 the exponents=1.68 andys;=1.46 which were chosen so as to
produce visually the best data collapsing, that is, collapsing with they o quce visually the best data collapsing, that is, collapsing with the
least possible scattering of the data points from a single curveast possible scattering of the data points from a single curve. In
Here, the comment about the channels, made in Fig. 12, stays valighi, casega) and (b), the N(E,A) data were taken from fouh
too. channels which belong to the scaling region of area distributién

Fig. 4). More specifically, the channels 1-4 correspond to the fol-
of critical exponents should be accepted cautiously, togethd@owing values of A, (in Vseg 1.24x 1079, 3.01x 1079,
with the message that they have played an important role i.30x 10~ °, and 4.2% 108, respectively, while the “halfwidth”
demonstrating that BN exhibits the basic element of the traof a channel issSA=1.56, which reflects a choice of 14 channels on
ditional critical phenomena, that is, the data collapsing propthe entire area axis of Fig. 4.
erty.

The preceding discussion about the GHF concept imposeawrinimize distortions of BN, we have used a sufficiently long
the question as to which of the two approaclitee one pickup coil which entirely enclosed the ferromagnetic speci-
presented in Sec. Ill and the GHF approashould be un- men studied, and, in addition, we have carefully analyzed
dertaken in the further BN study. To our minds, both ap-characteristics of the amplifier used, which enabled us to
proaches have their own benefits and both of them should baliminate the concomitant distortions that it brought about.
performed. The GHF concept should be studied further inVithout these two precautions one cannot obtain clear
order to clarify the type of the critical phenomena relevant topower-law characteristics of BN. Second, we have been con-
BN. On the other hand, the well established generic shape aferned about the possibility of extending the observed BN
BNES's (see Fig. 1D should bear definite amount of infor- power laws(see Figs. 3—bin the regions of small values of
mation about the mesoscopic dynamic of magnetic domaithe relevant arguments. With respect to this problem, we
behavior (reflecting material characteristjcsand, for this note that, despite the presence of a rather good magnetic
reason, it deserves to be pursued in the future. shielding and the signal amplification in the very vicinity of

After the long discussion about the theoretical presentathe pickup coil (see Fig. 1, our experimental conditions
tion of obtained results, we now elaborate on few subtlevere marked by the extrinsic high-frequency noiaich
experimental problems and the way we have treated them iappeared for the frequencies higher than 50)kBecause of
order to achieve the correct picture of BN. First, in order tothis, we may conclude that to assess the initial behavior of

FIG. 14. (a) Data collapsing of the quantitM(E,A), which is
related to the probability density function through the relatie®),
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the BN power laws, one would have to reduce the extrinsidin, and 8=1.70, for the spectrum of the entire hysteresis
noise, and, to accomplish this, one would have to use a moteop. Our finding8=1.6—1.7, for which we claim that it is
effective magnetic shielding and a faster A/D conveftgth  not decreased by the aliasing effect, is more close to the
a better resolution value reported in20,21] and to some earlier finding8]. On

In the introductory part of this paper, it has been pointedthe other hand, the scaling relati¢®89), for which we have
out that BN has many different facets under various experiargued that should contain a correction term, is satisfied for
mental conditions, even for the single ferromagnetic samplethe numerical results found for the zero-temperature random-
Thus, one generally finds that, if the driving frequency isfield Ising model[24], and it is approximately satisfied for
high enough, the BN elementary signélsat originate form  the experimental results obtained by Meisel and a6}
the spatially separated regions of the ferromagnetic sample In conclusion, the foregoing specific comparisons show
under study are glued, whereas if the driving frequency is that the scaling relations established in this paper are much
low enough BN appears as a train of pulses mutually welbetter satisfied in the case of results obtained within the nu-
separatedby time intervals in which only external noise is merical simulationg24] of the RFI modelwhich promotes
observedl Therefore, in the latter case, it is plausible to iden-the “plain old criticality” for the explanation of B), than in
tify experimentally discernible single BN signals with BN the case of the experimental wdrk6], which first advocated
elementary signals. In order to observe experimentally welthe SOC model and afterwar@$7] allowed of different in-
separated BN elementary signals, we have chosen the drivirtgrpretations of BN. On the other hand, the power-law expo-
frequency of 0.03 Hz. This frequency, on the one hand, liesents found in this work are in a better agreement with those
in the frequency region where statistical characterization ofeported in the experimental wofk6] than with those pre-
BN remains stable under frequency variati@se., it is low  dicted via the numerical simulatiofi24]. It is hard, on these
enough and, on the other hand, it is high enough to permitgrounds, to recognize which of the two modéise RFI or
efficient collection of BN data. the SOC model gives a more correct elucidation of BN.

With respect to the question of the numerical values forHowever, it was not the aim of the present paper to provide
the power laws exponents obtained by other authors, weneans for choosing the most adequate model for BN, but
would like first to mention that the BN exponents reported sorather to point out the role of BNES's, power laws, scaling
far do not exhibit universality. Next, our experimental con- relations, and the data collapsing, in an attempt to understand
ditions were close to the experimental conditions arrangethe criticality of BN.
by Cote and Meise[16] for the Metglas sample, but our

results are more close to the exponents they have found for
. . . . X . ACKNOWLEDGMENTS
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