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The notion of nonequilibrium temperature used in extended irreversible thermodyn&iligss examined

from the viewpoints of thermodynamic laws and statistical mechanics in this article. It is shown that in both the
phenomenological theory and statistical mechanics of irreversible processes the notion of nonequilibrium
temperature in some versions of EIT inevitably came about since a nonequilibrium entropy was not derived
from the thermodynamic laws but was arbitrarily assumed and consequently not given its thermodynamic
foundations. It is also shown that there is no other temperature than the one established by the zeroth law of
thermodynamics and based on the second law of thermodynamics, regardless of whether the system is in
equilibrium or nonequilibrium. When such a notion breaks down because the temporal evolution of dynamical
processes is faster than the time scale of thermometric resolution, the thermodynamics of irreversible processes
(e.g., EIT) is no longer applicabld.S1063-651X%96)10709-1

PACS numbe(s): 05.70.Ln, 05.20.Dd

[. INTRODUCTION genre of generalizations where the local equilibrium hypoth-
esis is extended to include various fluxes will be broadly
The concept of temperature has its origin in times muchcalled extended irreversible thermodynami&T). There
beyond the pioneering age of thermodynamic laws accordingre different versionf6—8] of EIT reported in the literature.
to the historical account of thermal science by Brishbut  The points of departure are basically in the manners by
the modern concept of thermodynamic temperature and thehich the Clausius entropy is generalized, its thermody-
attendant thermometry rest on the basic discovery of Lordhamic foundations or the lack of them, the concept of tem-
Kelvin, who recognized in the Carnot theoré®] a univer-  perature, and the constitutive equations. These points will be
sal thermodynamic basis on which to found the concept of durther elaborated later when the main topic of this paper,
universal temperature scdl8]. It is now deeply entrenched namely, temperature, is discussed. In such generalizations of
in wide ranging aspects of physical science, especiallyequilibrium thermodynamics, there naturally arise questions
through the thermodynamics of reversible processes—egarding the temperature of nonequilibrium systems and
equilibrium thermodynamics, and is a fundamental cornergeneralized forms of the Clausius entropy, which is the con-
stone of thermal science. Fitted to a universal scale, the thejugate variable to temperature in the equilibrium theory. In
modynamic temperature provides a basic yardstick againghe case of nonequilibrium processes the concept of tempera-
which we measure and record thermal properties of matteture has become a subject of debfdh)—12a)]. In this
regardless of the states of aggregation and whether the sysaper, we would like to analyze various strands of thought
tem is in equilibrium or not. For systems in equilibrium the published in the literature on the concept of nonequilibrium
concept of temperature as is how known is universally actemperature, since it is our opinion that it is crucially impor-
cepted. Confusion lies in the domain of nonequilibrium phe-tant to have this concept firmly clarified and enunciated if a
nomena. The essential concept of temperature is founded aational development of irreversible thermodynamics is to be
the zeroth law of thermodynamics, which should not be lim-made. This subject can be approached from both statistical
ited to equilibrium only, but also apply to systems in non-mechanical and phenomenological standpoints, which must
equilibrium states where irreversible processes occur. Afteconfluence to a unified concept valid for both equilibrium
all, we talk of temperatures of animate bodies removed faand nonequilibrium. Reading through the literature on tem-
from equilibrium. If the irreversible processes in the body areperature in nonequilibrium statistical mechanics, one finds
too fast for the thermal state of the body to come to equilib-that equilibrium concepts appear entangled with nonequilib-
rium with any conceivable thermometric device, then the zefium concepts in a rather vexing manner. Therefore, the first
roth law is no longer applicable and consequently the thertask that we must face should be to sort them out and exam-
modynamics of irreversible processes within the frameworkne their mutual relations, if any. For this reason we will go
of the currently accepted thermodynamic lagesg., ex- over even some well-trodden topics at the risk of appearing
tended irreversible thermodynamidsecomes inapplicable, to be repetitive and even trite. It should not be construed as a
and an alternative description of the processes may have fmedantic exercise on the part of the present authors since the
be looked for. aim is to give a comprehensive picture of the subject under
In recent years considerable attention has been paid tecrutiny, which represents a keystone concept for develop-
generalizations[4—8] of equilibrium thermodynamics. A ment of irreversible thermodynamics.
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This paper is organized as follows. In Sec. Il we briefly or
review how the concept of thermodynamic temperature en-
ters the thermodynamics of reversible and irreversible pro- Q, Q,
cesses. We then examine the concept of nonequilibrium tem- T, + T_<0' (2.2)
perature used in the version of EIT by Jetal. [7] and 1 2
Nettleton [12(b)] in the light of the review given on the
thermodynamic concept of temperature. This then will belt must be noted that the meanings and values of the tem-
followed in Sec. Ill by a brief review of how temperature peratures in Egs(2.1) and (2.2) are the same despite the
enters equilibrium statistical mechanics and the classical kidifferences in the meanings @f; andQ, in them;T, andT,
netic theory[13—15 in the early period of thermodynamics. are the temperatures of the heat reservoirs, whe@gaasnd
In this connection, we also discuss the idea of Tolifit#] Q- are reversible heat transfers in the case of @dl) and
and its recent elaboratidri 7] in which attempts were made are irreversible heat transfers in the case of ).
to arrive at a statistical definition of temperature. We then Taking to the limit of an infinite number of infinitesimal
analyze the concept of temperature used in the statistical méycles and combinin@.1) and(2.2'), Clausius obtained his
chanical approach to EIT via a maximum entropy method a$gmous inequality 23]
pursued by Jowet al. [7] and Nettleton[12(b),(c)]. This is

then followed by examination of how the concept of tem- dQ
- é 7;0. 2.3

perature enters the nonequilibrium ensemble method N=
[18(a),(b)] and argues that it is a general and logical manner

of introducing the temperature concept into nonequilibrium ) . .
statistical mechanics since it is firmly based on the thermo] €N is called the uncompensated heat—Clausius called it

dynamic laws. The manner by which the temperature conthe uncompensated transformation value. It vanishes identi-

cept is introduced in the nonequilibrium ensemble method i€2ly in the case of reversible processes and is positive oth-
completely parallel to that of the equilibrium ensemble €"Wise. The important point that must be remembered is that
method of Gibbs. In Sec. IV, the proposition made by JouEVen if the process involved in the cycle is irreversible, the

and Casas-Vazqué@(a)—(c)] for a nonequilibrium tempera- temperatureT is that of a heat reservoir that is in thermal
ture is specifically analyzed and discussed. Concluding regontact Y‘“th the system UnderQOIng t.he infinitesimal process
marks are also given in this section. in question and also in equilibrium with a thermometer used

to measure its temperature. By the zeroth law of thermody-
namics this temperature is also the temperature of the body
(i.e., the working substangeThe reason for this is that since
the Carnot cycle is decomposed into an infinite number of
Lord Kelvin [19] recognized that Carnot's theord@], as  infinitesimal Carnot cycles when the inequali®.2) is cast
a precursor to the second law of thermodynamics, which héto the inequality2.3), the temperature of the working sub-
together with Clausiug20] enunciated, could serve as a stance undergoing an irreversible process characteristic of
means to introduce a universal temperature scale, nowadaiise infinitesimal Carnot cycle of interest is necessarily the
called the thermodynamic temperature. It is well knd&] same ag, the temperature of one of the heat reservoirs. And
that this thermodynamic temperature scale can be made c#then Eq.(2.3) is cast into a local form, this temperature
incident with the absolute temperature scale based on th@ust be regarded as the local temperature of the body in
ideal gas thermometer. If the temperatures of the heat reseguestion. Viewed in this waj22], the heat reservoir of the
voirs of a Carnot cycle are denoted ByandT, (T;>T,) in infinitesimal cycle in question may double as a thermometer
such scale, then the efficieney,, of the reversible Carnot in the absolute temperature scale that indicates the tempera-

Il. SECOND LAW OF THERMODYNAMICS AND
TEMPERATURE

cycle can be expressed in terms of temperatures as ture valueT. It is very important to recognize this meaning
of T in the Clausius inequality for an irreversible cycle since

Q; T, the Clausius inequality is the crucial mathematical represen-

Erev= 1+ Q_1: 1- T_l (2.1 tation of the second law of thermodynamics and the starting

point of the mathematical formulation of thermodynamics on

whereQ; and Q, are the heat absorbed and emitted by thethe basis of the first and second laWhe body undergoes an

system, respectively. We adopt the convention for the sign ofreversible process and T is the thermodynamic temperature
heat that heat absorbed by the body is taken to be positi\/@f the infinitesimal body as well as the heat reservoir, which
and heat emitted by the body is taken to be negative. Reafan act as a thermometer. There is no other kind of tempera-

ranging Eq.(2.1), we obtain ture evident in the formulation of the Clausius inequality for
irreversible processes, namely, in the mathematical repre-
Q, Q, , sentation of the second law of thermodynamics.
T, =0. 2.1) In his 1865 articlg 23], Clausius suggested to calculate

by using a cycle consisting of an irreversible segment and a
feversible segment, which reversibly restores the system to

In the case of an irreversible Carnot cycle, by the Carno - . .
the original state. In this case, E®.3 may be written as

theorem there holds the inequality

1122, T (2.2 N=ASe—f dQ

-, 2.3
Ql Tl irrev T ( )
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whereAS, is the entropy change for the reversible processand E, the calortropy balance equati¢®.7) can be put into
that restores the system to the original state and the integra differential form ford, ¥ as follows:

tion is over the irreversible segment of the cycle. An account

of the road to the Clausius entropy is referred to in Cropper’s r r

paper[24]. The procedure using Eq2.3) for N is unsuit- g y=7-1d.e+pdo— D padicat > > Xkadt(i)ka}
able for developing a theory of irreversible processes. The a=1 a=1 k=1

inequality (2.3) must be differently interpreted for the pur- 2.9
pose mentioned: we interpret the compensated and uncom-

pensated heats as two independent physical entities that 8%hered,=d/dt andp, z,, andX,, are variables conjugate
actly balance each other so as to form the equation as in Egp ,, c,, and @,,, respectively. They are local variables
(2.3); see p. 43 of Refl6] and Ref.[22]. depending on position and timet. It must be emphasized

It has been shown in recent work8,22 by one of the  thatT is the local temperature of the nonequilibrium system
present authors that, if the uncompensated heat is expressgfht is given in the absolute temperature scale and that under

in the form of a cyclic integral the propositiong22] for Q¢ and ., which put(2.7) in the
differential form as in Eq(2.9), there is no other temperature
N= § dN, (2.4 suggested by the Clausius inequality, namely, the second law
of thermodynamics. Th& is what is provided by thermom-

etry on the irreversible system, and that is a parameter in

terms of which the calortropy densit¥ is determined with

the help of the constitutive relations fer, u,, and X, in

space®. The differential form(2.9) tells us that¥ is not

=0. (2.5 determined by some other means but the constitutive rela-
tions andT, when the differential form is integrated in space

i &. Recall that the situation is the same in the case of equi-
librium thermodynamics since there is no direct way of mea-
suring the Clausius entropy; calorimetry and other thermo-
dynamic measurements make it possible to calculate the

dQ Clausius entropy. The case of nonequilibrium therefore
d¥ = - +dN. (2.6)  would be no exception. In fact, when such a concept of tem-
perature is rendered meaningless, since the irreversible pro-

HeredN is always positive and vanishes only if the processC€sses are faster than the time scale of thermometric resolu-
in the segment in question is reversibled ¥l were negative, tion, the Clausius inequality is no longer applicable. We then
it would be possible to devise a cycle that contravenes thBave no mathematical representation for the second law of
second law of thermodynamics, but that is impossible. Théhermodynamics on which to build a thermodynamics of ir-

differential formd¥ can be put into a local balance equation Feversible processes; in such an event there is a question of
whether thermodynamics is a meaningful description of the

then the Clausius inequaliff.3) can be cast into a vanishing
cyclic integral

This vanishing integral implies that there exists an exact di
ferential of a quantity called calortrog8(a)] ¥ in thermo-
dynamic space defined later:

dQ
T+dN

dv process in hand. It is very important to recognize the crucial
Par = =V (QYT)+E(r,t), (2.7 position that the Clausius inequality occupies in thermody-
namics and the meaning ®ftherein that we have elucidated
where\if, Q°, and =, are defined such that _here. A math.ematical ;tudeS] .of Eq. (2.9 shows thal.’l"1 _
is mathematically an integrating factor for the differential
- form
\If:f drpW(r,t), (2.8a
\%
r r
+-19Q f Yot - Q=d+pdo - 2, fathCat 2 2 XialPra-
—_—=— rv. , . = =lk=
at y (Q%IT) (2.8b (2.9)
d_N:f drEL(r.t) (2.80 That is, this differential form{2 is made an exact differential
dat Jy T ' form in space® by the integrating factol . [We empha-

size that() is a symbol for the 1-formi26] on the right-hand
with p denoting the mass density, amtddt in Eq. (2.7) side of Eq.(2.9); it is not a function nor a differential of a
stands for the substantial time derivative. The temperdkure function]
in Eqg. (2.7) is the local absolute temperature at positicand The differential form(2.9) reduces to the well-known lo-
time t. cal equilibrium Gibbs relation for the Clausius entrofyif
If the internal energy density, specific volume, mass fracX,,=0 or d,®,,=0 or both:
tions, and nonconserved variables are denoted,hy, c,,

and®,, (k=1, r=a=1), respectively, for am-component r
mixture, it is useful to_introduce a thermodynamic space d¥. =771 d.£+ p.div — redc. |=d.s
spanned bys=(£v,c,, s k=1, r=a=1). It can then tFed— e | Qe Peliit aZl Halltha |7 Hroes

be shown that under a set of propositig88] regardingQ® (2.10
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where the subscript or superscripis affixed on the coeffi-
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construct all the constitutive equations of matter from _it. In

cients to the differentials to indicate that the parameters affact, the situation is quite opposite because the contetit of

fixed with e are equilibrium quantities such that
Te= M T(®), pe=limp(®), as= lim io(P).

d—0 ®—0 ®—0
(2.1)

It must be recognized that,, albeit in the limit of®,,—0,
is not of a different temperature scale from thaffoboth T,

andT are in the same absolute temperature scale, but the
numerical values are different because of the irreversibl

processes. The differential for(@.9) implies that there holds

the relation
le( ) :
v,c,®

This gives the tangent to thé& surface along the& axis in
space&,=&6UV¥ and T~ 1is a constitutive reJation, which,
together with other constitutive relations for u, , andXy,,
determines the surfac# in &,. Equation(2.12) is often
regarded[7,9a)—(c),12(b)] as an equation defining “non-
equilibrium temperature’T in analogy to the equilibrium
thermodynamic relation arising from E®.10

)U,C

Suppose this is the definition df,, as is thought by some
authors[7,9a)—(c),12(a)—(c)] in EIT. The T, can be ob-
tained from Eq.(2.12) if and only if S, is known, but the
differential form (2.10), obtained from the second law by
Clausius, does not permit us to determiBeunlessT,, pe,
andu § are known as functions &, v, andc,, or &, p,, and
& are known as functions df,, v, andc,. As mentioned
earlier, thermodynamics does not provide a means to me
sureS; directly as a primitive variableTherefore, it is clear
that Eq. (2.12) is not a definition of T; rather, it is a rela-
tion by which the Clausius entropy, $hay be determined in
terms of T, with the help of the caloric equation of state that

v

e (2.12

9Se

T (2.12)

T;lz(

relatesé to T,, the equation of state, and the chemical po-

tentials The meaning ofT, has been already fixed univer-
sally by the Carnot theorem and the second law o

thermodynamics—this is Kelvin's thermodynamic tempera-

ture. A similar conclusion can be drawn from Eg.12); it is
not a defining equation fof, but an equation by means of
which ¥ may be determined in terms @f and variables in
®, provided that€ is given as a function off and other
variables in&. Calortropy¥ cannot be directly measured by

means of macroscopic irreversible thermodynamic tech

nigues and one of the tasks of irreversible thermodynamics
to devise ways to measure indirectly the valuestoffor
given irreversible processedVe take an analogy from our
everyday affairs: W is like a filing cabinetor more aptly, a
computer diskette or a magnetic tagentaining information

on the physical properties of the macroscopic systems ofS=T'"

interest. We make up the “filing system,” for later use, only
on careful analysis of the system properties via constitutiv

is determined on integration of E(.9) with the help of the
constitutive relations for the coefficients to the differentials
in Eq. (2.9. The meaning oflT has been also fixed unam-
biguously by the second law of thermodynamics and given
an operational meaning through the temperature scale uni-
versally fixed(e.g., the absolute temperature sgals is for
T, in the case of reversible processes, and thermometry on
the system determineg. It is now clear that irreversible
rocesses do not alter the situation. A definition of a physical
uantity implies a means of measurement, at least in prin-
ciple, for the quantity, but this important criterion is absent
in the case of Eq(2.12 as a definition fofT. Therefore, we
conclude that Eq(2.12 as a definition fofT in the phenom-
enological theory is a misguided notion and cannot serve the
desired role, although it is usually thought as such by many
authors[e.g., Refs[7,9a)—(c)] and[12(@)—(c)]] in EIT.

Before proceeding further on the discussion of Refs.
[7,9, 12, we digress and mention the differential form ob-
tained by Keizel5], since it is relevant to the present dis-
cussion and the viewpoint toward in it is similar to ours
here. He develops a theory of irreversible processes on the
basis of a fluctuation theory for macroscopic variables that
fluctuate from the thermodynamically determined set of val-
ues. The theory involves a differential form for what he calls
the X function, which appears to be comparable to the Pfaff-
ian form in Eq.(2.9. In the differential form for2 there
appears the inverse temperatilie' as an integrating factor
in the manner of Eq(2.9), and thisT is considered to be a
local temperature whose numerical value is recorded by a
thermometer inserted at the point of interest at timet,
however, must be pointed out that this differential form has
not been shown, in contrast to E@.9), to have descended
from the second law of thermodynamics or the Clausius in-
equality in Ref.[5] or in the references cited therein, al-
though the Caratheodory principle is substituted for the sec-
ond law as the basis for the differential form. For irreversible
processes the said principle is not as self-evident as the case
of reversible processes because of the presence of the un-
compensated heat. Nevertheless, there is a convergence of
the viewpoints held by Keizer and by the present authors
with regard to the operational meaning of thefactor ap-

earing in the differential forms for th# and2 functions.
hese convergent viewpoints towalfld are in contrast to
those held by the authors of Ref8] and[12].

We now examine how inevitably the notion of nonequi-
librium temperature arises in the version of EIT described in
Refs.[7,9a)—(c),12(a)—(c)]. In this version, the Clausius en-
tropy is straightforwardly generalized so as to be a function
of nonconserved variables as well as the conserved variables.
We denote it byS. This assumption formally yields a differ-
ential form ford,S similar to Eqg.(2.9) in mathematical struc-
ture:

r
Yd&+p'do— 2 padiCat > > X((adtfbka},
a=1 a1 i1
2.13

r

e

equations. It is practically impossible to guess and assume

beforehand a mathematical form fd# in space® so as to

only if the tangents t& are defined by the relations
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S cannot be regarded as thermodynamic theories until the fun-
T'_1=(£ K (2.143  damental relation, such 48.9), has been derived from the
v.c,® thermodynamic laws.
On the basis of the considerations made up to this point,
yey_1 | 9S we conclude that the notion of nonequilibrium temperature
prT = v L (2.140 in the versions of EIT by Jou and co-workdig9a)—(c)]
& and Nettletonf12(b),(c)] has arisen because the assumption
made on a nonequilibrium entropy has no relation to the
- ’T’1=<(9—S) (2.149 second law of thermodynamics. A thermodynamic theory
Ha ICal e, i d ' should be based on the thermodynamic laws.
JS ll. STATISTICAL MECHANICS AND TEMPERATURE
Xa l:(ﬁ&ka)g i ' (2.14d The meaning of temperature has been an important sub-
v,c,d’

ject of quest in statistical mechanics and kinetic theory. In
particular, in EIT the question of the temperature of a non-

Thus, the notion of nonequilibrium temperature, togethefequilibrium system has been approached from the standpoint

with those of nonequilibrium pressure and chemical potenof kinetic theory of matter. In order to put the kinetic theory
tials, has arisen in EIT as a quantity derivable fr&be-

cause it is assumed th&tis known in space and rooted in

approach in a historical setting, let us trace how the concept
of temperature arose in the classical kinetic theory and sta-

thermodynamic laws and its differential form is given by atjstical mechanics. According to Bruh], Bernoulli[13] for
1-form reminiscent of the equilibrium Gibbs relati¢2.10).

[The prime on the subscript in the derivatives in E2;14)
means exclusion of the variable in the derivafjudowever,
the differential form(2.13 simply implies thatS is determin-
able as a function of variables i, provided thatT’ %,
p'T' % 4T’ "1 andX,, T’ ! are given in® and the dif-

the first time calculated the temperature of an ideal gas in
terms of the average kinetic energy of gas molecules. This
was forgotten, but later revived independently by Herapath
[14] and Waterstom15], whose works were never given de-

served credit by their contemporaries. The basic point of
their theory is that the average kinetic energy of the mol-

ferential form satisfies the integrability conditions; the defi-ecules in the gas is a measure of the temperature of the gas.
nitions (2.149—(2.14d by no means make the tangents ther-This basic notion played an important seminal role in the
modynamically operational quantities nor are the derivativeglevelopment of thermodynamics and has survived to this
determined by Eqs(2.149—(2.140 unlessS is explicity  day. For example, in his seminal pagé] of 1946 on the
known in&. Therefore, the idea that E¢R.14a defines the  kinetic theory of fluids Kirkwood defined the temperature of
temperature of the nonequilibrium system appears to hava fluid (gas or liquid in terms of the mean kinetic energy of
originated from the thought th& is somehow knowr pri-  the fluid, and this definition has been used for temperature in
ori in space®, but this is hardly true because all that is molecular dynamics simulatiori28]. The same definition
assumed abous is that there exists a function i®% that  has been used in the case of dilute gases, as is evident in the
satisfies the differential forni2.13. We do not even know well-known monograph$29,3( on kinetic theory of gases.
the meaning of S from the stand-point of thermodynamig¢n the case of dense fluids the definition of temperature is
laws since the Clausius entropy is defined for reversible prointimately related to the question of bulk viscosity, and di-
cesses only and the differential form (2.13) of its purportedvergent views toward it are expressed in the literature
generalization S is completely detached from the second layg1,32. In the statistical approaches to EIT in which dilute
of thermodynamics as it stands under the assumption mad@onatomic gases are taken as a model, the temperature of
on S The notion thall’ is some sort of temperature, in fact, the system is generally defined in the same manner as those
appears to have derived from analogy to the equilibriummentioned earlier. However, the statistical definition of tem-
Gibbs relation, but the latter holds only for reversible pro-perature by means of the average kinetic energy is not with-
cesses and in no way does it imply that a similar relation willout a hitch, as will be discussed presently. We first review
hold for nonequilibrium. Equatio2.13 in Refs.[7, 9, 13 how temperature generally enters statistical thermodynamics.
does not descend from the thermodynamic laws and has nphis is evident in the well-known treatises in statistical me-
relation to the latter. If one compares E@.13 with Eq.  chanics[33—35, but we will discuss it to complete the pic-
(2.9 and makes the correspondence ture of the matter under examination and for the sake of the
flow of reasoning.

Jes, (2.1
A. Gibbs ensemble method and temperature

then and only then may’ in Eq. (2.13 be made to corre- In the Gibbs ensemble theof$3—35, the canonical dis-

spond toT in Eq. (2.9 and thereby given a thermodynamic tribution function of a system at equilibrium is assumed to be
operational meaning. But then, this procedure of assuming, the form

such anS only to make correspondence with the phenom-
enological quantity? is not warranted since Eq2.9) is
already provided by the thermodynamic laws, and the proce-
dure involving S is superfluous. Putting it differently, one whereH is the Hamiltonian of the system aiftis an as-yet-
may say that the versions of EIT as in Refg,12b)—(c)] undetermined parameter. The angular brackets denote inte-

f=exp— BH)/{exp(— BH)), (3.1
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gration in the phase space. The average en&gyg then identifying B is free from the assumption on the nature of

given by the statistical formula matter and is universal and rigorous inasmuch as the second
law of thermodynamics is universal and axiomatic. Thus, we
E=(Hf), (3.2 see that the parametgin the canonical distribution func-

) ) ] tion (3.1) is given in terms of the absolute temperature by
from which the parameteB may be determined in terms of irye of thermodynamics, which indispensably and unavoid-
E. If theT parnclesllnteract, then the Hamlltonla_n contains aMply manifests itself in the process of correspondence be-
interaction potential-energy term and the relation betwgen yyeen thermodynamics and the statistical theory of matter
andE is not simple and universal because the equartltlorgimmy because we insist that the canonical fa@r) de-
law no longer remains valid unless the interaction potentiakcyipe the thermodynamic system at the statistical level, and,
energies happen to be quadratic in coordinates of the pafsrynately, the statistically derived formula fdS, matches
ticles. In the case of an ideal gas the relation becomes rathgji, the phenomenological theory formula for the same. This
simple, and by using the ideal gas equation of state given if the heauty of the canonical distribution function. From the
terms of absolute temperatufeand the well-known relation  ,,rely mathematical and probabilistic standpoint detached

p=2E/3V (3.3 from thermodynamics f[he paramejeis relate_d to the mean
' ' energyE and nothing like Eg. (3.4) can be inferred within
the framework of the probability theory alankn fact, the
ideal gas represents a degenerate case, since it happens that
B=1kgT, (3.4) E=32nkgT by vi(tue of mathematics and this relation hap-
pens to be consistent with E(8.3) and(3.4) as well as the

wherekg is the Boltzmann constant. Such an identification€quilibrium Gibbs relation fordS,; an accidental mutual
of Bis not possible by way of calculating the average kineticconsistency no longer enjoyed by the ideal quantum gases
energy if the particles are quantum mechanical or relativistic{6,38] and ideal relativistic gasef$,39) owing to the fact
even if the gas is ideal, becauSds not a simple function of thatE is no longer a simple linear function g *. This is an
B, although Eq(3.3) may still hold. Again, the equipartiton Observation on well-known statistical-mechanical results
law breaks down in these cases. To use the concept of teff®m @ nonconventional angle. If a unified description of
perature even for relativistic cases, Tolnjas] introduced a  diverse, but seemingly related, facts in physical phenomena
generalized equipartition law, and this approach has beel§ One of the important goals of physics, then the aforemen-
used by later authorkl7] to obtain an expression that ap- tioned aspect regarding the relationito temperature tells
pears to give temperature as the average of an operator in tHg Otherwise about the role of kinetic energy in connection
cases of quantum gases. However, close examination revedith temperature in statistical thermodynamics. The relation
that the aforementioned generalized equipartition law is #etween temperature and kinetic energy is subtler than com-
rearrangement of the normalization condition of the distribumonly thought in kinetic theory. .
tion function and consequently the temperature operator de- [N summary, for the equilibrium canonical form and the
fined is devoid of an evident physical meaning. This pointParameterg therein, the temperature enters the statistical-
becomes even more cogent in the case of dense fluids whefeechanical formalism through the correspondence between
interactions of particles become important, since the temthe phenomenologicali.e., thermodynamic equilibrium
perature operator consequently is not identifiable in a univerGibbs relation and the corresponding statistically computed
sal form. relation. The concept that the average kinetic energy is the
In general, the parametg@ in the canonical forn(3.1) is  Statistical definition of temperature is not universal and
determined with the help of thermodynamics by comparingherefore does not meet the universality condition required
the statistical entropy and other statistically computed mefor & temperature scale from the viewpoint of rigorous ther-
chanical observables with the Clausius entropy and the phdnometry[40]. In any case, the equilibrium Gibbs ensemble
nomenological thermodynamic observables. Such a calculdh€ory can do without the statistical definition of temperature
tion led Boltzmanr{36] to realize that higd function could @S long as there is the equilibrium Gibbs relation for the
serve as a statistical formula for the Clausius entropy in th&ntropy change provided by the thermodynamic laws for re-
case of a dilute gas in equilibrium. In the later synthesis by ersible processes, since then the paramgierthe canoni-
Gibbs[33] of the Maxwell-Boltzmann statistical theory, such cal dlstrlbutlor_l function can be determined by the method of_
correspondence determines the paramgtizr the canonical ~theérmodynamic correspondence between the thermodynamic
form by the relation as in Eq3.4) for all forms of aggrega- Phenomenology and the statistical thermodynamic theory.
tion of matter in equilibrium. Recall that in Eq. (3.4) is the
thermodynamic temperature of the heat reservoir, the scale B. Some versions of EIT and temperature
of which may be made coincident with the absolute tempera- The statistical foundations of EIT have been investigated
ture scale[37]. It is the very temperature appearing in the by means of the Boltzmann equation by a number of authors.

whereV is the volume, we find that

Clausius inequality for a reversible process: Some[7,41-43 approached the subject by using approxi-
mate distribution functions; in anothgr,12b)] a maximum
é dS.= d_Q=0 (3.5 entropy method was taken; and in still anothiérl8a)] a
rev T ' ' rigorous approach was pursued. The first two approaches

will be grouped as versioA since they represent the same
wheredS.=dQ/T is the globakClausiug entropy change as line of viewpoint. The last one taken in Ref§] and[18(a)]
defined by Clausius for a reversible process. This manner ofill be called versiorB. These two versions will be consid-
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ered separately. In both versions the temperature of a non- r r
equilibrium monatomic ideal gas mixture is “defined” by 00, S=dE+pdw — D, atiCat DX, Ya-diA,,
the mean kinetic energy a=1 a=1 (319

r
pE= E <%macgfa>zgnk80, (3.6) and furthermorg Eq(3.1q) is, by yirtue .of the formal anal-
a=1 ogy to the equilibrium Gibbs relation, simply asserted to be a
) o , . representation of the thermodynamic laws for irreversible
whereg s the nonequilibrium temperatur€, is the peculiar  r5cesses and for nonequilibrium. Hence the term nonequi-
velocity, n is the number density, ant}, is a singlet distri- |ibrjym temperature fog. Equation(3.10 follows from Egs.
bution function obeying the Boltzmann equation. However,(3.8) and(3.9) if Eq. (3.11) is indeed true. We now examine

the interpretation ob is made differently in version& and Eqg. (3.11). Equation(3.11) does not follow unless
B. The Boltzmann kinetic theory provides a statistical for-

mula, theH function, that at a quick glance appears to meet r

the billing for the Clausius entropy and its nonequilibrium pS=—kg >, (fM(InfM—1)) (3.12
generalization. Thél function gives the Boltzmann entropy a=1

density

and additional conditions omlA,, that is, the evolution
r equations forA, are met. These conditions are elucidated in
pS=—kg >, (fa(Infa— 1)), (3.7 Ref.[18(a)], where it is shown that all is not well with Egs.
a=1 (3.1)) and(3.12. In any case, iff I' is the distribution func-

tion maximizing S, then there is a fluctuation if,. This

where the angular brackets mean integration in velocity. Thigy ot ation cannot be neglected. Everf } is such that there
formula is also common to versiods andB, but its role in hold the conditions

the theory of irreversible processes is significantly different
in the two versions. ((fa=tD)=0, ((fa=fDHa)=0, ((fa~fHA)=0,
1. Version A and temperature 313
In Refs.[7] and [9(8)~(c)] the nonequilibrium tempera- there exists the relative Boltzmann entroBy f|f™], such
ture ¢ is also defined in terms of the energy derivativesof ~that[18(@)]

r

‘98). 38 pS=—ks 3, (Tu(NfI-1)=pS{1If™, (3.1

-1__
o= ( 9E
The same relation can be inferred from the differential formwhere

for dSin Refs.[12(b),12(c)]. The two definitions(3.6) and

(3.9), being for the same attribute of the system, must be m ' m

self-consistent. Temperature, being the most basic quantity pSi[f|f stgl (faln(fa/f3)). (3.19

in thermal physics, must be rigorously defined and consistent

with the thermodynamic laws. Therefore, one cannot affordrhis relative Boltzmann entropy does not vanish away from
an inconsistency between Ed8.6) and(3.8), for example.  the state “maximizing”S. (Note thatS is a maximum only

In Refs.[7,9¢),12(b)], in addition to Egs.(3.6) and (3.8)  at equilibrium reached in long timg6].) Therefore, Eq.
where 6 appears,f, enters expressed in a nonequilibrium (3,12 must be an approximation that neglestgf|f™]. Fur-

canonical formf 2, thermore, a nonvanishir§[ f|f™ makes Eq(3.9) inconsis-
m tent with Eq.(3.8), that is, Eq.(3.8) is not true. The reason
fa=exd —B(Hat va-Aa)J/(exd — B(Hat va-Ad)]), for this will become evident in the subsequent discussion.

3.9 Even if they were consistent with each other, Eg§.11)
would be given a thermodynamic status, only if it was made
do correspond to its thermodynamic counterpart derived from
e thermodynamic laws. However, since such a thermody-
namic counterpart is absent not only for the Boltzmann en-
tropy but also in the nonequilibrium entrof®/in versionA
(EIT developed in Refs[7,8,9a)—(c),12(b)]) it is not pos-
sible to endow Eq.3.11) with a thermodynamic status.
Therefore Eq(3.8) does not define a thermodynamically op-
erational quantity; it is simply a symbolic relation betwegn
and 64 in a probabilistic theory of dynamical objects, which
holds under the assumption th&a{ f|f™ =0 and under the
B=1/kg6 (3.10  conditions ond;A, that can be inferred from Ref§18(a),

22. If these restrictions are not met, the Pfaffian fqB8ri1)
because with Eq3.9) S is asserted to be given, within the does not hold fod,S and Eq.(3.8) does not follow. In fact,
framework of the maximum entropy method, by the postu-it is easy to show that the assumptigj f|f™] =0 is incom-
lated differential form patible with the conditions od,A, [18(a),22], and Eq(3.11)

wherey, is a row vector of undetermined multipliers aAg

is a column vector consisting of conjugate variables to th
undetermined multipliers. These latter variables depend o
the velocities of the particles. THe!' in Eq. (3.9 allegedly
yields “a maximum” pSin Eqg. (3.7), since it is obtained by
“maximizing” the entropy.(The term maximization or ex-
tremization used in this context is incorrect, but we will not
dwell on it here since it is beside the point of this papér.
the aforementioned referencesjs claimed to be related to
nonequilibrium temperaturé by the formula
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is not true. A similar conclusion that E3.11) is not true
has been recently drawn by Ichiyan4d#] from the view-
point of the Onsager-Machlup theory.

2. Version B and temperature
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enological thermodynamic differential forit2.9 obtained
from the thermodynamic laws. We thereby obtain a relation
betweeng and T

B=1KkgT, (3.23

In Refs.[6, 18@)] it is shown that the sufficient conditions \hich identifies the parametgrin terms of inverse thermo-
for conserved variables to remain constant in space-time aigynamic temperaturd 1. The point of this analysis then is

the matching conditions

r r
pE= agl <%macgfa> = agl <%maC§f2€> =pele,
(3.163

P:a§=:1 <mafa>:a§=‘41 (mafg>=pe, (3.16b

r r
pu=;=:1 (mavafa>=a§=:l (Ml =peu. (3.160

that in version A of EIT the nonequilibrium entrofgas in

Eq. (3.12 must be replaced by the calortropy, since the
right-hand side of Eq(3.12 with Eq. (3.13 is preciselypV

as defined by Eq(3.18 if the conditions in Eq(3.13 are
imposed. Then and only then is it possible to make the ther-
modynamic correspondence as described earlier and the ther-
modynamic temperature is related¥o by the derivative

=\ % (3.29

1_(&\?
v,c,®

We emphasize that, by virtue of the correspondence of Eq.

Furthermore, if the nonequilibrium canonical form is given (2-9 With Eq. (3.20, T here is the thermodynamic tempera-
in terms of the complete set of tensor Hermite polynomialdure as in Eq(2.9). Thus, Eq.(3.24 provides a way to de-

H®(w,) of reduced peculiar velocitw,=v8m,C, by the
formula
Ha+ kzl XkaH(k)(Wa) - mal&a} } )

fo= exp[ -B
(3.17

whereg andX,, are as-yet-undetermined parameters agd

termine ¥ in terms of T unless one elects to calculafe
statistically, but it should not be construed as a definition of
T. If one had exactly calculatedr and & by using the non-
equilibrium canonical form(3.17), then Eq.(3.24 would
reproduce Eq(3.23 and thereby serve as a check for the
correctness of the calculation performed. In practice, by us-
ing the nonequilibrium partition functior?. [18(b)], Eq.
(3.24 may be cast into the constitutive equation, namely, the

is the normalization factor, then with the statistical definitionstatistical formula for the caloric equation of state

of calortropyW¥

p¥=—kg X, (falInfg-1)

(3.18
and the relative Boltzmann entropy
r
pSLTIFl=ka 2, (fan(fa/f3), (3.19

it is possible to show that the differential form fd;\if is
given by

r

dW=T Y d&+pdo— 2, fadiCat D> > Xialdi®Pral-
a=1 a=1 k=1
(3.20
Here&)ka1 is defined by the statistical formula
D= p(i)ka:<faH(k)(Wa)>- (3.2)
Definitions(3.18 and(3.19 imply that
S=W—Ss,[f]f], (3.223
d,S=d,V—d,S[f|f], (3.22h

but S.[f|f¥]#0 andd,S[f|f€]#0 for systems away from
equilibrium [18(a),(b)]. Nevertheless, sincgV in (3.20 is

in a 1-form similar to(2.9) it is possible to correspond the

statistically derived differential forn(3.20 to the phenom-

C—Tmp =kgT ﬁZTIZ 3.2
T GT)  TKeT|Ge Tz .. (329
v,c,® v,c,d

Here

r r
Z:H ZgaZGXP(—BE #aNa
a=1 a=1

I )

with N, denotingN,=Vpc,/m,. If C, is treated as a phe-
nomenological quantity, the first equality in E§.25 deter-
mines¥ from the knowledge o€, . If the second equality is
used,C, is calculated from the knowledge @f However, in

no cases doe@.25 defineT; rather,C, is given in terms of
the empirical parametef. Phenomenologically, the impor-
tant task of determining?, together withp, ., and X,
belongs to the realm of irreversible thermodynamics. In this
connection, we would like to add here a note ag. By
using the previously cited fluctuation theory, Keiz8t has
deduced from the differential form for hi® function the
constitutive parametera, as empirical chemical potentials
on the same footing as the temperature. Thatzig, are
thermodynamics-based in the same sense as the temperature,
even if the system is displaced from equilibrium. Keizer and
Chang[45] measured the electromotive force of a reacting
nonequilibrium system by means of the conventional method
and detected a nonequilibrium effect. This result is corrobo-

Ha+k21 xkaH<k><wa>>



54 IRREVERSIBLE PROCESSES AND TEMPERATURE 2509

rated by Hjelmfelt and Rodg6], although they are not com- calculation simply shows that the temperature defined in mo-
pletely certain as to the conclusion of Keizgral. The im-  lecular dynamics simulatior{28] is tolerable as an approxi-
plication of these experiments is that there is no necessity ahation. It by no means should be construed as the accept-
making a distinction between the equilibrium and nonequi-ability of the definition (3.268 of nonequilibrium
librium chemical potentials, which only differ in their nu- temperature since temperature cannot be defined approxi-
merical values, but of simply measuring them as usual in anately if one is to use it as a gauge to measure all thermal
nonequilibrium condition. They do not appear as two differ-properties of matter. An approximate scale of temperature
ent quantities in macroscopic equations describing irreverswould be simply nonscientific. Furthermore, as discussed
ible processes in the manneandT appear in the theory of earlier,S must be replaced by, and 6 is simply the local
Refs.[9(a)—(c)], which will be discussed in the subsequenttemperature. In the case of dilute monatomic gases, his cal-
sections. It is important to remember that no equilibriumculation just points out that the notion of nonequilibrium
thermodynamic measurements are truly measurements demperature is perpetuated by an incorrect understanding of
ideal reversible processes, and there are always elements kifietic theory and thus is meaningless, since the matching
departure from the ideality, but the latter feature does notonditions given in Eq(3.16 guarantee that the nonequilib-
require, for example, another thermometric scale differentium temperature? defined by Eq(3.264 is identical to the
from that for the ideal measurements. local thermodynamic temperatufg , namely,A#=0 identi-

In summary of the statistical aspect of temperature, wecally. Therefore, the differences in temperatures he obtained
have pointed out that the mean kinetic energy does not gerier various cases of transport processes are simply due to the
erally serve as a statistical definition of temperattifeés not  numerical errors incurred by the approximation made for the
completely determined in thermodynamic spacentil Sis  distribution function if his calculation is specialized to dilute
made to correspond to the thermodynamic temperature andonatomic gases. The comments made earlier in connection
thus its thermodynamic meaning elucidated and thereforeyith the nonequilibrium temperature also apply to his calcu-
(3.29) or a similar form with'¥ replaced byS does not lations made for a dense hard-sphere fluid, since he, too,
define temperature, but simply gives the paramedein defines the nonequilibrium temperature wigh8) or (3.263.
terms of undetermined. Consequently, if statistical me-
chanics is to have a relevance to irreversible thermodynamics
or simply thermodynamics, temperature Brappearing in IV. DISCUSSION AND CONCLUDING REMARKS

either equilibrium or nonequilibrium statistical mechanics Having analyzed the general aspects of temperature of
must be the phenomenological temperature appearing igonequilibrium systems, we now discuss in more detail the
thermodynam|cs, namely, the thgrmodynamlc temperaturgy5in, point of the recent proposition by Jou and Casas-
Therefore, in the spirit of the Gibbs ensemble theory the,;quez[9(a)—(c)] for experiment on nonequilibrium tem-
temperature of the system, whether equilibrium or nonequineratyre. As we have seen in the previous sections, the con-
librium, is a phenomenological attribute of the system, eve ept of temperature is intimately tied up with the notion of

in the statistical theory of molecular systems. The presentni ooy and its nonequilibrium generalization. The afore-
authors believe that the misconception about this subtle by},aniioned authors take the viewpoint that “EIT does not
important point has been the cause of numerous CO”fUS'”Eretend to be an exact theory, but rather a model which al-

results and propositions in EIT. lows for formulation of a nonequilibrium thermodynamic
theory not basea priori on the local-equilibrium hypoth-
esis.” Thermodynamics, reversible or irreversible, is an axi-
In a recent papefl2(a)], Nettleton asserts that the non- omatic theory that studies the consequences of the axioms
equilibrium temperature defined in Ref3,9(c)] can be well  summarizing macroscopic processes occurring in nature.
approximated by the equilibrium temperature. We put hisFrom this viewpoint toward the subject, the following com-
assertion in the notation of the present paper. The temperasent is made on the aforementioned quotation: An ap-
tures of nonequilibrium and local equilibrium systems areproximate thermodynamics loses itsison d'gre, since it
defined, respectively, by the formulas deprives itself of the authority to rule on the thermodynamic
correctness of macroscopic theories, which we develop for
3 1 2 macroscopic irreversible processes. By thermodynamic cor-
gnk50=;1 {(2maCafa), (3268 (octess we mean the strict conformation to the thermody-
namic laws and their consequences. Notwithstanding this
r maxim, guided by the viewpoint just quoted, a nonequilib-
InkgTe= Z (%maC§f§>. (3.26h rium temperaturé was defined in Ref§9(a)—(c)] by means
a=1 of an approximate form for a “generalized entropy” for a
rigid heat conductor

3. Further comment on nonequilibrium temperature

r

Then, according to his calculation

9=To+A0. (3.27) S(£,0)=Sed &) — (v /22 T?)q-q, (4.

The nonequilibrium temperature appears in this form in Refs.

[9(a)—(c)]. SinceAdis on the order of 107 for a hard-sphere  where€ is the internal energys.(£) is the local equilibrium
fluid [12(a)], he concludes tha# may be replaced by the entropy,T is the local equilibrium absolute temperatuges
local equilibrium temperaturd, to a good approximation the heat flux,\ is the thermal conductivity, and is the
for all densities. In the case of liquids or dense gases, higelaxation time ofg that obeys the evolution equation



2510 BYUNG CHAN EU AND L. S. GARCA-COLIN 54

a9 This interpretation is consistent witl#.2). If A=\(T) and
T tA=—AVe. (4.2 7=#T), the coupled pair of equatiorid.2) and(4.5) cannot
be solved ford andq unless the local temperatufeis given

The quantity @ is the “generalized absolute temperature” its spatial distribution. However, it is clear that the profile of

defined earlier in(3.8). Thus, for the approximatg(£,q) in 1 cannot be known from the set of equatidAs?) and(4.5
Eq. (4.1 given. This suggests that the theory based on “nonequilibri-

um temperature”d is either incomplete or ill posed. The
6 1=T '-yq-q, (4.3)  trouble lies ing. If this is replaced by the local temperature
T, the aforementioned difficulty never arises. The indeter-
9 ) minability of # also implies thatg is not determined and
v= g (VTI2ATY). (4.4 consequently neither is the generalized entrSp¥herefore,
the concept of “nonequilibrium temperature” unhinges the
Let us now return t@¢4.1) and mull over its origin and mean- €ntire structure of irreversible thermodynamics they intend to

ing. The first fundamental assumption is the extendability ofconstruct. As we have shown in Sec. lll, temperature does
the Clausius entropy into the domain of nonequilibrium, andnOt permit a margin for an approximation. Especially, if the
the second entails the dependenceSain the local equilib- ~9eneralized entropy is not based on the second law, no math-
rium absolute temperature and other parameters of the spmatically and thermodynamically consistent theory of irre-
cific form as in Eq.(4.1). They are a pair of assumptions Versible processes can be expected. Besides, defirt#ign
subordinating one to the other. They have no relation to théS in fact under determined. The point is, there is no “non-
thermodynamic laws and, especially, the second law. To jus€quilibrium temperature”; we have only the thermodynamic
tify Egs. (4.1) and(4.3) the dilute gas kinetic theory of Bolt- temperature coincident with t_he_ absoly_te temperature re_g_ard-
zmann has been us¢8,47]. As has been pointed out in the 1€ss of whether the system is in equilibrium or nonequilib-
last paragraph of Sec. Ill, if the gas is a dilute Boltzmanniarfium. If the system is in nonequilibrium the thermometer
gas, then the matching conditior8.16 imply that =T  may read a different local temperature from the local tem-
(local temperatuneidentically if the temperatures are defined Perature of the same system at equilibrium in the same tem-
by Egs.(3.263 and(3.260 as also in Ref[9(a)]. Thus, we perature scale. The concept of nonequmbrlum tempe_rature is
conclude tha® is the local absolute temperature. In fact, the@ Path that leads up a blind alley in thermodynamics and
second term on the right-hand side of E4.3) is a conse- Nydrodynamics. - _ _ _
(3.263. It is known that a rigorous formulatidii8(a),(b)] of ~ of S=S(€,q) by following the steps outlined in Ref9(c)] .
the theory using Eq(3.17) shows otherwise. A similar point where the Boltzmann_ kinetic theory _underlles the an_aIyS|s,
is also brought up in a recent pag@s] where the Boltz- the parameterk and rin E_q. (4.2) are, in ge_neral, functlor_ws
sion that takes the infinite number of moments in the serie§guation forg, which, together with the energy conservation
as local conserved variables. The resulting expression for th@quation
Boltzmann entropy density defined in E®.7) shows that,
as is already indicated in Sec. Ill B 3, the quantity’ as
defined in Eq.(3.8) is identical to the inverse of the local
temperature introduced through H&.163 for ideal gases.
Although it is not mentioned in the aforementioned refer-
ences thak and r depend oril, they must be dependent on
T, sinceT appears on the right-hand side of £4.1). On the
other hand, they also appear in Eg.2) where 6 also ap-
pears. Since the constitutive equati@h?) is supposed to

pdi&=—-V-q—P:Vu (4.6

constitutes a set of evolution equations for the thermody-
namic state variable§ andq that must be solved subject to
the initial and boundary conditions appropriate for the prob-
lem at hand. Since this problem is not solvable in a general
form even if analytic solutions are possible, it is doubtful that
the steady-state equations @f2) and(4.6)

involve the “nonequilibrium temperature,” shouldand A gq=—\V9, (4.73
then be regarded as functions 6P This dilemma can be
resolved by assuming thatand A are either constants or V.q=0 (4.7h

0=T as suggested by the matching conditidBsl6). The

assumption that they are constants is too restrictive sinCgefine a temperature scale that should be univetdaite
even hard-sphere fluids have temperature-dependent thermght we are assuming there is no flow of the gas, namely,
conductivities. Therefore, suppose tha{T, as suggested by ;=0,) These equations will also have to be consistent Bith
(4.3, and furtherr=7(T) andA\=\(T) in conformation to a5 expressed by E¢4.1). Since the latter expression f&r
the assumptiort4.1). This supposition has a difficulty at the hags peen inspired by the Grad moment solution to the Bolt-
hydrodynamic level of calculation, as is discussed below. ;mann equation, the evolution equation obtained ooy
First, let us recall that the internal energy is a function ofgch a method ought to be such that Egs7a and (4.7b
“nonequilibrium temperature’®, not T, in versionA of EIT: should follow within the framework of the moment method.
Therefore, the energy balance equation provides an evolutiophat is not the case. No matter how many moments are in-
equation ofg which may be formally written as cluded in the solutioi49,50], no kinetic theory support for
Eq. (4.73 is attained, but one generally gets

—=F(6.a). (4.5 q=—\(r,HVT(r,1), 4.8



54 IRREVERSIBLE PROCESSES AND TEMPERATURE 2511

where the thermal conductivity is generally position and timekinetic energy as the definition of temperature in even the
dependent or, in the Fourier space, wave number and freease of dilute gases is too special to be generally useful for
guency dependent. It must be emphasizedTiiat) appears fluids other than dilute Boltzmann gases. The aforemen-
but 6 does not in this expression. This is consistent withtioned parametep is given by the local phenomenological
generalized hydrodynamics, the validity of which is sup-temperature, and there is no other temperature admissible
ported by experimentl]. These arguments presented herethan that by the zeroth law and the second law; it is the
reinforce the unphysical character of a theory based on Egsgjuantity that is associated with the heat reservoirs, even
(4.1) and(4.2). In any case, it seems clear that the definitionwhen the system is away from equilibrium. When this notion
and scale of temperature cannot be system dependent cami-temperature does not hold to be valid, the extended theory
trary to the implication of Eq(4.2) to the opposite effect. of irreversible processes that we know from the literature is
However, the universality of temperature is the most imporo longer applicable and we pass the realm of irreversible
tant aspect of the temperature concept in thermodynamicghermodynamics governed by the thermodynamic laws into a
both reversible and irreversible. nonthermodynamic realm of many-particle phenomena that
In conclusion of this paper, we have discussed how temis as yet uncharted. The notion that the “nonequilibrium
perature enters the thermodynamics of irreversible processésmperature”d can be defined by the relatidi3.8) is not
and the nonequilibrium canonical distribution function in the connected with the thermodynamic principles, and we have
statistical-mechanical formulation of irreversible thermody-shown that it can give rise to difficulties kinetically, thermo-
namics and that it does ultimately originate from the Clau-dynamically, and hydrodynamically.
sius inequality. Consideration of both equilibrium and non-
equilibrium theone; shows that th.e' inverse tempera_ture ACKNOWLEDGMENTS
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