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We show that the Gaussian isokinetic thermostat used in nonequilibrium molecular-dynamics calculations
can be derived from a Hamiltonian. An alternative variational approach involves geodesic motion in a curved
space. We consider the implications of this result for the nonequilibrium Lorentz gas and thermostated systems
in general.@S1063-651X~96!09209-4#

PACS number~s!: 05.45.1b, 05.70.Ln

I. INTRODUCTION

Nonequilibrium steady states involve a flow of energy
through the system. For example, consider a conductor in an
electric field. The energy supplied by the field must be re-
moved to enable the system to approach a steady state. More
precisely, the state of the system must be constrained to a
compact region of phase space@1#. This may be obtained in
one of two ways: An idealized heat bath may be included at
the boundary or throughout the system. Stochastic methods
are difficult to treat analytically, making it difficult to ensure
that the thermostating effects have been modeled accurately,
so most approaches in use today include some deterministic
modification of either the boundary conditions, the equations
of motion, or both.

Probably the most significant boundary approach has been
the escape rate method of Gaspard and co-workers@2,3#.
Here transport processes are modeled as deterministic sys-
tems with chaotic scattering. Transport coefficients are ob-
tained in terms of the escape rate, which can then be related
to the Lyapunov exponents and Kol’mogorov-Sinai entropy,
which are microscopic properties of the underlying chaotic
dynamics. An advantage of this approach has been that the
dynamics is unchanged, thus Hamiltonian, and hence well
understood. A disadvantage is that homogeneity has been
lost, making simulation and interpretation more difficult.

Alternatively, the equations of motion may be modified
by the addition of a ‘‘thermostating’’ term. This has the ad-
vantage of retaining homogeneity and gives the correct linear
response@4#. There are a number of types of thermostat. The
ones referred to in this paper are the Gaussian isokinetic
~GIK!, Gaussian isoenergetic~GIE!, Nosé-Hoover isokinetic
~NHIK !, and Nose´-Hoover isoenergetic~NHIE! thermostats.
All of these give the same averages and time correlation
functions in the thermodynamic limit@5#.

The NHIK thermostat is described at the beginning of
Sec. II. The Gaussian thermostats are based on Gauss’s prin-
ciple of least constraint@6#, as described in Chap. 3 of Ref.
@4#. We want to modify the equations of motion so that the
energy of the system remains bounded, despite the influence
of an external force. This can be done by constraining the
kinetic energy of the system to be constant, as in the GIK
thermostat, or including both kinetic energy and internal po-
tential energy, but not the potential energy associated with
the external force, as in the GIE thermostat. Gauss’s prin-
ciple gives a prescription for doing this so that the force of

constraint is a minimum along the trajectory.
The usual~Lagrangian and Hamiltonian! descriptions of

classical mechanics are formulated in terms of variational
principles, which allow a compact representation of the sys-
tem by a single function, simplify perturbation theory, and
make a connection with quantum mechanics. Gauss’s prin-
ciple is more general in that it gives the same results for
systems with holonomic constraints, but does not have the
same advantages as the Lagrangian and Hamiltonian ap-
proaches, so it has not had the same popularity.

Here we write down a Hamiltonian formulation of the
GIK thermostat. This permits a large number of statements
to be made about these systems, pertaining to conservation
of phase volume, the symplectic structure of phase space,
and so on. Related to this is a formulation in terms of geo-
desic motion in a curved space, which allows us to write
down a variational formulation of the GIK equations. This
has application in computing orbits of the system. The
Hamiltonian approach also permits correspondences to be
made between a GIK thermostat and other, nonthermostated,
systems. Finally, it allows the possibility of a quantum de-
scription of these systems, which is discussed at the end of
this paper. In short, it allows the GIK dynamics to be treated
on a similar footing as more conventional dynamical sys-
tems, such as that used in the escape rate approach referred
to above, while still retaining the advantages of homogene-
ity.

An obvious question that may be raised at this point is
how the phase volume conservation of a Hamiltonian system
is to be reconciled with the fact that thermostats cause phase-
space contraction on the average. This is very important be-
cause it is related to the rate of entropy production of the
nonequilibrium system. This contraction leads to steady dis-
tributions that are multifractal on phase space@7,8#, although
the support may have the same dimension as phase space@8#.
The apparent contradiction is resolved by noting the distinc-
tion betweenmechanicaland canonicalmomenta, familiar
from the motion of a charged particle in a magnetic field@9#.
Phase-space volume is conserved when written in terms of
canonical momentap, but this need not be proportional to
the velocityv, which is used to define physically measurable
parameters, such as the current.

There are a number of nonequilibrium molecular dynam-
ics algorithms available for the various transport coefficients,
described in Chap. 6 of Ref.@4#. All of these require a ther-
mostating method of some kind. Of these, theSLLOD algo-
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rithm for determining the shear viscosity and the heat con-
duction algorithm are not~known to be! Hamiltonian
systems before the thermostat is included in the equations of
motion. TheDOLLS algorithm ~also for shear viscosity! is
derived from a Hamiltonian, but does not give the correct
response beyond linear order. It would be interesting to see
whether either the Nose´ or Gaussian thermostated dynamics
for theDOLLS algorithm is derivable from a Hamiltonian; we
defer this question to a future paper.

The self-diffusion coefficient may be evaluated by the
color conductivity algorithm, which we are now going to
describe. There areN particles interacting via a short-range
potentialF int and subject to periodic boundary conditions. In
addition, half of them have a positive ‘‘color’’ chargec and
half have the opposite charge2c, which interacts with an
external color fieldF, but not with each other. The Hamil-
tonian for this~unthermostated! system is

HC5(
i51

N pi
2

2mi
1F int~q!2(

i51

N

ciziF. ~1!

The response is the color current density

Jx5
1

V(
i51

N

ci żi . ~2!

It is clear that the designation ‘‘internal’’ and ‘‘external’’ is
not really necessary at this stage; the last term in the Hamil-
tonian is of the same form as the second term and may be
grouped together with it as a single potential. If we impose
an isokinetic thermostat~described later! this remains the
case, but an isoenergetic thermostat distinguishes between
the two, conserving the sum of the kinetic energy andF int .

If there are only two particles with equal masses and the
center of mass fixed in the center of the box, the relative
motion becomes that of a single-point particle in a periodic
potential, subject to an external field. If the potential is that
of a hard sphere, the problem is the same as the periodic
nonequilibrium Lorentz gas@10–12#, although usually the
periodic array of hard spheres is taken to be hexagonal rather
than the square lattice obtained using the usual periodic
boundary conditions. The Lorentz gas is a model of electrical
conduction and has been studied as a low-dimensional ex-
ample of a nonequilibrium system.

The remainder of this paper is organized as follows. First
we will formulate a one-parameter family of Hamiltonians
that generate the dynamics of the GIK thermostat and show
that it is equivalent to geodesic motion in a curved space.
Then this approach will be applied to the nonequilibrium
Lorentz gas, giving an alternative method of refining the pe-
riodic orbits. Finally, we will discuss this result in relation to
different thermostats and the possibility of formulating a
quantum theory.

II. HAMILTONIAN FORMALISM

There is one previous Hamiltonian formulation of a ther-
mostated system, due to Nose´ @13,14#, the NHIK thermostat.
The Hamiltonian forN particles moving in a potentialF
~which may contain both interactions between the particles
and external fields! is

HN~q,s;p,ps!5(
i51

N
pi
2

2ms2
1F~q!1

ps
2

2Q
1~3N11!kBTlns,

~3!

wheres is an additional degree of freedom, corresponding to
an external reservoir, andQ is an arbitrary constant corre-
sponding to the ‘‘mass’’ of the reservoir. The time variable
that appears in the Hamilton equations of motion will be
denoted byl and does not correspond to real time. A con-
nection is made with physically measured quantities by in-
troducing a timedt5dl/s and momentumpi5pi /s, which
are the physically measured time and momentum. Hoover
@15# showed that by using these variables, it is possible to
removes andps from the equations of motion, which then
become

dqi
dt

5
pi
m
, ~4!

dpi
dt

5Fi2zpi , ~5!

dz

dt
5

1

t2 S KK0
21D . ~6!

Here z5ps /Q is the coefficient of a frictionlike force that
plays a role similar toa, which appears in Gaussian thermo-
stats~below!. t is a relaxation time that is related toQ, K is
the total kinetic energy, andK0 is the kinetic energy corre-
sponding to the given temperature, that is, (3N11)kBT/2.
The thermostat operates by increasingz whenever the kinetic
energy rises too high, thus damping the motion. See Ref.
@16# for more details of the calculation and its application to
statistical mechanics. The NHIE thermostat can be defined
by analogy with these equations@5#. The main points to note
are that the Hamiltonian is associated with a nonphysical
time scale and a scaled momentum and that the Nose´-Hoover
thermostats correspond to the canonical ensemble of equilib-
rium statistical mechanics, in that the total kinetic energy
fluctuates around a mean determined by the temperature of a
heat reservoir.

Gaussian thermostats enforce the constancy of the energy
directly in the equations of motion and thus correspond to
the microcanonical ensemble of equilibrium statistical me-
chanics. They are derived from Gauss’s principle of least
constraint, as described in the Introduction. The equations
take the form

dqi
dt

5
pi
mi

, ~7!

dpi
dt

5Fi2api , ~8!

whereF is the total force, given by a sum of interparticle
forcesFint and the external driving fieldFext. The thermo-
stating multipliera is determined by the condition that the
energy is fixed identically as a consequence of the equations
of motion. For the isokinetic thermostat the kinetic energy is
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fixed; for the isoenergetic thermostat the sum of the kinetic
and internal potential energy is fixed. The value ofa for the
GIK thermostat is

a5
( i51
N Fi•pi

( i51
N pi•pi

. ~9!

The expression fora in the GIE case is the same, with the
total forceF replaced by the external forceFext.

These equations may be simplified by usingqi85qiAmi ,
pi85pi /Ami , andFi85Fi /Ami to remove the mass from the
equations. The potential energyF and thermostating multi-
plier a are unchanged by this transformation. In addition, for
the case of a GIK thermostatonly, we write P25( i51

N p82,
which is twice the kinetic energy, and hence a constant of the
motion; thent85tP, pi95pi8/P, Fi95Fi8/P

2, F85F/P2, and
a85a/P. Remove the primes from all the symbols and the
equations become

dqi
dt

5pi , ~10!

dpi
dt

5Fi2api , ~11!

a5(
i51

N

Fi•pi . ~12!

In these variables, the total kinetic energy is normalized to
1/2.

Now we come to the most important result of this paper:
a one-parameter family of Hamiltonians that generate these
equations:

Hb~q,p!5
1

2
e~b11!F(

i51

N

pi
22

1

2
e~b21!F. ~13!

As before,F is the potential corresponding to the total force
F. Just as with the Nose´ Hamiltonian~3!, the physically mea-
sured timet and momentump do not appear directly in the
Hamiltonian; they are related to the Hamiltonian timel and
canonical momentump by dt5ebFdl andpi5eFp. These
Hamiltonians are somewhat simpler than the Nose´ Hamil-
tonian, especially in the special cases outlined below, and do
not contain any extraneous variables. The conserved value of
the Hamiltonian is zero and leads directly to the isokinetic
constraint.

The phase-space contraction factor in the canonical vari-
ables is, of course, unity. Thus, for the simplest case~b50!
in which l5t, the ~constant! phase-space element is

G5d3Nqd3Npd~H2E!

52e~3N21!Fd3Nqd3Npd S (
i
pi
221D ,

with E50. From this the physical phase-space compression
factor is seen to bee(3N21)DF, which is easily shown to be
the value obtained directly from the equations of motion,
exp@2*(3N21)adt#.

The value ofb is completely arbitrary and does not affect
the equations of motion; however, there are three particular
values ofb in which the canonical variables have a simple
interpretation. The Hamiltonians with differentb are not re-
lated by any of the usual types of canonical transformation
since the time variables differ in each case.

When b521, the Hamiltonian reduces to the familiar
form of kinetic plus potential energy. The thermostated equa-
tions are thus equivalent to a potential problem with zero
total energy. Alternatively, any system of particles with
purely attractive forces and zero total energy can be repre-
sented in terms of GIK thermostated dynamics. Whenb50,
the canonical and physical times are equivalent, so this is the
most natural form in which to derive the thermostatted dy-
namics.

Whenb51, the Hamiltonian takes a form equivalent to
that of a geodesic in a curved space with metricgmn , that is
@17#,

Hg~q,p!5
1

2
gmn~q!pmpn , ~14!

where there is summation over repeated indices. Comparing
this with Hb51 and ignoring the constant, we see that GIK
dynamics is equivalent to geodesic motion on configuration
space with a metric given by

ds25e22F(
i51

N

dqi
2 . ~15!

In particular, the trajectory followed between two points in
configuration space has extremal length with respect to the
above metric. That is, given any two points in configuration
space, the trajectory followed by the system is a minimum
value of *ds among all trajectories from one point to the
other. Occasionally it may be only a local minimum or even
~for sufficiently pathologicalF) a maximum. We have also
incidentally proved that the dynamics is time reversible, as
there is no preferred direction along a geodesic.

Thus we have shown that the GIK thermostat is intimately
related to more conventional dynamical systems, augmenting
the link that has already been made between quadratic
Hamiltonians and geodesic motion in a curved manifold
@18#.

III. THE LORENTZ GAS

The above discussion has been very general, applying to
the color conductivity algorithm with any number of par-
ticles and any potential. Now we will apply it to the nonequi-
librium Lorentz gas@10–12#, which has only one particle
and a particular~hard sphere! interaction, but still exhibits
most of the features of larger nonequilibrium systems and in
particular is chaotic. The result is a more intuitive under-
standing of the principles outlined above and alternative
techniques for numerical and possibly experimental investi-
gation of the nonequilibrium Lorentz gas. Theb21 form of
the Hamiltonian for the Lorentz gas has been exhibited pre-
viously @19#.

We begin with a study of the variational principle derived
at the end of Sec. II. Consider a single particle moving in
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three dimensions under the influence of a constant field
F52e ẑ. The potential isF5ez. The GIK equations of mo-
tion ~10!–~12!, which in this case are identical to the GIE
equations, can be solved analytically, leading to

f5f0 , ~16!

tan
u

2
5tan

u0
2
exp

t2t0
e

, ~17!

x5x01
u2u0

e
cosf0 , ~18!

y5y01
u2u0

e
sinf0 , ~19!

z5z01
1

e
ln
sinu

sinu0
, ~20!

where a subscript zero indicates the initial value and
px5sinucosf, py5sinusinf, and pz5cosu. The metric de-
fined in Sec. II is

ds25e22ez~dx21dy21dz2!. ~21!

It does not depend on eitherx or y, so px5e2ezpx is a
constant of the motion~and similarlye2ezpy). This is not at
all obvious from the equations of motion. Consider the tra-
jectory between two points that differ by a separation in the
x direction. This is shown in Fig. 1 for the casee51. The
intermediate points have larger values ofz because lengths
as defined by Eq.~21! are smaller for larger values ofz. If,
however, the separation of the two points is larger than
p/e, Eq.~18! shows that no trajectory exists between the two
points, as the initial and final values ofu can differ by at
mostp. What has happened is that the total length of the

path from a point to infinity along thez direction is finite and
is equal toe2ez/e. If the two end points are too far apart, the
shortest path between the two points consists of two straight
lines projecting from the points in thez direction.

The actual value of the length between any two points
may be calculated analytically as a function of the initial and
final coordinates, as follows.

~i! Solve Eqs.~18! and ~19! for f0 andu2u0.
~ii ! Write Eq. ~20! in terms ofu0 and solve foru0 and

henceu.
~iii ! Note that the length element reduces to

ds5e2ezAdx21dy21dz25
e2ez

e

sinu0
sin2u

du; ~22!

thus the total length ise2ezsinu0(cotu02cotu)/e.
This approach may be applied to the calculation of the

periodic orbits of the Lorentz gas. In addition to the free
equations of motion described above, the particle undergoes
elastic collisions with a periodic array of spherical scatterers.
There is also a Lorentz gas where the scatterers are placed
randomly @20#. For the periodic case, it is often useful to
enumerate and locate the periodic orbits, which are used to
calculate averages over the steady-state distribution, which is
multifractal, owing to the contraction in phase space@11,12#.

Suppose we have an approximate periodic orbit, obtained
by integrating the system for a long time and selecting a part
that almost returns to the same location after a small number
of collisions. If there is a true periodic orbit close to the
approximate one, the trajectory will be such that the length is
minimized~locally!, subject to the condition that the particle
collides with the spheres in a sequence particular to that pe-
riodic orbit. There is one slight complication: a periodic orbit
may not return to the initial sphere, but will continue making
the same sequence of collisions, differing from the first by a
translation. If this translation has a component in thez direc-
tion, the total path length of the second iteration of the orbit
is not equal to the first and it is not clear exactly what should
be minimized.

Let us denote the path length between two points, ob-
tained by the above procedure, asl (Dx,Dy,Dz,z0). From
this we can define the path length from sphereA to sphere
B asd(B,A), where there is implicit dependence on the two
anglesq andw needed to define the position on the spheres.
d can be calculated from these angles, together with the
translation vector, and the value ofz of one of the spheres.

Now, given the end points of a trajectory on spheresA
andC, the location onB can be determined by the condition
thatd(B,A)1d(C,B) is a minimum and hence

]

]qB
@d~B,A!1d~C,B!#5

]

]wB
@d~B,A!1d~C,B!#50 .

~23!

There is a similar equation for the angles corresponding to
C in terms of d(C,B)1d(D,C) and so on, until the last
point on the orbit, which we will denoteZ. The equation
determiningZ is that d(Z,Y)1d(A8,Z) should be mini-
mized. Similarly, the equation determiningA8 is that
d(A8,Z)1d(B8,A8) be minimized. But d(B8,A8)
5d(B,A)exp(2eDz), whereDz is the change inz over the

FIG. 1. Trajectories for the Lorentz gas ate51 and aDx be-
tween the end points of 1, 2, 3, andp.
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whole orbit. Thus the values of all the angles can be found
simultaneously by minimizing

H ]

]qB
@d~B,A!1d~C,B!#J 21H ]

]wB
@d~B,A!1d~C,B!#J 2

1•••1H ]

]wA
@d~A8,Z!1d~B,A!exp~2eDz!#J 2. ~24!

The above expression is certainly very complicated, but it
can be expressed analytically, which may be an advantage
over current numerical techniques, which use root finding
algorithms to locate a collision. Note that it is also a mini-
mum even if the path length should turn out to be a maxi-
mum.

The one-particle problem also has direct relevance to
some other systems, for which the thermostated dynamics is
exact. For example, the above form of the metric is equiva-
lent to Fermat’s principle for light passing through glass with
a refractive indexn5e2ez. In addition, theb521 form of
the Hamiltonian is that of an electron moving in a potential
V5e22ez/2 with a total energy of zero. This could be rel-
evant to recent work on ballistic motion of electrons in semi-
conductors, where refraction effects can be observed@21#.
Quantum-mechanical effects are also important here and are
discussed below.

IV. DISCUSSION

In this final section, we will put the above results in the
perspective of nonequilibrium statistical mechanics and seek
a deeper understanding of the nature of thermostated sys-
tems. The first thing to note is that there is a distinct differ-
ence between a thermostat that preserves kinetic energy and
a thermostat that preserves internal energy. They yield the
same linear response, but differ in the microscopic features.
Both the NHIK thermostat described above and the GIK
thermostat admit a Hamiltonian description, but simple
modifications of these Hamiltonians that we have tried do
not generate isoenergetic thermostats, that is, it is easy to
write down a Hamiltonian tht preserves internal energy. An
example would be

H IE5
1

2
e2Fext(

i51

N

pi
21F int , ~25!

but this does not generate the GIE equations, asa can no
longer be written( i51

N Fext i•pi ; the denominator in Eq.~9! is
no longer constant. Similarly, there is no known Hamiltonian
formulation of the NHIE thermostat.

Another way of looking at the difference between isoki-
netic and isoenergetic constraints is to note the different
manner in which the thermodynamical relations are satisfied.
The rate of increase of the entropy of the thermal reservoir is
Ṡ5J•F/T. The rate of decrease of the entropy of the system
is equal tokB multiplied by the phase-space contraction rate,
which is 2(3N21)a for either type of thermostat. In the
isokinetic case, these two have exactly the same magnitude
at all times, whereas in the isoenergetic case, the equality is
only evident after a long time average. In terms of a Hamil-
tonian, the total amount of phase-space contraction is obvi-

ous from the transformation used to relate the canonical vari-
ables to the measured ones. In the isokinetic case, this is a
known function ofF, while in the isoenergetic case, the
average value of2(3N21)a is path dependent.

Also, we note that recently the conjugate pairing rule has
been proved for the GIK thermostat@22#. This is the state-
ment that pairs of Lyapunov exponents sum to a constant
C, so that, ifl is one exponent, then so isC2l, with the
exception of one or two of the exponents. The proof relies
heavily on the isokinetic property and shows that the linear
time evolution matrix always has a symplectic structure
when represented using the correct basis. Our own computa-
tions show that simulations using a GIE thermostat obey the
conjugate pairing rule, but there is no analytic treatment yet.
Perhaps the pairing only occurs as the result of long time
averaging.

Another important point relates to boundary conditions.
For an equilibrium system, periodic boundary conditions
may be used without affecting the Hamiltonian structure of
the equations. All that happens is thatq becomes a compact
manifold. In our case, enforcing periodic boundary condi-
tions results in abrupt changes inF, so that the Hamiltonian
is not conserved. It is clear that the imposition of periodic
boundary conditions breaks the global Hamiltonian structure,
as multifractal attractors appear@8#. Nonetheless, it is still
valid to view a periodic system as a Hamiltonian system with
a potential that is in some sense periodic.

Finally, we consider the possibility of quantizing the ther-
mostated dynamics. Quantum dissipative systems are an ac-
tive area of research at present, using both canonical@23# and
path-integral@24# quantization. In this paper we have an ap-
proach where the heat bath is not modeled explicitly; it ap-
pears classically as a deterministic modification of the equa-
tions of motion. Quantum mechanically, this means that the
system can be expressed in terms of pure states rather than
density matrices. In addition, the semiclassical techniques of
Gutzwiller @25# and Cvitanovicet al. @26# become available.
There are potential problems and ambiguities whichever
value of b is used: if bÞ21 there are ambiguities with
regard to operator ordering, which occur also if the curved
space representation is used; see Ref.@27#, where an attempt
is made to resolve such questions. IfbÞ0 the question
arises as to whether the different times used in the formula-
tion have any effect on the quantization, and ifbÞ1 the
constraintH50 must be implemented without trivializing
the time evolution. Here also the issue of boundary condi-
tions becomes of paramount importance. Nonetheless, it is
clear that the physical systems referred to at the end of Sec.
III can be consistently and uniquely quantized. Once these
questions are resolved, we believe that a quantum treatment
of the GIK thermostat would make an important contribution
to the study of dissipative dynamics.

Note added in proof.A Hamilton containing an exponen-
tial was given for the Lorentz gas in Ref.@27#.
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