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Hamiltonian formulation of the Gaussian isokinetic thermostat
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We show that the Gaussian isokinetic thermostat used in nonequilibrium molecular-dynamics calculations
can be derived from a Hamiltonian. An alternative variational approach involves geodesic motion in a curved
space. We consider the implications of this result for the nonequilibrium Lorentz gas and thermostated systems
in general [S1063-651X96)09209-4

PACS numbd(s): 05.45+b, 05.70.Ln

I. INTRODUCTION constraint is a minimum along the trajectory.
The usual(Lagrangian and Hamiltoniardescriptions of

Nonequilibrium steady states involve a flow of energyclassical mechanics are formulated in terms of variational
through the system. For example, consider a conductor in aprinciples, which allow a compact representation of the sys-
electric field. The energy supplied by the field must be retem by a single function, simplify perturbation theory, and
moved to enable the system to approach a steady state. Maomgake a connection with quantum mechanics. Gauss’s prin-
precisely, the state of the system must be constrained to @ple is more general in that it gives the same results for
compact region of phase spadd. This may be obtained in systems with holonomic constraints, but does not have the
one of two ways: An idealized heat bath may be included asame advantages as the Lagrangian and Hamiltonian ap-
the boundary or throughout the system. Stochastic methodwoaches, so it has not had the same popularity.
are difficult to treat analytically, making it difficult to ensure ~ Here we write down a Hamiltonian formulation of the
that the thermostating effects have been modeled accuratel§glK thermostat. This permits a large number of statements
S0 most approaches in use today include some deterministio be made about these systems, pertaining to conservation
modification of either the boundary conditions, the equation®f phase volume, the symplectic structure of phase space,
of motion, or both. and so on. Related to this is a formulation in terms of geo-

Probably the most significant boundary approach has beetesic motion in a curved space, which allows us to write
the escape rate method of Gaspard and co-worka@d. down a variational formulation of the GIK equations. This
Here transport processes are modeled as deterministic sysas application in computing orbits of the system. The
tems with chaotic scattering. Transport coefficients are obHamiltonian approach also permits correspondences to be
tained in terms of the escape rate, which can then be relatetdade between a GIK thermostat and other, nonthermostated,
to the Lyapunov exponents and Kol’'mogorov-Sinai entropy,systems. Finally, it allows the possibility of a quantum de-
which are microscopic properties of the underlying chaoticscription of these systems, which is discussed at the end of
dynamics. An advantage of this approach has been that thbis paper. In short, it allows the GIK dynamics to be treated
dynamics is unchanged, thus Hamiltonian, and hence webn a similar footing as more conventional dynamical sys-
understood. A disadvantage is that homogeneity has bedams, such as that used in the escape rate approach referred
lost, making simulation and interpretation more difficult. ~ to above, while still retaining the advantages of homogene-

Alternatively, the equations of motion may be modified ity.
by the addition of a “thermostating” term. This has the ad- An obvious question that may be raised at this point is
vantage of retaining homogeneity and gives the correct lineanow the phase volume conservation of a Hamiltonian system
respons¢4]. There are a number of types of thermostat. Thes to be reconciled with the fact that thermostats cause phase-
ones referred to in this paper are the Gaussian isokinetigpace contraction on the average. This is very important be-
(GIK), Gaussian isoenergetiGIE), NoseHoover isokinetic cause it is related to the rate of entropy production of the
(NHIK), and NoseHoover isoenergetitNHIE) thermostats. nonequilibrium system. This contraction leads to steady dis-
All of these give the same averages and time correlatioftributions that are multifractal on phase spf€g], although
functions in the thermodynamic limj&]. the support may have the same dimension as phase [&lace

The NHIK thermostat is described at the beginning of The apparent contradiction is resolved by noting the distinc-
Sec. Il. The Gaussian thermostats are based on Gauss’s prien betweenmechanicaland canonical momenta, familiar
ciple of least constrair6], as described in Chap. 3 of Ref. from the motion of a charged particle in a magnetic fi&ltl
[4]. We want to modify the equations of motion so that thePhase-space volume is conserved when written in terms of
energy of the system remains bounded, despite the influen@@nonical momentar, but this need not be proportional to
of an external force. This can be done by constraining théhe velocityv, which is used to define physically measurable
kinetic energy of the system to be constant, as in the Glkparameters, such as the current.
thermostat, or including both kinetic energy and internal po- There are a number of nonequilibrium molecular dynam-
tential energy, but not the potential energy associated witlics algorithms available for the various transport coefficients,
the external force, as in the GIE thermostat. Gauss’s prindescribed in Chap. 6 of Ref4]. All of these require a ther-
ciple gives a prescription for doing this so that the force ofmostating method of some kind. Of these, theoD algo-

1063-651X/96/543)/24956)/$10.00 54 2495 © 1996 The American Physical Society



2496 C. P. DETTMANN AND G. P. MORRISS 54

rithm for determining the shear viscosity and the heat con- N : p2
duction algorithm are not(known to be Hamiltonian  Hy(q,s; w,ps)zE mﬂb(qwf £+(3N+1)kBTIns,
i=1

systems before the thermostat is included in the equations of
motion. TheboLLs algorithm (also for shear viscosilyis ©)

derived from a Hamiltonian, but does not give the COITeC heres is an additional degree of freedom, corresponding to

response _beyond linear order. It would be interesting 10 Seg, external reservoir, anQ is an arbitrary constant corre-
whether either the Noser Gaussian thermostated dynamlcsSponding to the “mass” of the reservoir. The time variable

for the boLLs algorithm is derivable from a Hamiltonian; we that appears in the Hamilton equations of motion will be

defer this question to a future paper. denoted byx and does not correspond to real time. A con-

colgriosr?(;tg?ic\f/lijtslogl ((:)(:ﬁg;ftl‘](’:lle\?\}h{Qr?ngea?e\/arigs\::edoiﬁ)]y ttk(‘)enection is made with physically measured quantities by in-
y alg ' going troducing a timedt=d\A/s and momentunp; = 47; /S, which

descrlt_)e. There ard _partlcles |_nte_ract|ng via a sho_rt_—range are the physically measured time and momentum. Hoover
potential®;; and subject to periodic boundary conditions. In [15] showed that by using these variables, it is possible to

addition, half of them have a positive “color” chargeand - - ;
half have the opposite chargec, which interacts with an removes and ps from the equations of motion, which then

external color fieldr, but not with each other. The Hamil- become
tonian for this(unthermostatedsystem is dg  p;
N N at - m' @
Pi
He=2 5 —+®im(@)— 2, cizF. (1)
i=1 £m; i=1 dp;
_ . FTEA L ®)
The response is the color current density
1N df 1K
sz—i; Cizi. 2 gt 2Kt ©

It is clear that the designation “internal” and “external” is Here {=p,/Q is the coefficient of a frictionlike force that

not really necessary at this stage; the last term in the HamiP/@Ys & role similar tax, which appears in Gaussian thermo-
tonian is of the same form as the second term and may befats(below. 7 is a relaxation time that is related @, K is
grouped together with it as a single potential. If we imposeln€ total kinetic energy, anil, is the kinetic energy corre-
an isokinetic thermostatdescribed latérthis remains the SPonding to the given temperature, that isSN(B1)kgT/2.
case, but an isoenergetic thermostat distinguishes betwedf® thermostat operates by increasinghenever the kinetic
the two, conserving the sum of the kinetic energy dngl. ~ €Nergy rises too high, thus damping the motion. See Ref.
If there are only two particles with equal masses and thélG]_ fqr more deta|.ls of the calculation and its apphcatlon_ to
center of mass fixed in the center of the box, the relativeStatistical mechanics. The NHIE thermostat can be defined
motion becomes that of a single-point particle in a periodid®y @nalogy with these equatioffs]. The main points to note

potential, subject to an external field. If the potential is that@"® that the Hamiltonian is associated with a nonphysical
of a hard sphere, the problem is the same as the periodiéme scale and a scaled momentum and that the urer
nonequilibrium Lorentz ga§10—14, although usually the thermostats correspond to the canonical ensemble of equilib-

periodic array of hard spheres is taken to be hexagonal rath&um statistical mechanics, in that the total kinetic energy
than the square lattice obtained using the usual periodifuctuates around a mean determined by the temperature of a

boundary conditions. The Lorentz gas is a model of electrical'€at reservoir.
conduction and has been studied as a low-dimensional ex- Gaussian thermostats enforce the constancy of the energy
ample of a nonequilibrium system. directly in the equations of motion and thus correspond to

The remainder of this paper is organized as follows. First"® microcanonical ensemble of equilibrium statistical me-
we will formulate a one-parameter family of Hamiltonians chanics. They are derived from Gauss's principle of least
that generate the dynamics of the GIK thermostat and showonstraint, as described in the Introduction. The equations
that it is equivalent to geodesic motion in a curved spacet@ke the form
Then this approach will be applied to the nonequilibrium
Lorentz gas, giving an alternative method of refining the pe- dg; p
riodic orbits. Finally, we will discuss this result in relation to dar m’ @
different thermostats and the possibility of formulating a
guantum theory. dp

d—tl =Fi—ap;, (8)
Il. HAMILTONIAN FORMALISM

There is one previous Hamiltonian formulation of a ther-whereF is the total force, given by a sum of interparticle
mostated system, due to Nds8,14], the NHIK thermostat. forcesF;,; and the external driving fielf.,. The thermo-
The Hamiltonian forN particles moving in a potentiab stating multipliera is determined by the condition that the
(which may contain both interactions between the particlegnergy is fixed identically as a consequence of the equations
and external fieldsis of motion. For the isokinetic thermostat the kinetic energy is
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fixed; for the isoenergetic thermostat the sum of the kinetic The value off is completely arbitrary and does not affect
and internal potential energy is fixed. The valuenofor the  the equations of motion; however, there are three particular
GIK thermostat is values of 8 in which the canonical variables have a simple
interpretation. The Hamiltonians with differegtare not re-
EiN —1Fi-pi lated by any of the usual types of canonical transformation
a= SN pip ©  since the time variables differ in each case.
When B=—1, the Hamiltonian reduces to the familiar
The expression fot in the GIE case is the same, with the form of kinetic plus potential energy. The thermostated equa-
total forceF replaced by the external fordg,,;. tions are thus equivalent to a potential problem with zero
These equations may be simplified by usiyg=q; Jm;, total energy.. Alternatively, any system of particles with
P/ =p; /ym;, and F=F/ Jm; to remove the mass from the purely gttractlve forces and zero total energy can be repre-
equations. The potential enerdy and thermostating multi- Se€nted in terms of GIK thermostated dynamics. Wser0,

plier « are unchanged by this transformation. In addition, forthe canonical and physical times are equivalent, so this is the
; s N o/ most natural form in which to derive the thermostatted dy-
the case of a GIK thermostanly, we write P?=3," p’?, y

e . o amics.
vn\gP;[[(i:gr::'stthv!rclte, t:htepk|g’(’at_|cp<,a/n§ r?:):,_alrzwfj/gtzanccl:ﬁfg)o/r;sztag;gf thé When 8=1, the Hamiltonian takes a form equivalent to
’ » Mi T M y B — ’ - ’

a'=alP. Remove the primes from all the symbols and theﬁ% of a geodesic in a curved space with megrc, that is
equations become ’

1
dg; — MV
gz . (10 Hy(a,m) = 59" () m,m,, (14
d where there is summation over repeated indices. Comparing
api _ —ap; (11) this with H;_, and ignoring the constant, we see that GIK
dt dynamics is equivalent to geodesic motion on configuration
N space with a metric given by
a=2 Fi-p;. (12 N
=1 ds?=e2%> do?. (19
=1
In these variables, the total kinetic energy is normalized to
1/2. In particular, the trajectory followed between two points in

Now we come to the most important result of this paper:configuration space has extremal length with respect to the
a one-parameter family of Hamiltonians that generate thesgbove metric. That is, given any two points in configuration
equations: space, the trajectory followed by the system is a minimum
value of fds among all trajectories from one point to the
other. Occasionally it may be only a local minimum or even
(for sufficiently pathologicafP) a maximum. We have also
incidentally proved that the dynamics is time reversible, as
As before,® is the potential corresponding to the total force there is no preferred direction along a geodesic.
F. Just as with the Nosdamiltonian(3), the physically mea- Thus we have shown that the GIK thermostat is intimately
sured timet and momentunp do not appear directly in the related to more conventional dynamical systems, augmenting
Hamiltonian; they are related to the Hamiltonian timend  the link that has already been made between quadratic
canonical momentuna by dt=e#®d\ andp;=e®#. These Hamiltonians and geodesic motion in a curved manifold

N
1 1
Hﬁ(q,ﬂ')=§e(ﬁ+1)q’i21 - Ee(ﬁ_m). (13

Hamiltonians are somewhat simpler than the Netemil-  [18].

tonian, especially in the special cases outlined below, and do

not contain any extraneous variables. The conserved value of IIl. THE LORENTZ GAS

the Hamiltonian is zero and leads directly to the isokinetic ) ) )
constraint. The above discussion has been very general, applying to

The phase-space contraction factor in the canonical variin€ color conductivity algorithm with any number of par-
ables is, of course, unity. Thus, for the simplest cg@e0) ticles and any potential. Now we will apply it to the nonequi-

in which A=t, the (constant phase-space element is librium Lorentz gas[10-12, which has only one particle
and a particulahard spherginteraction, but still exhibits
I'=d*Nqd*™N78(H-E) most of the features of larger nonequilibrium systems and in

particular is chaotic. The result is a more intuitive under-
standing of the principles outlined above and alternative
techniques for numerical and possibly experimental investi-
gation of the nonequilibrium Lorentz gas. Tige-1 form of
with E=0. From this the physical phase-space compressiothe Hamiltonian for the Lorentz gas has been exhibited pre-
factor is seen to beCN~VA® \which is easily shown to be viously [19].

the value obtained directly from the equations of motion, We begin with a study of the variational principle derived
exd —[(SBN—1)adt]. at the end of Sec. Il. Consider a single particle moving in

_ Ze(3N1)tbd3qu3Np5( 2 piz_ 1
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path from a point to infinity along the direction is finite and

is equal toe™ ““/ e. If the two end points are too far apart, the
shortest path between the two points consists of two straight
3r ] lines projecting from the points in thedirection.

The actual value of the length between any two points
may be calculated analytically as a function of the initial and
final coordinates, as follows.

(i) Solve Eqs(18) and(19) for ¢y and 6— 6.

(i) Write Eqg. (20) in terms of 6, and solve ford, and
henceé.

(iii) Note that the length element reduces to

e
e ¢“sind,

1 1 — e 2T dy? 1 d 2= :
ds=e /O rdy?+dA=—— =o2do; (22

thus the total length ie~ ““singy(cotf,—cotbd)/e.

This approach may be applied to the calculation of the
0 periodic orbits of the Lorentz gas. In addition to the free
equations of motion described above, the particle undergoes
elastic collisions with a periodic array of spherical scatterers.
There is also a Lorentz gas where the scatterers are placed
randomly [20]. For the periodic case, it is often useful to

FIG. 1. Trajectories for the Lorentz gas et 1 and aAx be- ~ €numerate and locate the periodic orbits, which are used to
tween the end points of 1, 2, 3, and calculate averages over the steady-state distribution, which is
multifractal, owing to the contraction in phase spfte,12.

three dimensions under the influence of a constant field Suppose we have an approximate periodic orbit, obtained

F=— €2 The potential isb = ez. The GIK equations of mo- by integrating the system for a long time and selecting a part
tion (10)—(12), which in this case are identical to the GIE that almost returns to the same location after a small number

z

equations, can be solved analytically, leading to of collisions. If there is a true periodic orbit close to the
approximate one, the trajectory will be such that the length is

=g, (16)  minimized(locally), subject to the condition that the particle
collides with the spheres in a sequence particular to that pe-

0 Oy t—tg riodic orbit. There is one slight complication: a periodic orbit

tani:tan?exp € ' 17 may not return to the initial sphere, but will continue making

the same sequence of collisions, differing from the first by a

— 6, translation. If this translation has a component inztdirec-
X=Xo+ —_—C0Sho, (18)  tion, the total path length of the second iteration of the orbit
is not equal to the first and it is not clear exactly what should
0— 0, be minimized.
y=Yo+ sing,, (29 Let us denote the path length between two points, ob-
€ tained by the above procedure, aAx,Ay,Az,z5). From
1 sing this we can define the pa_th_length from sphér¢o sphere
z=279+ E|n$00, (20) B asd(B,A), where there is implicit dependence on the two

anglesd and ¢ needed to define the position on the spheres.
ad can be calculated from these angles, together with the
translation vector, and the value bfof one of the spheres.
Now, given the end points of a trajectory on sphefes
andC, the location orB can be determined by the condition
ds?=e 2% dx2+dy?+dZ). (21  thatd(B,A)+d(C,B) is @ minimum and hence

where a subscript zero indicates the initial value an
px= sindcosp, p,=sindsing, and p,=cosy. The metric de-
fined in Sec. Il is

It does not depend on either or y, so m,=e” ““p, is a d d

constant of the motiofand similarlye™ <?p,). This is not at a—%[d(B,A)ﬂLd(C,B)]: T%[d(B'AHd(C’B)]:O :

all obvious from the equations of motion. Consider the tra- (23
jectory between two points that differ by a separation in the

x direction. This is shown in Fig. 1 for the cage=1. The There is a similar equation for the angles corresponding to
intermediate points have larger valueszobecause lengths C in terms ofd(C,B)+d(D,C) and so on, until the last
as defined by Eq21) are smaller for larger values af If, point on the orbit, which we will denot&. The equation
however, the separation of the two points is larger thardeterminingZ is that d(Z,Y)+d(A’,Z) should be mini-
7l e, EQ.(18) shows that no trajectory exists between the twomized. Similarly, the equation determining’ is that
points, as the initial and final values @f can differ by at d(A’,Z)+d(B’,A’) be minimized. But d(B’,A’)
most 7. What has happened is that the total length of the=d(B,A)exp(—eAz), whereAz is the change irz over the
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whole orbit. Thus the values of all the angles can be founaus from the transformation used to relate the canonical vari-
simultaneously by minimizing ables to the measured ones. In the isokinetic case, this is a
known function of®, while in the isoenergetic case, the
average value of-(3N— 1)« is path dependent.
Also, we note that recently the conjugate pairing rule has
5 5 been proved for the GIK thermostg22]. This is the state-
i , _ ment that pairs of Lyapunov exponents sum to a constant
agoA[d(A ,Z2)+d(B,A)exp( GAZ)]] - (24 C, so that, if\ is one exponent, then so G—\, with the
exception of one or two of the exponents. The proof relies
The above expression is certainly very complicated, but iheavily on the isokinetic property and shows that the linear
can be expressed analytically, which may be an advantagéme evolution matrix always has a symplectic structure
over current numerical techniques, which use root findingyvhen represented using the correct basis. Our own computa-
algorithms to locate a collision. Note that it is also a mini- tions show that simulations using a GIE thermostat obey the
mum even if the path length should turn out to be a maxiconjugate pairing rule, but there is no analytic treatment yet.
mum. Perhaps the pairing only occurs as the result of long time
The one-particle problem also has direct relevance tawveraging.
some other systems, for which the thermostated dynamics is Another important point relates to boundary conditions.
exact. For example, the above form of the metric is equivaFor an equilibrium system, periodic boundary conditions
lent to Fermat’s principle for light passing through glass withmay be used without affecting the Hamiltonian structure of
a refractive indexn=e~ <. In addition, the=—1 form of  the equations. All that happens is ttabecomes a compact
the Hamiltonian is that of an electron moving in a potentialmanifold. In our case, enforcing periodic boundary condi-
V=e 2¢/2 with a total energy of zero. This could be rel- tions results in abrupt changesdn so that the Hamiltonian
evant to recent work on ballistic motion of electrons in semi-is not conserved. It is clear that the imposition of periodic
conductors, where refraction effects can be obsef®ddl  boundary conditions breaks the global Hamiltonian structure,
Quantum-mechanical effects are also important here and atg multifractal attractors appef8]. Nonetheless, it is still
discussed below. valid to view a periodic system as a Hamiltonian system with
a potential that is in some sense periodic.
IV. DISCUSSION Finally, we consider the possibility of quantizing the ther-
o ) ) ] mostated dynamics. Quantum dissipative systems are an ac-
In this final section, we will put the above results in the e area of research at present, using both canof2&kknd
perspective of noneqqilibrium statistical mechanics and Seebath—integra[24] guantization. In this paper we have an ap-
a deeper understanding of the nature of thermostated Sygroach where the heat bath is not modeled explicitly; it ap-
tems. The first thing to note is that there is a distinct differ-pears classically as a deterministic modification of the equa-
ence between a thermostat that preserves kinetic energy aggns of motion. Quantum mechanically, this means that the
a thermostat that preserves internal energy. They yield thgystem can be expressed in terms of pure states rather than
same linear response, but differ in the microscopic featuregjensity matrices. In addition, the semiclassical techniques of
Both the NHIK thermostat described above and the GIKgytzwiller [25] and Cvitanovicet al. [26] become available.
thermostat admit a Hamiltonian description, but simpleThere are potential problems and ambiguities whichever
modifications of these Hamiltonians that we have tried dg,g),e of B is used: if B+ —1 there are ambiguities with
not generate isoenergetic thermostats, that is, it is easy {@gard to operator ordering, which occur also if the curved
write down a Hamiltonian tht preserves internal energy. Anspace representation is used; see [&], where an attempt

2
+

J d 2
[ﬁ—%[d(B,AHd(C,B)] T%[d(B,A)er(C,B)]]

+.oo 4

example would be is made to resolve such questions. 80 the question
1 N arises as to whether the different times used in the formula-
Hpe==e2®exS w2+ o5 tion have any effect on the quantization, andgi#1 the
e izl b @9 constraintH=0 must be implemented without trivializing

the time evolution. Here also the issue of boundary condi-

but this does not generate the GIE equationsgasan no tions becomes of paramount importance. Nonetheless, it is
longer be writter= | Fo.i- pi ; the denominator in Eq9) is  clear that the physical systems referred to at the end of Sec.
no longer constant. Similarly, there is no known Hamiltonianlll can be consistently and uniquely quantized. Once these
formulation of the NHIE thermostat. questions are resolved, we believe that a quantum treatment

Another way of looking at the difference between isoki- of the GIK thermostat would make an important contribution
netic and isoenergetic constraints is to note the differento the study of dissipative dynamics.
manner in which the thermodynamical relations are satisfied. Note added in proofA Hamilton containing an exponen-
The rate of increase of the entropy of the thermal reservoir igial was given for the Lorentz gas in R¢R7].
S=J-F/T. The rate of decrease of the entropy of the system
is equal tokg multiplied by the phase-space contraction rate,
yvhiqh i; —(3N—1)«a for either type of thermostat. In th.e ACKNOWLEDGMENTS
isokinetic case, these two have exactly the same magnitude
at all times, whereas in the isoenergetic case, the equality is We thank E. G. D. Cohen, J. R. Dorfman, W. G. Hoover,
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