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Homoclinic orbits in the Maxwell-Bloch equations with a probe
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The dynamics of an ensemble of two-level atoms in a single-mode resonant laser cavity with external
pumping and a weak coherent probe is investigated. The system is represented as a perturbation to an inte-
grable system, the Jaynes-Cummings model, in which there are no losses. Using an analytical perturbation
technique, the Melnikov method, we show the presence of special homoclinic orbits, which persist under small
perturbation from the homoclinic structure present in the integrable case on codimension-one surfaces in the
parameter space. Two cases are considered: one in which we consider the equations with small relaxation
parameters and no probe and the second in which we consider the small relaxation parameters and the effects
of the probe. The persistence of homoclinic orbits for larger parameters is demonstrated through numerical
continuation using the software packagero. The breakup of these homoclinic orbits is believed to be a
source of chaos in the laser systdi81063-651X96)02307-0

PACS numbgs): 05.45+b, 42.65.5f

[. INTRODUCTION where the overdot denotes the time derivative. Here the pa-
rametersa represents the cavity losses, whilg andsvy are

The Maxwell-Bloch equations for single-mode laser op-the parallel and perpendicular relaxation rates for the lasing
eration [1-4] invite a dynamical systems approach, espe-material in the cavity, respectively, agds the inverse of the
cially because they contain the famous Lorenz equations as@upling constant. These equations assume comparable time
subsystem. Dynamical systems ideas, while not necessaricales for the processes of cavity dampiagand the relax-
complete from the viewpoint of physics, at least provide anation of atomic statesg andevy.
organizing principle for investigations of laser dynamics. For If a small-amplitude, slightly detuned probe is injected
example, Arecchf4] and Weisgd5] review and evaluate the into the laser cavity, the Maxwell-Bloch equations become
experimental observability of some of the behavior of lasef6,7]
operation that is interesting from a dynamical systems view-

point. E=P—-caé, (1.29
The dynamical systems approach we take is intended to

map out the regions in the parameter space for single-mode j):(g+85eiwt)p_8,373, (1.2b

laser operation where interesting dynamical behavior will

take place, provided the dynamics can indeed be described _ 1 _ _

by the Maxwell-Bloch equations. In order for these equations D=— > [(E+ &8 Yy P* + (& +ede'“YHYP]

to apply, we must assume the laser to be an ensemble of

two-level atoms in a single-mode resonant cavity with exter- —ey(D-1), (1.29

nal pumping. We must also assume that the sample of lasing

material in the cavity is small enough that we can neglect aliyhere £5 is the strength of the probe laser andis the

spatial effects. Finally, the Maxwell-Bloch equations ignoredetuning between the frequencies of the probe light and the
quantum effects in the electric field. If we denote the com-—adiation in the resonant cavity, which is tuned to match the
plex envelopes of the electric field [ the medium polar-  atomic transition frequency. All the variables and parameters
izability by 7, and the real-valued population inversion by are dimensionless; their dimensional counterparts are dis-

7, the Maxwell-Bloch equations read cussed, for instance, {i7]. An idealized experimental setup
) showing the laser cavity, together with the weak coherent
E=P—¢eaf, (1.13 probe, is depicted in Fig. 1.

The type of dynamical systems behavior we are seeking is
the persistence or breakup of homaoclinic orbits as the param-
etersea, B, ey, anded are varied. We find persisting ho-

. moclinic orbits in two ways: by the Melnikov method, as
D=—32(EP*+EP)—ey(D—1), (1.190 reviewed in[8], and by numerical continuation using the
computer codeauTto [9]. Our investigation yields a fairly
complete picture of the surface in the-g¢B-cy-¢8 param-
*Present address: Naval Undersea Warfare Center, Code 8428ter space where certain homoclinic orbits exist that are be-
Newport, Rl 02841. lieved to be responsible for the occurrence of chaotic dynam-

P=ED— &P, (1.1b
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material sample probe beam _5: P, (2.1a
mirror \ P=gD, (210
D=—L(EP* + £ P). (2.19

These equations possess three conserved quantities: unitarity

um

pump H=3|P>+3D?, (2.2
mIrTor the interaction energy
probe laser
1
- J= = (EP* =& P), 2.3
self-consistent 2 ( P P) 23
. beam . I
mIrror and the sum of the electric field energy and the excitation
ener

FIG. 1. Diagram of the ring-cavity laser system with an external 9
probe laser and an external pump. We assume that the lasing sample K= %|g|2+p_ (2.9
is short enough so that spatial effects can be ignored and that a
two-level description is sufficient. Eliminating the population inversio® in favor of the

_ ) _ energyK in Egs.(2.1) yields the ideal complex Duffing sys-
ics [10,11. For small values ofe, this surface is well tem

approximated by its tangent space at the origin, which is
calculated by the Melnikov method. Moreover, this surface ;s‘:p, jD:g(K—%|g|2)_ (2.5
contains all previously discovered cases of the same type of
homaoclinic orbits. Varying the parameters away from thisThe unitarityH serves as the Hamiltonian for these equa-
surface leads to bifurcations of various kinds that have beetions, namely,
well studied for the Lorenz systefll]. We propose a dif-
ferent bifurcation path that may be suitable for laser optics. : dH : 5 dH
In Sec. Il we describe the dynamics of the integrable case, ap’ 9
which we obtain by setting=0. In Sec. Ill we derive the
conditions on the parametesg, 8, andey for homoclinic ~ with
orbits to persist under perturbation in the case when the per-

turbation contains no probe and also map out numerically H=3|PI*+3(K—3[£»?2 (2.6
using the codewuTo [9] the two-dimensional surface in the
ea-gB-gy parameter space on which these homoclinic orbits B. Homoclinic orbits in five dimensions

persist axa, ¢B, andey increase to finite values. The con- .
tinuation method we use tracks the same homoclinic orbit as _In EreV'OT_S _worlg[13_,14l]|z, th2e authr:)_rsh show_ed that tlhere
the parameters increase along a continuous locus in pararﬁz('sg omoclinic orbits in Eqd2.5), which are given explic-
eter space that has two branches. Section IV reviews th'éIy y
comparison with the Lorenz equations and laser experiments. —2JK i0
) ) = secli yKt)e'?,

Section V treats a Smale horseshoe construction that leads to £=2\K 1K)
chaotic dynamics. Section VI treats the effects of injection of _ i0
a low-intensity, slightly detuned probe laser into the original P=—2K sech \/Rt)tanr( VKbye', 2.7
Iatier C?]V'ty' T.hf |rt1#1ect|onb(|)f the %r?rp]e Iasgr mttrkc})dléc.:es WQyhere  is a time-independent phase angle. Soluti¢h3)
Of t(;r pl asesdln 0 the ﬁ)ro tem a:cn gstraése_ls:h € dI(;n'tenSII e homoclinic to the equilibrium af=P=0, K>0. This
8 e asefrf yngmlca sysl_emt “t)r:n di 0. eta hl !Onﬁ‘equilibrium corresponds to the absence of any cavity radia-

egrees of freedom complicate the discussion technicallyiny ang material polarizability, with all of the atoms of the

but the basic structure of the parameter space and the feﬁiaterial sample being in the completely inverted sté®e-

tures of the bifurcation_s to a strange attractor are very Sim"ararizability vanishes in this state because there is no charge
to those in the case without the probe.

separation to form an atomic dipole momerithe curve of
completely-inverted-state equilibria&t:P=0, K>0 is con-
Il. THE INTEGRABLE CASE nected to itself by a parametrized family of two-dimensional

A. Integrable limit and conservation laws homoclinic tori, given by the solution@.7) or implicitly by

In the limit ase goes to zero in Eq$1.2), we recover the H-1K?=0, J=0. (2.9
integrable Hamiltonian equations of the classical Jaynes-
Cummings model12]. This integrable limit corresponds to This family of homoclinic tori is shown schematically in Fig.
absence of the probe and neglect of cavity losses and rela®- Each torus describes the locus of states undergone by the
ation in the medium. In this limit, the Maxwell-Bloch equa- system as the material emits light into the cavity and reab-
tions read sorbs it in infinite time. The aim of this paper is to use this
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bolic line of equilibria that is connected to itself by a two-
sheeted homoclinic manifold similar to that shown in Fig. 2.
This manifold is just the collection of all the pairs of sepa-
ratrices that connect the origifi=P=0 to itself on each
constan slice. These manifolds are parametrizedttand

K in the homoclinic solutiong2.7) with =0 and 6=,

- - namely,
E=+2K sectiyKt), P=7F2K sectiVKt)tanh(VKt),
(3.2
or they can be represented implicitly by the equation
S H=1K?, that is,
P P2—KE+Lier=0. (3.3
E

C. Stable and unstable manifolds of surviving equilibria

FIG. 2. Sketch of the homoclinic manifold for the integrable  The line£=P=0 is invariant under the flow of Eq$3.1)
system. EactK level of this is a pinched two-dimensional torus for £>0. Equation(3.1¢ shows that this line consists of two
filled with orbits homoclinic to the equilibrium at£,7K)  orbits that contract exponentially towards the equilibrium at

=(0,0K). E=P=0, K=1. The stability matrix at that equilibrium is
family of homoclinic tori as a framework in which to analyze _ 1 0
the chaotic behavior of Eq$1.2). ga
1 —epf 0
Ill. THE CASE WITH NO PROBE 0 0 —gy

A. An attracting family of real subsystems and its eigenvalues are

Equations(1.1), which describe the ring-laser cavity in

the absence of the probe laser, possess a circular symmetry. g(a+B) g(a—p)\2 12

In particular, they are invariant under the transformation X;,=-— F ( +1| , Nz=-—gv.
(E,P)—(Ee'?, Pe'?) for any reals. By writing £e'¢ andPe'® ' 2 2 3
with real £ and P instead of the usual complekand P, we 34

find thatd¢/dt= 0. Therefore, Eqq1.2) with =0 contain a

: i Thus this equilibrium is a saddle fefe8<1 and a sink for
continuous family of real subsystems

g?a>1. The corresponding eigenvectors are

5=P—8a€, (3.1 e(f—a) e(a—pB)\2 172
+1
. _ 2 2
P=E(K—1£2)— s P, (3.1 o= 1 !
0
K=—eaf2—ey(K—1£2-1), (3.19
1
which are parametrized by the phage In Egs. (3.1) the 2 112
inversionD has been eliminated in favor of the enerfy e,= e(a=p) (Sm A) +1 (3.5
given by Eg.(2.4). This continuous family of real sub- 2 2 ’
systems is precisely the subspace of the compgleR-K 0
phase space in which=0. Equationg1.1) imply
. 0
J=—¢e(a+B)J. es=| 0.
Hence theJ=0 subspace is attracting and is therefore the 1

only submanifold of importance in the long-time behavior of . .
the systenj15]. If ¢ is close enough to 0, part of the skeleton provided by

the unperturbed homoclinic manifolds can be proven to per-
sist in the&-P-K phase space. Namely, any line segment
E=P=0, K;<K=K, with 0<K;<1<K, possesses two-

When =0, the £&-P dynamics is governed by a param- dimensional stable and unstable manifolds, as shown in Fig.
etrized family of ideal Duffing oscillators. In the fufl-P-K 3. As £—0, these two manifolds collapse smoothly onto
phase space, the poinfs=P=0 with K>0 form a hyper- pieces of the two homoclinic manifolds.

B. The ideal limit
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s the two branches of the unstable manifold of the equilibrium
Q—W point (£,P,K)=(0,0,1 return to this point and form a sym-

@ metric pair of homoclinic loops.

E. Tracking homoclinic orbits for e=0(1)

: e While the Melnikov function shows where the homoclinic

Wu : R orbits survive forO(e) relaxation rates, we are interested in

\Q_/ T where (if anywherg these homoclinic orbits survive for

: JUPEEEEEE PO larger,O(1), relaxation rates. In order to determine this sur-

i REE N vival, we use the software packageTo [9] to continue the

/ K homoclinic orbits in the parameter space fr@(s) param-
\// eter values to higher values. The homoclinic orbits are ap-

proximated by large periodof order 16) orbits. Periodic

\ orbits are found through a Hopf bifurcation of the equilib-
E=P=0 rium points at

FIG. 3. Geometry of the perturbed stab/Y) and unstable
(W) manifolds of the invariant curvé€=P=0 with K>0. The
stable manifoldW® is also the stable manifold of the saddle at

12
i(% (1—82aﬂ)) ,*reJay(l—e2apB),

(&PK)=

(€,P,K)=(0,0,1). The intersection of the two-dimensional stable xl+ 2 . E 3.9
manifold W® with the one-dimensional unstable manifold of the 2a e\ ap 2 By|| @.
point (£,P,K)=(0,0,1 gives orbits homoclinic to this point.

D. Homoclinic orbits for small & The Hopf bifurcation occurs along the locus of parameter

Only one pair of homoclinic orbits may survive under Values given by
perturbation of the whole unperturbed manifold, namely, a
pair of orbits homoclinic to the equilibrium af&,P,K)
=(0,0,D). Its survival is determined by the Melnikov method, (ea)ea+3ef+ey]tef+ey—ea=0. (3.10
which is a standard method reviewed, for instance|8h
This method shows that the signed distance between the un-
stable and stable manifolds of the equilibrium (@0, The periodic orbits that emanate from these Hopf bifurca-

along the normal to the unperturbed homoclinic manifold  tions are continuedin &) to higher period orbits until the
period is large enough to approximate the homoclinic orbit.

These high period orbits are now continued in taeeB-¢y

parameter space by continuingdn-¢3 space for fixed val-

ues ofey. The starting point for each fixegly slice is taken

for small ea and ¢8 such that the parameters satisfy the

Melnikov function’s zeros requiremeii8.7). The continua-

tion of approximate homoclinic orbits in the parameter space
o is shown as dotted lines in Fig. 4.

M(a,BJ’):J’ (n,g)dt (3.9 Figure 4 shows the locus of parameter values where ho-
’°° moclinic orbits exist(dotted line$ and the Hopf bifurcation

locus(dashed linesin the ea-¢B plane for various values of

n=V(H—3K?)=(—KE&+3E%,P,— 3£

is proportional toeM (a,8,7) + O(&?), with a positive pro-
portionality factor. Here

is the Melnikov function and &y. The orbits exist as predicted by the Melnikov method
whene is small in(3.8). This corresponds to the nearly linear
g=(— a&,— BP,— af— y(K—1£-1)) portion of the curve near the origin for each of the dotted

curves in Fig. 4. The numerical technique of tracking the
: , o : homoclinic orbits ag increases by usinguTto ensures that
e i o s oo SAMe omOcinc s ht et a smath h over
orbits (3.2) with K=1. Explicitly, the Melnikov function ne_arly linear branch of the dotted curves in Fig. 4 continue to
P oui ‘0 be ' ’ exist at Iargers_ as we move arqund the dotted curves to the
upper branch in each figure. Figure 4 shows that increasing
ey decreases the extent of the curve in the parameter space
M(a,B,y)=2(3a—B—27) (3.7  on which the homoclinic orbits exist. Increasiag also de-
creases the extent of the dashed curve inslee S8 plane in
and so when Fig. 4 on which the Hopf bifurcation occurs and thus of the
region in which the spiral-sink equilibrium points become
spiral-source equilibrium points. For small valueseahere
3a—B—2y=0, (3.8 remains a gap of lengtBeB+ e y+0(e®) between the
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FIG. 4. The dotted line represents the locus of points inctlae 3 plane where there exist orbits homoclinic to the completely inverted
state(£,P,K)=(0,0,1) of the three-dimensional model at fixed valueseof (a) £y=0.01, (b) ey=0.02,(c) £y=0.05,(d) ey=0.1, and(e)
£y=0.226. The dashed line represents the corresponding curve of Hopf bifurcations given by f@mla

curves defined by Eq$3.8) and (3.10 for the existence of observed outside the dashed curve. However, inside the
homoclinic orbits and the onset of the Hopf bifurcation, re-dashed curve, in the region where these equilibrium points
spectively. are unstable, complex dynamitsuch as chagsloes occur.

Outside the dashed curve in Fig. 4, the trajectories tend tWe will see in the next section that this is the parameter
spiral-sink equilibrium points, so complex dynamics is notregion in which the Lorenz attractor occurs.
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0.6 — ; . B. Laser experiments and the Lorenz attractor
0.4 Laser experiments by Arecci#,17] and by Weiss and
' co-workers[5,18—23 based on approximations correspond-
ing to systen(3.1) have verified the Lorenz attractor descrip-
0.2r tion of single-mode laser dynamics in some parameter re-
gimes. Specifically, Arecch[4] shows that systen3.1)
a 0 applies in single-mode laser experiments and that the Lorenz
attractor is observable when the parameters are all of the
-0.2¢ same order of magnitude, as we assume. The perturbation
parametek in system(3.1) corresponds to the inverse of the
0.4t coupling constang of the laser equations in Arecchi's math-
ematical mode[4]. Hence the integrable limit we consider
06 ‘ , ) as e—0 is also the strong-coupling limit, in whicg— o.
b’ -0.5 0 0.5 1 Weiss and co-worker$5,18—23 have experimentally ob-

E served Lorenz attractor behavior in a single-mode laser near
the parameter ratios/3=4.5 andv/B=0.25. For each value
FIG. 5. The strange attractor for the three-dimensional modebf &y these two ratios will define a unique point in the-¢8
equations afea,s8,6y)=(0.5,0.1,0.05 is the usual Lorenz attrac- plane. In the case afy=0.02, we havesa=0.36 andes
tor. Its position in the parameter space is the point marked with ar=0.08, which, not unexpectedly, lies in the region enclosed
X in Fig. 4(c). by the dashed curve in Fig(l).

IV. REVIEW OF THE CONNECTION WITH THE LORENZ
EQUATIONS AND LASER EXPERIMENTS C. High-Rayleigh-number limit of the Lorenz equations
A. The Haken transformation As we see in(4.2), the e—0 limit of Egs. (3.1) corre-

For parameter values near the loci shown as dotted linesponds to the limit of the Lorenz equations as the Rayleigh
in Fig. 4, but in the parameter region where the homoclinichumberp goes to infinity. This limit has been studied from
orbits no longer survive, chaotic dynamics may ensue and @arious viewpoints if11,15,24—28 In particular, Robbins
strange attractor may form. Computer simplations of the{24], Fowler and McGuinesg25], Fowler[26], and Sparrow
Maxwell-Bloch equations(3.1) show the existence of a [11] analyze periodic orbits in the high-Rayleigh-number
strange attractor near the parameter valdes.,sB.y)  |imit using the method of averaging and conjecture the ex-
=(0.5,0.1,0.05 A projection of this strange afractor iS jstence of a pair of homoclinic orbits. Pokrovski5,27
shown ”m IFI% 5. Haken/16] ha? ShOW.” th?]t the real shows the existence of these homoclinic, as well as the ex-
(I\a/latjxa\f:iinf och system(3.1) transforms into the Lorenz istence of adjacent periodic orbits, also by using the method

q of averaging and Poincareturn map techniques. Li and
dX Zhang[ 28] find formula(3.8) for the existence of homoclinic
qr - —oX+toaY, (4138 orbits in this limit by the Melnikov method and also address

perturbations of periodic orbits of the infinite-Rayleigh-
number case by using the subharmonic Melnikov method.

d—Y= —XZ+pX-Y, (4.1  The results in Fig. 4 for the Maxwell-Bloch syste(8.1)
dr when translated to the Lorenz systéil) by the change of
dz variables in(4.2) show that the homoclinic orbits that exist in
T =XY-DbZ (4.190 the infinite-Rayleigh-number limit also persist fo(1) val-
dr ues ofp.
under the change of variables
o ca e2a? D. Shooting approaches to the homoclinic orbits
t-—r1, E->—X, P— Y,
e o Computations by Kaplan and York&Q] have shown the
2 existence of a homoclinic orbit in the Lorenz equations at the
p2< (p—2), (4.2  Particular set of parameter valueb, ¢,p) = (5,10,13.926),
(g which is equivalent toea,s8,sy)=(0.847,0.085,0.226for
the Maxwell-Bloch equations. This value lies on the upper
with new parameterb, o, p defined by branch of the locus of parameter values where homoclinic
orbits exist in Fig. 4e). A similar result on the existence of
_a b= Y 1 this homoclinic orbit has been shown by Sparrid].
T8 VT P ape? Recently, Hastings and Troj29,30 and Hassard and

Zhang[31] have given rigorous proofs of the existence of
Hence the attractor that we see in Fig. 5 is in fact the wellthese homoclinic orbits by shooting methods using precise
known Lorenz attractor, viewed i&P-D space. computer arithmetic. These homoclinic orbits are also found
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on the upper branch of the parameter curves in Fig. 4. We
show that the upper and lower branches of the locus of pa-
rameter values at which homoclinic orbits exist are continu-
ously connected to each other. Therefore, the homoclinic or-
bits that have been previously found by shooting methods in
the Lorenz system are in fact the same homoclinic orbits that
we have found to exist analytically in the integrable limit of
the Maxwell-Bloch equations.

V. CHAOTIC DYNAMICS
A. Poincare return map

In order to explain the manifestation of the chaotic dy-
namics, we follow[8,10,37 in constructing a Poincameturn
map in the vicinity of the pair of homoclinic loops and show-

P(IT) P(IT")

r

- N v

-
-

ing that as th? loops _break, this r_nap_becomes a Smale horse- FIG. 6. Cross sections to the unperturbed homoclinic orbits used
shoe map. Since this construction is by now standard, W&, the construction of the Poincareap.

only describe its properties that pertain specifically to our
problem. In particular, the construction contains several hy-
potheses that must be checked on a case-by-case basis. In
problem, they can in fact be checked analytically and w
briefly describe how this can be done.

B. Local coordinates

Cltrearly, points o1 follow the homoclinic loop withy >0
eg\Hd points oI~ follow the homoclinic loop withv <O0.

D. Construction of the return map

Linear local analysis near the origin shows that the im-

. ) ] o ages of the surfacdd™ andII~ on the sides of the box are

We examine the dynam]c:s by f!rst f"f'@a B, a_ndSY wedge shaped and the flow near the two homoclinic loops
such that a pair of homoclinic orbits exists. Equati¢8s)  returns the two wedges to the plaze A in one of the two
are transformed from thé‘P'K coordinates intOJ'U'Z CO- Ways depicted in F|g 7. 1n particu|ar, the |maBeHi) can

ordinates in the eigendirection3.5) so that the point intersect eithefl® or I1* (but not both, which depends on

(£,P,K)=(0,0,)) is translated to the origin and the coordinate
axes become aligned with the eigenvect(@$) of the lin-
earization of Eqs(3.1) about the origin. The unstable mani-
fold of the origin is tangent to the axis and the stable
manifold is tangent to thei-z plane. The two homoclinic
loops return to the origin tangent to thexis. Moreover, the
symmetry of the system under the transformatienuv(z)
—(—u,—v,2z) (which is inherited from thet-P-K coordi-
nateg forces both homoclinic loops to return to the origin
with the same sign af. We can choose theaxis so that this
coordinate is positive. Recalling the eigenvalues of the lin-
earized systen(B.4), we see thak;,A\3<0 and\,>0 and also
that [\ {|>[\,|. We further assume thdk,|>|\5| so that we
have a strongly contracting direction alongand a strongly
expanding direction along. This assumption is satisfied if
and only if ?y(a+ B+7)<1, which occurs for small dissi-
pation (e<1).

C. Transverse cross sections to the flow in local coordinates

We can now show that syste(8.1) exhibits chaotic dy-
namics. We begin by constructing a square box of sixe 2
centered at the origin, shown in Fig. 6. The pair of ho-
moclinic orbits exits this box through the sideswat £ A
and return to it through the top at A, which we denote by
I1. The stable manifold of the origin intersects the top of the
box IT along a curvev=V(u). For smallA, this curve is
O(A?) close to the liney=0. If we denote byiI* andII~
the portions of the top of the bokl with v>V(u) and

P(IT)

P(IT")

P(IT)

P(IT")

(b) IT H+

FIG. 7. Geometry of the imageB(I1*) of the surfacedI™

v<V(u), respectively, then we can define the Poinaag®  under the Poincarmap (a) for homoclinic orbits with no twist and
P as the map that takes the points B and II- and  (b) for homoclinic orbits with a 180° twist. The wedge shape of the
evolves them in time until they return to the plare A. images is found from linear analysis of E¢8.1) near the origin.
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present inside the region in thev-eB-¢y space enclosed by
the two-dimensional locus of parameter values where ho-
moclinic loops exist.

E. Observable chaotic dynamics

The chaotic dynamics associated with these homoclinic
orbits is robust with respect to small parameter deviations so
chaos exists in a parameter region somewhere inside of the
dotted curve in Fig. 4. However, the spiral-sink equilibrium
points(3.9) are stable for the parameter values at which these
homoclinic orbits exist. Therefore, most trajectories will not
notice the homoclinic chaos since they will tend to one of
these stable equilibrium points. When parameter values are
a) u further changed, the equilibrium points may become unstable

and the long-term dynamics would then either lie on a
strange attractor or follow a stable limit cydii¢ one exists.
Recall that these equilibria are unstable in the parameter re-
gions enclosed by the dashed lines in Fig. 4. For instance, the
parameter values for the chaotic trajectory shown in Fig. 5
do lie within one of these regions, as shown Byin Fig.
4(c). The chaotic dynamics is manifested as random switch-
ing of phase points between orbits that follow the surviving
P( H+) homoclinic orbits.
Figure 9 shows a sequence of two-dimensiafi& pro-
jections of phase trajectories for the Maxwell-Bloch system
) 11 It (3.1) as the parametesa increases at constaap and e,
along a vertical line in thea-¢B plane. The initial phase
~_point is the same in each case. Far small and below the

FIG. 8. Geometry of the pertulrbed system near t.he homocliniqyotted line in Fig. 4a), Fig. 9@ shows that the solution
orbits a_tsa=(ea)crit+: (a) the breaking oj the homoclinic loops and approaches a spiral-sink equilibrium. Asy increases to
(b) the imagesP(11~) of the surfacedI™. match the homoclinic orbit conditiof8.8), the solution be-

havior shows little change; see Figh® At higher values of
whether the stable manifold of the origin has a 180° twiste« the trajectory approaches a limit cycle; see Fig,) 9ig-
along the homoclinic loops as they travel from the sides ofure 9d) shows that this limit cycle persists a& increases
the box to its top. In our case, whesn<1, the geometry of up to the Hopf bifurcation value of conditio(8.10, the
the nearby unperturbed system shows that no such twist @ashed curve in Fig.(4). Finally, assa increases further, the
possible, so that the imad®(I1*) only intersectdI*. This  solution tends to the Lorenz attractor wh@s@ projection is
is in contrast with the upper branch of the-s3-sy surface  shown in Fig. 9). We expect that this bifurcation sequence
of homoclinic orbits, where Kaplan and Yorkd0] have would be observable in single-mode laser experiments, al-
numerically observed the 180° twist. though as far as we know it has not yet been seen.

We now fix smalle8 and ey and increasesa through The small separation of parameters in the region of this
(ea)it, for which the pair of homoclinic orbits exists, given bifurcation sequence suggests that the breakup of homoclinic
by the zeros of(3.7). Simultaneously, the two homoclinic orbits plays a significant role in the formation of the attractor
loops will break in the way depicted in Fig.(a, which itself. This has been conjectured bef¢®,11] in different
implies that the images of the surfadd$ andII~ move in  parameter regime&he upper branch in Fig.)J4However, it
the way depicted in Fig.(®). This fact is shown in the fol- seems plausible that near the lower branch the homoclinic
lowing way. Recall that the signed distance between the onedrbit breakup would be effective, since the separation in pa-
dimensional unstable manifold and the two-dimensionarameters between regular and chaotic behavior is smaller.
stable manifold of the poin€,?,K)=(0,0,J) in the direction
of the outward pointing normal on the unperturbed ho- VI. THE CASE WITH THE PROBE
moclinic manifold is proportional tasM (e, 8,7y)+O(&?)
with a positive proportionality factor. Now fasa>(ea)yy,
we haveM(a,B,7)=%(3a—B—2y)>0 so that the un- When the dynamics of the Maxwell-Bloch equations with
stable manifold is outside the stable manifold. Similarly, thea weak probe is considered, we return to the full five-
unstable manifold is inside the stable manifold in the caselimensional equation&l.2). The addition of the probe laser
when sa<(sa)y;. As a consequence, fara>(esa); the  breaks the circular symmetry that was present in the case
imagesP(I1*) penetrate intdl*, while for sa<(ga)y; they  with no probe. Again, we eliminate the inversighin favor
only intersectiI™. As shown in[10,32 and reviewed iff8],  of the energyK in Egs.(1.2) to yield the five-dimensional
P thus becomes a Smale horseshoe mapester(ca)q; - system(recalling that the electric field enveloggand the
This confirms the expectations that the chaotic dynamics ipolarizability envelop&P are complex

P(IT7)

A. Five-dimensional dynamics
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FIG. 9. Bifurcation sequence asy increases for fixed8=0.04 andey=0.01 in the three-dimensional model. The trajectories are
two-dimensional projections of the true trajectorié®: ea=0.01, (b) ea=0.02,(c) ea=0.05,(d) ea=0.1, and(e) ea=0.2.
E=P—¢caé, (6.19  family of two-dimensional homoclinic tori given by2.7).
We recall that these homoclinic tori are represented implic-
itly by Egs. (2.9).

P=(E+e el (K—1|€2)— e8P, (6.1
B. Rotating coordinate frame
K=—1e8(e“'P* +e 'P)— gal€? To study the perturbed situation, we rewrite the Maxwell-
Cey(K—1lg?—1). 6.10 Bloch equations in an autonomous form by transforming the

system (6.1) to a rotating frame, lettingk=e™'" and
y=Pe '“! to yield
This system is a nonautonomous perturbation of the inte-

grable casd2.5).

Whene=0, the&-P dynamics is governed by a family of _
complex Duffing oscillator$2.5) parametrized by<. In the X2= —wX; Ty~ eaxs, (6.2b
full &-P-K phase space, the curve of completely inverted
state equilibria af=P=0, K>0 is connected to itself by a Vi=oY,+ (X +e8)(K—3|x|?)—eBy;, (6.20

5(1=wX2+y1—8aX1, (GZa
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Vo= —wYy;+X(K—3|x|?)—eBy,, (6.20 are the two normals to the unperturbed homoclinic manifold
(2.8) and the vector

K=—edy,—ea|x|?—ey(K—3|x|2-1), (6.28

wherex,; andx, are the real and imaginary parts xf re- 9= (= axy, — %y, 8(K—=3|X|%) = By1,~ BY2. — Oy, —alx|?
spectively, and similarly foy. We apply the same transfor-
mation to the homoclinic solution of the unperturbed prob-
lem. In this rotating frame, the homoclinic solutions for the
unperturbed problem are represented as

- y(K=3[x|>°~1))

is the O(e) part of the vector field of the equations in the
rotating frame(6.2). The Melnikov vector is evaluated along

_ i(6-wt) e .
x=2K sectiKt)e! , the unperturbed homoclinic orbité.3. We evaluate the
(6.3 Melnikov vector atk = 1, which we know to b@®(&?) close
y=—2K secliJKt)tanr(Kt)e'(?—«b, to theK coordinate of the equilibrium point. The Melnikov

vector is explicitly given by

C. A perturbed spiral-saddle equilibrium and its stable

and unstable manifolds

8
While the curve€=P=0 is no longer invariant under the Mi(@.B,7.0,0,0)= 3 (3a=p=27)

perturbation, there is a nearby curve that is invariantsfor

close enough to zero and, furthermore, along this invariant .

curve the orbits contract towards an equilibrium point that is + = méw(w?— 2)3ec|{ —) sin( 6),
0O(&?) close to the pointX,y,K)=(0,0,1). In other words, 3 2

the skeleton provided by the homoclinic manifolds of the (6.53
unperturbed problem still persists under small perturbation,

but in a slightly altered form. The invariant curve will still

possess stable and unstable manifolds that will collapseM,(a,B,y,8,w,0)=—27w? sin(e)secVé
smoothly onto part of the unperturbed homoclinic manifold

ase—0. Orbits for which these perturbed manifolds intersect

will be the surviving homoclinic orbits under the perturba- The two components of the Melnikov vector simultaneously
tion. have simple zeros at the values

77(0)
> (6.5b

D.H lini i isting f I
omoclinic orbits persisting for small e 3a—B-2y=0, 0=0 or m. 6.6

The surviving homoclinic orbits are again computed by
::r;empl)\gﬁg]rl]l:?\\/llelmE(t)r\]/o\(/jéctlgﬂ,r\:egr%rér \tlg)ecorr]r?;nteufﬁe Sis:;"r?(; Hence homoclinic orbits will exist(for small &) when
X - Ha,B,y) satisfy the relationshif6.6).
between the stable and unstable manifolds of the splraqla'gy) fy k6.6
saddle nearx,y,K)=(0,0,1), rather than the scalar Melni-
kov function used in the case with no probe. The correspond-  1.20

ing distance between these stable and unstable manifolds
will be zero only when both components of the Melnikov
vector have simultaneous simple zeros. °°°3¢°oo°°°°°°°o
. o 0, R
The two_components of the Melnikov vector 100 b el oy
M=(M,,M,)" are given by 00, ",
g i °°°°°°° °o°°°
o0 = °°°o° °°o N
iwByow0= | (uga s o o,
— 00 o - 0000%0° ~"
Mz(a,ﬂ,'y,c‘)‘,w,ﬁ)ZI (n,,g)dt, (6.4b
0.60 T T T T
where 0.0 0.5 1.0 15 20 25

N =V (H—1K?)=(—Kx,+ 5+ x5, — Kxo+ 333+ 3x2

FIG. 10. Bifurcation structure for finding the approximate ho-
moclinic orbit in the five-dimensional model with(a,8,7)
=(0.1,0.1,0.1 The equilibrium at(£,P,K)=(0,0,) undergoes a
Hopf bifurcation neae=2.1. The periodic orbits that emanate from
N,=V(J)=(—VY5,Y1,X2,—X1,0) this bifurcation approach the homoclinic orbit as-0.

+X2,Y1,Y2, — 3/X|9),
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FIG. 11. Locus of points in thea-¢83 plane where there exist orbits homoclinic to the completely inverted stétg/3K)=(0,0,1) of
the five-dimensional model at the pumping amplitud®=0.1 and fixed values ofy: (a) £y=0.01, (b) £y=0.02, (c) £y=0.05, and(d)
ey=0.1.

E. Comparison with probeless case trace periodic orbits that emanate from a Hopf bifurcation of

The circular symmetry of equatiorid.1) with no probe t.hisf equilib_rium point. The bifurcation d@ag_ram fqr this equi-
causes an entire circle of homoclinic orbits to exist undefiPrium point is shown in Fig. 10. Periodic orbits that are
perturbation(when the Melnikov function has transverse ze-created from the Hopf blfurca}tlpn Sp,l't into two branches:
ro9): however, in Eqs(1.2) with nonzeros, this symmetry  ©N€ that becomes_ the hom_ocllnlc orbitaas0 and one that
has been broken and only one homoclinic orbit from the®2ds toward orbits of periodnZw as e—0. The orbits of
entire circle will persist. In fact, since the Melnikov function Period 2m/w correspond to the equilibrium points in the
has transverse zeros for bot=0 and 7, two homoclinic ~ &-P-D frame (periodic orbits in the rotating framet
orbits will persist, one for each of these two values. How-
ever, the Melnikov function only gives a@(e) result, so
these two homoclinic orbits may exist at parameter values

hich exist in the limit as—0
that areO(&?) a . w ) hey . . .
(e7) away from each other The approximate homoclinic orbits are continued in the

esa-gB-gy parameter space for fixedS and w. The starting
point for each fixedey slice is taken for smalka and e

As in the case with no probe, we are interested in thesuch that the linear relationshi.6) is satisfied. The con-
survival, at larger relaxation rates, of the homoclinic orbitstinuation of these orbits iaa-¢3 space for various values of
that we computed for smalt by the Melnikov method. ey is shown in Fig. 11. Wheré is relatively small(same
Again we use the software packageTo [9] to continue order of magnitude asy) the homoclinic orbits exist at
approximate homoclinic orbits in the parameter space fronmearly the same locations efx-¢8-¢y parameter space as
O(e) relaxation rates to higher values. However, in the casavhen there was no probe; see Figs(adland 12b). As the
with the probe(6#0), the only equilibrium point is the one probe strength is increased, the homoclinic orbits only exist
that is near X,y,K)=(0,0,1) for smalle, so we can only for smallea andeB parameter values. The combination of a

IX|2=2(w?+K), y=iwX,

F. Tracking homoclinic orbits e=0(1)
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FIG. 12. Locus of points in thea-¢8 plane where there exist orbits homoclinic to the completely inverted state of the five-dimensional
model at various values of the pumping amplitud®and fixed values ofy: (a) £6=0.02,ey=0.01;(b) £6=0.02,ey=0.05;(c) £6=0.2,
ey=0.01; and(d) £6=0.2, £y=0.05.

large probe laser and large relaxation causes the homoclinlandom switching of phase points between orbits that follow
orbits to no longer exist; see Figs.(&Rand 12d). the two surviving homoclinic orbits. The construction of the

As in the case with no probe, the homoclinic orbits existSmale horseshoe for this system proceeds in a manner simi-
near the locations in parameter space that the Melnikov fundar to the analogous construction in the three-dimensional
tion predicted forO(e) relaxation rates, as shown by the case, but its details are somewhat different due to the spiral-
linear part of the curves in Figs. 11 and 12. As the parametesaddle nature of the underlying equilibrium point and its ho-
values are increased, the two curves that were tangent to

each other whes was small can now be distinguished from 0.6

one another; one corresponds to tke0 branch and the

other corresponds to the= branch. As the parameter val- 0.4/

ues are further increased, these two branches will become 02

tangent to each other once again. Equati@® will exhibit = ’

chaotic dynamics for parameter values that lie inside of these g o

curves. However, as was discussed in the case where there is o2

no probe, the chaos will be unobservable for parameter val- '

ues very close to the parameter values where homoclinic 0.4

orbits occur. Wher d is sufficiently small, strange attractors

can still be observed for values of the parameterss3, and 05 05 0 05 1

ey near those obtained in the case with no probe. A sample Re(E)

trajectory in the five-dimensional attractor is shown in Fig. FIG. 13. Two-dimensional projection of a trajectory for the five-
13. dimensional model equations in the chaotic regiofeateB,e7y,6)

In this case the chaotic dynamics manifests itself in much=(0.5,0.1,0.05,0)1 The strange attractor is a perturbation of the
the same way as for the case with no probe, that is, as eomplex Lorenz attractor.
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FIG. 14. Bifurcation sequence ag increases for fixed3=0.04,ey=0.01, ands6=0.1 in the five-dimensional model. The trajectories
are two-dimensional projections of the true trajectori@s:e@=0.01, (b) e«=0.02,(c) ea=0.05,(d) ea=0.1, and(e) ea=0.2.

moclinic orbits. These five-dimensional homoclinic orbits given initial condition. The chaotic dynamics becomes ob-
are Slnikov orbits. The Smale horseshoe construction neaservable when these equilibrium points become unstable, and
these orbits is given ii33-34. a strange attractor is formed. The connection between the
Figure 14 shows a sequence of two-dimensional projecMaxwell-Bloch equations and the singular limit of the Lo-
tions of the five-dimensional phase trajectories for therenz equations for large Rayleigh number shows that this
Maxwell-Bloch systent6.1) as the parametese increases at  attractor is the usual Lorenz attractor. When the effects of the
constants, ¢y, andeé along a vertical line in thea-e8  probe laser are also included in the model, the homoclinic
plane. The initial phase point is the same in each case. Thg s exist in the same region of the parameter space for
b|furcat_|on sequence is similar to the three-dimensional casg,4 dissipation. However, as the dissipation is increased,
shown in Fig. 9. the location of homoclinic orbitgin the parameter space
differs greatly from the case with no probe laser. The break-
VII. CONCLUSION ing of these homoclinic orbits for nearby parameter values

We have shown that the Maxwell-Bloch equations with@dain causes chaotic dynamics, eventually leading to a
no probe and no dissipation terms possess orbits that afdrange attractor.
homoclinic to the completely inverted state. With no probe  The chaotic dynamics manifests itself as a random switch-
laser, these homoclinic orbits survive perturbation for certaiing of orbits that are very close to each of the surviving
values of dissipation parameters, which were obtainediomoclinic orbits. This phenomenon may be observed as a
through a combination of the Melnikov technique and nu-random “flickering” of the laser light. The homoclinic orbits
merical continuation. When these orbits break for nearby pathat have been studied in this paper may be observed in
rameter values, chaos will ensue; however, there still exigphysical situations by using a nonlinear control technique
stable equilibrium points that attract the trajectories from acombined with the recent advances in controlling chaotic
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