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Classical and quantum chaos in a quantum dot in time-periodic magnetic fields
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We investigate the classical and quantum dynamics of an electron confined to a circular quantum dot in the
presence of homogeneoBg.+ B,. magnetic fields. The classical motion shows a transition to chaotic behav-
ior depending on the ratie=B,./B_ of field magnitudes and the cyclotron frequerigyin units of the drive
frequency. We determine a phase boundary between regular and chaotic classical behaviar us the
plane. In the quantum regime we evaluate the quasienergy spectrum of the time-evolution operator. We show
that the nearest-neighbor quasienergy eigenvalues show a transition from level clustering to level repulsion as
one moves from the regular to chaotic regime in thgd) plane. TheA; statistic confirms this transition. In
the chaotic regime, the eigenfunction statistics coincides with the Porter-Thomas prediction. Finally, we ex-
plicitly establish the phase-space correspondence between the classical and quantum solutions via the Husimi
phase-space distributions of the model. Possible experimentally feasible conditions to see these effects are
discussed[S1063-651X96)02809-7

PACS numbe(s): 05.45+b, 03.65-w

I. INTRODUCTION combination of analytic and numerical analysis, we obtain a
“phase diagram” in the parameter space of the system,

In this paper we present results of a study of the beha\”0\5vhich separates the quasi-integrable from the chaotic re-

of an electron confined to a disk of finite radius, subjected togions. This phase diagram is shown in Fig. 1. The vertical
spatially uniform, constantBy) plus time-varying Bad  axis is the ratioe=B,/By, of the magnitudes of the fields
perpendicular magnetic fields. This allows us to analyze annq the horizontal axis is the Larmor frequency normalized
old problem that exhibits some very unexpected behaviogg the ac drive frequenci.= w./wo. This phase diagram is
because of the time-dependent field. Without this time-f paramount importance in making the connection between
varying component of the field, the electronic states form thghe classical and quantum solutions. The values of the dc
oscillatorlike Landau level$1]. With the addition of con- field B4 and drive frequencys, depend on the radius of the
finement, this constant field problem was studied in greatjot R, and certain other parameters. However, to give an
detail by Dingle[2]. He obtained perturbative solutions and
subsequently others obtained numerical and e)acsolu-

tions. The solutions depend on the ratio of the cyclotron 10 '

radius p. to the confinement radiuR,. One of the most

important consequences of confinement is the presence of 8T

“skipping orbits,” which play an important role, for ex-

ample, in the quantum Hall effef4]. 6t Chaotic
This problem is of significant interest as a consequence of e

two independent developments over the past few years: one,

the important advances in our knowledge of classical chaos 4T

[5] and, to a lesser extent, its quantum and semiclassical

counterpart 6], and two, the spectacular advances in the 2}

fabrication of very clean mesoscopic quantum devic8s Regular

where a high-mobility two-dimensional electron gas is ) . . .

trapped within a boundary of controlled shape. We attempt 0 0 1 2 3 4 5

to begin to bring the two fields together by asking how this o

model system behaves from the classical dynamical point of

Vlev.v and what its quar'!tum signatures a”?- We predict ranges FIG. 1. Classical phase diagram for the problem, obtained from
of fields f”md frequencies where sqme different effe‘?ts May,e Lyapunov exponent, calculated as explained in Sec. Ill. The
be experimentally observable. In this paper we consider thGeica| axise is the strength of the ac magnetic figg relative to
single-electron case and leave for a future paper the manyge gc fieldB,., while the horizontal axigs, is the Larmor fre-
electron problem. . ~quency associated witBy relative to the “kick” frequencywy.

This paper is organized as follows. In Sec. Il we defineThe shape of the phase boundary is fairly insensitive to the value of
the model with its classical and quantum-mechanical propefihe threshold Lyapunov exponeht chosen to characterize hard
ties, elucidate the important parameters in the problem, anghaos(herex.=1.0). The boundary is well fitted by the relation
describe the general method of solution. In Sec. lll we in-e=C(\.)/@., with C(A.=1.0)~1.0 (see the text for more de-
vestigate the properties of the classical model. Based on tails).
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idea of the magnitudes of the physical parameters involveds (t) is much smaller thai 4. one can study the modifica-

let us pick two representative points on the diagramijon to the solutions associated withy, by standard time-
(@c,€) = (0.1, 0.3 corresponds tay = 20 GHz andBq. =  dependent perturbation theory. As can be seen from the clas-
20 G whenRy=1 um, while o = 800 MHz andBy. =  sjcal phase diagram given in Fig. 1, the boundary between
0.08 G forR,=5 um. Similarly, (&¢,€) = (2.0, 2.0 corre-  regular and chaotic behavior in fact occurs for

sponds towy = 20 GHz andBqc = 800 G forRo=1 um,  ¢=B_/B,>1 and@,>1. We are then led to approximate
while wy = 20 GHz andBy, = 32 G for Rp=5 um. The H4(t) by

details of the these estimates are presented in Sec. V.

We analytically obtain conditions and look at various >
kinds of fixed points of the classical solutions. In Sec. IV we Hi(t) =2 m*| (ew.)? 2 8(t—nTp) | p2. 3
study the spectral statistics of the quantum evolution opera- n=-=

hich shows clear si f the classical transition, ., . . . .. . .
tor, which shows clear signatures of the classica tran5|t|or\INIth this simplification, the Hamiltoniafi) is then approxi-

from quasi-integrability to chaos. We also discuss the e|genmated by the sum of Eq€2) and (3). This choice is also
éﬂotivated by the following factors. First its calculational
ase. The’ function is the paradigm for time-dependent sys-
%r_ns because one can proceed further in the analysis without
fecourse to drastic approximations. Next are the effects of
cg]aos. Since our primary objective is to explore the quantum

classical phase-space periodic orbits. In Sec. V we discuss . . . . .
Iganlfestatlons of classical chaos, we are more interested in

possible experimental scenarios where the predicted effec : i )
may be observable. Finally, in Sec. VI we summarize ou e general issues of chaos rather than specific functional
' ' ' forms. Even for a more “physical” choice of

results and present our conclusions. . .
P f(t) =Acos(t), one can easily show that the resulting func-
tional form of Q?(t) can be approximated sensibly as above.
IIl. MODEL Finally, there are classical considerations. As shown in the

The model of a quantum dot we consider here is that of af\PPendix, starting from the Lorenz force plus Maxwell's
electron confined to a disk of radi®, subject to steadgdc) ~ €duations, one can write the classical equations of motion
and time-periodidac) magnetic fields. Choosing the cylin- €xactlyincluding the self-induced fields, even for the mag-
drical gauge, where the vector potential netic field given by B(t)=Byct+BacToZ - . d(t—nTp).

=N A - . Classically, the associated Lagrangian is linear in the vector
A(p,t)=3B(t)pe,, B(t) being the time-dependent mag- ) o
negc fielij thg guantum-mechanical single-particle Hamil_potent|al. There are regularization problems, however, when

tonian in the coordinate representation is given by using this f_orm n the_ quantum Hamiltonian, since in this
case there is an ill-defined(t) term present. However, the

results. Then we turn to semiclassical correspondence
where we use a phase-space approach to the quantum eig

2 /d2 1d 1 d? modelH=Hy.+H; is well defined.
T W +; % +;2 W + 3 m*Qz(t)p2 In order to more clearly see what the relevant parameters
in the problem are, we go over to dimensionless units, de-
+10(tL,, 0=p=Ry, (1) fined by rescaling all lengths to the disk radRg all masses

by the effective masm*, and all times by the period of the

where m* is the effective mass of the electrqroughly  ac fieldTo. Thus we define
0.06M, in GaAs-Al,Ga; ,As semiconductor quantum

dotg [7], L, is the operator of the conserved angular momen- r=p/Ro, Osr<1 (48)
tum, and()(t)=eB(t)/m*c, e and c being the electronic 5
qharge and the speed of light, respectively. Let the magnetic r=t/Ty= ﬂt, Fe=wlwg, 7= _ 5. (4b)
field be of the form B(t)=Bg.+Baf(t), where 2m m* woR§
f(t)="f(t+Ty) is some periodically time-varying function. _
We can separate the Hamiltoniah=H 4.+ H,(t), where In these units, Eq92) and(3) become
A2 (d2 1.d)| AA%21 H=Hge+H(7) (5a)
- | — - - 1k 2 2 C 1 ’
Hac om* dp2+pdp)+2m* p2+ gm wc(t)P _ _
1 H he d2+1 d +|2ﬁ2+1<5°)2 2+I%?5c
w = — — | —= _— _ — — -
+1c ) o= 2 \drr rar/ T2z T2l 2) " 2
2 (5b)
andH(t) = 3m*[2B4B.df (1) + B2f2(t)1p?. HereH. is the »
standard static Hamiltonian for a charge in a homogeneous Hyn=21n22> &r—n), (50)
constant perpendicular magnetic field, which includes the n=—o

para- and diamagnetic contributions, with.=eBy./m*c.

With the additional dropping of a term of the form where
L,B,f (1), which can trivially be removed by a unitary trans- -\
formation, H,(t) gives the time-dependent contribution to :<f“’c) (5d)
H. Note thatH(t)=H,(t+T,). In the limit in which K
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and the corresponding solutions to the time-independent parbne can show, after a straightforward calculation, that the
along with the boundary and normalization conditions, arematrix elements ofH 4 are given by
given by

~ %2
_~ ~ ~ el (Hgdmn=1 = (nm)2+nw (12— )%2Si(2n7)
Hac¥ (1, ) =Enithni(1) —==, (63 "oz )
N2 )
1|1 ~ B
_ LG~ el 212 |37 2nz2) Tl | o
V(rg)=2 X dul) =, (6b)
n=1I|=-o 2T - _
+[ E(IZ— DA (m+n)Si[(m+n) 7]
1
7 = = ~2 =
Yni(r=1)=0, fo Yo(r)rdr=1. (60 —(m=mSi[(m-n)x]}
As pointed out by Dingld?2], the physically acceptable so- 1w, 2(—1)m+n 8mn
lutions to Egs.(6) are the Whittaker functions of the first + 2\ 2 w2 (m?—n?)?2 (1= Smn),
kind [8]
(11)
(1) = /#MX | i2(2mFr?), (7)  where Sik) is the Sine integral. One can similarly compute
nif n

matrix elements of other needed operators.

Having worked out a suitable set of basis functions, we
now proceed to tackle the full time-dependent problem. The
Schralinger equation for the time evolution operator is

where the frustration parametére=®/® is the ratio of the
flux threading the dot to the quantum of fldx,=h/2e. The
guantitiesy,, are related to the eigenvalues via

~d -~ —~
Xni=2(Eq—1) ) i ——U(7,70) =[Hgct Ha(7)JU(7,70). (12

and are determined precisely by the requirement that the o ~ ~
wave function vanishes at the boundafiEq. (6]  Since we have a peflodlc Systqﬁ(f+ l)=H(7:) from the
M, . ii2(F)=0. In the limit of no confinemenRy— ¢, we Flogquet theoreni9], it is sufficient to determine the one-

recover the usual Laguerre polynomial solutions for theperIOd time evolution operatds (7o+1,7o) from
an,s-

—~d -~ o~
The frustration parametd¥ can also be written as if——U(7)=[Ha+Va(n)]U(r), 0<r<1 (133
1 [Ry)? hc |12
F=-—|—] wherely= , 9 ~ ~ ~ 1
477( Iy H eBdC) © Vi(1)=Vé(r—1) where V= 5nr?, (13b

that is, it is proportional to the square of the ratio of the ] ]
confinement radius to the magnetic length. WherF2<1, ~ Where the parametey has been defined previously. All the
the problem is equivalent to that of a nearly free electroninformation about the dynamics of the system is contained

bound by a very weak magnetic field, and so is amenable t¥ithin  this  Floquet operator  since ®(r,¢,7+1)
a perturbative treatment. In the opposite limit, the boundary=Y®(r.¢,7), where® is the total wave function. Because
can essentially be neglected and we recover the results 8f the periodics-kicked dynamics, we can immediately in-
Dingle mentioned previously. It is in the intermediate re-tegrate Eq(13a to get
gime, when the two lengths are comparable, that we expect
the effects of confinement to be nontrivial, especially in the B I~ i~
presence of strong time-dependent fields. U,(l,O)—ex;{ - %V exp( - %HdC) : (14)
In principle, we are able to cover the entire range of pa-

rameter values within the same framework by means of &ne sypscript has been attached t to emphasize that the
numerical evaluation of the Whittaker functions. However, o olution operator has been restricted to that sigtelue.
the Whittaker functions are not very well suited to large- |, ther words, states with different valueslaévolve inde-
scale computations because of the time required to evaluaig,\jently, an immediate consequence of the conservation of
each individual function. We choose instead to perform mos ngular momentum in this system. The rightmost exponen-
of our calculations in a Fourier sine basis, wh|ch IS nuMerivia " operator in Eq(14) evolves the wave function from just
cally much faster, and use the Whittaker basis as a check Qfyer the “kick” at 7=0 to just before the kick at one period
our results. Choosing th@rthonormalizedl basis functions . = . i

under the influence oH4., while the operator to its left

as propagates it from just before to just after the kick at a pe-
5 ol 6 riod.
Xni= \ﬁsin(mﬂ)_, (10) SinceU is a unitary operator, the spectrum of its eigen-
r N2 values can be represented as
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Uidn=e*n,,. (15) where p, is the radial momentum and is the conserved

angular momentum. To make quantitative correspondences

The set of eigenvaluel, € (0,2m)} is collectively known  between the classical and quantum results, we always set the

as the quasienergy eigenvalu@€EE’s) and the eigenfunc- numerical values of the angular momenta in the two cases to

tions {¢,} as the quasienergy eigenfunctio@EF'S) of g equal, i.e., we set=17%.

U. The investigation of the quantum dynamics of the system |, petween the kicks at a period, and as long as it does not

is completely equivalent to determining the nature of theyt the poundary at =1, the electron’s motion is governed

QEE’s and QEF’s. The fundamental task is thus to obtain th%y the static Hamiltoniard ... The equation of motion in

qua)lsienergy spectrum of the evolution operator given by Eofhis case is de-

(14).

Ill. CLASSICAL DYNAMICS (
P

— +_
We begin the discussion of the behavior of the model by 2 ' r3’ (a7

looking at its classical dynamics. The classical Hamiltonian
corresponding to the quantum one given by E§s.is
whose solution, in terms of the energy

H=Hget+ Hq(7), (163
- J? o\, @ 2 .\2 . B
_1.2 cl ,2 c J 1w w
la2Pitaetalz) T (D E:%p$+ﬁ+§(§ Peiy )
Hy(r)= %92 > 8(r—n), 16
(=372 2 d(r=n) (160 iven by
|
2 3 @erg—b
\/— b+asin @.(7— 7‘0)+Sin_1(i> }
r(r) B a
P (7) a _ — %a‘)crg—b
mCO @(7— 1)+ Sin —a
|
where where 7. is the time of collision with the wallor barrie).
Finally, the effects of the kicks at=n are obtained by in-
b=2E/%.—J, a=+b?—J° (200  tegrating the equations of motion over an infinitesimal dura-

_ . ) tion aroundn:
Herery and 7 are initial conditions. For a given enerdg

the motion is constrained by the centrifugal barrier on one r(n™) 1 0)fr(n)

side and the smaller of the wall radigsqual to } and the p.(n*) = p(n7))

constraint imposed by the attractive quadratic potential on ' '

the other: If we denote the mapping due to the “free” evolution of the
particle under the influence d4. by My [Egs. (19)], that

Fmin<T (7) <MIin{r 0,1}, (218 due to the walls b, [Eqs.(22)], and the mapping due to
the kick by M« [Egs. (23)], then the complete one-period
map is typically given by the product of seveid’s for a
given energy, i.e.,

[ 2 [2
rmin: ~_(b_a), I’maX= ~—(b+a) (Zlb) MT:(MOMwa”)NM Kick * (24)
We We

_ _ _ In general, the map is very complicated and very sensitive to
Note that the equations of motion are nonlinear here, even ifhjtial conditions. By recording the values at each successive

the wall's absence. The effect of collision with the wadl  period, we obtain a surface of section of the trajectory of the
centrifugal barrieris simply to reverse the direction of mo- particle in phase space.

ngr 1 23

where

tion There are three independent parameters in the problem:
+ 1 0 _ W, €, and7. However, for quantitative correspondences to
( rize) ) 2( ) ( ri7e) ) (29  be made later with the quantum results, as mentioned earlier,
pr(7e) 0 —1/\pi(7c) we keep the angular momentuiv: 17 fixed, which reduces
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FIG. 2. Poincaresurfaces of section in the (p,) plane. The values of are(a) 0.5, (b) 1.5, (c) 1.95, and(d) 2.5.%=0.01,I=10, and
w.=2.0 are held fixed. We observe a gradual breakup of the invariant tori while going(#dm (d) so that eventually there is no longer
any structure present in the phase space.

the number of parameters to the first two. The transition t@ 5, 1.5, 1.95, and 2.5, respectively, whi&=0.01,
chaos is manifested in the parameter space spanned Ry,—2.0, andl=5 are held fixed[The reason for this par-
(e,@¢) (see Fig. L All of our subsequent results refer to this ticylar choice has to do with thee(@.) phase diagram for

space. We did investigate the effects of varyihigy varying

7 for fixed | and the results are guantitatively very similar.
The first(and most obviousevidence of chaotic behavior

is seen in the Poincasurface of section inr(p,). In Figs.

2(a)—2(d) we show the sections correspondingstualues of

this system, which is explained in more detail shoftlg.the
guasi-integrable regiméd-igs. 4a) and Zb)], the phase space
is dominated by invariant tori, which are close to those of the
unperturbed problem. As the value @f is increased, the
tori begin to break up and isolated chaotic islands begin to
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appear[Fig. 2(c)] until, finally, all evidence of invariant 5
curves disappears and all we see is the uniform chaotic sea

[Fig. 2d)]. These values ofd,w.) corresponding to the in-

tegrable, intermediate, and chaotic regions will be retained 4 -
throughout what follows to make comparisons between the
classical and quantum results.

Corresponding to the transition from regular to chaotic 3 It
behavior, we begin to see the appearance of diffusive growth
in the averaged energypr squared momentunof a local- i
ized ensemble of initial conditions. FigurdaB shows the 2
average energy as a function of time for the parameters cor- -
responding to the quasi-integrable regime, while Figh) 3 i
corresponds to parameter values in the chaotic regime. In 1 ]
contrast to the behavior in the quasi-integrable regime, where T I R B
the energ\E is regular, oscillatory quasiperiodic functioning 0 50 100 150 200
of time around a constant value, in the chaotic regite t
grows linearly(or p, grows quadraticallywith time. (Here
and subsequently, “time” refers to stroboscopic time, just
after every kick)

A guantitative measure of the degree of chaos in the sys-
tem is to calculate the largest Lyapunov exponéimt.our
reduced two-dimensional phase space, since the flow is
Hamiltonian, the Lyapunov exponents come in pairs of op-
posite sign. Because our phase space is bounded, we use an
approach slightly modified from that used for an unbounded
system to the calculation of the exponent, as outlined by
Reichl[10]. The (larges} Lyapunov exponent is defined by 05

—|||||||||||||||||

|||||||||||||||n||||||r

(b)

1.5

1.0

10°% <E>

18 d
(7, Xo,0 Yo,o)zm_ ]Z::l In d_:))’ (25

. . . 0 200 400 600 800 1000
wheredo=| Yoo~ Xod is the Euclidean distance between t

the position of neighboring trajectories labeled Xy o and

Y 00, and{d;},j=1,... n, is the sequence of distances gen- e S I I I B
erated between the trajectoriesrasuccessive time steps. If i
dy is not too large, then the limit [ ()
limyoAn(7, Xo,0, Yo,0 =A( Xg0 exists and is independent
of both dy and 7. Furthermore\( Xy ) is zero if Xqg is
chosen in a regular region, while it is positive X is
chosen to lie in a chaotic region.

With the help of the Lyapunov exponent we constructed ]
the phase diagram shown in Fig. 1 for this system in the 10 B |
(e,w;) parameter space in the following fashion. For a given L i
set of parameterse(w.), we choose a very large number L
(typically 1¢°) of initial conditions Xo,0Spread uniformly in -
(r,p;) phase space. Next we randomly choose a nearby R
phase-space poiMg o within a circle of radiusd,, centered 0 200 400 600 800 1000
aboutXy o. We calculate the Lyapunov exponent, using for- t
mula (25), from the successive evaluation of the distances
SJe ;?er dea:%f;j S't:\:::gn r?(:z;:]bi)(??%?;?gétgrri“ess_pr\c/)\(/:ﬁesr? I?h;e FIG. 3. Average energy of an ensemble of points as a function

L h ) h Zf time. (a) €=0.5,(b) e=1.0, and(c) e=2.5; all other parameters
h yapunov exponent reac es ,Saturat'c,m we avgraget ? resu 'i"e as given above. The first is stable and oscillatory, the second
ing value over the set of initial conditions to find If this

. - . | ! _shows a quadratic growth in timgsee the text while the third
asymptotic value is positive, the system is defined as chaotigypipits quasilineadiffusive) growth, corresponding to particles
To put a stricter criterion on the degree of chaos, we choosgitusing through the chaotic sea.

a threshold value of the exponexy beyond which the sys-

tem is in the regime of hard chaos. We 3gt arbitrarily ~ whole plane, running the map repeatedly and obtaining the
equal to the value 1, but as a check we generated Poincaresulting\’s, we obtained the phase diagram for this system,
phase portraits to confirm chaos by looking for featurelessncluding a distinct “phase boundary” separating the quasi-
(i.e., no invariant todi phase portraits. In this way, by vary- integrable and hard chaos regions. Of course, this phase
ing the parameterse(w.) in a continuous fashion over the boundary depends on the precise value of the cutpfive

2.0 ]

1074 <E>
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c A appropriate parameters are tuned to classically produce a

C S K transition from integrable to completely chaotic regimes. In
this section we follow the general thinking developed in ran-

A dom matrix theory(RMT) to implement different tests to

c < B quantify the spectral properties of the model. These proper-

D ties are obtained from a direct diagonalization of the one-
period time evolution matrix. For the results presented here

we vary the value o while keepingJ, 7, andw, fixed, so
as to go from the integrable to the chaotic regime in the
E > phase diagram that coincide with the values considered in the
G > classical case. We note that the appropriate RMT statistical
G } ensemble is a circular orthogonal ensemble rather than a cir-
cular unitary ensemble because this model has a Talse-
breaking symmetry.
Next we discuss the RMT tests and their application to the
FIG. 4. Schematic trajectory of a period-4 orbit, correspondingr€Sults obtained for the QEE of our quantum dot model.
to (e,0.) =(1.0,2.828 . .. ), which is close to the chaos border in
Fig. 1. A. Nearest-neighbor QEE distributions

=]
N
\/
—

J

choose. Nevertheless, we checked that on varying the cutoff A local measure often used in RMT is the distribution of
\¢, the phase boundary shifts only slightly and, furthermore nearest-neighbor energy level separatioR¢s), where

the shape of the boundary remains qualitatively the sam $=en.1—en. IN the extreme integrable and chaotic regimes
| P . y remains g y it has been establish¢dl1,12 thatP(s) takes the Poisson or
ndeed, to a high degree of precision, the phase boundary C‘Wigner distribution forms

be fitted by

B.=C(\y)le, 26) Po(s)=e 5, Py(s)= gse‘(”"‘)sz, 27)

whereC(\.) is a constant that depends on the value of the
cutoff. Figure 1 shows the phase diagram for a cutofffespectively. A convenient and often successful parametriza-
Ae=1. tion of the P(s) obtained in the transition betwed?y to
We observe from the classical Poincagstions that there Py is provided by the Brody interpolation formufa3]
is a symmetry line in ther(p,) plane. This arises from the

time-reversal invariance present in the problem as follows. P.(s)=y(v+1)s’exp(—ys"" ), (28)
Consider a particle kicked at=0. The positiornr, remains 1 _
unchanged,  while  the  momentum  changesWherey=[I'((v+2)/(v+1))]""" andI'(x) is the Gamma

()= p{) + yr,. Denotingp;” by po, then at time 67) the function. This distribution is normalized and, by construc-
tion, has mean spacing)=1. We recover the Poisson case
king v=0 and Wigner forv=1. A criticism to the Brody
Istribution, however, is that there is no first-principles jus-
Sk tification for its validity. The fact remains that it does fit the

same as propagating litackwardfrom (rq, nro—pg). Thus " Co o
propagating (Fo, 770~ Po) specific results found when considering explicit model sys-

the motion is symmetric about the lipg= — 37r. This sym- i Results of the t i trized
metry is, of course, present in the quantum problem also ems. Results of the transition, as parametrizedvpyare

where it will be exploited when calculating the Husimi dis- sh(\)/\\//vn 'T Fig. ;‘:’ lated high d . | ral
tributions of the QEF's. In the classical case, we exploit its € also calculated higher-order eigenvalue spectral cor-

. ; - relations[14]. The average number of levels in an interval of
existence to plot the stable manifolds around hyperboli N ' -
fixed points, which are otherwise very difficult to do becausg€NIthL is (n(L))= (1/L2)a<n_(a,L), where the( ) stapds
of their extreme sensitivity to perturbations. for spectral average am_ia,L) is the num_ber of levels in an
Although the map is very complicated, there are a few!nterval of lengthL stz_artlng ata and ending atx+ L_. A_Iso_
periodic orbit cases that one can analytically study. By fol-Important are _the various moments of the level distribution.
lowing the trajectory of the periodic orbit in phase space, and '€ ©né considered here is the second moment of the aver-
given the mapping equations, we can reconstruct the initigf9e number 01‘2Ievels in a given stretch of lengtrof the
conditions giving rise to the orbit. For example, the fixed SPectrum, th&*(L) statistic
ponishoun e P 4or| 5,720 0005, 212, e e
=0.755 280 031 542@). . . ,po=2.438 385 340 1207. . ..

particle has momenturpﬁ_)= po— 7ro. Taking into account
the fact that the angular momentum is conserved, we see th
propagating a particléorward in time from (rq,po) is the

Another often calculated statistic is the Dyson-Mehta

A5(L), which measures the stiffness of the spectrum. This is
IV. QUANTUM TO CLASSICAL CORRESPONDENCE defined by

As mentioned in the Introduction, one of the clear quan- 1
tum manifestations of classical chaos emerges when one As(l—:a):f min

a+L
X e f [N(x)—Ax—B]%dx, (30
compares the spectral properties of specific model systems as AB

a
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FIG. 6. (8 (A5(L)) and (b) =?(L) statistics for the same
(e,@) values as in Figs.(@), 2(c), and 2d). Again, ase increases,
we observe a transition from Poisson-lidashed lingto COE-like
(solid line) behavior, reflecting the transition to chaos in the classi-
cal system.

well [15]. The specific theoretical predictions for the aver-
aged (Ag(L))=(1LZ),As(L,a) are ALOF(L)
1.0 A ) AARAS RaaRS =(1/7?)In{L}—0.007 and(A§S°L))=L/15. These re-
C (c) 1 sults are correct in the asymptotic limit valid for<%.

In Fig. 6 we present our results fgn ;) and(?). In
these figures one clearly sees the transition from Poisson-like

(dashesto COE-like (solid line) behavior ase/% is varied.

We note that the\ statistic does not saturate in the COE

1 limit, even for the maximum intervdl that we looked at, as

- would be expected from semiclassical arguments originally
proposed by Berry16]. Furthermore, note that for the larg-
estL considered the Poisson limit does not present the knee
1 seen in other completely integrable systems as was found
] before[12]. Generally, the results shown in Fig. 6 are con-
. sistent with what we have come to expect for the transition

.0
0.0 05 1.0 1.5 2.0 25 3.0 between regular and chaotic regions.
S

0.8F -

0.6F
P(s) [
0.4

0.2

B. Quasienergy eigenfunction statistics

FIG. 5. Nearest-neighbor spacing statis®(s). Note the — are e consider the statistical properties of the eigen-
gradual movement away from the Poisson to the COE distributiong, tion overlaps with the natural basis vectors. It has been
c:zr?(;telnéec: tiyt:]he Brgdy salrametefr?:u;/en %(a)z?')ﬂ'(:é 023)2’ conjectured[17] that as the classical motion changes from
?es ecctivél, or the €,@) values of Figs. @), 2(c), '’ chaotic to regular, this distribution of overlaps can be repre-

P y- sented by g¢? distribution inv degrees of freedom, with

whereﬁ(x) is the unfolded number density. In our case therel\i'r?]'%'i)n% goirr]nthleipeg;?af?g;g%ﬂ:gggggzgnﬁ%fr'ThomaS

is no need to unfold the spectrum since it is fully contained
between 0 and2; A3 is just the least mean-square deviation (v]2)""2

of N(x) from the mean straight-line behavior. This statistic is P.(y)= F(o2) y"2 texp( - vy/2). (32)
directly proportional to the (3?) by

Ag(L)=(2IL* [5(L3—sL?x+x%)22(x)dx and thus can be Herey=|(\|nl)]?, where|\) labels the QEF anthl) labels
calculated for the circular orthogonal ensemfOE) as  a set ofN orthogonal basis vector§The y’s have been re-
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FIG. 7. (a)—(d) Distribution of amplitude overlaps of the QEF’'s with the natural basis states for the sgmg {alues as in Figs.
2(a)—(d). Close to the COE limitd), the amplitudes are nearly Gaussian or Porter-Thomas randomly distributed. Away from this limit the
distributions are not well fitted by thg? distributions, with a significant difference seen close to the Poisson limit. This discrepancy is
explained in the text. The values offrom the fits arg@) 0.14,(b) 0.27,(c) 0.63, and(d) 0.9.

scaled so thaty)=1.) We have tested this hypothesis for the which is a minimum-uncertainty Gaussian wave packet cen-
overlap strengths for the same parameter values as for thered at (,,pg), with root mean-square deviations given by

quasienergy eigenvalue statistics. The results are shown iR, — \/% /25, Ap=+\% /2, and o is the “squeezing” pa-

Fig. 7, plotted on a logarithmic scale. These results show thgymeter. This parameter is adjusted when making compari-

general trend of decreasingas we cross the phase boundary sons to the classical phase-space plots. The Husimi distribu-

from regular to chaotic classical motion. However, we noteion of g single QEFp,(r) is then defined by

that as we go from the COE to the Poisson limits, the fits to

the x? get worse. Note especially the shift of the maxima 1 2

away from zero. This discrepancy is connected to the fact Fy (ro,p0)=U \II,G p, (M@ (r)dr| . (33

that the results are strongly basis dependent when not in the ° o 0P

universal COE limit.

The Husimi distribution is obtained by scanning through the

values of €,,pg) in the region of interest in phase space and

the result is compared with the classical surface of section.
We can now make a direct comparison between the clasA/e begin the comparison by noting the symmetry about the

sical and quantum results by employing a phase-space afine p=— »r in the Husimi contour plots in Fig. 8. As men-

proach. To do this, we use the Husimi representation of théioned earlier, this feature carries over from the classical re-

QEF. The Husimi distribution, interpreted as a probability sults. We in fact used to effectively halve the numerical ef-

density, is a coarse-grained version of the Wigner functiorfort.

that goes smoothly to the semiclassical liffi8]. In prac- All calculations reported here were carried out for relative

tice, the most often used technique of coarse graining is teyclotron frequency"(,c:z\/i, angular momentum guantum

take the overlap of the QEF with coherent oscillator stateshumberl =5, relative ac to dc field strengé= 1, and scaled

For the radial coordinate the coherent state is %=0.008. In this case, all terms in the Hamiltonian are com-

C. Semiclassical correspondences

14 parable in magnitude, which means that we are in a nonper-
ve ()= l~ expl — i.,(r—ro)2+ i @ r— -2 turbative regime. Furthermore, we can clearly see both from
fo:Po 7h 2 the phase diagram and the surface of section that this places

(32 the system on the order-chaos border, where the dynamics is
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' determinant of the linearized version of the megiably and
accurately. The fixed points are elliptic, parabolic or hyper-
bolic if the discriminant obtained from the eigenvalyés.,
(tracef— 4 (determinant) is negative, zero, or positive, re-
spectively. In all cases, it was verified, within numerical er-
ror, that the map was area preserving, i.e., the determinant
was equal to one. The unstable manifold was obtained by
iterating the map along the direction given by the eigenvec-
tor corresponding to the eigenvalue larger than one. The
stablemanifold is given by the time-reversed version of the
unstable one.

A comparison of the Husimi distributiong.(r,Po)
with the classical phase-space plots shows some striking
similarities. There are, for many QEF’s, many structures that
unmistakably correspond to elliptic, parabolic, and hyper-
bolic periodic orbits, as seen in Fig. 8. For example, the
Husimi representation of one of the QEF’s sits on top of the

6.0F

3.0

T \?7*-«'

p
o]
T T T R B T

7

&7

-3.0

—6.0 analytic period-2 fixed point markeB. Also seen in the
0.0 0.5 1.0 figure are Husimi distributions that peakactlyon top of the
r unstable hyperbolic period-6 fixed point, referred to in the

literature as “scars’{21]. This correspondence is so robust,
FIG. 8. Contour plots of the Husimi distribution of three QEF’s. in fact, that often when a good guess to tiassicalhyper-
The Husimi distributions labeled correspond to the period-4 so- bolic fixed points is unavailable, the Husimi distributions are
lution, while the one labeled is another example of an enhanced used as a guide to the location of the fixed paibeing
probability distribution over an elliptic fixed point of period 4. Fi- unstable, hyperbolic fixed points cannot be located without a
nally, we also see a Husimi distribution of a QEF that corresponds/ery good initial guess These enhanced probability densi-
to the period-6 hyperbolic orbit marked by its stable and unstableies are conjectured to play as important a role in quantum
manifolds, a “scarred” eigenfunctionThe rectangle at the top- mechanics as the hyperbolic orbits play in classical chaos.
right corner indicates the uncertaintiax,AP.) Finally, a rare but persistent occurrence in all the cases con-

quite “mixed.” A few calculations were done for different sidered is that of a single Husimi distribution peaked simul-
values of the parameters, but no new qualitative feature%aneOUSIy oveboth elliptic and hyperbolic fixed points, re-

) ~ , ecting a purely guantum-mechanical tunneling across the
emerged. In choosing the value of we were guided by the - Am tori. Here we have only shown representative results

following considerations. The value df has to be small of the correspondence between Husimi distributions and
enough so that the system is well into the semiclassical reglassical solutions.
gime, yet large enough so that the dimension of the truncated

Hilbert spaceN (which grows as the inverse square"fi)f is V. EXPERIMENTAL EEASIBILITY

large enough to preserve unitarity. Moreovir,has to be

such that the largest eigenenergyHyf; has to be larger than Before concluding, we present some experimental sce-
the maximum energy of the classical particle in the region ofharios where the predicted effects may be observable. A
interest in phase space. All the interesting features seen iftypical” GaAs-Al ,Ga;_,As semiconductor quantum dot
this model are manifested in this regime. Finally, the classi{22,23 has a radiuR, between 0.1 and 1@m, a sheet
cal conserved angular momentunwas kept identical to the density n~10'* cm™2, and a mobility u~2.65x10° cm
quantum valug?. %IV s. The typical level spacingie~0.05 meV or~500

The classical analysis was carried out for different valuednK. The operating temperatures is generally of the order of
of the angular momenturd [19]. First, we iterated a single 0-1 K, sokT~0.01 meV is smaller thahe and thus the
(arbitrarily chosehinitial condition several thousand times, discrete spectrum can be accessed. A typical elastic mean
which typically leads to the chaotic background as shown irfree pathl ,~10 um and the phase coherence length varies
the figures. Embedded in this background are Kol'mogorovbetween 15 and 5pm. The power injected is typically less
Arnol'd-Moser (KAM) tori centered around elliptic fixed than 1 nW, which avoids the problem of electron heating.
points, defined by choosing appropriate initial conditions. In ~ Given these parameters, we can estimate in physical units
Fig. 8 we show several such tori and in particular a fixedthe field strengths and frequencies required to observe the
point of period 4 that was determined earlier anaIyticaIIy.effeCtS predicted by our model. Let us first calculate these
Also shown in each of the figures is a hyperbolic fixed pointassuming a dot radiu8,~1 pm. The fundamental kick fre-
of order 6, marked by its stable and unstable manifolds. ThélUencywq in our problem can be deduced from Edb) as
fixed points were determined by using a modified Powellwy=#4/(m* Réﬁ)z[lfﬁ] 2x10° s~ 1. From this we can de-
method of determining zeros of coupled nonlinear sets otluce the required dc and ac magnetic field magnitudes
equationg 20]. This method, like all multidimensional root-
finding techniques, requires a good initial guess to converge oMt C =
to the fixed point, but once given it determines the root and 4= 0 B.~20=G, (34)
the monodromy matrix equatiofi.e., the Jacobian or the e h
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€S problem is planned to be treated elsewh&®).
Bac= €Bg=20—G. (35)
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and dc magnetic field magnitudes asg~ 8x 10" s 1% 1
andBy.=0.85, % ~‘Gauss. APPENDIX

With these values, we can see what physical parameters |, this appendix we show that the classical particle and
correspond to the integrable and chaotic regimes. We fiie|q equations of motion can be written exactly for a peri-
=01 and choose as representative parametersdically kicked magnetic field. Starting from the Lorenz
(e,®.)(™®9=(0.1,0.1) where the motion is regular and theforce equation
parameters €, @) "5 (2.0,2.0) where the motion is cha-

B i 2
otic. Then, forRy~1 um, the frequency and ac fields cor- * d_r_ * d__ v
responding to the regular regime are m dt* - dt ° ¢ XBOTED). A
w{®9=20 GHz, B!®9=20 G, (36)  where

o

while those corresponding to the chaotic regime are . R
B(1)=| Bact BacTo 2/ 8(t=nTo) |&={Bact BacA (D}&;

0f"%=20 GHz, B=800 G. (37) (ALb)
For the caseRy,~5 um, the frequencies and fields are, for ;4
the regular regime,
(reg (reg 14 Bac, A
wy ?=800 MHz, B;;?=0.08 G (39 E(t)=—EEA(t)=ZA(t)(rXeZ), (Alc)

and, for the chaotic regime, then, on substituting Eqg§Alb) and (Alc) into Eq. (Ala)

wgchaos: 800 MHz, Bgcchaos): 32 G. (39) and using the definition o, we get

. : . dv " - €we .
With the appropriate techniques of measurement, for ex-  — = (VX &)+ ew (VX &)A(t)+——(rX&,)A(t).
ample, by using an array of 10° isolatedquantum dots to dt 2

increase the magnitude of the signal and using a highly sen- (A2)

sitive electromagnetic superconducting microresonator t?Jsing the standard property of thes function

measure the response, as was done by Retlak in Ref. [f(X)8 (x—a)dx=—f'(a), the last term becomes
[24] to measure the dynamic conductance of mesoscopi e=B,./By)
— Pac/ Pd

rings threaded by Aharonov-Bohm fluxes, we believe that a
experimental realization of this system is feasible.

Ew R
VI. CONCLUSION 5 S(VX)A(L). (A3)

We have shown that the model of an electron in a rigid . . :
guantum dot structure subject to constant and periodicaII)T hus theexactequations of motion can be written as
kicked magnetic fields shows a transition to chaos, depend-
ing on the relationship between the strengths of the fields and q o
the cyclotron frequency of the steady field. This relationship —V=wc(v>< &) 1+ ETO > S(t-nTy){. (A4)
is characterized by a phase diagram in parameter space, dt 2 "hte
shown in Fig. 1. The nature of various periodic orbits was
investigated. The quantum signatures of this transition ardlote that the only difference we have from including the
evidenced in two measures. First, as the classical systeffiducedE field is a factor of 1/2 in the kicked component of
goes from integrable to chaotic, the statistics of the quasierthe B field.
ergy spectrum follow the route from Poisson-like to COE- The reason the same analysis cannot be done the same
like. Second, the contour plots of the Husimi distribution ofway in the quantum problem is that there it is the vector
the quasienergy eigenfunctions clearly exhibit the phenompotential that is the relevant dynamical variable. Thus,
enon of scarring over unstable periodic orbits. Finally, weif we use an A = Ay + Ay{t) with Ay(t)
have presented some experimental ranges of the parametersE - ...Badp) 8(t—nTy), we see that we have a mathemati-
where the effects of chaos in the system may be observableal ambiguity in the definition oA 2.. Nonetheless, one can
To sum up, all tests applied to the classical quantum correcarry out the nonrelativistic analysis with our model Hamil-
spondence are in full agreement with the established quarienian that contains, we believe, the essential physics of the
tum manifestations of classical chaos. The many-electroproblem and yet is mathematically tractable.



2430 R. BADRINARAYANAN AND JORGE V. JOSE 54

[1] V. Fock, Z. Phys47, 446(1928; L. Landau, Z. Phys64, 629 [11] O. Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev. Lett.

(1930. 52,1 (19’84).

[2] R. B. Dingle, Proc. R. London Ser. Soc. 241, 500 (1952;  [12] J. V. Joseand R. Cordery, Phys. Rev. Le86, 290 (1986.
212, 47 (1952. [13] T. A. Brody, Lett. Nuovo Cimentd, 482 (1973.

[3] M. Robnik, J. Phys. AL9, 3619(1986. [14] O. Bohigas and M.-J. Giannoni, iMathematical and Compu-

. tational Methods in Nuclear Physicedited by J. S. Dehesa
[4] The Quantum Hall Effecnd ed., edited by R. Prange and S. et al. (Springer-Verlag, Berlin, 1984

Girvin (Sp.rlnger-VerIag, Ngw York, 1990 ) [15] M. L. Mehta, Random Matrices: An Enlarged and Revised
[5] For a review, see A. J. Lichtenberg and A. M. Lieberman, Second EditiorAcademic, New York, 1991

Regular and Chaotic Dynamicnd ed. (Springer-Verlag,  [16] M. V. Berry, Proc. R. Soc. London Ser. 400, 299 (1985.

New York, 1992. [17] Y. Alhassid and R. D. Levine, Phys. Rev. Leg7, 2879
[6] For a recent comprehensive overview, s@eantum Chaos: (1986; K. Zyczkowski, J. Phys. A3, 4427(1991).
Between Order and Disordeedited by G. Casati and B. Chir- [18] S.-J. Chang and K.-J. Shi, Phys. Rev34, 7 (1986.
ikov (Cambridge University Press, Cambridge, 1995 [19] The classical analysis parallels a similar calculation for a dif-
[7] C. W. J. Beenakker and H. van HoutenSnlid State Physics ferent problem; see R. Badrinarayanan, J. V. Jasd G. Chu,
edited by H. Ehrenreich and D. Turnbulhcademic, New Physica DB3, 1(1995; see also, G. Chu and J. V. JodeStat.
York, 199, Vol. 44, p. 1. Phys.68, 153(1992.

[20] W. H. Presset al, Numerical Recipes in Fortragn2nd ed.
(Cambridge University Press, Cambridge, 1992 406.
[21] R. V. Jensen, M. M. Sanders, and M. Saraceno, Phys. Rev.

[8] L. J. Slater,Handbook of Mathematical Functionslatl. Bur.
Stand. Appl. Math. Ser. No. 55, edited by Milton Abramowitz

and Irene A. Steguitl.S. GPO, Washington, DC, 1968&. Lett. 63, 2771(1989.
503. [22] C. M. Marcuset al, Phys. Rev. Lett69, 506 (1992.

[9] G. Casati and L. Molinari, Prog. Theor. Phys. Sui@8, 287  [23] L. P. Levy, D. H. Reich, L. Pfeiffer, and K. West, Physica B
(1989. 189 204 (1993.

[10] L. E. Reichl, The Transition to Chaos in Conservative Classi- [24] B. Reulet, M. Ramin, H. Bouchiat, and D. Mailly, Phys. Rev.
cal Systems: Quantum Manifestatiof&pringer-Verlag, New Lett. 75, 124 (1995.

York, 1992. [25] R. Badrinarayanan and J. V. jo@mpublished.



