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Discrete basis representation of Ursell operators
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The inverse Laplace transform of the two- and three-particle Ursell operators are shown to be related to
scattering kernels. For a three-particle system the kernel is identical to Faddeev’'s connected kernel. For
well-behaved potentials, these kernels are compact with the consequence that they have a discrete spectrum
and can thus be expressed in terms of discrete spectral representations. This leads to a method for the direct
computation of Ursell operators and the corresponding cluster intef8l663-651X96)02709-2

PACS numbg(s): 05.20:-y, 03.65.Nk, 03.80tr, 34.10:+x

[. INTRODUCTION time delay. The most elegant formalism for the virial coeffi-
cients using the time delay method has been given by Osborn

This paper explores the formal relation between the conk7]. When bound states exist, his work expresses the corre-
nected kernel of Faddegu] and the three-particle Ursell lations of dimer-dimer, monomer-dimer, and monomer-
operator of statistical mechanid®,3]. The convergence Mmonomer in terms of the corresponding time delays on an
properties of the Faddeev kernel thus leads to an alternaggual footing. Despite the various developments, the evalu-
method of evaluating the quantum mechanical cluster inteation of the second virial coefficient is nontrivial except for a
grals of equilibrium statistical mechanics. While the presentimited class of simple potentia[$.6]. It is even more diffi-
paper is restricted to three-particle systems and Boltzman@ult to evaluate higher order virials because, for example,
statistics, it is expected that this correspondence betwedhese depend on evaluating the f8Iatrix for all energies.
connected scattering kernels and Ursell operators can be gehberefore reliable alternate numerical methods are indispens-
eralized to the higher order Ursell operators and to quanturdble for solving realistic problems. The Hilbert-Schmidt
statistics. method is an extremely powerful technique for solving quan-

The main purpose of such a formulation is to provide atum mechanical two-particle scattering problefly-19,
practical method for the quantum mechanical evaluation ohowever, it has rarely been used in formal statistical mechan-
the equation of state of a nonideal gas system whose staits. Necessarily, calculating higher order virial coefficients
dard starting point is the cluster expansion of the grand part€sts on three- or more body quantum scattering theory,
tition function, a classic approach developed by Ur2]l Where the Faddeev-type analysis is obligatory. In this paper
and Mayer[4] and later generalized to quantum mechanicdhe Faddeev analysis is employed to formulate a Hilbert-
by Kahn and Uhlenbecks]. Alternately, Dashen, Ma, and Schmidt representation of the three-particle Ursell operator.
Bernstein [6] used a Feynman-Dyson expansion for the The resulting formalism is in a form ready for direct com-
grand partition function and their use of Feynman diagramgutation. An example of such a computation, for the pair-
allows a separation between a “dynamical part” and a “sta-particle Ursell operator, was considerigd] earlier.
tistical part.” A modern scattering theory formulation of a A discrete basis representation of Ursell operators is pre-
monomer-dimer mixture has been given by Oshjath His ~ sented in Sec. II. Ursell operators are first expressed in terms
method relies on the asymptotic completeness theorem of tH@f various resolvents by a Laplace transfof21]. Operator
multichannel scattering theory. An elegant two-Hilbert spacgheory implies that certain kernel operators are compact so
formalism for the multispecies fugacity expansion has beeithat a discrete basis representation can be introduced. In the
provided by Hoffman and Evank8]. Their formalism is case of three particles, the Faddeev analysis is utilized to
based on the method used in a rigorous reactive quantu@ptain a discrete basis expansion of the corresponding Ursell
kinetic theory developed by Hoffman, Kouri, and their co- operator. A brief discussion is given in Sec. IIl.
workers[9].

The first quantum mechanical calculation of the second
virial coefficient was due to Beth and UhlenbedO], ex-
pressed in terms of scattering phase shifts. Since the phase
shifts are related to th& matrix, the Jost function, and the In this section a discrete basis representation for the two-
on-shellT matrix, various alternative expressions of this re-and three-particle Ursell operators is formulated. This section
sult have been reportdd1-13. Smith[14] relates the en- is divided into two parts, the first dealing with the two-
ergy derivative of the phase shift to the time delay and genparticle Ursell operator and the second with the three-particle
eralized this to time delay matrices for general inelasticUrsell operator.
collisions. Thus the pair particle Ursell operator can be ex-
pressed in terms of a time delay. Higher order Ursell opera-
tors can also be expressed in terms of a time delay formalism
[15], for example, the gener&matrix formulation of equi- In thermal equilibrium the correlations between two par-
librium statistical mechanickb] is basically in terms of the ticles is given by the Ursell operator

Il. DISCRETE BASIS REPRESENTATION
OF URSELL OPERATORS

A. Two-particle Ursell operator
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U(2>:e—ﬁH<2)_e—gH§)2) 1) providedV is a square integrable local potential, namely,
Here the full and free Hamiltoniarid® andH{? for rela- (pIV2lp) = isf V(r)%dr 9)
tive motion are self-adjoint operators acting on {helative h

motion) pair Hilbert space??) with both their spectra being
absolutely continuous on the positive real axis and there i
the added possibility that the spectrumtt®) is also singu-
lar on the negative real axis, corresponding to a finite numb
of bound states. As long as the potentieeH@—H{) is

is finite. As a consequenc& (?)(z) is a compact operator
and its spectrum discrete?5], having eigenvaluesy,(z),
sand a set of biorthonormal right,(2)) and left (&,(2)|
eigenvectors indexed hy,

(2)
well behavedU'?) is a trace class operatf22,23 K@ (2)|£a(2)) = 70(2)] £0(2)), (10)
TrlU®?| <o, 2
l | @ <§n(z)|K(2)(Z)=<§n(z)|ﬂn(z)v (11
U® is related to the interacting and free resolvent operators
R® andR®, (€m(2)[¢n(2)) = Smn, (12)
1 1 with the eigenvalues satisfying
R = R(2) = (3)
z-H®" 70z HE”
2 [m(2)]?<ee. (13

by the Laplace transfori21]

2 1 g The proof of the compactness kf?)(z) can be extended to
UT=o— ﬁ:e R'“(2)dz, (4 the real axis, see, e.g., R¢R6], by showing that the sym-

metrized kernelVY3(z—H{®) V2 is a Hilbert-Schmidt
expressed as a contoQr counterclockwisely encircling the Operator.

spectrum oH®), of the difference of the resolvent operators _ It follows that R®)(z) also has a representation in terms
of a discrete basis

1 1
5~ 7
z—H?® z-RHY

R (z)=R®-RP = (5 7n(2) 1

_ 77n(2) <§n(z)| Z—HE)Z) '

R®(2)=2 [6:(2) 1 (14

The corresponding resolvents{H®) ! and —H{)~* _ . . . _
are bounded operators o5 for all complexz except on  1NuS one arrives at a discrete basis representation for the pair

the spectra of their respective Hamiltonians. As a conseVrsell operator
quence, the difference in resolve$?)(z) is defined on the

complexz plane excluding the spectrum Bf?). An advan-  y@2= 1 % e 4| §n(2)>M<§n(Z)| ;@dz-
tage of R(® over the individual resolvent operatd®§?) and ~ 27 Jc 1-79,(2) z—H§
R{ is that, for reasonable potentials, the opera®? is of (15
trace class, whered®® andR{? are not.
It is easy to show that the difference in resolveR{€) is B. Three-particle Ursell operator
related to the kernel At thermal equilibrium three-particle correlations are de-
scribed by the three-body Ursell operator
K(2)=(z—HP) ", ©®) g g P
o Ul (o)
(16)
RQ)(Z):(—) K(z)(Z)( ) (7
1-K?(2) Z—HBZ) Here the full three-body Hamiltonian for relative motion is

defined as
Moreover the kerneK?)(z) is, for 2uz=x+Iiy not on the

real axis and for square integrable local potentials, a Hilbert- HEO=HE+VvO), (17
Schmidt class operatd24,25. This follows from the fact

that the operatoK(?(z)'K(?)(z) has a finite trace, namely, H{ is the kinetic energy operator for the relative motion of
for a three dimensional system, three particles an¥® is the pairwise additive potential

TrK(Z)(Z)TK(Z)(Z):f <p|v2|p> V(3)EE V,, (18

4,u2

X dp<oo, given in terms of the pair potentials
[(x—pZ+y2 I (x+ p) 2y P

(8) V1=Vy33, Vp=Vi3, V3=Vp (19
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labeled in a convenierfaind standandmanner for the subse- the Fredholm type and the standard theory of integral equa-
guent discussion. Arrangement channel Hamiltonihli%) tions cannot be applied. In spite of these difficulties, a three-
are defined according to body transition operator can still be defined in a form analo-
gous to the two-body transition operator, namely,
B=H®

Ha"=Ho™+ Ve (20 T (2)=VE+ VR (2)v®), (25)
The three-body Hamiltonians are self-adjoint operators act- (3) ) . )
ing on the relative motion Hilbert spacg® [the center of 1owever,T(z) does not give the scattering cross section
mass motion is assumed to have been separatdd Tfe in the same manner as does the two-body transition operator.
spectrum oH® is absolutely continuous on the positive real The three-body resolvent operator can be written in the fol-

axis corresponding to three-particle scattering, and possiblkpw'ng alternate ways:

on the part of the negative real axis corresponding to two- RO®)(2)=R®(7)+ R®(2)VeR® 2
fragment scattering subsystefvgith one of the pair of par- (2)=R.(2)+R(2) @ (26
ticles in a bound state if such exisfs well, the spectrum of —_pB) (3) ap(3)
. ; =R +R VR 2
H® can also be singular to the left of the two-particle a (2) (V'R (2) @7
threshold, corresponding to three-particle bound states. —R®(2)+R®(2)T®(2)RA
The full three-body resolvent operator is defined as 0 (D+ R (2 TH2IRT(), (28)
where
ve=ve-v,_. (29

wherez is a parameter in the complex energy plane. As a 3)(on _ . )
function ofz, R®)(2) is well defined in the whole complex R (2) is more singular than the transition operafé?(2)

energy plane excluding the spectrum of the HamiltoniarPecause of the pre;enceRﬁs)(z). In graph theory language
H(®, specifically off the real axis and to the léfnore nega- [29], Eq. (26) has disconnected diagrams which give rise to

tive thar) the lowest bound state energy. Similarly, the three-d functions in momentum representation.
body channel resolvent operators are defined as Faddeev separated the transition operator into three parts

T®=3 TB)(7), satisfying the set of equations

R¥(z)= (22)

z—H®" TO(2)=V,+V R (2)T®=t®(2)+ Eﬁ‘, (1= 8,5

In terms of these resolvent operators and the Laplace trans-

(3) (3) (3)
form, the three-body Ursell operator can be expressed as X1, (2)Rs (D) T5 (2), (30)

1 wheret®)(z) is a two-body transition operator in the three-
U(3)=m ﬁe*BZRm(z)dz, (23)  particle space
. t(2=V,+V.RI 2V, (31)
where the contou€ encircles the spectra of the full three-
body Hamiltonian in a counterclockwise manner and the =V,+V R ()t (2) (32
quantity R(®)(z) is the combination of resolvents
=[1-V,RP(2)]7'V,. (33
B (N=ROB)(7)_RB) (%) _ (3)(7) - RMB) .
R¥(2)=R™(2)~Ry"(2) EC; [R:"(2)—~Rg"(2)]. In an analogous manner the resolvent operator can be di-
(24)  Vided up according to

RE) hass been shown to be a connected opefd@}. Actu- R3(2)-RP(2)=> RI(2TO(2RP(2) (34
ally R® is also related to the Faddeev kernel of the three- a
body transition operator, which is a compact operator, a nec-
essary functional property for the validity of a representation _ 2 3 (2) (35)
in terms of a discrete basis. The Faddeev technique of three- ~ T ’
body quantum scattering is utilized in the following to estab-
lish this relation between the operat®)(z) and the Fad- The G{®)(z) are Faddeev's resolvent operators
deev kernel. 3 o(3) 3) 3)
Faddeev found that the three-bothn-shel) Lippmann-  Ga (2=Rg(2)T,(2)R5"(2) (36)
Schwinger equatiori28] does not have a unique solution
because the hqmogeneous_equations adm_it two-body _scat_ter- — Rg3)(z)t§f)(z) R53>(Z) + E Kf’é(z)G}f)(z)
ing state solutions. The Lippmann-Schwinger equation is B
thus equivalent to the three-body Sotirmyer equation only (37
for energies below the lowest two-particle threshold. At
higher energies the kernel of the Lippmann-Schwinger equa- —p®)_p? (3) (3)
tion becomes noncompact so that the equation is no longer of Ra(D~Ry (Z)+§ Kap(2)G3(2), (38)
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with kernelK$)(2) defined as

RO2)-3 3,

(3)
3) T (2) 3)
oS (Z)>1—77§13)(Z_)<§$1 (2)]

K&(2)=RP @13 (2)(1- 8, p). 39 "

(3)(5)t(3) (3
The last form forG® Eq. (38), is obtained from Eq(37) XRg (2t (2)Rg(2). (49)
using theRf’) analog of Eq.(34), there being only one po-

tential in this case. Using Eqs(24), (35, and (38), _ _ ) )
R®)(2) can be written as This leads to the desired discrete representation for the three-

particle Ursell operator

RO(2)=2 > K26 (2). (40)
a B (3)
1 7, (2)
=__—_ -Bz 3) _n T i H3)
On interpretingG®)(z) andt®)(z) as components of the U =om ﬁ;e ; ;ﬁ { & (2= 77;3)(2)@“ @) LB
channel space vecto andt, together withk 3)(z) being a o ,
matrix K, this in addition to these quantities being operators xR ()5 ()R (2)dz. (50

on the Hilbert space of relative motion for the three patrticles,
then Eq.(37) can be written as the matrix equation

I1l. DISCUSSION
G=RP'RPE+KG, (41)
It is seen, for the cases that have been explored, that the
whose formal solution is connected Ursell operatots? andU®), have a one-to-one
correspondence with Hilbert-Schmidt class operators through
G=(1-K) 'R&1MRYY. (42)  alLaplace transform. It is believed that this is also true for the
B i higher order Ursell operatort), U®) etc. Therefore
As a consequenceés™(2) is given by U™ may be closely related to the Yakubovsky equations
K [31]. It is well known that quantum mechanical scattering
RO (2)=> [KG1,=>, | —=RP2)tRP(2)| . theories written in terms of integral equations for four and
@ ap \1-K ap more particle systems are extremely complicaftdd] be-

(43 cause the kernels may be unconnected. The present study
_ ) implies that it may be possible to have a systematic proce-

The compactness of the operatgf®)(z) is established qure for obtaining Hilbert-Schmidt class kernels for the re-
because the Faddeev kerreélis compact. Technically this solvent operators associated with the higher order Ursell op-
has been showfil, 19] by demonstrating that the square op- erators U(™. Furthermore, the connected graphs of the
eratorKZ is an Operator of Hilbert-Schmidt ClaSS, namely, Urse”_Mayer expansiorﬁ3] may have a one-to-one corre-

spondence with the connected diagrams of Faddeev for four
> TK2TK?2],, <. (44)  and more particles. _ _
« The Hilbert-Schmidt method has been widely used in
two-body quantum scatterifd.7—19 to evaluate both scat-
Necessarily this requires both the quantum trace Tr and thgyring wave functions and collision cross sections. The Fad-
channel trace,, . deev analysis has paved the way for applying the same

As a consequence of being compéat completely con-  method to three and more particle scatter[8@,33. The
tinuoug, K has only a discrete spectrum. Moreovél,  method provides a powerful representation both conceptually
—K]™* exists[30] and is a meromorphic function af Thus  and computationally. However, it has hardly been used in
K has a biorthogonal set of left and right eigenfunctions andormal statistical theory, as far as the authors know. Here a
eigenvalues general formalism for the Hilbert-Schmidt representation of

3 3) 3 low order Ursell operators has been presented. The formal-
KIZY (2))= (21847 (2)), (49 ism may have important applications. A first and most im-
portant application is that it provides a convenient starting
(EJ(2)|K(2)=(E2 (D) 9 (2), (46)  point for the practical calculation of the equation of state
(virial coefficients, which was pursued, for the second virial
(E3(2)|82(2))= 6mn. (47)  coefficient, in an earlier pap§R0]. A second application is
the possibility of establishing generalizations of Levinson'’s
Note that the inner product, operator, ket and bra in thigsheorem for two- and more particle scatterifgg] by the
development act both in the relative motion of the three parresolvent method. The conventionStmatrix phase shift
ticles and in the channel space. The eigenvabyﬁé’.:(z) sat- does not work in the case of three-body scattering since
isfy three-body breakup collisions admit no phase-shift descrip-
tion.

Gibson[35], Baumgartl[11], and Reiner{36] have ap-
plied the Faddeev results to calculate the third virial coeffi-
cient. Gibson expresses the third virial coefficient in terms of
R®) thus admits the expansion Faddeev'sT matrix. Baumgartl treats a part of the third virial

2 (72 <. (48)
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