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Thermal conduction in a quantum system
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We numerically investigate thermal conduction in quantum dynamics. A one-dimensional quantum spin
system is used as a model, which we can make integrable or nonintegrable by controlling parameter values. A
different method to simulate heat reservoirs is introduced. Using this method, we perform numerical simula-
tions of the spin chain in contact with two heat reservoirs at different temperatures. As a consequence, a flat
temperature profile is observed in the integrable case, while a finite temperature gradient is found in a nonin-
tegrable system. This result suggests that the Fourier heat law may be realized in nonintegrable systems and is
consistent with the classical case reported in the literaf®#063-651X96)02409-9

PACS numbd(s): 05.30—d, 05.60+w, 05.70.Ln

The origin of diffusive behavior in thermal conduction, N-1 N N
which is formulated in the Fourier heat law, is actively stud- He=a 2, ofof +&2, of+y2 of, 1)
ied by many researchers. Unlike the equilibrium properties, =1 =1 =1
such as the specific heat well described by Debye’s theory(N

the Fourier heat law cannot be explained by the harmonicl: ing-type nearest-neighbor coupling constant, grahd
crystal, where the internal temperature gradient is not formec(,fre components of the magnetic field ' Y

and the heat flux is proportional to the temperature difference According to Jensen and Shankar, we call the system in-

rather than the temperature g_radiéh] AlthOUQh few m_od- egrable wheny=0. This means that the system is then
els have been proved analytically to satisfy the Fourier hea&ransformed into free fermions by a Jordan-Wigner transfor-

law [2], numerical studies have found a number of model : o )
exhibiting that behavior, e.g., diatomic Toda lattj@e4], the %;?Sggr\]/\[lélr]{asgr example, under the periodic boundary con

model composed of free particles alternating with harmoni-
cally bound particles by Casagt al. [5] and its simplified £
variant by Prosen and Robnil6], the Fermi-Pasta-Ulam HSZZCYE ((Cosk—k—
model[7], and a kind of reversible cellular autom&&j. All k a
of these models are classical one-dimensional lattice dynami-
cal systems with strong nonlinearity. Thus, in the classicalvherecf andcy are creation and annihilate operators of the
cases, it is understood that chaotic behavior originating fronfermion with wave numbek, respectively. Thus the system
the nonlinearity or, more precisely, the nonintegrability iswith y=0 is regarded as identical to a set of harmonic os-
essential for the realization of the Fourier heat law. On theillators. In case ofy# 0, the system is nonintegrable in the
other hand, little is known about the relation between thesense that the system cannot be transformed into free fermi-
Fourier heat law and quantum dynamics. Although the infi-ons. This difference in integrability is reflected in the regu-
nite thermal conductivity was derived for the quantum per-larity of level spacing distributions in energy spectrum. We
fect harmonic crystal by a quantum Langevin approg@h  numerically calculate the level spacing distributions for the
no models have been found to exhibit the Fourier heat lawsystems with sizé=9 under the open boundary condition.
In this paper we present a model that can be a candidate fdiwo cases ofy=0 and y=0.5 with the other parameters
such behavior. fixed at «=0.5 and§=1.0 are examined. Throughout the
We investigate energy transport in a quantum spin chaipresent paper, these parameter values are chosen to be used
coupled with heat reservoirs. The use of spin systems has tHer the integrable and the nonintegrable cases. The distribu-
advantage that they are numerically more tractable than ogions in the two cases are shown in Fig&)land 1b). In the
cillator systems because the Hilbert space is finite dimenintegrable case, the distribution has a peak at zero separation
sional in the former case. Concerning equilibrium propertiesand the peak is shifted to a finite value in the nonintegrable
Jensen and Shankgk0] studied realization of statistical be- case. This agrees with the common tendencies seen in quan-
havior from quantum dynamics in relation to the number oftum dynamical systems.
degrees of freedom and the integrability. Their model is a Jensen and Shankar carried out numerical simulations of
one-dimensional Ising-type quantum spin chain subject to éhe system wittN=7 and found that the relaxation to equi-
magnetic field, which is described by the Hamiltonian librium occurs and the equilibrium values of physical quan-

heres? and o} are Pauli matrices at siie @ denotes the

2

1/2
-I—sinzk] (clee— 3, (2
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We suppose that the spins 1 aNdare in contact with dif-

[ W N ferent heat reservoirs and the coupling between the spin
igner Distribution ------ . L .
14 Poisson Distribution - i chain and the reservoirs is assumed to be of Ising type,
12| ] Hin= 0107+ ooy, )
1| . where of (k=1 or N) is the operator that belongs to the
08 k reservoir in contact with thith spin. We do not specify the
o . b

reservoir HamiltoniarHg here, but instead later impose a
certain condition on the correlation functions of the reservoir

0.6 e
variables.
0.4 - In [12] we showed that local temperatures can be defined
/ by considering subsystems, each of which is composed of
0.2 1 1 two consecutive spins and the bond in between. Let us define
0 . L e en L the following operators(i) for convenience:
0 05 1 15 2 25 3 35 4 an :
(a) spacing a(2i—1)=éof+yo!f forl<i<N,
] a(2i)=aocfo?,; forlsisN-1.
0.9 1 I P"(‘,’iigs”fg 8:2}::§ﬂ§:32 e ] Then the Hamiltonian of theth subsystem is written as
08T T Hedi)=a(2i—1)+a(2i)+a(2i+1) (5)
07t /1IN 1
06 SR and the energy flux operators at the left and right ends of the
2. ) ith subsystem are given by
o 0.5 Frlllf [ . _ L L
o} _ Ju(i)=—i[a(2i-1)4(2i-2)]=-2¢ad] 10! (6)
0.3 hf ; and
0.2 1 ] Jr(i)=—i[a(2i+2),a(2i+1)]=2 éao), 107, 5, (7)
0.1 | 1
0 L e respectively. These three operatd®—(7) are connected
0 05 1 15 2 25 3 35 4 with the equation of continuity
(b) spacing Hodit)
J It . .
— o ==, ®

FIG. 1. Level spacing distributions fga) the integrable system

and (b) the nonintegrable system. whereHi,t) is the subsystem Hamiltonian in the Heisen-

N _ ) ) berg picture. Note that theéh and § — 1)th subsystems share
tittes are successfully predicted by microcanonical entheith spin.

sembles, whether the system is integrable or nonintegrable. peat reservoirs are simulated in the following way. By the

They concluded. that for generic initial condition_s both inte-standard technique using projection operators and expansion
grable and nonintegrable quantum systems with as few & the coupling strength, the equation of motion for the
seven degrees of freedom can exhibit statistical behaV'OHensity matrix of the system is derived as

Their conclusions were reconfirmed by the present authors
[12], where the system-size dependence of the statistical be- 9p(t)

havior was studied in detail and several definitions of tem- —;— = —i[Hs,p()]=iN[(0D) 107+ (apInaN,p(D)]
perature were examined. The lack of difference in equilib-

rium behavior between integrable and nonintegrable systems FAH[o? () —FIO) ]+ [od, Fu() — (DT}

is not so surprising because it is frequently seen in classical )
systems also. For example, equilibrium thermodynamic be-

havior is observed commonly in a family of reversible cel-t5 o(\2), where( ), (k=1 andN) means averaging with

lular automatd 13], though many of them do not support the respect to the Gibbs state of the reservoir with inverse tem-
Fourier heat law. Thus, as concerns nonequilibrium behavperature,Bk operatorf,(t) is defined as

ior, we can expect that the integrable and the nonintegrable
systems show some differences. t : .

We denote the reservoir Hamiltonian big and the in- fu(t)= J'Ohk(s)ef'HSSP(t_S)Uﬁe'HSSdS, (10
teraction between the system and the reservoik By, A

being the strength of the coupling. Thus the total Hamil-andh,(s) is the autocorrelation functions of variables in the
tonian is given by reservoirs

Hr=Hg+Hg+NHjy. A3 hi(s)=(A oA (), (12)
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whereA o= o%—(0o%) andAoi(s)=e"rSAofe MRS, terizes the dynamical structure of heat reservoir as well as its
Equation(9) is the second-order equation for the reducedtemperature. We control the values aof, (w,) so that the
density matrix[14]. In this equation, the autocorrelation system goes to the equilibrium state at the temperature we
function hy(s) is the most important because it includes all want.
reservoir information relevant to the time evolution of the Due to the non-Markovian character of H), it is very
system. This type of equation is sometimes approximatedifficult to solve it even numerically. However, the above
into a Markovian by replacing(t—s) with p(t). However, functional form for h,(s) provides us with a method for
here we attempt to integrate the equation as rigorously agumerical integration of Eq(9). Consider a difference ap-

possible, assuming the following form fbi(s): proximation with time stepAt for Eq. (10). Defining
gk(t) =hy(t)/h,(0), we canwrite
s
hk(S)zhk(O)eX[:( - u +i w,S|. (12) t/At _ .
Tk fk(t):hk(O)nZO g(NAt) e HS" (- nAt) oZelHsnaiAL,
In fact, the autocorrelation function in the spin syst€ - (13)
itself can be well fitted by the above function at least in a
short time region. The couple of parameterg, ) charac- Then the next step value &f(t) is calculated as
t/At+1
f(t+At)=h(0) X, ge(nAt)e MM p(t—(n—1)At)oleHs"AL (14
n=0
t/At
=h(0)p(t+At)gZAt+h (0)ge(At)e MY g (nAt)e Hs"Ap(t—nAt) oZelMs"AtelHsMAL (15)
n=0
=h,(0)p(t+At)oZAt+g,(At)e HsA (1)eHsAAL, (16)
|
where we have used that the relation diagonalizes the stationary density matrix. The agreement
between the observed energy distribution and the prediction
O(ty+t2)=0g(t1)gu(ts) by a canonical ensemble shows that the system certainly

reaches equilibrium states described by statistical mechanics.
holds for arbitrary times, andt,. Thusf,(t+At) is repre- We have also confirmed that two reservoirs at the same tem-
sented in the iterative form. Because the non-Markoviarperature connected at both ends lead the system to almost the
character comes only throudh(t) in Eqg. (9), this allows us  same state as the single reservoir case. For various values of
to integrate Eq(9) numerically. (7,w), corresponding temperature values are estimated from

A necessary condition for heat reservoirs is that the systhe slopes of the energy distributions.

tem coupled with a reservoir has to relax to an equilibrium In the simulation of heat conduction, we couple the sys-
state characterized by a canonical ensemble. It is shown thggm with two reservoirs at different temperatures and inte-
if the function h,(s) satisfies the Kubo-Martin-Schwinger
(KMS) condition 1

hi(@)=efh(— ), (17)

whereh,(w) denotes the Fourier transform lof, the right- ’ kY
hand side of Eq(9) vanishes for a Gibbs state= pgi,,s and
the stationarity of the Gibbs state is guaranteed. Although 9
our h,(s) given by Eq.(12) does not satisfy the KMS con- 0.01
dition, it is possible that the Gibbs state is a numerically .
stable solution of Eq(9) [15]. Thus we numerically simulate e
the system coupled with a single reservoir until the system 0.009 L \‘%\
reaches a stationary state and evaluate the density matrix. )
The stationary energy distribution thus obtained is shown in
Fig. 2, where the system sid= 4, reservoir parameters are
chosen to be4,,w;)=(1.0,7/0.7), the system is the nonin- 0.0001 ——"—— —

) o 5-4-32-10123 4586
tegrable one, and the coupling= «. The solid line shows Energy
the canonical distribution at temperature 1.2 and dots repre-
sent the diagonal elements of the density matrix in the rep- FIG. 2. Stationary energy distributions for the nonintegrable
resentation that diagonalizéds. This representation also system coupled with a single reservoir.
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FIG. 3. Mean energies of the subsystems (®rthe integrable FIG. 4. Temperature profiles fdg) the integrable system and
system andb) the nonintegrable system. (b) the nonintegrable system.

grate Eq(9) until the system reaches a stationary state. ThuSyStém and to eliminate the first-order termsiirirom the
we obtain the stationary density matrix. The mean energy ofdnt-hand side of Eq(9). Note that the energy-temperature

theith subsystem is calculated in the stationary state and thréalatlon thus obtained depends on subsystem location be-

results for the integrable and the nonintegrable cases afuse of the lack of translational invariance. Thus the tem-

shown in Figs. 8) and 3b), respectively. Here the system g(ragr?tgir:tr?blitt%b# tion shows different behavior from the en-
size is chosen to beN=7 and the coupling constant T yemperature profiles for the two types of the systems
A=0.20. The simulation has peen e_xecuted with the fourths e shown in Figs. @ and 4b). In both cases, there are
order Runge-Kutta method with a time step of 0.005. Thgrge temperature gaps between the lattice ends and the res-
reservoir parameters are 7y(w;)=(2.0,m/1.0) and eryoirs and the region of temperature values narrows com-
(7n,@n) =(1.0,7/0.5) for both systems, which correspond pared to the applied temperature gradient. The subsystems
to temperatures 0.7 and 2.0, respectively. closest to the reservoirs show peculiar behavior, while a
The temperature of théth subsystem is determined by smooth curve is observed in the interior of the system. These
comparing the observadh local energy with its equilibrium  behaviors are similar to those observed in the classical lattice
expectational values dynamical systems, except that the temperature regions do
not go to the middle of the applied temperatures but are
Tr{H S(i)e—ﬁH’S} shifted greatly toward the lower temperature value of the
s . ;o o X
- , (18 reservoirs. This is partly due to the finiteness of the time step
Tr{e AHs} At used in the simulations. We observe that varyhtgeads
to quantitatively different results, though the qualitative be-
where havior in the profile does not change. Further studies on the
properties of the present approximation are planned for fu-
Hs=HgtN({(o]) 105+ {(o)noR)- (190 ture. The temperature shift may have another origin because
similar behavior is observed in the simulations with the use
The additional terms on the right-hand side are needed iof cellular automat16]. We have not reached a full under-
order to take into account edge effects at the ends of thstanding of this phenomenon.

(ei(B))=
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Figure 4 also shows a difference in the integrable andgresent study is a first step and many problems are left for
nonintegrable systems. Namely, the internal temperature dishe future.
tribution has a finite slope in the nonintegrable case, which is On the other hand, the present study has clarified that the
in contrast with the flat temperature profile in the integrableintegrable system does not obey the Fourier heat law. This is
case. Energy fluxed, (i) andJg(i) take an identical mean common behavior also seen in the classical harmonic crystal
value in the stationary state and are independent bf our  and various integrable systems. Because our system is ex-
nonintegrable case, the value of the stationary energy flugressed as free fermions, it corresponds to the harmonic crys-
and the internal temperature gradient are about 0.0012 ang| There are other types of quantum integrable systems, that
0.01, respectively. Thus the coefficient of thermal conductiv¢an pe solved by the use of Bethe ansatz. They may corre-
ity is estimated to be about 0.12. _ spond to nonlinear integrable systems in classical mechanics.

The present study shows that, as in the classical systemg, || be interesting to study heat conduction in such sys-
chaotic behavior generated from nonintegrability may playiems and to see whether there are any differences among
an essential role in nonequilibrium thermodynamic behaviorineirs and the present one.
The_ present model shows a fini'ge temperature gradient in th_e In quantum systems, nonintegrability affects the regular-
nonintegrable case. The formation of the temperature gradiy in the energy spectrum. It can be used to characterize the
ent is a necessary condition for the Fourier heat law, but, Oﬁegree of nonintegrability. Thus we hope to find a connec-
course, not sufficient to say that the system obeys the Fourigjony petween the heat conduction behavior and some charac-

heat law. To confirm the Fourier law, we have to check thegyistics of the level statistics. Research in this direction is
system-size dependence of the heat flux. If the total heat fluxoy in progress.

does not depend on the system size the Fourier heat law is

satisfied, but if it grows with system size it is not. In classical The authors wish to express their thanks to Dr. Sano for
systems, both behaviors are observed, depending on theseful discussion. Numerical calculations were partly done at
strength of the nonlinearity. Thus we cannot predict atthe computer center of the ISSP, which is gratefully ac-
present which is the case in our quantum spin model. If th&knowledged. This work is partially supported by Grant-in-
Fourier heat law is satisfied, the Green-Kubo formula and théid for Scientific Research from the Ministry of Education,
assumption of local equilibrium should also be checked. Thé&cience, Sports and Culture.

[1] Z. Rieder, J. L. Lebowitz, and E. Lieb, J. Math. Ph8s1073 [9] U. Zircher and P. Talkner, Phys. Rev.4®, 3278(1990.

(1967. [10] R. V. Jensen and R. Shankar, Phys. Rev. 1%£t1879(1985.
[2] J. L. Lebowitz and H. Spohn, J. Stat. Ph¢$, 633(1978. [11] T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys.
[3] F. Mokross and H. Bitner, J. Phys. C16, 4539(1983. 36, 856 (1964).
[4] E. A. Jackson and A. D. Mistriotis, J. Phys. Condens. Mdtter [12] K. Saito, S. Takesue, and S. Miyashita, J. Phys. Soc. &fn.
1223(1989. 1243(1996.
[5] G. Casati, J. Ford, F. Vivaldi, and W. M. Visscher, Phys. Rev.[13] S. Takesue, Phys. Rev. Le#7, 2499(1987).
Lett. 52, 1861(1984). [14] R. Kubo, M. Toda, and N. Hashitsum8tatistical Physics Il
[6] T. Prosen and M. Robnik, J. Phys. 25, 3449(1992. (Springer-Verlag, Berlin, 1985

[7] H. Kaburaki and M. Machida, Phys. Lett. 281, 85 (1993. [15] K. Saito, S. Miyashita, and S. Takes@epublishegl
[8] S. Takesue, Phys. Rev. Le®4, 252 (1990. [16] S. Takesudunpublishedl



