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We numerically investigate thermal conduction in quantum dynamics. A one-dimensional quantum spin
system is used as a model, which we can make integrable or nonintegrable by controlling parameter values. A
different method to simulate heat reservoirs is introduced. Using this method, we perform numerical simula-
tions of the spin chain in contact with two heat reservoirs at different temperatures. As a consequence, a flat
temperature profile is observed in the integrable case, while a finite temperature gradient is found in a nonin-
tegrable system. This result suggests that the Fourier heat law may be realized in nonintegrable systems and is
consistent with the classical case reported in the literature.@S1063-651X~96!02409-9#

PACS number~s!: 05.30.2d, 05.60.1w, 05.70.Ln

The origin of diffusive behavior in thermal conduction,
which is formulated in the Fourier heat law, is actively stud-
ied by many researchers. Unlike the equilibrium properties,
such as the specific heat well described by Debye’s theory,
the Fourier heat law cannot be explained by the harmonic
crystal, where the internal temperature gradient is not formed
and the heat flux is proportional to the temperature difference
rather than the temperature gradient@1#. Although few mod-
els have been proved analytically to satisfy the Fourier heat
law @2#, numerical studies have found a number of models
exhibiting that behavior, e.g., diatomic Toda lattice@3,4#, the
model composed of free particles alternating with harmoni-
cally bound particles by Casatiet al. @5# and its simplified
variant by Prosen and Robnik@6#, the Fermi-Pasta-Ulam
model@7#, and a kind of reversible cellular automata@8#. All
of these models are classical one-dimensional lattice dynami-
cal systems with strong nonlinearity. Thus, in the classical
cases, it is understood that chaotic behavior originating from
the nonlinearity or, more precisely, the nonintegrability is
essential for the realization of the Fourier heat law. On the
other hand, little is known about the relation between the
Fourier heat law and quantum dynamics. Although the infi-
nite thermal conductivity was derived for the quantum per-
fect harmonic crystal by a quantum Langevin approach@9#,
no models have been found to exhibit the Fourier heat law.
In this paper we present a model that can be a candidate for
such behavior.

We investigate energy transport in a quantum spin chain
coupled with heat reservoirs. The use of spin systems has the
advantage that they are numerically more tractable than os-
cillator systems because the Hilbert space is finite dimen-
sional in the former case. Concerning equilibrium properties,
Jensen and Shankar@10# studied realization of statistical be-
havior from quantum dynamics in relation to the number of
degrees of freedom and the integrability. Their model is a
one-dimensional Ising-type quantum spin chain subject to a
magnetic field, which is described by the Hamiltonian
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x are Pauli matrices at sitei , a denotes the
Ising-type nearest-neighbor coupling constant, andj andg
are components of the magnetic field.

According to Jensen and Shankar, we call the system in-
tegrable wheng50. This means that the system is then
transformed into free fermions by a Jordan-Wigner transfor-
mation@11#. For example, under the periodic boundary con-
dition we have
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whereck
† andck are creation and annihilate operators of the

fermion with wave numberk, respectively. Thus the system
with g50 is regarded as identical to a set of harmonic os-
cillators. In case ofgÞ0, the system is nonintegrable in the
sense that the system cannot be transformed into free fermi-
ons. This difference in integrability is reflected in the regu-
larity of level spacing distributions in energy spectrum. We
numerically calculate the level spacing distributions for the
systems with sizeN59 under the open boundary condition.
Two cases ofg50 andg50.5 with the other parameters
fixed at a50.5 andj51.0 are examined. Throughout the
present paper, these parameter values are chosen to be used
for the integrable and the nonintegrable cases. The distribu-
tions in the two cases are shown in Figs. 1~a! and 1~b!. In the
integrable case, the distribution has a peak at zero separation
and the peak is shifted to a finite value in the nonintegrable
case. This agrees with the common tendencies seen in quan-
tum dynamical systems.

Jensen and Shankar carried out numerical simulations of
the system withN57 and found that the relaxation to equi-
librium occurs and the equilibrium values of physical quan-
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tities are successfully predicted by microcanonical en-
sembles, whether the system is integrable or nonintegrable.
They concluded that for generic initial conditions both inte-
grable and nonintegrable quantum systems with as few as
seven degrees of freedom can exhibit statistical behavior.
Their conclusions were reconfirmed by the present authors
@12#, where the system-size dependence of the statistical be-
havior was studied in detail and several definitions of tem-
perature were examined. The lack of difference in equilib-
rium behavior between integrable and nonintegrable systems
is not so surprising because it is frequently seen in classical
systems also. For example, equilibrium thermodynamic be-
havior is observed commonly in a family of reversible cel-
lular automata@13#, though many of them do not support the
Fourier heat law. Thus, as concerns nonequilibrium behav-
ior, we can expect that the integrable and the nonintegrable
systems show some differences.

We denote the reservoir Hamiltonian byHR and the in-
teraction between the system and the reservoir bylH int , l
being the strength of the coupling. Thus the total Hamil-
tonian is given by

HT5HS1HR1lH int . ~3!

We suppose that the spins 1 andN are in contact with dif-
ferent heat reservoirs and the coupling between the spin
chain and the reservoirs is assumed to be of Ising type,
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where s̄k
z (k51 or N) is the operator that belongs to the

reservoir in contact with thekth spin. We do not specify the
reservoir HamiltonianHR here, but instead later impose a
certain condition on the correlation functions of the reservoir
variables.

In @12# we showed that local temperatures can be defined
by considering subsystems, each of which is composed of
two consecutive spins and the bond in between. Let us define
the following operatorsâ( i ) for convenience:
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â~2i ![as i
zs i11

z for 1< i<N21.

Then the Hamiltonian of thei th subsystem is written as
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and the energy flux operators at the left and right ends of the
i th subsystem are given by
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respectively. These three operators~5!–~7! are connected
with the equation of continuity

]Hss~ i ,t !

]t
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whereHss( i ,t) is the subsystem Hamiltonian in the Heisen-
berg picture. Note that thei th and (i21)th subsystems share
the i th spin.

Heat reservoirs are simulated in the following way. By the
standard technique using projection operators and expansion
in the coupling strengthl, the equation of motion for the
density matrix of the systemr is derived as
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to O(l2), where^ &k (k51 andN) means averaging with
respect to the Gibbs state of the reservoir with inverse tem-
peraturebk , operatorf k(t) is defined as

f k~ t !5E
0

t

hk~s!e2 iHSsr~ t2s!sk
zeiHSsds, ~10!

andhk(s) is the autocorrelation functions of variables in the
reservoirs

hk~s!5^Ds̄k
zDs̄k

z~s!&k , ~11!

FIG. 1. Level spacing distributions for~a! the integrable system
and ~b! the nonintegrable system.
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Equation~9! is the second-order equation for the reduced
density matrix @14#. In this equation, the autocorrelation
function hk(s) is the most important because it includes all
reservoir information relevant to the time evolution of the
system. This type of equation is sometimes approximated
into a Markovian by replacingr(t2s) with r(t). However,
here we attempt to integrate the equation as rigorously as
possible, assuming the following form forhk(s):

hk~s!.hk~0!expS 2
usu
tk

1 ivksD . ~12!

In fact, the autocorrelation function in the spin system~1!
itself can be well fitted by the above function at least in a
short time region. The couple of parameters (tk ,vk) charac-

terizes the dynamical structure of heat reservoir as well as its
temperature. We control the values of (tk ,vk) so that the
system goes to the equilibrium state at the temperature we
want.

Due to the non-Markovian character of Eq.~9!, it is very
difficult to solve it even numerically. However, the above
functional form for hk(s) provides us with a method for
numerical integration of Eq.~9!. Consider a difference ap-
proximation with time stepDt for Eq. ~10!. Defining
gk(t)5hk(t)/hk(0), we canwrite

f k~ t !.hk~0! (
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Then the next step value off k(t) is calculated as
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where we have used that the relation

gk~ t11t2!5gk~ t1!gk~ t2!

holds for arbitrary timest1 and t2. Thus f k(t1Dt) is repre-
sented in the iterative form. Because the non-Markovian
character comes only throughf k(t) in Eq. ~9!, this allows us
to integrate Eq.~9! numerically.

A necessary condition for heat reservoirs is that the sys-
tem coupled with a reservoir has to relax to an equilibrium
state characterized by a canonical ensemble. It is shown that
if the function hk(s) satisfies the Kubo-Martin-Schwinger
~KMS! condition

ĥk~v!5ebvĥk~2v!, ~17!

whereĥk(v) denotes the Fourier transform ofhk , the right-
hand side of Eq.~9! vanishes for a Gibbs stater5rGibbsand
the stationarity of the Gibbs state is guaranteed. Although
our hk(s) given by Eq.~12! does not satisfy the KMS con-
dition, it is possible that the Gibbs state is a numerically
stable solution of Eq.~9! @15#. Thus we numerically simulate
the system coupled with a single reservoir until the system
reaches a stationary state and evaluate the density matrix.
The stationary energy distribution thus obtained is shown in
Fig. 2, where the system sizeN54, reservoir parameters are
chosen to be (t1 ,v1)5(1.0,p/0.7), the system is the nonin-
tegrable one, and the couplingl5a. The solid line shows
the canonical distribution at temperature 1.2 and dots repre-
sent the diagonal elements of the density matrix in the rep-
resentation that diagonalizesHS . This representation also

diagonalizes the stationary density matrix. The agreement
between the observed energy distribution and the prediction
by a canonical ensemble shows that the system certainly
reaches equilibrium states described by statistical mechanics.
We have also confirmed that two reservoirs at the same tem-
perature connected at both ends lead the system to almost the
same state as the single reservoir case. For various values of
(t,v), corresponding temperature values are estimated from
the slopes of the energy distributions.

In the simulation of heat conduction, we couple the sys-
tem with two reservoirs at different temperatures and inte-

FIG. 2. Stationary energy distributions for the nonintegrable
system coupled with a single reservoir.
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grate Eq.~9! until the system reaches a stationary state. Thus
we obtain the stationary density matrix. The mean energy of
the i th subsystem is calculated in the stationary state and the
results for the integrable and the nonintegrable cases are
shown in Figs. 3~a! and 3~b!, respectively. Here the system
size is chosen to beN57 and the coupling constant
l50.20. The simulation has been executed with the fourth-
order Runge-Kutta method with a time step of 0.005. The
reservoir parameters are (t1 ,v1)5(2.0,p/1.0) and
(tN ,vN)5(1.0,p/0.5) for both systems, which correspond
to temperatures 0.7 and 2.0, respectively.

The temperature of thei th subsystem is determined by
comparing the observedi th local energy with its equilibrium
expectational values

^« i~b!&5
Tr$Hss~ i !e

2bHS8%

Tr$e2bHS8%
, ~18!

where

HS85HS1l~^s̄1
z&1s1

z1^s̄N
z &NsN

z !. ~19!

The additional terms on the right-hand side are needed in
order to take into account edge effects at the ends of the

system and to eliminate the first-order terms inl from the
right-hand side of Eq.~9!. Note that the energy-temperature
relation thus obtained depends on subsystem location be-
cause of the lack of translational invariance. Thus the tem-
perature distribution shows different behavior from the en-
ergy distribution.

The temperature profiles for the two types of the systems
are shown in Figs. 4~a! and 4~b!. In both cases, there are
large temperature gaps between the lattice ends and the res-
ervoirs and the region of temperature values narrows com-
pared to the applied temperature gradient. The subsystems
closest to the reservoirs show peculiar behavior, while a
smooth curve is observed in the interior of the system. These
behaviors are similar to those observed in the classical lattice
dynamical systems, except that the temperature regions do
not go to the middle of the applied temperatures but are
shifted greatly toward the lower temperature value of the
reservoirs. This is partly due to the finiteness of the time step
Dt used in the simulations. We observe that varyingDt leads
to quantitatively different results, though the qualitative be-
havior in the profile does not change. Further studies on the
properties of the present approximation are planned for fu-
ture. The temperature shift may have another origin because
similar behavior is observed in the simulations with the use
of cellular automata@16#. We have not reached a full under-
standing of this phenomenon.

FIG. 3. Mean energies of the subsystems for~a! the integrable
system and~b! the nonintegrable system.

FIG. 4. Temperature profiles for~a! the integrable system and
~b! the nonintegrable system.
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Figure 4 also shows a difference in the integrable and
nonintegrable systems. Namely, the internal temperature dis-
tribution has a finite slope in the nonintegrable case, which is
in contrast with the flat temperature profile in the integrable
case. Energy fluxesJL( i ) andJR( i ) take an identical mean
value in the stationary state and are independent ofi . In our
nonintegrable case, the value of the stationary energy flux
and the internal temperature gradient are about 0.0012 and
0.01, respectively. Thus the coefficient of thermal conductiv-
ity is estimated to be about 0.12.

The present study shows that, as in the classical systems,
chaotic behavior generated from nonintegrability may play
an essential role in nonequilibrium thermodynamic behavior.
The present model shows a finite temperature gradient in the
nonintegrable case. The formation of the temperature gradi-
ent is a necessary condition for the Fourier heat law, but, of
course, not sufficient to say that the system obeys the Fourier
heat law. To confirm the Fourier law, we have to check the
system-size dependence of the heat flux. If the total heat flux
does not depend on the system size the Fourier heat law is
satisfied, but if it grows with system size it is not. In classical
systems, both behaviors are observed, depending on the
strength of the nonlinearity. Thus we cannot predict at
present which is the case in our quantum spin model. If the
Fourier heat law is satisfied, the Green-Kubo formula and the
assumption of local equilibrium should also be checked. The

present study is a first step and many problems are left for
the future.

On the other hand, the present study has clarified that the
integrable system does not obey the Fourier heat law. This is
common behavior also seen in the classical harmonic crystal
and various integrable systems. Because our system is ex-
pressed as free fermions, it corresponds to the harmonic crys-
tal. There are other types of quantum integrable systems, that
can be solved by the use of Bethe ansatz. They may corre-
spond to nonlinear integrable systems in classical mechanics.
It will be interesting to study heat conduction in such sys-
tems and to see whether there are any differences among
theirs and the present one.

In quantum systems, nonintegrability affects the regular-
ity in the energy spectrum. It can be used to characterize the
degree of nonintegrability. Thus we hope to find a connec-
tion between the heat conduction behavior and some charac-
teristics of the level statistics. Research in this direction is
now in progress.
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