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As a model for modulated relaxation oscillators, an integrate-and-fire model in which the sawtooth motion
of a state variable is modulated by another sawtooth oscillation is investigated. The dynamics of the system is
described by a mapping function that maps successive firing times. The map is a piecewise-linear circle map
having two continuous nondifferentiable points or one discontinuous point, which is equivalent to the Poincare
map investigated by Christiansen, Alstrpand LevinserjPhys. Rev. A42, 1891(1990]. It is proved ana-
Iytically that a different type of dynamics appears in a nonchaotic region of parameter space in the present
system, that is, complete phase locki@PL) with positive fractal dimension of quasiperiodic set occurs in an
entire region where the mapping function describing the system dynamics is monotonic and continuous. It is
also shown that the probability of occurrence of periodic orbits with period longerNhianevaluated by a
power ofN, that is, byN?>~Y®) whered is the dimension of quasiperiodic set that is positive and less than
1. If the modulation is weak, the dimensidrtakes a value near 1 and the orbits with very long period appear
frequently. When the modulation is enforced, a discontinuity appears in the mapping function. It has been
known that a monotonic and discontinuous piecewise linear map results in CPL with zero dimension of
quasiperiodicity[B. Chritiansen, P. Alstim, and M. T. Levinsen, Phys. Rev. A2, 1891 (1990]. It is
identified in the present paper that the transition induced by the occurrence of discontinuity is the one within
CPL such that the dimension of quasiperiodicity changes abruptly from a positive number to zero. This is the
transition in which the periodic orbits with long period disapp$¢81063-651X96)00909-9

PACS numbes): 05.45:+hb, 87.10+e, 02.30-f, 64.70.Md

I. INTRODUCTION both discontinuity and noninvertibility, a different type of
intermittency (type V) has been foun@15-19. It has also
Modulated relaxation oscillators and their integrate-andbeen found that the interaction between discontinuity and
fire models have attracted much attention as they have imoninvertibility induces complex dynamical behavig;20—
portant applications in many different fields such as biology22].
[1-5], electronics[6-8], and solid state physicE]. The In the present paper we prove analytically that a different
dynamics of the modulated oscillators can be described by pe of complete phase locking occurs in a dynamical system
circle map. Recently, much attention has been paid to theescribed by a circle map derived from modulated integrate-
circle maps derived from the modulated integrate-and-firaand-fire models. We show, for monotonic continuous
models. It has been found that the maps have many interegtiecewise-linear circle maps having two nondifferentiable
ing characteristics that ordinary circle maps do not havepoints, that CPL with a positive dimension of the quasiperi-
Most of these characteristics are attributable to the appeaodic set occurs in an entire region of the phase space. The
ance of discontinuity in the map. As the modulation is en-map was derived as a mapping function that maps successive
forced, a discontinuity appears in the map, which results irfiring times in an integrate-and-fire system that has a finite
complete phase lockin@CPL) in a finite region of the phase resetting time and in which the upper or lower threshold is
space, in which the quasiperiodicity has zero meaBuf®— triangularly modulated.
14]. Thus a nonchaotic transition from quasiperiodicity to  Christiansen, Alsthm, and Levinsei10] made a detailed
CPL occurs with the appearance of the gap. The dimensioanalysis on a piecewise-linear map, in order to analyze sys-
of quasiperiodicity is zer10,13. This is in contrast to the tematically the routes to chaos and CPL occurring in the
cases of usual circle maps in which CPL occurs only on thenaps derived from modulated integrate-and-fire models.
critical line. Crossing the critical line, the phase-locked re-Their map is the Poincammap derived from a model where
gions begin to overlap and chaos develops. Thus quasiperire resetting time is abrupt and both the upper and lower
odicity changes into chaos across the line. In maps havinthresholds are triangularly modulated and the map in the
present paper has substantially the same structure as theirs.
They derived several scaling laws for the cases where the
* Author to whom correspondence should be addressed. map becomes nonmonotonic and/or discontinuous. For a
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X Mackey [1,23]. It also corresponds to one of the simplest
T X+ () version of the model for the self-sustained oscillation of the
membrane potential of lipid bilayefs,24], which is induced

by the repetitive gel—liquid-crystal phase transitions of the
membrane associated with the adsorption and desorption of
protons on the membrane surface, in which the higher-order
ol , fluctuation of ion concentration is neglected and there is no
t(0) to(1) 1(2) t(3) —t> external stimulating current.
The present model is similar to that of Christiansen,
Alstrém, and Levinserf10] in which the resetting is abrupt

FIG. 1. Schematic of the dynamics of the system. and both the upper and lower thresholds are modulated tri-
angularly, but the present model has finite resetting time and

monotonic and continuous map, they assumed that both p&nly the upper threshold is modulated and the lower thresh-
riodic (phase lockedand quasiperiodic states were possibleold is set at zero as shown in Fig. 1. The present model is
based on the values of the Lyapunov exponent the systefiius a triangular-modulation version of the model considered
might take, but did not clarify which dynamics, periodicity by Glass and Bair [3,25] in which the modulation is sinu-
or quasiperiodicity, prevailed in that case. soidal.

Whereas quasiperiodicity has a positive measure in mono- The time evolution of the state variable, or activity,
tonic and continuous circle maps when the maps are sufffollows the equation
ciently smooth[14], the present result shows that the mea-
sure of quasiperiodicity can be zef@PL) for monotonic dX [, for S(t)=u
and continuous, but nonsmooth, maps. The fractal dimension ar ay for S(t)=d, 2.1
of the quasiperiodic set is positive and less than one in the
present map, which is piecewise linear and has two nondif- _ _ _ .o
ferenciable points. Since the dimension of quasiperiodicity igV1€re a, (aq) is the changing rate ok during the “up
zero in the case of CPL associated with the discontinuity of doWn") phase in whichX is increasing(decreasing S
the map[10,13, the transition induced by the appearance ofd€notes the state of the system &wlu (S=d) means that
the discontinuity is the transition within CPL with which the the systemis in the uftlown) phase. The state indeX(t) is
dimension of quasiperiodicity changes abruptly, as oppose8VeNn by
to the transition from the coexistence of quasiperiodicity and

NX(t)

phase locking to CPL considered by Christiansen, Afstro u for X<0O
and Levinsen 10]. S(t)y={ d for X=X; 2.2
We also show for the present map that, when the map is S(t—At) for 0<X<Xg,

monotonic and continuous, the measure of the set of param-

eter values that give the periodic orbits having the period : .
longer thanN is eg/aluated %}Nz(l_l/d) whered ig the c?i- where X+ is the upper threshold. Equatid8.1) shows that

mension of the quasiperiodic set. When the modulation ithe change rate ok is determined by the sta® and Eq.

. . ?2.2) shows that the phase state is determined by the value of
weak, d takes a value near one. Then the orbits with veryX with hysteresis. The system described by E@sl) and

long per_|od appear frequently. Because.ap extraord|narll¥12_2) generates self-sustained oscillationsXofand S when
long period often appears, we cannot distinguish betwee =0 anda.<0
d .

such periodic orbits and quasiperiodic ones by numericaf' : .
analysis in which mapping cannot be iterated infinite times We apply a triangular modulation to the upper threshold
In order to obtain a clear result, an analytical approach i$'T
indispensable.

It is proved also in the present paper that when the map is X1(t)=Xo+hY(t), 2.3
monotonic and discontinuous, the probability of occurrence
of orbits with period longer thai decreases exponentially whereX, (>0) is the base line of the upper threshdid;>0)
with N, as denoted by Christiansen, Alstipand Levinsen is a parameter that represents the degree of modulation, and
[10]. Thus, from another point of view, the transition in- y(t) varies linearly back and forth in the range from Ovtp
duced by the discontinuity in the map is such that the depen=0) as
dence of the probability of a long period dhchanges from
a power law to an exponential law and the orbits with long Eft—t,(n)]

iod di )
period disappear for ty(n)<t=ty(n)+Yr/&,

YO=1 glt—ty(n+1)]
IIl. MODEL for to(n)+Yr/é,<tsty(n+1).

We consider the model in which the “sawtooth” motion
of a state variableX is modulated by a threshold; in a  HereX; increases with the ratg, (£,>0) and decreases with
sawtooth way, as shown in Fig. 1. The linear motion of thethe rateg; (£;<0), to(n) =nY¢(1/§,—1/§5) + ¢, n is an in-
state variable corresponds to the linear charging and dideger, and¢ is the phase of the modulating oscillation of
charging of a capacitance as in the model of Glass and/(t).

(2.9
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FIG. 3. The mapping function becomes discontinuous when

FIG. 2. Orbits separated hyr in time will, after au—d tran- @ ,<h¢, because some part of the—d thresholdX; becomes
sition, be separated hy(z,. “invisible.”

Ill. MAP FOR THE DESCRIPTION OF THE DYNAMICS the mapf as
A. Derivation of the map Dt+B for O<t<A
The dynamics of the state variable described by Egs. fO=\EtsB_E+1 for A<t<1 3.3
(2.1) and(2.2) under the threshold modulation given by Egs.
(2.3 and(2.4) is completely described by a mapping func- i, the case ofr,>hé&, and
tion that maps successive times at whiCheaches the lower
threshold, that is, the times at which the transitions from
down phased) to up phase () occur. We derive here the
mapping functionf for the iterative transition times. Rescal- .
ing the time properly, we can assume that the period of
threshold modulation is 1 without losing generality. Thén,
becomes a circle map of period 1, thatfig;+1)=f(t) + 1. A=(1-E)/(D-E) 3.9
Since the variations of botk andX; are linear, the map
f is piecewise lineafFig. 4). The slope off is obtained by ~and
calculating a quantityAr,/A7;, where Ar, is a difference
between the transition times at which two nearby orbits un- B=(a, —ag")Xo. (3.6
dergo the transition frond to u successively andr, is the
time difference for the orbits when they undergo the-u In the extended domairc<t<co, f(t) is defined such that
transition the next time as seen in Fig. 2. The value of thef(t+n)=f(t)+n for any integem. The mapf represented
slope is changed depending on whether the transition from by Eq. (3.4) has a vertical gap of the size-E att=n.
tod at whichX reaches the upper threshofg occurs during
the period whereX; is increasing or the transition occurs
during the period wher&Xy is decreasing. If thei—d tran- 1 1 /
|
|
|
|
|

f(t)=Et+B—E+1 for O<t<1 (3.9

n the case okx,<h¢,, where

sition occurs wheiXy increases with the rates, , the slope #0,)
of f is given by |

B _
D=(1—agthé,)/(1— a; thé,), 3.0 S| o A
1

and if the transition occurs wheX; is decreasing with the
rateh&,, the slope is given by

f(t)
E=(1—ag hég)/(1—ay théy). (3.2

g

When «,>h¢§,, the mapf is continuous and has two
slopesD andE. On the other hand, whem,<h¢,, the map
f becomes discontinuous and has only the slopE.ofhis
comes from the fact that the—d transition does not occur
whenX increases, since the increase ttagg of Xy is larger
than thaty, of X andX does not reac . The discontinuity
appears at the point whete—d transition occurs at a mini-
mum point ofX; as shown in Fig. 3.

We assume thatX; reaches a minimum point at t
t=a; 1X,. This can be done by adjusting the phasef the
modulation. Theri=n (intege) becomes the point at which FIG. 4. Graphs of mapping functioh (modJ) in different re-

-

the mapf changes the slopdor «,>h¢,) or has a discon- gions of parameter space. The regions correspond to those in Table

tinuity (for @, <h¢,) as shown in Fig. 4. Finally, we obtain 1.
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TABLE |. Different regions in parameter space and the type of solutidris.the fractal dimension of
quasiperiodic set.

Region Feature of Motion
I: D>1,E>0 monotonic and continuous CPU>0
II: D<0,E>0 monotonic and discontinuous CPi=0
lll: D>1, —1<E<O0 nonmonotonic and continuous periodic or chaotic
IV: D<O0, —1<E<O0 nonmonotonic and discontinuous periodic with period 1
V: D>1,E<-1 nonmonotonic and continuous chaotic
VI: D<0,E<-1 nonmonotonic and discontinuous chaotic
B. Classification of regions in parameter space Eq. (3.2 andh=hg (=ay/&y) is the zero point oE as seen
in Eq. (3.2.

When the mapping functiofi is monotonic, the asymp-
totic orbit of the state variablX is periodic and/or quasip-
eriodic, and wherf is nonmonotonic, the orbit may become IV. DYNAMIC PROPERTIES OF THE SYSTEM
chaotic depending on the values of system parameters. Al- WITH A MONOTONIC MAP
though the mag in the present system has three parameters | this section we summarize the results obtained in the
D, E, and B, the monotonicity and the continuity df is  present study in order to clarify the nature of the nonchaotic
determined solely byp andE. The result is summarized in transition between regions | and Il. We describe only the

Table I. The mapf is monotonic if and only ifE=0. The  gytlines of proofs of the results obtained. Detailed proofs are
necessary and sufficient condition for the continuityfds  given in Ref.[26].

D>0. The conditionD<0 can be used to classifyas dis-
continuous, thoug does not appear iiwhen it is discon-
tinuous, since the parametBr defined by Eq(3.1) is nega-
tive whena,<hé&,. The orbit of X becomes chaotic when 1. Measure of the quasiperiodic set

E<-1, because €D <1 does not hold as seen from Eq.  pere we show that the measure of the quasiperiodic set,
(3.1) and the absolute value of the slopefdb larger than 1 o the complementary set of phase-locked regions, is zero
everywhere whele<—1. From these considerations, param-j, region | where the magp is monotonic and continuous,

eter space is classified into six regions shown in Table lieqjting in complete phase locking. The parameters deter-
Typical graphs of (modJ) in different regions are shown in mining the magf areD, E, andB. We varyB and seD and

Fig. 4. The map here is essentially equivalent to the ong gt constants satisfying the relatioBs>1>E>0, which

discussed by Christiansen, Alétnoand Levinseri10]. are the condition that the system is in region |. Variatiomof
We are mainly interested in regions | and Il in this paper,cqrresponds to that of the base Igof the upper threshold.

as mentioned in Sec. I. In region | the map is monotonic,ng shown in Appendix A, we can restrict the rangeBofn

continuous, and piecewise linear and has two nong-g<1.

differentiable points at=0 andA. In region Il the map is The quasiperiodic set is the set where all the regiorB of

monotonic and piecewise linear and has a discontinuity afiving phase locking are removed from the entire region

t=0. When a circle map is monotonic and discontinuous Iike(o,l] of B. Phase locking occurs when the rotation number
the one in the region I, CPL occuf80-14,7 and the di-

mensiond of the complementary set of phase-locked regions R=lim[f"(tg) —to]/n 4.9
is zero[13,10. We will prove in Sec. IV that CPL occurs n—o
also in region | and thad is positive. Therefore, the transi-

A. Region |

tion from region | to region Il associated with the appearance

of discontinuity is the transitiowithin the CPL region such hp < he "o > he

that the dimension of quasiperiodicity changes abruptly at

the transition point, although Christiansen, Alstroand ay<-og | F ! t 1 } A f ! } i } A
Levinsen[10] suggested that the transition was the one from 0 hp hg hlo he hp h
the coexistence of periodicity and quasiperiodicity to CPL.

In region Il the orbit of X becomes periodic or chaotic de- I Im v VI
pending on the parameter values and it is periodic with pe- 1,0 IV VI |0 hg hphg
riod 1 in region IV because the graph bfintersects with Oy >—0d o6 h he p. b

diagonal line and the absolute value of the slopé &f less b 7B TC rmv W
than 1 at the intersection point. 0 hg hg hp h

Figure 5 shows the bifurcation diagram of the present
system when the modulation parametein Eq. (2.3 is var-
ied. When the modulation is weak, the system is in the newly FiG. 5. Bifurcation diagram of the system when the modulation
found region I. With increasing, the system bifurcates into parameterh is varied. hp=a /&, is the zero point ofD %,
region Il or Ill depending on whethen,<hg or hp>hg, he= a4/ &4 is the zero point o, andhe=2a,ay/(ay+ ag) &y is
whereh=hp (=a,/&,) is the zero point oD ! as seen in the value ofh at whichE=—1.
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becomes a rational number. Because the mapping funttion

is a monotonic function oB as seen in Eq3.3), the rotation
number is also a monotonic function Bf that is, ifB;<B.,
thenR(B;)<R(B,).

We define the ‘Q/P-entrainment region’3(Q/P) as the
region ofB in which the rotation numbeR takes an irreduc-
ible fraction Q/P (P>0). As shown in Appendix A, it is
enough to consider for9Q=<P. BecauseR(B) is mono-
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The left-hand inequality it4.7) is derived from the rela-

tion between the dimensiahand the measurg(Ay), which
is proved in Appendix D,

In w(An)

NN 4.9

1
2(1——>s|im inf
d k—o k=N

This relation provides information on the probability of the

tonic with B, the Q/P-entrainment region is a closed interval occurrence of an orbit having a long period. Because of CPL,

for each value of)/P. We denote the region as
B(Q/P)=[B.(Q/P),By(Q/P)].

Here B, (Q/P) is the lower boundary anB(Q/P) is the
upper boundary of the region, that IR<Q/P for
B<B,(Q/P), R=Q/P for B (Q/P)<B=<B(Q/P), and
R>Q/P for B>By(Q/P). Explicit expressions of these
boundaries are derived in Appendixes A and Bjs. (A6)
and(B1)].

We obtain the quasiperiodic sAtby removing all3(Q/
P) from the region(0,1]. It is given by

4.2)

A= lim Ay,

N— oo

4.3

the measure of the sat, is equal to that of the set composed
of the values oB that generate periodic orbits having peri-
ods longer tharN. Therefore, inequalitieg4.5 and (4.9
indicate that the probability of the occurrence of orbits with
periods longer thaiN is evaluated by a power &, that is,
by N2(1-1/d)”

B. Region Il

In this subsection we describe the behavior of the system
in region 1l where the map is monotonic and discontinuous.
The parameters determining the mlagreE andB. We vary
B keepingE constant. The results obtained here coincide
with those obtained by Christiansen, Alstipand Levinsen
[10], that is, the quasiperiodic sAathas zero measure and the
fractal dimension of the set is zero.

whereAy is a set such that all the entrainment regions having The setAy defined in Eq(4.4) is rewritten as

periods equal to or less théh are removed from the region
(0,1],
An=(0,1]- U B(Q/P).

P<N
0<Qs<P

4.9

As shown in Appendix C, we can prove that the following

inequality holds for the Lebesgue measwi@,) of the set
Ay

m(AN)<CoN"7, (4.9
whereC, and p are positive numbers that depend Brand
E but do not depend oN. From the relation$4.3) and(4.5),
we obtain

n(A)=0, (4.6

that is, the measure of quasiperiodic set is zero and CPL

occurs in the region | of the parameter space.

2. Dimension of the quasiperiodic set

Ay=UJ;, 4.9
i

where

Ji=(Buy(qi/pi),BL(di+1/Pi+1)) (4.10

and irreducible fractions;/p; andq; . 1/p; +1 form a neigh-
boring pair in a Farey series associated with intdgdeiVe
proved (see Appendix Ethe inequality for the measure of
Ji,

(1—E)?EPitPi+1~ 1< 4 (J,)<EN. (4.1
Since there is at least one pair pf and p;, ; that satisfies
p;+pi+1=N+1 and since the number of the elements in a
Farey series associated withis less tharN? for N=2, the
measure ofA satisfies the inequality
(1-E)?EN< w(An)<N?EN. (4.12
Itis concluded, from4.3) and(4.12, that the measure of the
setA is zero becausE<1, as seen from Ed3.2).

Here we discuss the fractal dimension of quasiperiodic set AS seen from the above argument, the sgtcan be cov-
A. We use the capacity dimension for the fractal dimensionered by at mosN® open intervals with lengtlie™. Then the

Then we obtain the inequalities for the dimensibaf the set
A!

(1+%p)‘1>d>mm<(l. 21 7w |
2' 1+(D/E)%{1—(E/D)™%
4.7

where p is the positive number appeared in the inequality

(4.5). The derivation of(4.7) is briefly explained in Appen-
dix D. The inequalitieg4.7) show that, in the region K is
positive (=3) and less than 1.

dimensiond of A is obtained as

In N

HTENZO. (413

d=lim

The inequality(4.12 shows that the probability of the occur-
rence of a long period decreases wiNhexponentially.

It is noted in the case dE=0 andD>0 that the system
obeys the results for region Il in which the méjs discon-
tinuous, although is actually continuous. Interchanging the
abscissa and the ordinate in the graphf afnd interpreting
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D! asE, we obtain a new map that has a single slBpend  occurrence of a discontinuity in the map is the one in which

discontinuity (Fig. 4, region 1). Then, the results obtained the periodic orbits with long period disappear.

for region Il apply to that map because the interchange of Although quasiperiodicity has zero measure in region | of

coordinates does not affect periodicity or quasiperiodicitythe parameter space, the appearance of quasiperiodicity is

when a map is monotonic. not excluded for special values of the parameters with Le-
besgue measure zero. Here we give two cases where quasi-
periodicity appears. One of the cases is as follows. When the

V. DISCUSSION parameter values are such that a relati8(0)=A+m or

b_1‘“(A)=m holds for some integers and m, the rotation

numberR becomedR=(m+r)/n or (m—r)/n, respectively.

Then the orbit becomes quasiperiodic wheis irrational. In

the other case, the rotation numii&becomes irrational as a

solution to a quadratic equation. We can show that wien

E, andB satisfy specific relations, for example,

In region | studied in detail in the present paper, the pro
ability of the occurrence of orbits with very long period
larger thanN is evaluated byN?(*~ ¥ When the modula-

X

1+ m;m,(1+x)

: CRY

1+m,

tion of the threshold is small, this probability is high. For a

small value of the modulation parameter E/D takes the

value near 1 as seen from Ed8.1) and (3.2). Then, the

value of the fractal dimensioth becomes near 1 as seen from

the inequality(4.7) and N2>~ s considerably large even D=x

for very large values o. Orbits with very long period have

been confirmed. We can calculate the value of the rotation

numberR when the values of the paramet&sE, andB are B=m my(1+x)—x 5.2

given, by using Eqs(A6) and(B1). The calculation showed 2 %2+ mymy(1+x)?’ '

that orbits with a long period appear frequently as the values

of D and E approach 1 and that a very long period with E=1/D, (5.3

astronomical order appears sometimes. For example, for

D=1.3,E=0.9, andB=0.3, the period of the attractor was Wherex is a positive real number ana, andm, are inte-

found to be abouP~2.29x10"2 where the rotation number gers, then the rotation numbBrbecomes

was R=Q/P~0.336 with w(B(Q/P)) being about

2.20x10 '*8 The Lyapunov exponent, which is given by 1 1

A=P 1In(DIPTEP~IPT) "wherer is defined in Eq.(B9), R=3 1=yit mym,| |’ .4

was about-1.33x10" ">, The orbits with such a long period

cannot be identified in fact as periodic, but would be identi-An example of irrationaR is as follows. We can choose two

fied as quasiperiodic when we use only the numerical analypositive integerp andq that satisfy a relatiom?=np?+ 1

sis of dynamical systems in which a mapping function canwheren is a nonsquare number and sgt=q2 andm,=—1.

not be iterated infinite times. For the systems where PoincaréhenR becomesR= (p/2q)/n.

map is nonsmooth, the probability of the occurrence of peri- It might be difficult to observe the periodic motion with

odic orbits with long period may be high. Therefore, we very long period, not only numerically but also in experi-

should be careful in identifying quasiperiodicity. ments, because the contamination from noise is inevitable in
We consider how high the probability of the occurrenceactual systems. When a periodic orbit with very long period

of orbits with a long period is in region I. We can prove thatis disturbed by noise, the orbit would not be distinguishable

the expectation value of the perid® becomes infinite as from quasiperiodic one with noise. However, in that case,

follows. Because of the complete phase locking, the rotatiosuch apparently quasiperiodic motion is the result of super-

numberR is rational for all values oB except the set with imposition of noise and the inherent dynamics itself is peri-

Lebesgue measure zero, and thus the pefoaf an orbit, odic. Since identifying directly the extraordinarily long pe-

which is the denominator oR, is a Lebesgue measurable riod is difficult both by numerical calculation and by

function of B. Therefore, we can make Lebesgue integratiorexperiment, an analytical approach adopted in the present

of a quantityP”, where 5 is a positive number, in the range paper is indispensable in order to know the substance of the

0<B=1 and consider the value of the integral as the expecdynamics. Now that we know the dynamics of the system

tation value ofP”. From the relation(4.8), it is derived that described by the map considered here, it is highly possible

the expectation valuédp(7) of P”7 becomes infinite for that the inherent dynamics of a system is a periodic one

7>2(d"1-1). Let 7, be a positive number that satisfies the having a long period when a map obtained experimentally is

relation 77> 7,>2(d " *—1). From the inequality4.8), the re-  such that the map in the present paper, or its equivalent, is

lation w(An)=N" "0 holds for largeN. Then we obtain the blurred due to noise.

relationshipAp(7)=N7N" "0 because the perioB exceeds Recently, we presented a model of lipid-bilayer mem-

N on the sef\\. Ap(7) becomes infinite in the limiN—.  brane in order to clarify the mechanism of self-sustained os-

Whenh is small andeE/D takes a value near 1, which is the cillation of the electric potential across the membrf2 5].

condition of the occurrence of a long period, the expectatioThe model in the present paper is considered to describe the

value Ap(1l) of period P becomes infinite because dynamics of the lipid-bilayer membrane operating under a

1>2(d"1-1) when D/E)?[1— (E/D)¥ <1 special condition. In the previous mod@H], the oscillation
In region Il of the parameter space, the probability for theof the membrane potential is driven by the repetitive gel—
occurrence of the orbits with a period longer thnde-  liquid-crystal phase transitions of the membrane. The transi-

creases witiN exponentially, as seen from the relationshiptions are generated by the repetitive adsorption and desorp-
(4.12. Therefore, physically, the transition induced by thetion of protons on the membrane surface that are induced by
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periodic or aperiodic reversal of the direction of protonic piecewise-linear circle map having two nondifferentiable
current. The gel state is stabilized by the proton adsorptionpoints. An exact analytical study for a wider class of nons-
while the liquid-crystal state is stabilized by the proton de-mooth mapping functions has not yet been obtained and re-
sorption. This previous model was simplified to a one-mains as a future task.

variable representatiofb]. The simplified model describes

the evolution of proton concentration at the membrane sur-APPENDIX A: SYMMETRY PROPERTIES OF THE MAP

face driven by repetitive phase transitions between the gel Here we show that the range of the paraméezan be

and liquid-crystal states of the membrane. The tranSitior}estricted to &B=<1 and that it is enough to consider the

from the gel to the liquid-crystal states occurs when the Projreducible fractionQ/P for 0<Q<=P. In region I, the map

ton concentration decreases below a threshold value and “T?t) is defined by Eqs(3.3 and(3.5), whereD>1>E>0.

reverse transition occurs when the proton concentration Ny spow theB dependence explicitly, we denote the nfap
creases above another threshold value. The threshold Va|lé%f(t-B)_ The parameteB defined By Eq.(3.6) must be

for the forward transition _pecomes generally different frompositive, but at first we assur@ in the extended domain
that for the reverse transition. The model showed complete . g < for convenience.

phase locking as We_II as periodic_ity, q_uasipe_zriodic_ity, and First, we note that the maf(t;B) satisfies
chaos under the application of a sinusoidal stimulating elec-
tric current, and the routes to chaos were clarified. The sim- fP(t;B+n)=f"(t;B)+nP (A1)
plified model of the lipid bilayer was named “the model of
repetitive phase transition with hystere¢$RPTH mode),”  for any integem (we assumé as a positive integerThere-
where the phase transition of lipid bilayer membranes ha$ore,
hysteresis.

_ The present model corre;ponds to one of the simplgst ver- if Be 3(9) then B+ne 3(9 + n) , (A2)
sion of RPTH model for which a temperature modulation is P P
applied. With the variation of temperature, the threshold val- . . .
ues of the proton concentration at which the lipid bilayerWhereB(Q/P) is the Q/P-entrainment region.
undergoes the gel-liquid-crystal phase transitions vary with The map has another symmetry property. If we rotate the
time because the amount of protons required to induce thgr_aphf(t;B) vst by.” around the pointA/2,A/2), we ob-
transition depends on the temperature: the(liglid-crysta) ~ @in the transformation
state is stabilized with decreasiriincreasing temperature . e R_(P_
[24]. The present model corresponds to the case where the fGB) =M -B-(D-DAJ. (A3)
threshold value is modulated only for the transition from theThis leads to
liquid-crystal state to the gel state and the modulation is
triangular and where the higher-order fluctuation of ion con- R(B)=—R[—-B—(D—-1)A], (A4)
centration is negligible and the proton concentration varies
linearly with time. namely,

In more realistic cases, the varial{evaries exponentially Q Q
with time and the may is no longer piecewise linear when if Be B( _> then —B—(D—1)Ae 3( — _>_
damping factors appear on the right-hand sides of the equa- P P
tion of motion(2.1). When both the upper and lower thresh- '
olds are modulated, four nondifferentiable points appear inFrom Egs.(A2) and(A5), we find
the mapf in modulo 1. We cannot apply the mathematical Q P-Q
results obtained in the present paper directly to those cases. BL(E = 1—(D—1)A—BU( P ) (AB)
We tried numerical experiments using maps having nonlin-
earity that corresponded to the damping. The results showed Q

5|

(A5)

that the probability of the occurrence of a long period was

similar between these maps and the linear one. So similar

results are expected for the occurrence of CPL and the fraCte\llhereB andB,, are the lower and upper boundaries of the

dimension of quasiperiodic set in more general cases. HOWr'egionBL(Q/P) ql’hus we obtain

ever, the result that=3 holds in region |, which comes from '

one of the terms on the right-hand side(4f7), is an excep- B( Q) B( P-Q
P

tion. This inequality does not hold generally because it de- M )

pends on the property of the system that the width of the

entrainment regionk, (Q/P),By(Q/P)] is proportional 10 \yhereu[] denotes the Lebesgue measure of theBs@w-

the quantity|((P))| defined in Eq.(C7) and this property ing to these symmetry properties, it is enough to consider

does not hold in general when the mapping function is nopnly for 0<B<1 and G<Q<P.

piecewise linear or when it has more than two nondifferen-

tiable points in modulo 1. Even thed,is still expected to be  \ppENDIX B: DERIVATION OF THE UPPER BOUNDARY

positive, though there is a possibility théitgoes to 6 just By (QIP)

before the mapping function becomes discontinuous.
In the present paper, we have clarified the dynamical be- The upper boundarg (Q/P) of the Q/P-entrainment

havior of the systems described by a monotonic continuousegion B(Q/P) is given by

P

:1—(D—1)A—BL(P;Q), (A7)

= : (A8)




By(Q/P)=T(Q/P)/S(Q/P).
QuantitiesS(Q/P) andT(Q/P) in this equation are given by

(B1)

P
S(Q/P)=i§1 U(QIP,i),

(B2)
P
T(Q/P):Z1 U(Q/P,i)V(Q/P,i), (B3)
where
U(Q/P,1)=1, (B4)

U(Q/P,i+1)=U(Q/P,i)W(Q/P,i) for 1<i<P-1,

(BS)
with W(Q/P,i) andV(Q/P,i) defined by

.. |D when 0sk+Qi(modP)<k—-1
WQ/P.D=1E  \when k+ 1=<k-+Qi(mod P)<P—1,
(B6)

. ]1 when O<sk+Qi(modP)<Q—-1
VIQIP.D=1g  when Q=k+ Qi(mod P)<P— 1.

(B7)
The integelk is defined by
k=[Pr], (B8)
wherer is given by
r=—In(E)/In(D/E) (B9)
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1+Q

(b)

f°(t;B) (a)

Q

0

FIG. 6. Graph of the mapP°(t;B) in the case oP=3.

Bu(Q/P)=1(0;By(Q/P))="(xo;By(Q/P))
Q-1
= Xo= 20 p(lp), (B12)

where we have defined® intervals |,=[X,,X,11) (N
=0,1,...Pp—1).

In the following, we will calculateZ 2 ¢t w(1;). We begin
with showing that the poinfA, at which the slope of the
mapping functionf (t;B(Q/P)) is discontinuous, is on the
intervall,, where the integek is given by Eq(B8). We note,
from Eq. (B11), that the interval,, is mapped orl ,, with
m=n+Q (mod P):

(1) =f(1,:By(Q/P))(mod D=1 omod p)-

If an intervall,, is contained in the intervdD,A), on which
the slope iD, thenl , is expanded by a factd by the map

(B13)

and [x] denotes the Gauss symbol, the maximum integer thaf, which means

is not larger tharx.
In order to derive Eq(B1), we first note thaB is equal to
By (Q/P) when it satisfies
fP(0:B)=0Q. (B10)
This equation is obtained as follows. Since the m@pB) is
monotonic and piecewise linear, having two points) and

A at which the slope is discontinuous, the mift;B) is
also monotonic and piecewise linear, havin@ 2oints

for O<t<l1l at which the slope is discontinuous. For

BeB(Q/P), fP(t;B) must intersect with the lineg(t)
=t+Q [(a) in Fig. 6]. Specifically, whenB satisfies Eq.
(B10), the function becomes tangent to the lig&) at P
points[(b) in Fig. 6]. This means thaB satisfying Eq(B10)
is the upper boundary oB(Q/P) (see[26] for rigorous
proof).

Next, let us define® numbersf"(0;B,(Q/P)) (mod 1
(n=0,1,..P-1) in increasing order as
0=Xp<X;<---<Xp_1<1=xp. Then we find that

f(Xi ;Bu(Q/P))(mod D =X g(mod ) - (B11)
as a result of Eq(B10). SinceB=1f(0;B) as seen from Eq.
(3.3, By(Q/P) is given by

#(IhiQmod p)) =Du(ly) for Osnsk-1 (B14)

whenAel, . Similarly, an intervall, on which the slope is
E is contracted by the map

For the intervall that includes the poinA at which the
slope changes fror® to E, we obtain

M1k aemod py) =Fue(ly), (B16)
where the factoF is given by
F={D(A—X)+EX 1= A} (Xr1—X) (B17)

satisfyingE<F <D.
Starting froml, we return tol, after P successive map-

pingS Of f: IO_>IQ_>I2Q(mOd p)—>"‘—>|pQ(mod p)=|0.
Then, taking account of EqsB14)—(B16), we obtain
D*EP K TR u(lg) = u(lo). (B18)

Taking logarithms of the above equation, we obtain
k=[Pr], which is Eq.(B8).
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In the following, we employ the abbreviatiopek+Q  where
(mod P). Then, the condition under which the interval

f i—l(lj) coincides with one of the intervalg,l;,...,lg_1 is G,=DIPrIEP1-[Pir], 3
0<k+Qi (mod P)<Q-L1. Therefore,
Q-1 P G,=DIP2r1+1gPa-[Parl-1 (C4)
ngo M(I”):; “(?i_l(li))V(le'i)’ (B19) Many inequalities necessary for our proof are derived

from the above property. One of them is given as follows:
where the definition o¥/(Q/P,i), Eq. (B7), is used. We can whenP,Q—PQy=1 is satisfied for two irreducible fractions

prove, by induction, that Qo/Po andQ/P(Qo/Po<Q/P), the inequality
w1 )=p()UQIP,i) (i=12,...P). (B20) [ B(Q/P)]=&BL(Q/P)—By(Qo/Po)},  (CH
Substituting Eq{(B20) into Eq. (B19), we obtain holds, where
Q-1 P 2E E 14 S(Qolpo)
3 wll)=p(1)Z UQPIHVQIP). (B2D) =PI T [1‘(5) ECLE
The_quantity(1;) is obtained as follows. Because the set (Py)y=Pr—[Pr+3]. (C7)

{1;,£(1)),....F771(1))} coincides with{lg,l;,....lp_1}, We

obtain, from Eq.(B20), The proof of this inequality will be published elsewhégé]

because it requires lengthy arguments.

P P-1 If we could find a suitable numbe¥(<1) that is indepen-
M(|j)2 U(Q/P,i)=2, u(ly)=1. (B22) dent of N and satisfies an inequality like
i=1 n=0 m(Ans 1) m(Ay) <6, the inequality would guaranteg(Ay)
converging to zero faster thaf'. But this does not hold.
Instead, we can derive a relation as(AN)/w(Ay)
<p, (<1) [Eq. (C12)], which yields a slower convergence of
w(Ay) asNM /"4 Deriving the inequality directly from the
relation (C5) is not easy, however, because the factor

APPENDIX C: OUTLINE |((P))|, and sa, may become very small for some values of
OF PROVING INEQUALITY (4.5 P. Therefore, we adopt the following procedure, instead of

The measureu(Ay) can be obtained by evaluating the €Stimatingu(Ay) directly. L _
measureu[ B(Q/P)] of the region3(Q/P) as seen from Eq. _For @ given small number (0<e<3), we defineN, as the
(4.4). The boundaries of the region are given by Egss) ~ Minimum positive integer that satisfiggNy))|=e. For each
and (B1). integer N that is not sma_ller thamN,, we conS|de_r a set
Our fundamental strategy for proving inequali@.5) is ~ An(€) (DAy), which is defined as follows, depending en
as follows. We want to know how(Ay) changes withN. ~ Let us write a Farey series associated witfas
The irreducible fraction€/P appearing in Eq(4.4) form a

From Egs.(B12), (B21), and (B22), with the definitions of
S(Q/P) andT(Q/P) [Egs.(B2) and (B3)], we see that Eq.
(B1) holds.

Farey series associated with the intefjerThe Farey series o_ %<%<% QM*Q%
associated witiN+1 is formed by adding several “medi- 1 Py P1 Py Pu-1 Pwm

ants” Q'/P’ (with P'=N+1) between the neighboring ir- 1

reducible fractionQ;/P; and Q;,,/P;,, belonging to the =2 (1<P,<N for 0<j<M). (C8)
previous series associated with Therefore, adl increases, 1 .

we need to evaluate the measwé€3(Q’/P')) for newly i ) . _
born mediants. For this purpose, we use the following propf OF givens, we first subtract the intervai(Qy/Py) [=5(1/

erty, the proof of which is given in[26: when D]togetherwith all interval$(Q;/P;) such thaf((P;))|=
P,Q,— P,Q,=1, i.e., when two irreducible fractior®,/P from the interval(0,1]. Now there are rather narrow intervals
andQ,/P, (Q,/P,<Q,/P,) are neighboring each other in a left. When there are any(one or morg¢ intervals
Farey seriesS and T [Egs. (B2) and (B3)] for the mediant  B(Qa+1/Pa+1).B(Qa+2/Pays2),--B(Qp-1/Pp_1) between

+0.)/(P.+P.)=0/P are given b two neighboring intervalsB(Q,/P,) and B(Qy/Py) that
Q1+ Q2)/(P1+P2)=Q g y have been subtracted because of the condifiofR,))|=«
S(Q,/P1)+G,S(Q,/P,) and |((Py,))|=¢, we subtract the interval among them that
(Q) when [Pr]=[Pyr]+[Par] has the minimum denominaté?, ,
Sl=|= (C)
P G2S(Q1/Py) +S(Qa/P2) Pe=min(Pai1,Pas2,...,Pp-1). (C9

when [Pr]=[Pr]+[Por]+1,
The resultant set thus obtained is defined\@ge). The set

T(Q1/P1)+G1T(Q2/Py) Aj(e) is therefore a sum of open intervals such as
- Q) _) when[Pr]=[Pir]+[Por] c2  [Bu(Q/P).BL(Qu/Pr)], whereP;,P,<N and at least one
P G2T(Q1/P1)+T(Q2/P2) of [({(P))| and [{{(P)}| is not less thare. Then we can

when [Pr]=[P r]+[Pyr]+1, prove[26], using the relationship&1) and(C2) and choos-



o4
ing a suitable value fot that should be neither too large nor
too small(actually we may set=1/40), that the inequality

qE/;,J p[B(a/p)1= (1= po){BL(Qm/Pm) —Bu(Q/P))}
(C10

holds, where(B,(Q,/P)),B.(Q/Pr)) is any one of open
intervals contained im\{(¢) and py is a positive number
taking a value smaller than 1 that depends:dout not onN,
nor the choice of the interval iA{(g). The summation on
the left-hand side of the inequaliC10) is taken over irre-
ducible fractionsg/p such that

Q_4_Qn
Pn’

P, N<p=4N.

(C1y

From the relationg4.4) and (C10), we can easily prove
the inequality

p(Agn)<pou(Ay) for N=Ng. (C12

We obtain the inequality4.5) from the inequality(C12) by
defining p=In(1/pg)/In 4 andCy= (4Ng)”.

APPENDIX D: OUTLINE OF THE DERIVATION
OF INEQUALITIES (4.7) AND (4.9

The expressiod.7) is composed of the three inequalities

d=1/(1+Cgh), (D1)
d=1, (D2)
d<1/(1+p/2), (D3)
where
E 2 E 1/4
slol /-5 ] s

and p is the positive number appearing in inequalf#5).
Here we only give an outline of derivation @1) and(D3).
The proof of(D2) is presented elsewhef26].

In order to derive(D1), we introduce the following ex-
pression for the fractal dimensiod:(H) of a setH, a

bounded set of real numbers, which can be derived from th

usual definition of the capacity dimension

de(H)=1- lim sup

e—0+ 0<éd<e

[ Inu(Se(H, 5))

Iné ] (D)

whereSg(H, §) is the sum of the open intervalg{ ,x+ 6)
forall xeH: Sg(H,d8)=U, y(x—8,x+ ). Then, we can
evaluated [=d(A)] by evaluatingu(Sg(A, ).

We first present an inequality
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Q2 Q:
AEENS
[BU(%)—BL(%)]CS when P;<P,
- P2 P2 (DG)
- Q1 Q;
By P, —-B_ P, Cs when P>P,,
1 1

which holds forQ,/P,<Q,/P,. The proof of this inequality
is given in[26].

Next, letAg(8) be the set which is obtained by removing
all the entrainment regions of length equal to or larger than
26 from the interval(0,1]. From the definition ofAg(5) and
the inequality(D6), Ag(d) is expressed as the sum of discon-
nected intervald ;,L,, ..., each of which has the length
equal to or larger than & 5. Namely,

Ag(8)=UL;, (D7)

whereL;NL;=¢ for anyi#j and u(L;)=2Cg for all i.
Now, for any interval of length not smaller than&Cg, we
can easily show, from the definition &(L,J),

n
1+Cq

1+

p(Se[L,(1+ 77) 6= u(Sk(L,0)) , (DY)

wherez is any positive number. Applying the above inequal-
ity for each L, in (D7) and noting that
Sr(A,6)=Se[Ar(6),0] and S¢[A,(1+ 77) 0] =Se[Ar(),
(1+ 5) 8] hold by definition, we obtain

7
1+Cg

. (D9)

n(Se[A,(1+7)8])= ,U«(SF(A,5))( 1+

We substitutes=(1+7)~" for m=1,2,... ,n into (D9)
successively and obtain

w(Se(A,1)=<u(Se[A,(1+ 7)) "D[1+ 7(1+Cg) 1"
(D10)

Taking the logarithm of(D10), dividing it by In(1+%)~",
and taking the limin—oo, we obtain

<

ﬁlhere(1+ 7)” " was replaced by. Taking the limit —0+
in the inequality(D11) and usingD5) with H=A, we finally
obtain the inequalitfD1).

The inequality(D3) is derived from inequalitie$4.5) and
(4.8). We show here the outline of deriving inequaliy.8).
For this purpose, we use the expression for the fractal dimen-
siond of A,

In[1+ 7(1+Cg) 1]
In(1+ 7) ’
(D11)

lim sup
e—0+ 0<d<se¢

In[(Sk(A, 6))]
Iné

. Inu(Ag(n))
lim inf ———,

1
1= [
ko n=k nn

3= (D12)
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whereA ¢(n) is the set thgt has the minimum measure among Q Q, Q, Q;
such sets that are obtained by removimgntrainment re- Q Q S P, T P, -5 P T P,
gions from the interval0,1]. The proof of(D12) is presented BU(—Z) — u(—l> = 1 2 !
elsewherg 26]. P, Py S( Q_) (%)

From the definition ofA g(n), we note that P P,

(E7)
p(Ay) = m(As(N?) (D13  from Eq.(B1), Egs.(E5) and(E6) lead to

because the number of the entrainment regiB(/P) sat- 2P, 1
isfying 0<P=<N and 0<Q<P is not larger tharN?. Sub- B (Q2 -B (Ql) _ (1-BE)°E (E8)
stitution ofn=N? and(D13) into (D12) leads to the inequal- Ui P, YIPy) (1-EPH(1-EP2)°
ity (4.9).

We can obtaiB, (Q,/P,) — By (Q4/P;) using Eq.(E8) if
we knowB(Q,/P,) — B (Q,/P,). For this purpose, we de-
rive B, (Q,/P,) in the following. Let us consider a series of
irreducible fractions

APPENDIX E: OUTLINE OF THE DERIVATION
OF INEQUALITY (4.1)

In this appendix we show that a relationship

BL( Qz) 8,
P2 Then, applying Eqs(E3) and(E4) n times starting from the

holds in region Il for any two irreducible fractior®,/P,  Pair Qi/P; andQ,/P;, we obtain
andQ,/P, that are neighboring each other in a Farey series

Q1 QutQ2 Q:1+2Q; Q:1+nQ,
%) _ (1-E)’EPr Pt - P," P,+P,’ P1+2Q," """ P,+nP,’
P,/ (1—EP1)(1-EP2)

(E9)

associated withN andQ,/P,<Q,/P,, namely, +n
o Lt o) Q2 E EPLtkP2 (E10)
P,+nP, P, T\ P,k
P1Q—PQ;=1. (E2
Inequality (4.11) can be derived directly from the above Q:tnQz) _[(Q Q2 P +KP
equation because (E)?EP1*P2~1<[right-hand side of P,+nP, =Tlp, P, 15, P,/ E ER (B1D

(ED]<EP1*P271<EN where the inequalitiesOE<1 and

N<P,+ P, are taken into account. Substituting (E10 and (E11) into the expression for the
We first note that the maf(t) for region Il can be de- lower boundary of3(Q,/P,),

rived by taking the limitD —c so thatr -0+ in the map for

region I. Then, taking the limit in Eq4C1) and (C2), we Q Q,+n0Q
have the relations BL(—Z) = lim By #)
Pal 1w P,+nP,
Q) (Ql (Qz) Q,+nQ Q,+nQ
S|=|=9S +EP1g E3 =i ! 2 Xt X2
(P P, P, 3 lim T P1+nP2> S P1+nP2)’ (E12
Q Q, o[ Qs we obtain
T E) T( P, +E"IT| — P2 (E9)
12 e 2
for irreducible fractions satisfyinge2) and for the mediant Q, P, P,
Q/P=(Q;+Qy)/(P1+Py). B P—) =70 o, (E13
Using Eqg.(E3), we can prove the following equation for 2 s(—l +9 —Z)G
any irreducible fractiorQ/P, by induction: Py P2
where
o Q) =E E5
P/ 1-E° E9 EP1
Furthermore, using EqSEJ) and (E4), we can prove, by
induction, the equation From Egs.(B1), (E5), (E6), and(E13 we obtain
Q1> (Qz) (Qz) (Ql) _ Q Q.| (1-E)%EP2!
S| =|T S| ==|T EP2-1, E6 2 X2\ ==
( Py P2 P2 P1 €9 BU( P2) BL( P, 1-E™ (E19

Because Using Eqgs.(E8) and (E15, we obtain(El).
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