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As a model for modulated relaxation oscillators, an integrate-and-fire model in which the sawtooth motion
of a state variable is modulated by another sawtooth oscillation is investigated. The dynamics of the system is
described by a mapping function that maps successive firing times. The map is a piecewise-linear circle map
having two continuous nondifferentiable points or one discontinuous point, which is equivalent to the Poincare´
map investigated by Christiansen, Alstro”m, and Levinsen@Phys. Rev. A42, 1891 ~1990!#. It is proved ana-
lytically that a different type of dynamics appears in a nonchaotic region of parameter space in the present
system, that is, complete phase locking~CPL! with positive fractal dimension of quasiperiodic set occurs in an
entire region where the mapping function describing the system dynamics is monotonic and continuous. It is
also shown that the probability of occurrence of periodic orbits with period longer thanN is evaluated by a
power ofN, that is, byN2(121/d), whered is the dimension of quasiperiodic set that is positive and less than
1. If the modulation is weak, the dimensiond takes a value near 1 and the orbits with very long period appear
frequently. When the modulation is enforced, a discontinuity appears in the mapping function. It has been
known that a monotonic and discontinuous piecewise linear map results in CPL with zero dimension of
quasiperiodicity@B. Chritiansen, P. Alstro”m, and M. T. Levinsen, Phys. Rev. A42, 1891 ~1990!#. It is
identified in the present paper that the transition induced by the occurrence of discontinuity is the one within
CPL such that the dimension of quasiperiodicity changes abruptly from a positive number to zero. This is the
transition in which the periodic orbits with long period disappear.@S1063-651X~96!00909-9#

PACS number~s!: 05.45.1b, 87.10.1e, 02.30.2f, 64.70.Md

I. INTRODUCTION

Modulated relaxation oscillators and their integrate-and-
fire models have attracted much attention as they have im-
portant applications in many different fields such as biology
@1–5#, electronics@6–8#, and solid state physics@9#. The
dynamics of the modulated oscillators can be described by a
circle map. Recently, much attention has been paid to the
circle maps derived from the modulated integrate-and-fire
models. It has been found that the maps have many interest-
ing characteristics that ordinary circle maps do not have.
Most of these characteristics are attributable to the appear-
ance of discontinuity in the map. As the modulation is en-
forced, a discontinuity appears in the map, which results in
complete phase locking~CPL! in a finite region of the phase
space, in which the quasiperiodicity has zero measure@7,10–
14#. Thus a nonchaotic transition from quasiperiodicity to
CPL occurs with the appearance of the gap. The dimension
of quasiperiodicity is zero@10,13#. This is in contrast to the
cases of usual circle maps in which CPL occurs only on the
critical line. Crossing the critical line, the phase-locked re-
gions begin to overlap and chaos develops. Thus quasiperi-
odicity changes into chaos across the line. In maps having

both discontinuity and noninvertibility, a different type of
intermittency~type V! has been found@15–19#. It has also
been found that the interaction between discontinuity and
noninvertibility induces complex dynamical behavior@8,20–
22#.

In the present paper we prove analytically that a different
type of complete phase locking occurs in a dynamical system
described by a circle map derived from modulated integrate-
and-fire models. We show, for monotonic continuous
piecewise-linear circle maps having two nondifferentiable
points, that CPL with a positive dimension of the quasiperi-
odic set occurs in an entire region of the phase space. The
map was derived as a mapping function that maps successive
firing times in an integrate-and-fire system that has a finite
resetting time and in which the upper or lower threshold is
triangularly modulated.

Christiansen, Alstro”m, and Levinsen@10# made a detailed
analysis on a piecewise-linear map, in order to analyze sys-
tematically the routes to chaos and CPL occurring in the
maps derived from modulated integrate-and-fire models.
Their map is the Poincare´ map derived from a model where
the resetting time is abrupt and both the upper and lower
thresholds are triangularly modulated and the map in the
present paper has substantially the same structure as theirs.
They derived several scaling laws for the cases where the
map becomes nonmonotonic and/or discontinuous. For a*Author to whom correspondence should be addressed.
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monotonic and continuous map, they assumed that both pe-
riodic ~phase locked! and quasiperiodic states were possible
based on the values of the Lyapunov exponent the system
might take, but did not clarify which dynamics, periodicity
or quasiperiodicity, prevailed in that case.

Whereas quasiperiodicity has a positive measure in mono-
tonic and continuous circle maps when the maps are suffi-
ciently smooth@14#, the present result shows that the mea-
sure of quasiperiodicity can be zero~CPL! for monotonic
and continuous, but nonsmooth, maps. The fractal dimension
of the quasiperiodic set is positive and less than one in the
present map, which is piecewise linear and has two nondif-
ferenciable points. Since the dimension of quasiperiodicity is
zero in the case of CPL associated with the discontinuity of
the map@10,13#, the transition induced by the appearance of
the discontinuity is the transition within CPL with which the
dimension of quasiperiodicity changes abruptly, as opposed
to the transition from the coexistence of quasiperiodicity and
phase locking to CPL considered by Christiansen, Alstro”m,
and Levinsen@10#.

We also show for the present map that, when the map is
monotonic and continuous, the measure of the set of param-
eter values that give the periodic orbits having the period
longer thanN is evaluated byN2(121/d), whered is the di-
mension of the quasiperiodic set. When the modulation is
weak,d takes a value near one. Then the orbits with very
long period appear frequently. Because an extraordinarily
long period often appears, we cannot distinguish between
such periodic orbits and quasiperiodic ones by numerical
analysis in which mapping cannot be iterated infinite times.
In order to obtain a clear result, an analytical approach is
indispensable.

It is proved also in the present paper that when the map is
monotonic and discontinuous, the probability of occurrence
of orbits with period longer thanN decreases exponentially
with N, as denoted by Christiansen, Alstro”m, and Levinsen
@10#. Thus, from another point of view, the transition in-
duced by the discontinuity in the map is such that the depen-
dence of the probability of a long period onN changes from
a power law to an exponential law and the orbits with long
period disappear.

II. MODEL

We consider the model in which the ‘‘sawtooth’’ motion
of a state variableX is modulated by a thresholdXT in a
sawtooth way, as shown in Fig. 1. The linear motion of the
state variable corresponds to the linear charging and dis-
charging of a capacitance as in the model of Glass and

Mackey @1,23#. It also corresponds to one of the simplest
version of the model for the self-sustained oscillation of the
membrane potential of lipid bilayers@5,24#, which is induced
by the repetitive gel–liquid-crystal phase transitions of the
membrane associated with the adsorption and desorption of
protons on the membrane surface, in which the higher-order
fluctuation of ion concentration is neglected and there is no
external stimulating current.

The present model is similar to that of Christiansen,
Alstro”m, and Levinsen@10# in which the resetting is abrupt
and both the upper and lower thresholds are modulated tri-
angularly, but the present model has finite resetting time and
only the upper threshold is modulated and the lower thresh-
old is set at zero as shown in Fig. 1. The present model is
thus a triangular-modulation version of the model considered
by Glass and Be´lair @3,25# in which the modulation is sinu-
soidal.

The time evolution of the state variable, or activity,X
follows the equation

dX

dt
5 Hau for S~ t !5u

ad for S~ t !5d, ~2.1!

whereau ~ad! is the changing rate ofX during the ‘‘up’’
~‘‘down’’ ! phase in whichX is increasing~decreasing!. S
denotes the state of the system andS5u (S5d) means that
the system is in the up~down! phase. The state indexS(t) is
given by

S~ t !5H u for X<0
d for X>XT

S~ t2Dt ! for 0,X,XT ,
~2.2!

whereXT is the upper threshold. Equation~2.1! shows that
the change rate ofX is determined by the stateS and Eq.
~2.2! shows that the phase state is determined by the value of
X with hysteresis. The system described by Eqs.~2.1! and
~2.2! generates self-sustained oscillations ofX andS when
au.0 andad,0.

We apply a triangular modulation to the upper threshold
XT as

XT~ t !5X01hY~ t !, ~2.3!

whereX0 ~.0! is the base line of the upper threshold,h ~.0!
is a parameter that represents the degree of modulation, and
Y(t) varies linearly back and forth in the range from 0 toYT
~.0! as

Y~ t !5H ju@ t2tp~n!#
for tp~n!<t<tp~n!1YT /ju

jd@ t2tp~n11!#
for tp~n!1YT /ju<t<tp~n11!.

~2.4!

HereXT increases with the rateju ~ju.0! and decreases with
the ratejd ~jd,0!, tp(n)5nYT(1/ju21/jd)1f, n is an in-
teger, andf is the phase of the modulating oscillation of
Y(t).

FIG. 1. Schematic of the dynamics of the system.
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III. MAP FOR THE DESCRIPTION OF THE DYNAMICS

A. Derivation of the map

The dynamics of the state variableX described by Eqs.
~2.1! and~2.2! under the threshold modulation given by Eqs.
~2.3! and ~2.4! is completely described by a mapping func-
tion that maps successive times at whichX reaches the lower
threshold, that is, the times at which the transitions from
down phase (d) to up phase (u) occur. We derive here the
mapping functionf for the iterative transition times. Rescal-
ing the time properly, we can assume that the period of
threshold modulation is 1 without losing generality. Then,f
becomes a circle map of period 1, that is,f (t11)5 f (t)11.

Since the variations of bothX andXT are linear, the map
f is piecewise linear~Fig. 4!. The slope off is obtained by
calculating a quantityDt2/Dt1, whereDt1 is a difference
between the transition times at which two nearby orbits un-
dergo the transition fromd to u successively andDt2 is the
time difference for the orbits when they undergo thed→u
transition the next time as seen in Fig. 2. The value of the
slope is changed depending on whether the transition fromu
to d at whichX reaches the upper thresholdXT occurs during
the period whereXT is increasing or the transition occurs
during the period whereXT is decreasing. If theu→d tran-
sition occurs whenXT increases with the ratehju , the slope
of f is given by

D5~12ad
21hju!/~12au

21hju!, ~3.1!

and if the transition occurs whenXT is decreasing with the
ratehjd , the slope is given by

E5~12ad
21hjd!/~12au

21hjd!. ~3.2!

When au.hju , the map f is continuous and has two
slopesD andE. On the other hand, whenau<hju , the map
f becomes discontinuous and has only the slope ofE. This
comes from the fact that theu→d transition does not occur
whenXT increases, since the increase ratehju of XT is larger
than thatau of X andX does not reachXT . The discontinuity
appears at the point whereu→d transition occurs at a mini-
mum point ofXT as shown in Fig. 3.

We assume thatXT reaches a minimum point at
t5a u

21X0 . This can be done by adjusting the phasef of the
modulation. Thent5n ~integer! becomes the point at which
the mapf changes the slope~for au.hju! or has a discon-
tinuity ~for au<hju! as shown in Fig. 4. Finally, we obtain

the mapf as

f ~ t !5 HDt1B for 0<t<A
Et1B2E11 for A<t<1 ~3.3!

in the case ofau.hju and

f ~ t !5Et1B2E11 for 0,t<1 ~3.4!

in the case ofau<hju , where

A5~12E!/~D2E! ~3.5!

and

B5~au
212ad

21!X0 . ~3.6!

In the extended domain2`,t,`, f (t) is defined such that
f (t1n)5 f (t)1n for any integern. The mapf represented
by Eq. ~3.4! has a vertical gap of the size 12E at t5n.

FIG. 2. Orbits separated byDt1 in time will, after au→d tran-
sition, be separated byDt2.

FIG. 3. The mapping function becomes discontinuous when
au<hju because some part of theu→d thresholdXT becomes
‘‘invisible.’’

FIG. 4. Graphs of mapping functionf ~mod1! in different re-
gions of parameter space. The regions correspond to those in Table
I.
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B. Classification of regions in parameter space

When the mapping functionf is monotonic, the asymp-
totic orbit of the state variableX is periodic and/or quasip-
eriodic, and whenf is nonmonotonic, the orbit may become
chaotic depending on the values of system parameters. Al-
though the mapf in the present system has three parameters
D, E, andB, the monotonicity and the continuity off is
determined solely byD andE. The result is summarized in
Table I. The mapf is monotonic if and only ifE>0. The
necessary and sufficient condition for the continuity off is
D.0. The conditionD,0 can be used to classifyf as dis-
continuous, thoughD does not appear inf when it is discon-
tinuous, since the parameterD defined by Eq.~3.1! is nega-
tive whenau,hju . The orbit ofX becomes chaotic when
E,21, because 0<D,1 does not hold as seen from Eq.
~3.1! and the absolute value of the slope off is larger than 1
everywhere whenE,21. From these considerations, param-
eter space is classified into six regions shown in Table I.
Typical graphs off ~mod1! in different regions are shown in
Fig. 4. The map here is essentially equivalent to the one
discussed by Christiansen, Alstro”m, and Levinsen@10#.

We are mainly interested in regions I and II in this paper,
as mentioned in Sec. I. In region I the map is monotonic,
continuous, and piecewise linear and has two non-
differentiable points att50 andA. In region II the map is
monotonic and piecewise linear and has a discontinuity at
t50. When a circle map is monotonic and discontinuous like
the one in the region II, CPL occurs@10–14,7# and the di-
mensiond of the complementary set of phase-locked regions
is zero @13,10#. We will prove in Sec. IV that CPL occurs
also in region I and thatd is positive. Therefore, the transi-
tion from region I to region II associated with the appearance
of discontinuity is the transitionwithin the CPL region such
that the dimension of quasiperiodicity changes abruptly at
the transition point, although Christiansen, Alstro”m, and
Levinsen@10# suggested that the transition was the one from
the coexistence of periodicity and quasiperiodicity to CPL.
In region III the orbit ofX becomes periodic or chaotic de-
pending on the parameter values and it is periodic with pe-
riod 1 in region IV because the graph off intersects with
diagonal line and the absolute value of the slope off is less
than 1 at the intersection point.

Figure 5 shows the bifurcation diagram of the present
system when the modulation parameterh in Eq. ~2.3! is var-
ied. When the modulation is weak, the system is in the newly
found region I. With increasingh, the system bifurcates into
region II or III depending on whetherhD,hE or hD.hE ,
whereh5hD ~5au/ju! is the zero point ofD21 as seen in

Eq. ~3.1! andh5hE ~5ad/jd! is the zero point ofE as seen
in Eq. ~3.2!.

IV. DYNAMIC PROPERTIES OF THE SYSTEM
WITH A MONOTONIC MAP

In this section we summarize the results obtained in the
present study in order to clarify the nature of the nonchaotic
transition between regions I and II. We describe only the
outlines of proofs of the results obtained. Detailed proofs are
given in Ref.@26#.

A. Region I

1. Measure of the quasiperiodic set

Here we show that the measure of the quasiperiodic set,
i.e., the complementary set of phase-locked regions, is zero
in region I where the mapf is monotonic and continuous,
resulting in complete phase locking. The parameters deter-
mining the mapf areD, E, andB. We varyB and setD and
E at constants satisfying the relationsD.1.E.0, which
are the condition that the system is in region I. Variation ofB
corresponds to that of the base lineX0 of the upper threshold.
As shown in Appendix A, we can restrict the range ofB in
0,B<1.

The quasiperiodic set is the set where all the regions ofB
giving phase locking are removed from the entire region
~0,1# of B. Phase locking occurs when the rotation number

R5 lim
n→`

@ f n~ t0!2t0#/n ~4.1!

TABLE I. Different regions in parameter space and the type of solutions.d is the fractal dimension of
quasiperiodic set.

Region Feature off Motion

I: D.1, E.0 monotonic and continuous CPL,d.0
II: D,0, E.0 monotonic and discontinuous CPL,d50
III: D.1, 21,E,0 nonmonotonic and continuous periodic or chaotic
IV: D,0, 21,E,0 nonmonotonic and discontinuous periodic with period 1
V: D.1, E,21 nonmonotonic and continuous chaotic
VI: D,0, E,21 nonmonotonic and discontinuous chaotic

FIG. 5. Bifurcation diagram of the system when the modulation
parameterh is varied. hD5au/ju is the zero point ofD21,
hE5ad/jd is the zero point ofE, andhC52auad/(au1ad)jd is
the value ofh at whichE521.
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becomes a rational number. Because the mapping functionf
is a monotonic function ofB as seen in Eq.~3.3!, the rotation
number is also a monotonic function ofB, that is, ifB1<B2 ,
thenR(B1)<R(B2).

We define the ‘‘Q/P-entrainment region’’B(Q/P) as the
region ofB in which the rotation numberR takes an irreduc-
ible fractionQ/P ~P.0!. As shown in Appendix A, it is
enough to consider for 0,Q<P. BecauseR(B) is mono-
tonic withB, theQ/P-entrainment region is a closed interval
for each value ofQ/P. We denote the region as

B~Q/P!5@BL~Q/P!,BU~Q/P!#. ~4.2!

HereBL(Q/P) is the lower boundary andBU(Q/P) is the
upper boundary of the region, that is,R,Q/P for
B,BL(Q/P), R5Q/P for BL(Q/P)<B<BU(Q/P), and
R.Q/P for B.BU(Q/P). Explicit expressions of these
boundaries are derived in Appendixes A and B@Eqs. ~A6!
and ~B1!#.

We obtain the quasiperiodic setD by removing allB(Q/
P) from the region~0,1#. It is given by

D5 lim
N→`

DN , ~4.3!

whereDN is a set such that all the entrainment regions having
periods equal to or less thanN are removed from the region
~0,1#,

DN5~0,1#2 ø
P<N

0,Q<P

B~Q/P!. ~4.4!

As shown in Appendix C, we can prove that the following
inequality holds for the Lebesgue measurem~DN! of the set
DN :

m~DN!<C0N
2r, ~4.5!

whereC0 andr are positive numbers that depend onD and
E but do not depend onN. From the relations~4.3! and~4.5!,
we obtain

m~D!50, ~4.6!

that is, the measure of quasiperiodic set is zero and CPL
occurs in the region I of the parameter space.

2. Dimension of the quasiperiodic set

Here we discuss the fractal dimension of quasiperiodic set
D. We use the capacity dimension for the fractal dimension.
Then we obtain the inequalities for the dimensiond of the set
D,

~11 1
2r!21>d>maxS 12 , 1

11~D/E!2$12~E/D !1/4% D ,
~4.7!

where r is the positive number appeared in the inequality
~4.5!. The derivation of~4.7! is briefly explained in Appen-
dix D. The inequalities~4.7! show that, in the region I,d is
positive ~> 1

2! and less than 1.

The left-hand inequality in~4.7! is derived from the rela-
tion between the dimensiond and the measurem~DN!, which
is proved in Appendix D,

2S 12
1

dD< lim
k→`

inf
k<N

ln m~DN!

ln N
. ~4.8!

This relation provides information on the probability of the
occurrence of an orbit having a long period. Because of CPL,
the measure of the setDN is equal to that of the set composed
of the values ofB that generate periodic orbits having peri-
ods longer thanN. Therefore, inequalities~4.5! and ~4.8!
indicate that the probability of the occurrence of orbits with
periods longer thanN is evaluated by a power ofN, that is,
by N2(121/d).

B. Region II

In this subsection we describe the behavior of the system
in region II where the mapf is monotonic and discontinuous.
The parameters determining the mapf areE andB. We vary
B keepingE constant. The results obtained here coincide
with those obtained by Christiansen, Alstro”m, and Levinsen
@10#, that is, the quasiperiodic setD has zero measure and the
fractal dimension of the set is zero.

The setDN defined in Eq.~4.4! is rewritten as

DN5ø
i
Ji , ~4.9!

where

Ji5~BU~qi /pi !,BL~qi11 /pi11!! ~4.10!

and irreducible fractionsqi /pi andqi11/pi11 form a neigh-
boring pair in a Farey series associated with integerN. We
proved ~see Appendix E! the inequality for the measure of
Ji ,

~12E!2Epi1pi1121,m~Ji !<EN. ~4.11!

Since there is at least one pair ofpi and pi11 that satisfies
pi1pi115N11 and since the number of the elements in a
Farey series associated withN is less thanN2 for N>2, the
measure ofDN satisfies the inequality

~12E!2EN,m~DN!<N2EN. ~4.12!

It is concluded, from~4.3! and~4.12!, that the measure of the
setD is zero becauseE,1, as seen from Eq.~3.2!.

As seen from the above argument, the setDN can be cov-
ered by at mostN2 open intervals with lengthEN. Then the
dimensiond of D is obtained as

d5 lim
N→`

ln N2

ln EN 50. ~4.13!

The inequality~4.12! shows that the probability of the occur-
rence of a long period decreases withN exponentially.

It is noted in the case ofE50 andD.0 that the system
obeys the results for region II in which the mapf is discon-
tinuous, althoughf is actually continuous. Interchanging the
abscissa and the ordinate in the graph off and interpreting
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D21 asE, we obtain a new map that has a single slopeE and
discontinuity ~Fig. 4, region II!. Then, the results obtained
for region II apply to that map because the interchange of
coordinates does not affect periodicity or quasiperiodicity
when a map is monotonic.

V. DISCUSSION

In region I studied in detail in the present paper, the prob-
ability of the occurrence of orbits with very long period
larger thanN is evaluated byN2(121/d). When the modula-
tion of the threshold is small, this probability is high. For a
small value of the modulation parameterh, E/D takes the
value near 1 as seen from Eqs.~3.1! and ~3.2!. Then, the
value of the fractal dimensiond becomes near 1 as seen from
the inequality~4.7! andN2(121/d) is considerably large even
for very large values ofN. Orbits with very long period have
been confirmed. We can calculate the value of the rotation
numberR when the values of the parametersD, E, andB are
given, by using Eqs.~A6! and~B1!. The calculation showed
that orbits with a long period appear frequently as the values
of D and E approach 1 and that a very long period with
astronomical order appears sometimes. For example, for
D51.3,E50.9, andB50.3, the period of the attractor was
found to be aboutP'2.2931072, where the rotation number
was R5Q/P'0.336 with m„B(Q/P)… being about
2.203102148. The Lyapunov exponent, which is given by
l5P21 ln(D [Pr]EP2[Pr] ), where r is defined in Eq.~B9!,
was about21.33310273. The orbits with such a long period
cannot be identified in fact as periodic, but would be identi-
fied as quasiperiodic when we use only the numerical analy-
sis of dynamical systems in which a mapping function can-
not be iterated infinite times. For the systems where Poincare´
map is nonsmooth, the probability of the occurrence of peri-
odic orbits with long period may be high. Therefore, we
should be careful in identifying quasiperiodicity.

We consider how high the probability of the occurrence
of orbits with a long period is in region I. We can prove that
the expectation value of the periodP becomes infinite as
follows. Because of the complete phase locking, the rotation
numberR is rational for all values ofB except the set with
Lebesgue measure zero, and thus the periodP of an orbit,
which is the denominator ofR, is a Lebesgue measurable
function ofB. Therefore, we can make Lebesgue integration
of a quantityPh, whereh is a positive number, in the range
0,B<1 and consider the value of the integral as the expec-
tation value ofPh. From the relation~4.8!, it is derived that
the expectation valueAP~h! of Ph becomes infinite for
h.2~d2121!. Let h0 be a positive number that satisfies the
relationh.h0.2~d2121!. From the inequality~4.8!, the re-
lation m(DN)>N2h0 holds for largeN. Then we obtain the
relationshipAP(h)>NhN2h0 because the periodP exceeds
N on the setDN . AP~h! becomes infinite in the limitN→`.
Whenh is small andE/D takes a value near 1, which is the
condition of the occurrence of a long period, the expectation
value AP~1! of period P becomes infinite because
1.2~d2121! when (D/E)2[12(E/D)1/4],1

2.
In region II of the parameter space, the probability for the

occurrence of the orbits with a period longer thanN de-
creases withN exponentially, as seen from the relationship
~4.12!. Therefore, physically, the transition induced by the

occurrence of a discontinuity in the map is the one in which
the periodic orbits with long period disappear.

Although quasiperiodicity has zero measure in region I of
the parameter space, the appearance of quasiperiodicity is
not excluded for special values of the parameters with Le-
besgue measure zero. Here we give two cases where quasi-
periodicity appears. One of the cases is as follows. When the
parameter values are such that a relationf n(0)5A1m or
f n(A)5m holds for some integersn and m, the rotation
numberR becomesR5(m1r )/n or (m2r )/n, respectively.
Then the orbit becomes quasiperiodic whenr is irrational. In
the other case, the rotation numberR becomes irrational as a
solution to a quadratic equation. We can show that whenD,
E, andB satisfy specific relations, for example,

D5xH 11
x

m1m2~11x! J , ~5.1!

B5m2

m1~11x!2x

x21m1m2~11x!2
, ~5.2!

E51/D, ~5.3!

wherex is a positive real number andm1 andm2 are inte-
gers, then the rotation numberR becomes

R5
1

2 S 11m2H 12A11
1

m1m2
J D . ~5.4!

An example of irrationalR is as follows. We can choose two
positive integersp andq that satisfy a relationq25np211
wheren is a nonsquare number and setm15q2 andm2521.
ThenR becomesR5(p/2q)An.

It might be difficult to observe the periodic motion with
very long period, not only numerically but also in experi-
ments, because the contamination from noise is inevitable in
actual systems. When a periodic orbit with very long period
is disturbed by noise, the orbit would not be distinguishable
from quasiperiodic one with noise. However, in that case,
such apparently quasiperiodic motion is the result of super-
imposition of noise and the inherent dynamics itself is peri-
odic. Since identifying directly the extraordinarily long pe-
riod is difficult both by numerical calculation and by
experiment, an analytical approach adopted in the present
paper is indispensable in order to know the substance of the
dynamics. Now that we know the dynamics of the system
described by the map considered here, it is highly possible
that the inherent dynamics of a system is a periodic one
having a long period when a map obtained experimentally is
such that the map in the present paper, or its equivalent, is
blurred due to noise.

Recently, we presented a model of lipid-bilayer mem-
brane in order to clarify the mechanism of self-sustained os-
cillation of the electric potential across the membrane@24,5#.
The model in the present paper is considered to describe the
dynamics of the lipid-bilayer membrane operating under a
special condition. In the previous model@24#, the oscillation
of the membrane potential is driven by the repetitive gel–
liquid-crystal phase transitions of the membrane. The transi-
tions are generated by the repetitive adsorption and desorp-
tion of protons on the membrane surface that are induced by
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periodic or aperiodic reversal of the direction of protonic
current. The gel state is stabilized by the proton adsorption,
while the liquid-crystal state is stabilized by the proton de-
sorption. This previous model was simplified to a one-
variable representation@5#. The simplified model describes
the evolution of proton concentration at the membrane sur-
face driven by repetitive phase transitions between the gel
and liquid-crystal states of the membrane. The transition
from the gel to the liquid-crystal states occurs when the pro-
ton concentration decreases below a threshold value and the
reverse transition occurs when the proton concentration in-
creases above another threshold value. The threshold value
for the forward transition becomes generally different from
that for the reverse transition. The model showed complete
phase locking as well as periodicity, quasiperiodicity, and
chaos under the application of a sinusoidal stimulating elec-
tric current, and the routes to chaos were clarified. The sim-
plified model of the lipid bilayer was named ‘‘the model of
repetitive phase transition with hysteresis~RPTH model!,’’
where the phase transition of lipid bilayer membranes has
hysteresis.

The present model corresponds to one of the simplest ver-
sion of RPTH model for which a temperature modulation is
applied. With the variation of temperature, the threshold val-
ues of the proton concentration at which the lipid bilayer
undergoes the gel–liquid-crystal phase transitions vary with
time because the amount of protons required to induce the
transition depends on the temperature: the gel~liquid-crystal!
state is stabilized with decreasing~increasing! temperature
@24#. The present model corresponds to the case where the
threshold value is modulated only for the transition from the
liquid-crystal state to the gel state and the modulation is
triangular and where the higher-order fluctuation of ion con-
centration is negligible and the proton concentration varies
linearly with time.

In more realistic cases, the variableX varies exponentially
with time and the mapf is no longer piecewise linear when
damping factors appear on the right-hand sides of the equa-
tion of motion~2.1!. When both the upper and lower thresh-
olds are modulated, four nondifferentiable points appear in
the mapf in modulo 1. We cannot apply the mathematical
results obtained in the present paper directly to those cases.
We tried numerical experiments using maps having nonlin-
earity that corresponded to the damping. The results showed
that the probability of the occurrence of a long period was
similar between these maps and the linear one. So similar
results are expected for the occurrence of CPL and the fractal
dimension of quasiperiodic set in more general cases. How-
ever, the result thatd>1

2 holds in region I, which comes from
one of the terms on the right-hand side of~4.7!, is an excep-
tion. This inequality does not hold generally because it de-
pends on the property of the system that the width of the
entrainment region [BL(Q/P),BU(Q/P)] is proportional to
the quantityu^^P&&u defined in Eq.~C7! and this property
does not hold in general when the mapping function is not
piecewise linear or when it has more than two nondifferen-
tiable points in modulo 1. Even then,d is still expected to be
positive, though there is a possibility thatd goes to 01 just
before the mapping function becomes discontinuous.

In the present paper, we have clarified the dynamical be-
havior of the systems described by a monotonic continuous

piecewise-linear circle map having two nondifferentiable
points. An exact analytical study for a wider class of nons-
mooth mapping functions has not yet been obtained and re-
mains as a future task.

APPENDIX A: SYMMETRY PROPERTIES OF THE MAP

Here we show that the range of the parameterB can be
restricted to 0,B<1 and that it is enough to consider the
irreducible fractionQ/P for 0,Q<P. In region I, the map
f (t) is defined by Eqs.~3.3! and ~3.5!, whereD.1.E.0.
To show theB dependence explicitly, we denote the mapf
as f (t;B). The parameterB defined by Eq.~3.6! must be
positive, but at first we assumeB in the extended domain
2`,B,` for convenience.

First, we note that the mapf (t;B) satisfies

f P~ t;B1n!5 f P~ t;B!1nP ~A1!

for any integern ~we assumeP as a positive integer!. There-
fore,

if BPBSQP D then B1nPBSQP 1nD , ~A2!

whereB(Q/P) is theQ/P-entrainment region.
The map has another symmetry property. If we rotate the

graph f (t;B) vs t by p around the point (A/2,A/2), we ob-
tain the transformation

f ~ t;B!→ f @ t;2B2~D21!A#. ~A3!

This leads to

R~B!52R@2B2~D21!A#, ~A4!

namely,

if BPBSQP D then 2B2~D21!APBS 2
Q

P D . ~A5!

From Eqs.~A2! and ~A5!, we find

BLSQP D512~D21!A2BUS P2Q

P D , ~A6!

BUSQP D512~D21!A2BLS P2Q

P D , ~A7!

whereBL andBU are the lower and upper boundaries of the
regionB(Q/P). Thus we obtain

mFBSQP D G5mFBS P2Q

P D G , ~A8!

wherem@B# denotes the Lebesgue measure of the setB. Ow-
ing to these symmetry properties, it is enough to consider
only for 0,B<1 and 0,Q<P.

APPENDIX B: DERIVATION OF THE UPPER BOUNDARY
BU„Q/P…

The upper boundaryBU(Q/P) of the Q/P-entrainment
regionB(Q/P) is given by
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BU~Q/P!5T~Q/P!/S~Q/P!. ~B1!

QuantitiesS(Q/P) andT(Q/P) in this equation are given by

S~Q/P!5(
i51

P

U~Q/P,i !, ~B2!

T~Q/P!5(
i51

P

U~Q/P,i !V~Q/P,i !, ~B3!

where

U~Q/P,1!51, ~B4!

U~Q/P,i11!5U~Q/P,i !W~Q/P,i ! for 1< i<P21,
~B5!

with W(Q/P,i ) andV(Q/P,i ) defined by

W~Q/P,i !5 HD when 0<k1Qi~modP!<k21
E when k11<k1Qi~modP!<P21,

~B6!

V~Q/P,i !5 H1 when 0<k1Qi~modP!<Q21
0 when Q<k1Qi~modP!<P21.

~B7!

The integerk is defined by

k5@Pr#, ~B8!

wherer is given by

r52 ln~E!/ ln~D/E! ~B9!

and [x] denotes the Gauss symbol, the maximum integer that
is not larger thanx.

In order to derive Eq.~B1!, we first note thatB is equal to
BU(Q/P) when it satisfies

f P~0;B!5Q. ~B10!

This equation is obtained as follows. Since the mapf (t;B) is
monotonic and piecewise linear, having two pointst50 and
A at which the slope is discontinuous, the mapf P(t;B) is
also monotonic and piecewise linear, having 2P points
for 0<t,1 at which the slope is discontinuous. For
BPB(Q/P), f P(t;B) must intersect with the lineg(t)
5t1Q @(a) in Fig. 6#. Specifically, whenB satisfies Eq.
~B10!, the function becomes tangent to the lineg(t) at P
points@(b) in Fig. 6#. This means thatB satisfying Eq.~B10!
is the upper boundary ofB(Q/P) ~see @26# for rigorous
proof!.

Next, let us defineP numbersf n„0;BU(Q/P)… ~mod 1!
(n50,1,..,P21) in increasing order as
05x0,x1,•••,xP21,1[xp. Then we find that

f „xi ;BU~Q/P!…~mod 1!5xi1Q~modP! , ~B11!

as a result of Eq.~B10!. SinceB5 f (0;B) as seen from Eq.
~3.3!, BU(Q/P) is given by

BU~Q/P!5 f „0;BU~Q/P!…5 f „x0 ;BU~Q/P!…

5xQ5 (
i50

Q21

m~ I i !, ~B12!

where we have definedP intervals I n[[xn ,xn11) (n
50,1,...,P21).

In the following, we will calculate( i50
Q21m(I i). We begin

with showing that the pointA, at which the slope of the
mapping functionf „t;BU(Q/P)… is discontinuous, is on the
interval I k where the integerk is given by Eq.~B8!. We note,
from Eq. ~B11!, that the intervalI n is mapped onI m with
m5n1Q ~modP!:

f̃ ~ I n![ f „I n ;BU~Q/P!…~mod 1!5I n1Q~mod P! . ~B13!

If an interval I n is contained in the interval@0,A!, on which
the slope isD, thenI n is expanded by a factorD by the map
f̃ , which means

m~ I n1Q~mod P!!5Dm~ I n! for 0<n<k21 ~B14!

whenAPI k . Similarly, an intervalI n on which the slope is
E is contracted by the map

m~ I n1Q~mod P!!5Em~ I n! for k11<n<P21. ~B15!

For the intervalI k that includes the pointA at which the
slope changes fromD to E, we obtain

m~ I k1Q~mod P!!5Fm~ I k!, ~B16!

where the factorF is given by

F5$D~A2xk!1E~xk112A!%/~xk112xk! ~B17!

satisfyingE<F,D.
Starting fromI 0, we return toI 0 afterP successive map-

pings of f̃ : I 0→I Q→I 2Q(mod P)→•••→I PQ(mod P)5I 0.
Then, taking account of Eqs.~B14!–~B16!, we obtain

DkEP2k21Fm~ I 0!5m~ I 0!. ~B18!

Taking logarithms of the above equation, we obtain
k5[Pr], which is Eq.~B8!.

FIG. 6. Graph of the mapf P(t;B) in the case ofP53.
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In the following, we employ the abbreviationj[k1Q
~mod P!. Then, the condition under which the interval
f̃ i21(I j ) coincides with one of the intervalsI 0 ,I 1 ,...,I Q21 is
0<k1Qi ~modP!<Q21. Therefore,

(
n50

Q21

m~ I n!5(
i51

P

m„ f̃ i21~ I j !…V~Q/P,i !, ~B19!

where the definition ofV(Q/P,i ), Eq. ~B7!, is used. We can
prove, by induction, that

m„ f̃ i21~ I j !…5m~ I j !U~Q/P,i ! ~ i51,2,...,P!. ~B20!

Substituting Eq.~B20! into Eq. ~B19!, we obtain

(
n50

Q21

m~ I n!5m~ I j !(
i51

P

U~Q/P,i !V~Q/P,i !. ~B21!

The quantitym(I j ) is obtained as follows. Because the set
$I j , f̃ (I j ),...,f̃

P21(I j )% coincides with$I 0 ,I 1 ,...,I P21%, we
obtain, from Eq.~B20!,

m~ I j !(
i51

P

U~Q/P,i !5 (
n50

P21

m~ I n!51. ~B22!

From Eqs.~B12!, ~B21!, and ~B22!, with the definitions of
S(Q/P) andT(Q/P) @Eqs.~B2! and ~B3!#, we see that Eq.
~B1! holds.

APPENDIX C: OUTLINE
OF PROVING INEQUALITY „4.5…

The measurem~DN! can be obtained by evaluating the
measurem@B(Q/P)# of the regionB(Q/P) as seen from Eq.
~4.4!. The boundaries of the region are given by Eqs.~A6!
and ~B1!.

Our fundamental strategy for proving inequality~4.5! is
as follows. We want to know howm~DN! changes withN.
The irreducible fractionsQ/P appearing in Eq.~4.4! form a
Farey series associated with the integerN. The Farey series
associated withN11 is formed by adding several ‘‘medi-
ants’’ Q8/P8 ~with P85N11! between the neighboring ir-
reducible fractionsQj /Pj andQj11/Pj11 belonging to the
previous series associated withN. Therefore, asN increases,
we need to evaluate the measurem„B(Q8/P8)… for newly
born mediants. For this purpose, we use the following prop-
erty, the proof of which is given in @26#: when
P1Q22P2Q151, i.e., when two irreducible fractionsQ1/P1
andQ2/P2 (Q1/P1,Q2/P2) are neighboring each other in a
Farey series,S andT @Eqs. ~B2! and ~B3!# for the mediant
(Q11Q2)/(P11P2)[Q/P are given by

SSQP D5H S~Q1 /P1!1G1S~Q2 /P2!

when @Pr#5@P1r #1@P2r #
G2S~Q1 /P1!1S~Q2 /P2!

when @Pr#5@P1r #1@P2r #11,

~C1!

TSQP D5H T~Q1 /P1!1G1T~Q2 /P2!

when @Pr#5@P1r #1@P2r #
G2T~Q1 /P1!1T~Q2 /P2!

when @Pr#5@P1r #1@P2r #11,

~C2!

where

G15D @P1r #EP12@P1r #, ~C3!

G25D @P2r #11EP22@P2r #21. ~C4!

Many inequalities necessary for our proof are derived
from the above property. One of them is given as follows:
whenP0Q2PQ051 is satisfied for two irreducible fractions
Q0/P0 andQ/P(Q0/P0,Q/P), the inequality

m@B~Q/P!#>j$BL~Q/P!2BU~Q0 /P0!%, ~C5!

holds, where

j5u^^P&&u
2E

D H 12S ED D 1/4J S~Q0 /P0!

S~Q/P!
, ~C6!

^^P&&5Pr2@Pr1 1
2 #. ~C7!

The proof of this inequality will be published elsewhere@26#
because it requires lengthy arguments.

If we could find a suitable numberd ~,1! that is indepen-
dent of N and satisfies an inequality like
m(DN11)/m(DN)<d, the inequality would guaranteem~DN!
converging to zero faster thandN. But this does not hold.
Instead, we can derive a relation asm(D4N)/m(DN)
<r0 ~,1! @Eq. ~C12!#, which yields a slower convergence of
m~DN! asNln r0 /ln 4. Deriving the inequality directly from the
relation ~C5! is not easy, however, because the factor
u^^P&&u, and soj, may become very small for some values of
P. Therefore, we adopt the following procedure, instead of
estimatingm~DN! directly.

For a given small number« ~0,«, 1
2!, we defineN0 as the

minimum positive integer that satisfiesu^^N0&&u>«. For each
integerN that is not smaller thanN0, we consider a set
DN8 («) ~.DN!, which is defined as follows, depending on«.
Let us write a Farey series associated withN as

0

1
5
Q0

P0
,
Q1

P1
,
Q2

P2
,•••,

QM21

PM21
,
QM

PM

5
1

1
~1,Pj<N for 0, j,M !. ~C8!

For given«, we first subtract the intervalB(QM/PM) @5B~1/
1!# together with all intervalsB(Qj /Pj ) such thatu^^Pj&&u>«
from the interval~0,1#. Now there are rather narrow intervals
left. When there are any~one or more! intervals
B(Qa11/Pa11!,B(Qa12/Pa12),...,B(Qb21/Pb21) between
two neighboring intervalsB(Qa/Pa) and B(Qb/Pb) that
have been subtracted because of the conditionsu^^Pa&&u>«
and u^^Pb&&u>«, we subtract the interval among them that
has the minimum denominatorPk ,

Pk5min~Pa11,Pa12 ,...,Pb21!. ~C9!

The resultant set thus obtained is defined asDN8 («). The set
DN8 («) is therefore a sum of open intervals such as
[BU(Ql /Pl),BL(Qm/Pm)], wherePl ,Pm<N and at least one
of u^^Pl&&u and u^^Pm&&u is not less than«. Then we can
prove@26#, using the relationships~C1! and~C2! and choos-
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ing a suitable value for« that should be neither too large nor
too small~actually we may set«51/40!, that the inequality

(
q/p

m@B~q/p!#>~12r0!$BL~Qm /Pm!2BU~Ql /Pl !%

~C10!

holds, where„BU(Ql /Pl),BL(Qm/Pm)… is any one of open
intervals contained inDN8 («) and r0 is a positive number
taking a value smaller than 1 that depends on« but not onN,
nor the choice of the interval inDN8 («). The summation on
the left-hand side of the inequality~C10! is taken over irre-
ducible fractionsq/p such that

Ql

Pl
,
q

p
,
Qm

Pm
, N,p<4N. ~C11!

From the relations~4.4! and ~C10!, we can easily prove
the inequality

m~D4N!<r0m~DN! for N>N0 . ~C12!

We obtain the inequality~4.5! from the inequality~C12! by
definingr5ln~1/r0!/ln 4 andC05(4N0)

r.

APPENDIX D: OUTLINE OF THE DERIVATION
OF INEQUALITIES „4.7… AND „4.8…

The expression~4.7! is composed of the three inequalities

d>1/~11CS
21!, ~D1!

d> 1
2 , ~D2!

d<1/~11r/2!, ~D3!

where

CS5S ED D 2Y H 12S ED D 1/4J ~D4!

and r is the positive number appearing in inequality~4.5!.
Here we only give an outline of derivation of~D1! and~D3!.
The proof of~D2! is presented elsewhere@26#.

In order to derive~D1!, we introduce the following ex-
pression for the fractal dimensiondF(H) of a set H, a
bounded set of real numbers, which can be derived from the
usual definition of the capacity dimension

dF~H !512 lim
«→01

sup
0,d<«

H lnm„SF~H,d!…

lnd J , ~D5!

whereSF(H,d) is the sum of the open intervals (x2d,x1d)
for all xPH: SF(H,d)[øxPH(x2d,x1d). Then, we can
evaluated @5dF~D!# by evaluatingm„SF~D,d!….

We first present an inequality

BLSQ2

P2
D2BUSQ1

P1
D

>H HBUSQ2

P2
D2BLSQ2

P2
D JCS when P1<P2

HBUSQ1

P1
D2BLSQ1

P1
D JCS when P1.P2 ,

~D6!

which holds forQ1/P1,Q2/P2 . The proof of this inequality
is given in @26#.

Next, letDF~d! be the set which is obtained by removing
all the entrainment regions of length equal to or larger than
2d from the interval~0,1#. From the definition ofDF~d! and
the inequality~D6!, DF~d! is expressed as the sum of discon-
nected intervalsL1 ,L2 , . . . , each of which has the length
equal to or larger than 2dCS . Namely,

DF~d!5ø
i
L i , ~D7!

whereLiùL j5f for any iÞ j andm(Li)>2dCS for all i .
Now, for any intervalL of length not smaller than 2dCS , we
can easily show, from the definition ofSF(L,d),

m„SF@L,~11h!d#…<m„SF~L,d!…S 11
h

11CS
D , ~D8!

whereh is any positive number. Applying the above inequal-
ity for each Li in ~D7! and noting that
SF(D,d)5SF[DF(d),d] and SF[D,(11h)d]5SF[DF(d),
(11h)d] hold by definition, we obtain

m„SF@D,~11h!d#…<m„SF~D,d!…S 11
h

11CS
D . ~D9!

We substituted5~11h!2m for m51,2, . . . ,n into ~D9!
successively and obtain

m„SF~D,1!…<m„SF@D,~11h!2n#…@11h~11CS!
21#n.

~D10!

Taking the logarithm of~D10!, dividing it by ln~11h!2n,
and taking the limitn→`, we obtain

lim
«→01

sup
0,d<«

H ln@m„SF~D,d!…#

lnd J <
ln@11h~11CS!

21#

ln~11h!
,

~D11!

where~11h!2n was replaced byd. Taking the limith→01
in the inequality~D11! and using~D5! with H5D, we finally
obtain the inequality~D1!.

The inequality~D3! is derived from inequalities~4.5! and
~4.8!. We show here the outline of deriving inequality~4.8!.
For this purpose, we use the expression for the fractal dimen-
siond of D,

12
1

d
5 lim

k→`

inf
n>k

lnm„LS~n!…

lnn
, ~D12!
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whereLS(n) is the set that has the minimum measure among
such sets that are obtained by removingn entrainment re-
gions from the interval~0,1#. The proof of~D12! is presented
elsewhere@26#.

From the definition ofLS(n), we note that

m~DN!>m„LS~N
2!… ~D13!

because the number of the entrainment regionsB(Q/P) sat-
isfying 0,P<N and 0,Q<P is not larger thanN2. Sub-
stitution ofn5N2 and~D13! into ~D12! leads to the inequal-
ity ~4.8!.

APPENDIX E: OUTLINE OF THE DERIVATION
OF INEQUALITY „4.11…

In this appendix we show that a relationship

BLSQ2

P2
D2BUSQ1

P1
D5

~12E!2EP11P221

~12EP1!~12EP2!
~E1!

holds in region II for any two irreducible fractionsQ1/P1
andQ2/P2 that are neighboring each other in a Farey series
associated withN andQ1/P1,Q2/P2 , namely,

P1Q22P2Q151. ~E2!

Inequality ~4.11! can be derived directly from the above
equation because (12E)2EP11P221,@right-hand side of
~E1!]<EP11P221<EN, where the inequalities 0<E,1 and
N,P11P2 are taken into account.

We first note that the mapf (t) for region II can be de-
rived by taking the limitD→` so thatr→01 in the map for
region I. Then, taking the limit in Eqs.~C1! and ~C2!, we
have the relations

SSQP D5SSQ1

P1
D1EP1SSQ2

P2
D , ~E3!

TSQP D5TSQ1

P1
D1EP1TSQ2

P2
D ~E4!

for irreducible fractions satisfying~E2! and for the mediant
Q/P[(Q11Q2)/(P11P2).

Using Eq.~E3!, we can prove the following equation for
any irreducible fractionQ/P, by induction:

SSQP D5
12EP

12E
. ~E5!

Furthermore, using Eqs.~E3! and ~E4!, we can prove, by
induction, the equation

SSQ1

P1
DTSQ2

P2
D2SSQ2

P2
DTSQ1

P1
D5EP221. ~E6!

Because

BUSQ2

P2
D2BUSQ1

P1
D5

SSQ1

P1
DTSQ2

P2
D2SSQ2

P2
DTSQ1

P1
D

SSQ1

P1
DSSQ2

P2
D

~E7!

from Eq. ~B1!, Eqs.~E5! and ~E6! lead to

BUSQ2

P2
D2BUSQ1

P1
D5

~12E!2EP221

~12EP1!~12EP2!
. ~E8!

We can obtainBL(Q2/P2)2BU(Q1/P1) using Eq.~E8! if
we knowBU(Q2/P2)2BL(Q2/P2). For this purpose, we de-
rive BL(Q2/P2) in the following. Let us consider a series of
irreducible fractions

Q1

P1
,
Q11Q2

P11P2
,
Q112Q2

P112Q2
,...,

Q11nQ2

P11nP2
. ~E9!

Then, applying Eqs.~E3! and~E4! n times starting from the
pairQ1/P1 andQ2/P2 , we obtain

SSQ11nQ2

P11nP2
D5SSQ1

P1
D1SSQ2

P2
D (
k50

n21

EP11kP2, ~E10!

TSQ11nQ2

P11nP2
D5TSQ1

P1
D1TSQ2

P2
D (
k50

n21

EP11kP2. ~E11!

Substituting ~E10! and ~E11! into the expression for the
lower boundary ofB(Q2/P2),

BLSQ2

P2
D5 lim

n→`

BUSQ11nQ2

P11nP2
D

5 lim
n→`

TSQ11nQ2

P11nP2
D Y SSQ11nQ2

P11nP2
D , ~E12!

we obtain

BLSQ2

P2
D5

TSQ1

P1
D1TSQ2

P2
DG

SSQ1

P1
D1SSQ2

P2
DG , ~E13!

where

G5
EP1

12EP2
. ~E14!

From Eqs.~B1!, ~E5!, ~E6!, and~E13! we obtain

BUSQ2

P2
D2BLSQ2

P2
D5

~12E!2EP221

12EP2
. ~E15!

Using Eqs.~E8! and ~E15!, we obtain~E1!.
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