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In a recent paper@Phys. Lett. A 205, 130 ~1995!#, we investigated the inverse problem of solving
g(x1 ,...,xq) from the integral equationn(y1 ,...,yq)5*K(y1 ,...,yqux1 ,...,xq)g(x1 ,...,xq)dx1•••dxq , with
the given integraln and kernelK by analytically dilating variabley to the complex plane. We showed, by
studying the singularities and discontinuities of the dilated kernel and integral, that the unknown functiong can
be obtained from an algebraic relation in the case where the dilated kernel contains a simple and single-valued
pole. The present paper intends to generalize this result to the case where the kernel contains higher-order
and/or multivalued poles. We show that the integral equation in these more general cases can be transformed
to algebraic, ordinary, or partial differential equations, depending on the type of the singularities of the kernel
and the dimension of the inverse problem. Moreover, some conditions constraining the integraln, which are
independent of the integrandg, are revealed whenK has multivalued or high-order singularities.
@S1063-651X~96!00809-4#

PACS number~s!: 05.30.2d

I. INTRODUCTION

In physics and many other branches of science and engi-
neering one often needs to predict or estimate certain input
from the corresponding output. Examples include recovering
the incident~optical or particle! beams from the scattered
beams, estimating transmitted signals from the received
ones, and detecting the inner structures of systems such as
the energy spectra of the given matters from the measurable
free energy. This kind of problem is generally called the
inverse problem. In many cases the inverse problem is math-
ematically represented by an integral equation of the first
kind

n~y1 ,...,yq!5E
aq

bq
•••E

a1

b1
K~y1 ,...,yqux1 ,...,xq!

3g~x1 ,...,xq!dx1•••dxq , ~1!

where the kernelK is often known from our understanding
of the physical mechanisms of the systems involved. The
functionn is also known in practice from the measurements.
The functiong is unknown and it is the task for the research
of the inverse problem to determine this function.

Equation ~1! has been investigated as a typical integral
equation in mathematics for a long time@1–6#. Recently,
Chenet al. have solved Eq.~1! for Fermi or Fermi-like ker-
nels in the one-dimensional case by elegantly linking the
kernel to thed function @7,8#. The limiting procedure in-
volved in @7,8# was later clarified@9#. In a recent paper@10#,
we suggested an approach to dilate the integraln and the
kernelK into the complex plane. The solution to Eq.~1! is
then obtained by investigating the singularities of the kernel
K and the discontinuities of the integraln at the singular set

of K. In @10# we treated only the case whereK, after dilated
to the complex plane, has a single-valued simple pole~or
order-one pole! for eachx. In this paper, we will extend the
approach of@10# to more general cases whereK, if dilated to
the complex plane, has multiple and high-order poles. More-
over, we will show that some interesting intrinsic relations
exist betweenn andK, which are independent ofg in these
more general cases.

This paper is organized as follows. In Secs. II and III we
consider the one-dimensional case, for which Eq.~1! is sim-
plified to

n~y!5E
a

b

K~yux!g~x!dx. ~2!

In Sec. II we will first summarize the results of the previous
paper for the case of simple poles and then generalize them
to the case of multiple-valued singularities. Section III will
be devoted to the high-order singularity problem. In Sec. IV
we extend the results obtained in the previous sections to the
multidimensional systems. Finally, we conclude the paper in
Sec. V.

Before dealing with the concrete cases, let us first specify
some general conditions required for our approach.
As in most of practical problems,g(x1 ,...,xq) and
K(y1 ,...,yqux1 ,...,xq) are assumed to be real and analytic
functions of real variablesx1 ,...,xq and y1 ,...,yq in their
supports, which are determined by physical problems. Thus
n(y1 ,...,yq) must also be a real and analytic function for
real y1 ,...,yq . We assume thatK andn can be analytically
dilated from the original realy1 ,...,yq space to complex
z1 ,...,zq space. SinceK is a known analytical function, its
analytical continuation can be directly written down by re-
placing the realy’s by complex variablesz’s. We further
assume that the analytical continuation ofn to complexz’s is
also entirely known. The crucial assumption in our approach*Author to whom correspondence should be addressed.
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is that Eqs.~1! and~2! are valid not only for realy but also
for the complexz variables as well, i.e., we have

n~z1 ,...,zq!5E
aq

bq
•••E

a1

b1
K~z1 ,...,zqux1 ,...,xq!

3g~x1 ,...,xq!dx1•••dxq ~3!

generally, or

n~z!5E
a

b

K~zux!g~x!dx ~4!

in the one-dimensional case. This point can be easily verified
by the above assumptions of analytic continuation.

II. KERNEL WITH SINGLE- AND MULTIVALUED
ORDER-ONE POLES

K(yux) in ~2! is assumed to be analytical for the variables
x andy on its physically meaningful supports. According to
the Liouville theorem@11#, there exist, however, singularities
outside the physical region forK(zux), if K(zux) is not iden-
tically constant and bounded for largeuzu. We make an as-
sumption, which is reasonable in many physical systems,
that zK(zux) z,R asuzu→` with R being a certain finite posi-
tive number. ThusK(zux) must have singularities. In this
section we first consider the case where, for eachx, K(zux)
has only a single order-one pole atx5h( ẑ) @ẑ5h21(x) is
single valued#, namely,

K~zux!5
f~x,z!

x2h~z!
, ~5!

with f(x,z) being analytic on the cutẑ5h21(x), wherex
belongs to [a,b]. From the well-known relation

lim
e→0

1

x2y6 i e
5P

1

x2y
7 ipd~x2y!, ~6!

where P denotes the Cauchy principal value, we can express
@10# Eq. ~5! in the form

K @6#~ ẑux!5 lim
e→0

1

x2h~ ẑ!7 i e
f~x,ẑ!

5f~x,ẑ!P
1

x2h~ ẑ!
6 ipu~ ẑ!d„x2h~ ẑ!…

u~ ẑ!5f~x,ẑ!, ~7!

which is the key starting point of the analysis in@10#. Equa-
tion ~7! leads to

n@6#~ ẑ![E
a

b

K @6#~ ẑux!g~x!dx

5PE
a

b

f~x,ẑ!g~x!
1

x2h~ ẑ!
dx6 ipu~ ẑ!g~x!,

~8!

from which the inverse problem can be solved exactly:

g~x!5
n@1#~ ẑ!2n@2#~ ẑ!

2ipu~ ẑ!
, ~9!

whereẑ can be replaced by a function ofx asẑ5h21(x) and
n6( ẑ) are the values ofn(z) by taking the limitsz→ ẑ from
the left and right@with respect to the oriented curve from
ẑ5h21(a) to ẑ5h21(b); see Fig. 1# sides, respectively.

Before we present further results, it is helpful to make the
following remarks to clarify result~9!.

~i! The kernelK(yux) is analytic on the physical supports
of x and y. However, it has singularities whenK(yux) is
dilated fromy to complexz plane ~the support ofx is not
changed!. K(zux) is single valued for each pair of variables
(z,x). This is different from the usual case studied in the
context of singular integral equations, where the physical
support itself contains singularities.

~ii ! K(zux) has a single simple pole for eachx at
ẑ5h21(x), thus it has a cut whenx varies continuously on
its support [a,b]. Whenz approachesẑ from two sides of the
cut,K(zux) undergoes ad-function jump indicated by~7!.

~iii ! The functionn(z) satisfying Eq.~4! is also single
valued. It can be obtained from the analytical dilatation from
the measured functionn(y) without crossing the singular cut
of K(zux) ~see Fig. 1 for a schematic representation!. One
can certainly find a discontinuity ofn(z) on the cut. The
difference between the left and right limits ofn(z),
[n1( ẑ)2n2( ẑ)], divided by the residue of the kernel at the
corresponding pole, gives the solutiong(x) in ~9!.

~iv! It is to be emphasized thatn(y) can be often analyti-
cally dilated to cross the cut without experiencing any dis-
continuity. However, its continuous dilatation in the region
crossing the cut does not satisfy Eq.~4! ~see the dashed lines
in Fig. 1! and cannot be used for solving the inverse prob-
lem. Actually, the dilatation ofn(y) must have multiple-
sheet structure. The unique sheet givingn(z) of ~4! should
be reached by the paths fromy to the givenz. The paths may
turn around the branch pointsẑ5h21(a) and h21(b), but
they can never cross over the cut as indicated in Fig. 1.

~v! The result~9! is surprisingly compact. Now the in-
verse problem is reduced to a simplest algebraic computa-
tion. The main work for solving the inverse problem is then
to seek the location of the singular point ofK(zux), (x,ẑ),
and to specify its residueu( ẑ) and the discontinuity ofn(z)
on this singular setn1( ẑ)2n2( ẑ).

FIG. 1. Schematic representation of the analytical continuation
of the integraln(y) to the complex plane. The thick solid line
[h21(a),h21(b)] indicates the singular cut of the kernel, while the
arrowed solid lines indicate the continuation. The extension across
the singular cut as marked by the dashed arrows is not allowed.
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Now we generalize the above results to the case where
kernelK(zux) may have more than one singular point in the
z plane for eachx, namely,

x5h„ẑ~1!…5h„ẑ~2!…5•••5h„ẑ~m!…. ~10!

In this case, one obtains the sameg(x) solution from each
cut according to Eq.~9!,

g~x!5
n@1#

„ẑ~ l !…2n@2#@ ẑ~ l !#

2ipu„ẑ~ l !…
, l51,2,...,m. ~11!

Therefore, this solution gives rise to some relations between
the discontinuities ofn(z) and the residues ofK(zux) at
different singular pointsz( l ), l51,2, . . . ,m,

n@1#
„ẑ~ l !…2n@2#

„ẑ~ l !…

2ipu„ẑ~ l !…
5
n@1#

„ẑ~1!…2n@2#
„ẑ~1!…

2ipu„ẑ~1!…
,

l52,3, . . . ,m. ~12!

They serve as constraints governing the integraln(z) @as
well asn(y)#. We point out that these constraints are inde-
pendent of the integrandg(x) and they are purely due to the
distribution of the singularities of the kernelK(zux).

III. KERNEL WITH HIGHER-ORDER POLES

Now we consider the case whereK(zux) has a higher-
order pole in the complexz plane

n~z!5E
a

b f~x,z!g~x!

@x2h~z!#n11 dx, ~13!

with f(x,z) being analytic on the cutẑ5h21(x), x5[a,b].
First, let us study the case of order-two pole~n51! in detail.
Equation~13! is reduced to

n~z!5
A1~z!

a2h~z!
2

B1~z!

b2h~z!
1m~z!, ~14!

with

A1~z!5f~a,z!g~a!, B1~z!5f~b,z!g~b! ~15!

m~z!5E
a

b @f~x,z!g~x!#8

@x2h~z!#
dx, ~16!

where the prime denotes the partial derivative with respect to
x. Now the integration of Eq.~16! takes the same form as Eq.
~4!. An important implication of Eqs.~14! and~15! is, if the
kernel K(zux) has order-two singularity, the dilatedn(z)
must have simple-pole singularities at the two boundaries
ẑa5h21(a) and ẑb5h21(b). From them we immediately
determine

g~a!5

lim
z→ ẑa

@a2h~z!#n~z!

f~a,ẑa!
, ~17!

g~b!52

lim
z→ ẑb

@b2h~z!#n~z!

f~b,ẑb!
. ~18!

Inserting ~17! and ~18! into ~14! and ~15! we can specify
A1(z), B1(z), andm(z). Equation~16! can be solved follow-
ing the procedures from~4!–~9!, leading to

2ip@f~x,z!g~x!#8uz5 ẑ5m1~ ẑ!2m2~ ẑ!, ~19!

where again we haveẑ5h21(x) andm6( ẑ) have the same
meanings asn6( ẑ) in Eq. ~9!. It is interesting that an integral
equation~13! is now transformed to a first-order differential
equation

D~x!g81S~x!g5M ~x!, ~20!

with D(x)52p if[x,h21(x)], S(x)52p i ]f(x,z)/
]xuz5h21(x) , and M (x)5m1[h21(x)]2m2[h21(x)].
The explicit solution of~20! can be easily worked out as

g~x!5C expS 2E
a

x

dx
S~x!

D~x! D 1expS 2E
a

x

dx
S~x!

D~x! D
3E

a

x

dx
M ~x!

D~x!
expS E

a

x

dx
S~x!

D~x! D , ~21!

where the constantC is fixed by the boundary condition at
x5a in ~17!

C5g~a!5

lim
z→ ẑa

@a2h~z!#n~z!

f~ ẑa!
. ~22!

A point particularly important is that relation~18! has not
been used for the boundary condition in solving~20!. Thus
this serves as a constraint for the functionn(y) itself,
namely, we have

2

lim
z→ ẑb

@b2h~z!#n~z!

f~b,ẑb!

5

lim
z→ ẑa

@a2h~z!#n~z!

f~a,ẑa!
expS 2E

a

b

dx
S~x!

D~x! D
1expS 2E

a

b

dx
S~x!

D~x! D Eabdx M ~x!

D~x!

3expS E
a

b

dx
S~x!

D~x! D . ~23!

Now we can briefly summarize what we have achieved in
the above analysis in this section. If the dilatation of the
kernel K(zux) has an order-two pole, the dilatation of the
integral n(z) should have two kinds of singularities: two
order-one poles at the two boundaries of the integration@i.e.,
at ẑa5h21(a), h21(a), in our notation# and a discontinuity
along the cutx5h( ẑ) with the branches atẑa,b . The residues
of n(z) at the poles are associated with the boundary values
of the unknown functiong(x) @g(a) andg(b) in our case#
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and the gap of the discontinuity is given by the derivative of
the integrand. These arguments allow the original integral
equation to be transformed to a much simpler and solvable
first-order differential equation with well defined boundary
conditions. Moreover, the two kinds of singularities are re-
lated to each other, namely, the two residues of the poles
should be linked by the integration along the cut through Eq.
~23!, which describes the intrinsic links between the singu-
larities of the kernel and the integral, and should be satisfied
by n(z) for arbitrary analyticalg(x).

The above method of solution can be extended to more
general integral equation~13!. Equation~14! can be written
generally in the form

n~z!5 (
k51

k5n
~21!k

n~n21!•••~n112k! S @f~b,z!g~x!#~k21!

@b2h~z!#n112k

2
@f~a,z!g~x!#~k21!

@a2h~z!#n112k D 1E
a

b

dx
@f~x,z!g~x!#~n!

x2h~z!
,

~24!

where we use the notations

@f~x,z!g~x!#~k!5
]k@f~x,z!g~x!#

]xk
.

Now we can fix all the boundary conditions ofg(a,b)(k21),
k51,2, . . . ,n. For instance, we have

g~a!5n

lim
z→z

a@a2h~z!#nn~z!

f„a,h21~a!…
~25!

and

g~a!~1!52H F n~n21! lim
z→h21~a!

@a2h~z!#n21

3S n~z!2n
f~a,z!g~a!

@x2h~z!#n D G
2g~a!f„a,h21~x!…~1!J Y f„a,h21~x!….

~26!

g(b), g(b) ~1!, and all higher derivativesg(a)(k) andg(b)(k),
k52,3, . . . ,n21, can be obtained in a similar way order by
order. Finally, the functionm(z) can be specified and we
arrive at

@f~x,z!g~x!#z5 ẑ
~n! 5

m1~ ẑ!2m2~ ẑ!

2ip
. ~27!

Similar to the case of an order-two pole, we have trans-
formed the integral equation to a well defined differential
equation, with the boundary conditionsg(a), g(a) ~1!, . . . ,
g(a)(k21), which are computed from the residues of the vari-
ous orders of singularities ofn(z). The valueg(b) and all
the known derivatives at the boundaryb have not been used
in solving ~27!. They serve, like Eq.~23!, as the constraints

restricting the integraln(z). These constraints are, however,
independent of the functiong(x).

The discussions in Sec. II and in this section can be ex-
tended to even more general cases where the kernel is written
as

K~zux!5
f~x,z!

)
i51

i5m

@x2h„z~ i !…#n i11

, ~28!

where f(x,z) is analytical on all the cutsx5h„ẑ( i )…,
i51, . . . ,m. K(zux) is singular onm cuts, from each cut we
can uniquely solve the inverse problem, and the solutions
from all cuts should identically give the same functiong(x).
Thus we havem21 constraints for the integraln(z). More-
over, for thei th singularity~which is a pole of orderni11!,
we haveni constraints. All together we have

L5m211 (
i51

i5m

n i ~29!

constraints for the functionn(z) @and also forn(y), of
course#. These constraints describe the relations between the
structure of the integraln(z) and the singularities of the ker-
nel K(yux), which exist without regard to the form of the
functiong(x).

IV. MULTIDIMENSIONAL CASES

The multidimensional inverse problem is generally much
more complicated than the one-dimensional one. It is there-
fore extremely desirable to have a practical method to deal
with the problem. The above approach can be systematically
extended to the multidimensional cases. The general idea of
treating a multidimensional problem can be clearly mani-
fested in two-dimensional cases. Therefore, in this section
we focus on the two-dimensional problem. The applications
to higher-dimensional problems will be briefly discussed at
the end of this section. The corresponding integral equation
is written as

n~y1 ,y2!5E
a2

b2E
a1

b1
K~y1 ,y2ux1 ,x2!g~x1 ,x2!dx1dx2 .

~30!

The functionsK andn are analytic in their physical supports
and both the function and the equation can be analytical
dilated to complex planes

n~z1 ,z2!5E
a2

b2E
a1

b1
K~z1 ,z2ux1 ,x2!g~x1 ,x2!dx1dx2 . ~31!

The dilated kernelK(z1 ,z2ux1 ,x2) is assumed to have singu-
larities on the nonphysical supports. After certain coordinate
and functional transformations we can get the following
simple form for the singularity:

K~z1 ,z2ux1 ,x2!

5
f~x1 ,x2 ,z1 ,z2!

@x12h1~z1 ,z2!#
n111@x22h2~z1 ,z2!#

n211 , ~32!
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with f being analytic on the sets

x15h1~z1 ,z2!, x25h2~z1 ,z2!. ~33!

Note thatK(z1 ,z2ux1 ,x2) is single valued for each pair of
(x,z); thenn(z1 ,z2) must also be single valued on the com-
plex (z1 ,z2) support. For clarity and simplicity we analyze
the casesn15n250; n151, n250; and n15n251 in detail.
The cases of general singularities~32! will be mentioned
afterward.

For n15n250,

n~z1 ,z2!5E
a2

b2E
a1

b1
dx1dx2

3
g~x1 ,x2!f~x1 ,x2 ,z1 ,z2!

@x12h1~z1 ,z2!#@x22h2~z1 ,z2!#
. ~34!

As in the one-dimensional case the study in this case has a
fundamental significance for the general multidimensional
inverse problem. Comparing with~7!, we should define
K @11#, K @12#, K @21#, andK @22# for Eq. ~34! instead ofK @6#

in Eq. ~7! for ~4!

K @66#~ ẑ1 ,ẑ2ux1 ,x2!

5 lim
e1→0

lim
e2→0

1

x12h1~ ẑ1 ,ẑ2!7 i e1

3
1

x22h2~ ẑ1 ,ẑ2!7 i e2
f~x1 ,x2 ,ẑ1 ,ẑ2!, ~35!

where the set (ẑ1 ,ẑ2) satisfies both equationsx15h1( ẑ1 ,ẑ2)
andx25h2( ẑ1 ,ẑ2). Correspondingly, we have

n@66#~ ẑ1 ,ẑ2!5E
a2

b2E
a1

b2
K @66#g~x1 ,x2!dx1dx2 . ~36!

n[66] ( ẑ1 ,ẑ2) can be obtained from the analytic continuation
of n(y1 ,y2) to the given point of complex (z1 ,z2) without
crossing any singular sets of~33!. It is obvious that Eq.~36!
is nothing but Eq.~31! in various limiting cases. Applying
the same procedures as those from Eqs.~7!–~9!, we have

@n#5n@11#1n@22#2n@21#2n@12#

524p2u~ ẑ1 ,ẑ2!g~x1 ,x2!, ~37!

where we haveu( ẑ1 ,ẑ2)5f(x1 ,x2 ; ẑ1 ,ẑ2), which finally
produces

g~x1 ,x2!52
n@11#1n@22#2n@12#2n@21#

4p2u~ ẑ1 ,ẑ2!
, ~38!

with the right-hand side being a function ofx1 and x2
through the identitiesx1,25h1,2( ẑ1 ,ẑ2).

For n151, n250 we have

n~z1 ,z2!5E
a2

b2E
a1

b1 g~x1 ,x2!f~x1 ,x2 ,z1 ,z2!

@x12h1~z1 ,z2!#
2@x22h2~z1 ,z2!#

3dx1dx2

5 f a1~z1 ,z2!2 f b1~z1 ,z2!1m~z1 ,z2!, ~39!

with f a1, f b1, andm being given by

f a1~z1 ,z2!5
1

a12h1~z1 ,z2!

3E
a2

b2
dx2

f~a1 ,x2 ,z1 ,z2!g~a1 ,x2!

x22h2~z1 ,z2!
,

~40!

f b1~z1 ,z2!5
1

b12h1~z1 ,z2!

3E
a2

b2
dx2

f~b1 ,x2 ,z1 ,z2!g~b1 ,x2!

x22h2~z1 ,z2!
,

~41!

m~z1 ,z2!5E
a2

b2E
a1

b1
dx1dx2

@f~x1 ,x2 ,z1 ,z2!g~x1 ,x2!#x1
~x12h1!~x22h2!

,

~42!

where we use@Q(x1 ,x2)#xi5]Q(x1 ,x2)/]xi . In ~39! the

terms f a1 and f b1 have first-order divergences on the planes
a15h1(z1 ,z2) and b15h1(z1 ,z2), respectively, and the
third termm has no divergence on the sets~33!, while it has
discontinuity on the set@x15h1( ẑ1 ,ẑ2), x25h2( ẑ1 ,ẑ2)#. In
the spirit deriving Eqs.~37! and~20! we can reduce Eq.~42!
to a partial differential equation for the functiong(x1 ,x2)

D~x1 ,x2!gx11S~x1 ,x2!g5M ~x1 ,x2!, ~43!

with D(x1 ,x2)524p2f(x1 ,x2 ,ẑ1 ,ẑ2), S(x1 ,x2)5
24p2$@f(x1 ,x2 ,z1 ,z2)#x1%uz1 ,z25 ẑ1 ,ẑ2

, and M (x1 ,x2)
5[m]5(m112m121m222m21). This equation can be
explicitly solved as

g~x1 ,x2!5C~x2!expS 2E
a1

x1
dx1

S

D D 1expS 2E
a1

x1
dx1

S

D D
3E

a1

x1
dx1

M

D
expS E

a1

x1
dx1

S

D D . ~44!

In ~44! there are two unknown functionsC(x2) and
M (x1 ,x2). C(x2)5g(a1 ,x2) can be determined from~40!.
Defining

Ga1
~z1 ,z2!5 lim

h1~z1 ,z2!→a1

@a12h1~z1 ,z2!#n~z1 ,z2!, ~45!

we have

Ga1
~z1 ,z2!5E

a2

b2 g~a1 ,x2!f~a1 ,x2 ,z1 ,z2!

x22h2~z1 ,z2!
dx2 , ~46!

wherez1 andz2 satisfy a constrainta15h1(z1 ,z2). Since all
functionsG, f, and h2 are known fromn andK, we can
immediately solve~46! by applying the approach for one-
dimensional inverse problem
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g~a1 ,x2!5
Ga1

1 2Ga1
2

2ipf~a1 ,x2 ,ẑ1a1,ẑ2a1!
. ~47!

Here ẑ1a1 and ẑ2a1 are solved froma15h1(z1 ,z2) and
x25h2(z1 ,z2). The functiong(b1 ,x2) can be specified in
the same way as

g~b1 ,x2!5
Gb1

2 2Gb1
1

2ipf~b1 ,x2 ,ẑ1b1,ẑ2b1!
, ~48!

with ẑ1b1 and ẑ2b1 being solved from the set of equations

b15h1(z1 ,z2) and x25h2(z1 ,z2) and Gb1
obtained from

Eq. ~45! by replacinga1 by b1. Inserting~47! and ~48! into
~39!, we can uniquely fix the functionm(z1 ,z2) as well as
M (z1 ,z2) in ~43!. Then the solution~44! is explicit with
g(a1 ,x2) andM (x1 ,x2) specified.

The relation~48! has not been used as the boundary con-
dition in determining Eq.~44!. From~44!, there is an identity

g~b1 ,x2!5g~a1 ,x2!expS 2E
a1

b1
dx1

S

D D
1expS 2E

a1

b1
dx1

S

D D E
a1

b1
dx1

M

D

3expS E
a1

x1
dx1

S

D D . ~49!

Inserting ~47! and ~48! into ~49!, we get a constraint for
n(z1 ,z2), independent ofg(x1 ,x2). This constraint is a non-
trivial extension of Eq.~23!.

For n15n251 we have

n~z1 ,z2!5E
a2

b2E
a1

b1 g~x1 ,x2!f~x1 ,x2 ,z1 ,z2!

@x12h1~z1 ,z2!#
2@x22h2~z1 ,z2!#

2

3dx1dx2

5 f a1 ,a2
2 2 f a1 ,b2

2 2 f b1 ,a2
2 1 f b1 ,b2

2 1 f a1
1 2 f b1

1 1 f a2
1

2 f b2
1 1m~z1 ,z2!, ~50!

with

f e1 ,e2
2 5

g~e1 ,e2!f~e1 ,e2 ,z1 ,z2!

@e12h1~z1 ,z2!#@e22h2~z1 ,z2!#
, ~51!

f e1
1 5

1

e12h1~z1 ,z2!
E
a2

b2
dx2

@g~e1 ,x2!f~e1 ,x2 ,z1 ,z2!#x2
x22h2~z1 ,z2!

,

f e2
1 5

1

e22h2~z1 ,z2!
E
a1

b1
dx1

@g~x1 ,e2!f~x1 ,e2 ,z1 ,z2!#x1
x12h1~z1 ,z2!

,

~52!

m~z1 ,z2!5E
a2

b2E
a1

b1
dx1dx2

@f~x1 ,x2 ,z1 ,z2!g~x1 ,x2!#x1x2
~x12h1!~x22h2!

,

~53!

where we havee15a1 ,b1 ande25a2 ,b2 . Equation~53! can
be reduced to a partial differential equation

D0gx1x21D1gx11D2gx21Sg5M , ~54!

with

D0524p2f~x1 ,x2 ,ẑ1 ,ẑ2!,

D1,2524p2$@f~x1 ,x2 ,z1 ,z2!#x2,1%uz15 ẑ1 ,z25 ẑ2
,

S524p2$@f~x1 ,x2 ,z1 ,z2!#x1x2%uz15 ẑ,z25 ẑ2
,

M5@m~z1 ,z2!#. ~55!

To solve this equation we still need to know the explicit form
of M (x1 ,x2) and the boundary conditionsg(a1 ,x2) and
g(x1 ,a2). First, we can determine theg values at the four
corners

g~e1 ,e2!5~21!p lim
h1~z1 ,z2!→e1

lim
h2~z1 ,z2!→e2

3
@e12h1~z1 ,z2!#@e22h2~z1 ,z2!#n~z1 ,z2!

f~e1 ,e2 ,z1 ,z2!
,

~56!

wherep50 when even number ofe takeb andp51 other-
wise. Then we can compute theg values on various bound-
ary lines. First we computeg(a1 ,x2). From~50! and~56! we
can get

Ga1
~z1 ,z2!5 lim

h1~z1 ,z2!→a1

@a12h1~z1 ,z2!#@n2 f a1 ,a2
2 1 f a1 ,b2

2

1 f b1 ,a2
2 2 f b1 ,b2

2 #, ~57!

which leads to

Ga1
~z1 ,z2!5E

a2

x2
dx2

@g~a1 ,x2!f~a1 ,x2 ,z1 ,z2!#x2
x22h2~z1 ,z2!

. ~58!

Note thatz1 ,z2 in this equation are restricted by the condi-
tion h1(z1 ,z2)5a1 . Equation~58! can be again reduced to a
first-order differential equation forg(a1 ,x2),
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Da1
g~a1 ,x2!x21Sa1g~a1 ,x2!5@Ga1

#, ~59!

with Da1
52p if(a1 ,x2 ,ẑ1 ,ẑ2) and Sa1

52p i $@f(a1 ,x2 ,z1 ,z2)#x2%uz15 ẑ1 ,z25 ẑ2
. The solution of

~59! reads

g~a1 ,x2!5g~a1 ,a2!expS 2E
a2

x2
dx2

Sa1
Da1

D
1expS 2E

a2

x2
dx2

Sa1
Da1

D E
a2

x2
dx2

@Ga1
#

Da1

3expS E
a2

x2
dx2

Sa1
Da1

D . ~60!

Sinceg(a1 ,a2) andGa1
are known from~56! and ~57!, the

solution of g(a1 ,x2) is explicit. In the same way we can
specify g(x1 ,a2), g(b1 ,x2), and g(x1 ,b2). Inserting all
these boundary values and corner values into Eqs.~51! and
~52!, all functions off 2 and f 1 are fixed and then the function
m(x1 ,x2) in ~50! follows. Withm(x1 ,x2) and the boundary
conditionsg(a1 ,x2) andg(x1 ,a2) known, Eq.~54! is com-
pletely defined and can be solved in various practical ways,
though the explicit solution seems to be unavailable.

In seeking the unique solution of~54! we do not need
g(b1 ,x2) andg(x1 ,b2) for the boundary conditions. These
two known functions again serve as constraints for the func-
tion n(y1 ,y2) as we discussed for~23!, ~29!, and~49!.

Applying similar procedures, we can transform the more
general two-dimensional inverse problem with arbitrary
n1,n2 in ~32! to partial differential equations in a systematical
way. With largern1 andn2, the order of the partial differen-
tial equation becomes larger and there are more constraints
for function n(y1 ,y2) to be satisfied. We will not go into
further details in this respect.

The procedure can also be extended toq-dimensional
problems withq.2. Here we give only some results of Eq.
~1! when the continuous dilatation of the kernel
K(z1 ,z2 ,...,zqux1 ,x2 ,...,xq) has simple singularity

K~z1 ,z2 ,...,zqux1 ,x2 ,...,xq!

5
f~z1 ,z2 ,...,zqux1 ,x2 ,...,xq!
P i51

i5q@xi2hi~z1 ,z2 ,...,zq!#
. ~61!

In the spirit same as~35! and~36! we can define 2q functions
K @6,6,...,6# and the corresponding 2q functionsn@6,6,...,6#. The
final solution of~1! can be written as

g~x1 ,...,xq!5
@n#

~2p i !qu~ ẑ1 ,...,ẑq!
, ~62!

where the notation [n] indicates an algebraic summation of
2q terms of alln@6•••6#. Each term takes a sign~21!j with j
being the number of minus signs in the superscript, namely,

@n#5n@1•••1#2n@21•••1#2n@121•••1#1n@221•••1#

2n@1121•••1#1n@2121•••1#1n@1221•••1#

2n@2221•••1#1•••1~21!qn@2•••2#. ~63!

The development from~30! to ~60! can be fully applied to
q-dimensional inverse problem with kernel having high-
order singularities

K~z1 ,z2 ,...,zqux1 ,x2 ,...,xq!

5
f~z1 ,z2 ,...,zqux1 ,x2 ,...,xq!

)
i51

i5q

@xi2hi~z1 ,z2 ,...,zq!#
n i11

. ~64!

Here we will not repeat the similar formalism.

V. CONCLUSION

In conclusion, we have generalized our method of solu-
tion to the inverse problem proposed in Ref.@10# to the more
general cases. This generalization will enable us to deal with
a wider range of practical inverse problems that may occur in
many fields of research.

The essential results in our approach are the following.
We successfully reduced the inverse problem to strikingly
simple algebraic equations@for ( i51

i5qn i50 in Eq. ~64!#, ex-
plicitly solvable ordinary or partial differential equations~for
( i51

i5qn i51!, or other differential equations that can be
handled with essentially different methods from those used
conventionally for solving the integral equations. All these
reductions are based on the understanding of the properties
of the singular sets of the kernel and the discontinuities or
singularities of the integral associated to these sets.

As K(zux) contains high-order poles, the integraln(y)
should be subject to certain constraints. These constraints are
not due to the integrandg(x). They represent the intrinsic
links between the singularities of the kernel and the integral.
The understanding of these intrinsic relations may be of in-
terest in predicting the universal behaviors of measurable
quantities directly from the structure of transformation op-
erators.

We emphasize again that both the originalK and n are
analytical and well behaved on the physical supports. The
key point is to extend the physical support to the complex
plane to analyzing the singularities and discontinuities in the
nonphysical regions. Moreover, we also analytically dilate
the integraln(y) and find that the discontinuities or singu-
larities occur exactly at the locations of the singularities of
the kernel.

Our approach relies on the fact that we need the explicit
functional forms forK(yux) and n(y). In many practical
cases, however, we do not have explicit expressions for these
functions, but only limited amount of data forK(yux) and
n(y). The analytical continuations cannot be directly made
in these cases. To make analytical continuation in these
cases, some proper expansion~or successive-expansion! ap-
proaches have to be invoked. We plan to discuss this more
practical aspect in a future work.
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