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Inverse problem with a dilated kernel containing different singularities

Hu Gang'? C. Z. Ning®* and H. Hakeh
Linstitut fir Theoretische Physik und Synergetik, UnivétsBauttgart, Pfaffenwaldring 57/4, D-70550 Stuttgart, Germany
2Department of Physics, Beijing Normal University, Beijing 100875, China
SArizona Center for Mathematical Sciences, Department of Mathematics, University of Arizona, Tucson, Arizona 85721
(Received 9 January 1996

In a recent papefPhys. Lett. A205 130 (1995], we investigated the inverse problem of solving
g(X1,...Xg) from the integral equatioml(yl,...,yq)=fK(y1,...,yq|x1,...,xq)g(xl,...,xq)dxl'-'dxq, with
the given integrah and kernelK by analytically dilating variabley to the complex plane. We showed, by
studying the singularities and discontinuities of the dilated kernel and integral, that the unknown fgnzdion
be obtained from an algebraic relation in the case where the dilated kernel contains a simple and single-valued
pole. The present paper intends to generalize this result to the case where the kernel contains higher-order
and/or multivalued poles. We show that the integral equation in these more general cases can be transformed
to algebraic, ordinary, or partial differential equations, depending on the type of the singularities of the kernel
and the dimension of the inverse problem. Moreover, some conditions constraining the intaghétch are
independent of the integrand, are revealed wherK has multivalued or high-order singularities.
[S1063-651%96)00809-4

PACS numbd(s): 05.30—d

[. INTRODUCTION of K. In [10] we treated only the case whefe after dilated
to the complex plane, has a single-valued simple fole
In physics and many other branches of science and engérder-one polgfor eachx. In this paper, we will extend the
neering one often needs to predict or estimate certain inputpproach of10] to more general cases whéfeif dilated to
from the corresponding output. Examples include recoveringhe complex plane, has multiple and high-order poles. More-
the incident(optical or particle beams from the scattered over, we will show that some interesting intrinsic relations
beams, estimating transmitted signals from the receiveeéxist betweem andK, which are independent gf in these
ones, and detecting the inner structures of systems such amre general cases.
the energy spectra of the given matters from the measurable This paper is organized as follows. In Secs. Il and Il we
free energy. This kind of problem is generally called theconsider the one-dimensional case, for which @gjis sim-
inverse problem. In many cases the inverse problem is mattplified to
ematically represented by an integral equation of the first
kind b
)= | Kybogeodx @

by by
n(yl,...,yq)zf f K(Y1,.--YqlX1,---Xg)
ag a;

In Sec. Il we will first summarize the results of the previous
XG(Xq,.. . Xg)dXg - dXg, (1)  paper for the case of simple poles and then generalize them
to the case of multiple-valued singularities. Section Il will
where the kerneK is often known from our understanding be devoted to the high-order singularity problem. In Sec. IV
of the physical mechanisms of the systems involved. Theve extend the results obtained in the previous sections to the
functionn is also known in practice from the measurements multidimensional systems. Finally, we conclude the paper in
The functiong is unknown and it is the task for the research Sec. V.
of the inverse problem to determine this function. Before dealing with the concrete cases, let us first specify
Equation (1) has been investigated as a typical integralsome general conditions required for our approach.
equation in mathematics for a long tini@—6]. Recently, As in most of practical problemsg(xy,....Xxs) and
Chenet al. have solved Eq(1) for Fermi or Fermi-like ker-  K(yy,...,yqX;,....X,) are assumed to be real and analytic
nels in the one-dimensional case by elegantly linking thefunctions of real variables,,... X, andyy,....yq in their
kernel to the s function [7,8]. The limiting procedure in- supports, which are determined by physical problems. Thus
volved in[7,8] was later clarified9]. In a recent pap€drl0],  n(y;,...,y,) must also be a real and analytic function for
we suggested an approach to dilate the integraind the realy,,....y,. We assume tha andn can be analytically
kernelK into the complex plane. The solution to E4) is  dilated from the original reay,,...,y, space to complex
then obtained by investigating the singularities of the kernek, ,...,z, space. Sinc& is a known analytical function, its
K and the discontinuities of the integnalat the singular set analytical continuation can be directly written down by re-
placing the realy’s by complex variablegz’s. We further
assume that the analytical continuatiomadb complexz’s is
* Author to whom correspondence should be addressed. also entirely known. The crucial assumption in our approach

1063-651X/96/543)/23848)/$10.00 54 2384 © 1996 The American Physical Society



54 INVERSE PROBLEM WITH A DILATED KERNH. . . . 2385

is that Egs.(1) and(2) are valid not only for reay but also
for the complexz variables as well, i.e., we have

by by
n(zl,...,zq)=f f K(Zq,...Zg|X1,- . Xq)
aq a

XQ(Xq,... Xg)dXg - -dXg (3)
generally, or
b
n(z)=f K(z]x)g(x)dx (4) FIG. 1. Schematic representation of the analytical continuation
a of the integraln(y) to the complex plane. The thick solid line

h~1(a),h~(b)] indicates the singular cut of the kernel, while the
rrowed solid lines indicate the continuation. The extension across
the singular cut as marked by the dashed arrows is not allowed.

in the one-dimensional case. This point can be easily verifie
by the above assumptions of analytic continuation.

Il. KERNEL WITH SINGLE- AND MULTIVALUED e o1
ORDER-ONE POLES Nt i(z2)—nt"(2) ©

9= "S5
K(y|x) in (2) is assumed to be analytical for the variables

x andy on its physically meaningful supports. According to

the Liouville theorenj11], there exist, however, singularities \yhere7 can be replaced by a function efasz=h"1(x) and
outside the physical region fé€(z|x), if K(z|x) is not iden- n*(2) are the values ofi(z) by taking the limitsz— 2 from
tically constant and bounded for larggl. We make an as- the |eft and rightwith respect to the oriented curve from
sumption, which is reasonable in many physical systems;—p-1(a) to 2=h~!(b); see Fig. 1sides, respectively.

that|K(zx)|<R as|z| - with R being a certain finite posi- Before we present further results, it is helpful to make the
tive number. ThusK(z|x) must have singularities. In this following remarks to clarify result9).

section we first consider the case where, for ee,_cI1Q(z|>§) (i) The kernelK(y|x) is analytic on the physical supports
has only a single order-one polexth(z) [z=h"7(X) iIs  of x andy. However, it has singularities whei(y|x) is
single valued, namely, dilated fromy to complexz plane (the support ofx is not

b(x,2) changedl K(z|x) is single valued for each pair of variables
. (5) (z,x). This is different from the usual case studied in the
x—h(z) context of singular integral equations, where the physical
support itself contains singularities.
(i) K(z|x) has a single simple pole for each at
z=h"%(x), thus it has a cut wher varies continuously on

K(z|x)=

with ¢(x,z) being analytic on the cud=h"%(x), wherex
belongs to f,b]. From the well-known relation

1 1 its support p,b]. Whenz approache from two sides of the
lim ————=P ——Fimd(x—y), (6) cut, K(z|x) undergoes a-function jump indicated by7).
0 XTY=I€ Xy (iii) The functionn(z) satisfying Eq.(4) is also single

valued. It can be obtained from the analytical dilatation from
%fie measured functiom(y) without crossing the singular cut
of K(z|x) (see Fig. 1 for a schematic representaticbne
can certainly find a discontinuity af(z) on the cut. The
difference between the left and right limits ai(z2),
[n"(2)—n~(2)], divided by the residue of the kernel at the
corresponding pole, gives the solutig(x) in (9).

where P denotes the Cauchy principal value, we can expre
[10] Eq. (5) in the form

KE=1(Z|x) = lim

e—0

1 -
x—h@=ie ?09

= b(x,2)P — +imu(2) 8(x—h(2)) (iv) It is to be emphasized tha{y) can be often analyti-
x—h(2) cally dilated to cross the cut without experiencing any dis-
~ . continuity. However, its continuous dilatation in the region
u(z)=¢(x,2), (7)  crossing the cut does not satisfy Ed) (see the dashed lines

in Fig. 1) and cannot be used for solving the inverse prob-
lem. Actually, the dilatation ofn(y) must have multiple-
sheet structure. The unique sheet givimg) of (4) should
b be reached by the paths froyo the givenz. The paths may
n[i](z)zf KX Z)x)g(x)dx turn around the branch points=h~*(a) and h~*(b), but
a they can never cross over the cut as indicated in Fig. 1.
b 1 (v) The result(9) is surprisingly compact. Now the in-
ZPJ d(X,2)g(X) ——= dxximu(z)g(x), verse problem is reduced to a simplest algebraic computa-
a x—h(z) tion. The main work for solving the inverse problem is then
g o seek the location of thg singular point Kf{z|x), (x,2),
and to specify its residue(z) and the discontinuity of(z)
from which the inverse problem can be solved exactly: ~ on this singular set™ () —n" (2).

which is the key starting point of the analysis[it0]. Equa-
tion (7) leads to
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Now we generalize the above results to the case where

kernelK(z|x) may have more than one singular point in the
z plane for eactx, namely,
x=h(z(1))=h(z(2))=""

=h(z(w)). (10

In this case, one obtains the sagx) solution from each
cut according to Eq(9),

1) —nt[2(1)]

900 = 2imu())

1=1,2,...pu. (1)

Therefore, this solution gives rise to some relations betwee

the discontinuities ofn(z) and the residues oK(z|x) at
different singular pointz(l), 1=1,2, ... u,

ntI@(1))—nl7l@())  nlTIE(1)-nllz(1)
2iu(z(l)) - 2imu(z(1))
1=23,...,u. (12

They serve as constraints governing the integr@) [as

well asn(y)]. We point out that these constraints are inde-

pendent of the integrangi(x) and they are purely due to the
distribution of the singularities of the kernkl(z|x).
Il. KERNEL WITH HIGHER-ORDER POLES

Now we consider the case whekgz|x) has a higher-
order pole in the complex plane

@[

with ¢(x,z) being analytic on the ciz=h"1(x), x=[a,b].
First, let us study the case of order-two p6le=1) in detail.
Equation(13) is reduced to

d(X,2)g(x

X — h(z)]v+l d (13)

A1(2) Bi(2)
n(z)= - h(z)_ b—h(z) +m(z), (14
with
A1(2)=¢(a,z)g(a), Bi(z)=¢(b,z)g(b) (15
b [p(x,2)g(X)]’
m(z)=Ja de, (16)

where the prime denotes the partial derivative with respect to

x. Now the integration of Eq.16) takes the same form as Eq.
(4). An important implication of Eqs(14) and(15) is, if the
kernel K(z|x) has order-two singularity, the dilated(z)
must have simple-pole singularities at the two boundarie
z,=h"%a) and z,=h"'(b). From them we immediately
determine

Iinj [a=—h(z)]n(z)

g(a)=—= (17)

$(a,z,) '
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lim[b—h(2)In(z)
=%

9(b) (18

¢(b12b)

Inserting (17) and (18) into (14) and (15 we can specify
A1(2), B4(2), andm(z). Equation(16) can be solved follow-
ing the procedures frort¥)—(9), leading to

2im[ p(x,2)9(X)] | ,=3=m" (2)—m~(2),

where again we have=h"1(x) andm™(Z) have the same
meanings as™ (2) in Eq.(9). It is interesting that an integral
equation(13) is now transformed to a first-order differential
Bquation

(19

D(x)g" +S(x)g=M(x), (20)
with D(x)=2mi ¢[x,h ()], S(X) =2midp(X,2)/
IX|oh-109, and  M()=m*[h™(x)]-m [h~}(x)].

The explicit solution of(20) can be easily worked out as

g(x)=C exp( f p( S(X))

*Dx)
< M) X S(x)
XLdX D(x) exp( Jadxm)’

where the constar is fixed by the boundary condition at
x=a in (17

dXW

(21)

lim[a—h(z)]n(z)
=7

C=g(a)= (22

b(z2)
A point particularly important is that relatiofi8) has not
been used for the boundary condition in solvii@). Thus
this serves as a constraint for the functiory) itself,
namely, we have

lim[b—h(z)]n(z)

— Z—>A2b
¢(b!2b)
Iir‘p[a—h(z)]n(z) b s
e = exp( f dx ﬂ)
$(a,z,) D(x)
b S(x)\ (b M(x)
+exp(‘LdXWx>) de—mx)

S(X)

D(x) @3

o [P0 2|

Now we can briefly summarize what we have achieved in
the above analysis in this section. If the dilatation of the

kernel K(z]x) has an order-two pole, the dilatation of the

integral n(z) should have two kinds of singularities: two
order-one poles at the two boundaries of the integrdiien
atz,=h~%(a), h~%(a), in our notatiod and a discontinuity
along the cuk=h(z) with the branches &, ,. The residues

of n(z) at the poles are associated with the boundary values

of the unknown functiorg(x) [g(a) andg(b) in our case
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and the gap of the discontinuity is given by the derivative ofrestricting the integrah(z). These constraints are, however,
the integrand. These arguments allow the original integraindependent of the functiog(x).
equation to be transformed to a much simpler and solvable The discussions in Sec. Il and in this section can be ex-
first-order differential equation with well defined boundary tended to even more general cases where the kernel is written
conditions. Moreover, the two kinds of singularities are re-as
lated to each other, namely, the two residues of the poles
should be linked by the integration along the cut through Eg.
(23), which describes the intrinsic links between the singu-
larities of the kernel and the integral, and should be satisfied
by n(z) for arbitrary analyticab(x).

The above method of solution can be extended to mor

$(X,2)

" ’

K(Z|X): =
T Dxc-hein

(28)

general integral equatiofi3). Equation(14) can be written
generally in the form

S (-1 (w(b,z)g(x)](k—”
D=2 S0 (vr1-K | [b-h(z)]"* T ¥

(k-1) )
[#(a,2)9(X)] )+ fbdx [#(x,2)g(X)]

- [a_h(z)]v+1—k X_h(Z) )

(29)

where we use the notations

M p(x.2)g9(x)]

[6(x,2)g(x)] W =—— .

Now we can fix all the boundary conditions gfa,b)*~ %),
k=1,2,...p. For instance, we have

lima[a—h(z)]"n(z)

g(a)=v $@h 1(a) (25
and
g(a)u):_Hv(y—l) lim [a—h(z)]""*
Zﬂhfl(a)
$(a,z)g(a)
X n(z)—vm)

- g(a)¢(a,h_1(x))(l’} / $(a,h™*(x)).

(26)
g(b), g(b)?, and all higher derivativeg(a)®¥ andg(b)®,

k=2,3,...p—1, can be obtained in a similar way order by
order. Finally, the functiorm(z) can be specified and we

arrive at

) m*(2)—-m~(2)

[p(x,2)g(x)]\"s= 5 27)

Shere #(x,z) is analytical on all the cutsx=h(z(i)),
i=1,...u K(z|x) is singular oru cuts, from each cut we
can uniquely solve the inverse problem, and the solutions
from all cuts should identically give the same functigfx).
Thus we haveu—1 constraints for the integral(z). More-
over, for theith singularity(which is a pole of ordey,+1),

we havey, constraints. All together we have

i=u

L=u—1+> v (29)
i=1

constraints for the functiom(z) [and also forn(y), of
coursq. These constraints describe the relations between the
structure of the integrai(z) and the singularities of the ker-
nel K(y|x), which exist without regard to the form of the
function g(x).

IV. MULTIDIMENSIONAL CASES

The multidimensional inverse problem is generally much
more complicated than the one-dimensional one. It is there-
fore extremely desirable to have a practical method to deal
with the problem. The above approach can be systematically
extended to the multidimensional cases. The general idea of
treating a multidimensional problem can be clearly mani-
fested in two-dimensional cases. Therefore, in this section
we focus on the two-dimensional problem. The applications
to higher-dimensional problems will be briefly discussed at
the end of this section. The corresponding integral equation
is written as

by (b
n(y1,)’2):fa fa K(y1,Y2|X1,X2)9(X1 ,X2)dX;dXs .
2 1
(30)

The functionsK andn are analytic in their physical supports
and both the function and the equation can be analytical
dilated to complex planes

by (by
n(zy,2,) = Ja J;l K(z1,25]X1,%2)9(X1,X2)dxgdX,.  (31)
2 1

The dilated kerneK (z;,2,|X;,X,) is assumed to have singu-
larities on the nonphysical supports. After certain coordinate

Similar to the case of an order-two pole, we have trans@nd functional transformations we can get the following
formed the integral equation to a well defined differentialSimple form for the singularity:

equation, with the boundary conditiomga), g(a)®, ...,

g(a)®™ 1, which are computed from the residues of the vari-

ous orders of singularities aof(z). The valueg(b) and all

the known derivatives at the boundarhave not been used
in solving (27). They serve, like Eq(23), as the constraints

K(z1,25/X1,%2)

D (X1,X2,21,2Z5)
T X hy(z1,2) 1 X~ hy(24,25) 27 (32
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with ¢ being analytic on the sets :fal(zl,zz)_fb1(21,22)+m(zl,zz), (39
X1=N1(21,2),  X2=hy(21,2,). 33 with fa,: fo,, andm being given by
Note thatK(z;,z,|x;,X,) is single valued for each pair of
(x,2); thenn(z;,z,) must also be single valued on the com- fo(24,25)=
2T ) —hy(29,2,)

plex (z;,z,) support. For clarity and simplicity we analyze
the cases,=»,=0; 1,=1, 1L=0; and v;=v,=1 in detail.

The cases of general singulariti€32) will be mentioned Xy
afterward. ay Xa—hy(21,2,)

FOI‘ = V2:0, (40)

beZd b(a1,X2,21,22)9(a1,X2)

by by
n(zl,22)=f j dx;dx,
aJa

fbl(zlsz): bl_hl(zluZZ)

9(X1,X2) p(X1,X2,21,25) (34) bezd d(b1,X2,21,25)9(by,X5)

[x1—h1(21,25) [[X2—ha(z1,25) ] a X2 Xo—hy(24,25)

As in the one-dimensional case the study in this case has a (42)
fundamental significance for the general multidimensional
inverse g)roblem Comparln? witli7), we should define by (by
K+ KE andK!™ I for Eq. (34) instead ofk[*! m(zl,zz)=J' dx,dx,
in Eq. (7) for (4) az Ja

[#(X1,X2,21,22)9(X1,X2) Ix,

(X1 —hy)(Xz—hy) ’
(42)

[£+15. 5
KE5(21.220%0.%2) where we use Q(x1,Xz) ], = dQ(X1,X2)/dx; . In (39) the

1 termsf, andfy, have first-order divergences on the planes
= lim lim X—hiG.5,) = ie; a;=h,(z,,2,) and b;=h,(z,,2,), respectively, and the
€170 =0 ’ third termm has no divergence on the sé&9), while it has
discontinuity on the sefix,=h,(2;,2,), X,=hy(2;,2,)]. In
D (X1,X2,21,25), (35  the spirit deriving Egqs(37) and(20) we can reduce Eq42)
to a partial differential equation for the functi@{x;,x,)

Xo—hy(21,25) Fi e,

where the setZ;,z,) satisfies both equations =h,(z,,2,)

andx,=h,(2,,2,). Correspondingly, we have D (X1,X2) 0, T S(x1,%2) 9= M (X1, %2), (43

by by With  D(Xy,Xp)= —4m2h(X1,X2,21,20),  S(X1,X2) =
n[rﬂ(gl,zz):f f KEHIg(xg o) dxdXo.  (36)  —4m{[b(x1,%2,21,22) Iy Mz, 2,3, 3, @D M(Xq,%p)
20 =[m]=(m""—m*~"+m~~—m~ 7). This equation can be
nl=*1(z,,2,) can be obtained from the analytic continuation €xPlicitly solved as
of n(y,y,) to the given point of complexz(,z,) without

crossing any singular sets (83). It is obvious that Eq(36) 9(X1,Xz)=C(x2)exp( B fxldxl E +ex;{ B fxldxl §)
is nothing but Eq.(321) in various limiting cases. Applying D a, D
the same procedures as those from E@s-(9), we have

X1 M X1 S
[n]=nl* 14 nl-—1—pl=+1_p+-] X lexl D & lexl Dl (44)
— 20005 5
= ~ATU(21,22)9(Xq X2), (37 In (44 there are two unknown function€(x,) and
where we haveu(z;,z,) = ¢(X1,X»;2;,,2,), which finally I\Dﬂéf)i(éi’:Z)' Cx2) =9(a1,x;) can be determined frort0).
produces 9
N+l ppl=—l_pl+=1_pl=+] a8 Gal(Zl,ZZ)Zhl(zlliZ])ﬂal[al_hl(Zl,ZZ)]n(Zl,h% (45)
we have
with the right-hand side being a function of and x,
through the |dent|t|exl12: hlyz(il,’zz). b2 g(al!XZ) ¢(alyx2121122)
For »,=1, »,=0 we have Ga,(21,20) = “hy(21.25) dx, (46)
N(24.2,)= Jbzf 9(X1,X2) P(X1,%2,21,25) wherez,; andz, satisfy a constrair, =h,(z;,2,). Since all
12 [x,—hy(z1,25) 1%~ hy(21,25)] functions G, ¢, andh, are known fromn and K, we can

immediately solve(46) by applying the approach for one-
X dx;dx; dimensional inverse problem
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where we have; =a,,b; ande,=a,,b,. Equation(53) can

Ga,~Ga, 101 8 _ !
(47) be reduced to a partial differential equation

g(ay,%2) = 5 R .
2|7T¢(a11X2azla1122a1)
Here z,,, and Zp, are solved froma;=hy(z;,2;) and

X,=hy(2;,2,). The functiong(b,,Xx,) can be specified in
the same way as

Dogx1x2+ Dlgxl+ D29x2+ Sg=M, (54)

- with
Gbl_ G;l

2imp(by,Xa,21,,22p,)

g(by,x)= (48)

D0: _4W2¢(X11X2|21522)1
with z;, and z, being solved from the set of equations
b;=hy(z;,2;) and x,=hy(z;,2;) and G, obtained from
Eq. (45 by replacinga; by b;. Inserting(47) and (48) into
(39, we can uniquely fix the functiom(z;,z,) as well as
M(z;,z,) in (43). Then the solution44) is explicit with
g(a;,x,) andM(x4,X,) specified.

The relation(48) has not been used as the boundary con-
dition in determining Eq(44). From(44), there is an identity

Dl,2: - 4772{[‘1’()(1 1 X2,21 -22)]x2’1}|zl=21,22=22-
S=- 4772{[ P(X1,X2,23 122)]x1x2}|zlzi,zzziza
M=[m(z;,2,)]. (595

by S
g(by,X2)=g(as,xp)ex _j dx; =
al D

To solve this equation we still need to know the explicit form

fbld S fbld M
+exp — o XlB o XlB

X1 S
Xexp{ L dx, 5). (49

Inserting (47) and (48) into (49), we get a constraint for
n(z;,z,), independent o§(x;,X,). This constraint is a non-

trivial extension of Eq(23).
For v;=v,=1 we have

n(z z ): szfbl g(X11X2)¢(X11X2721,22)
v ap Ja; [Xl_hl(zl!ZZ)]z[Xz_hz(Zl,Zz)]z

X dx;dX,
__f2 2 2 2 1 1 1
_fal,az_ fal,bz_fbl,a2+fb1,b2+ fal_ fbl'i_fa2
_f%2+m(21122)1 (50)

with

f2 _ g(elieZ)d)(el!eszleZ)
e [e1—hy(z1,2)][€,—hy(2,,2,) ]’

(51)

[9(e1.,X2) p(e1,X2,21,25) ]x,

Xo—hy(21,2)

fL ! szd
=— X
1 e;—hy(z1,25) Ja, 2

[9(X1,82) #(X1,€2,21,25) I,
X1—hi(z1,2)

(52

b2 b [A(X1,X2,21,22) (X1, X2) Ix,x,
”‘(Zl'zz)‘faz lexl‘“z a—h)(—hp)
(53

[ 1 Jbld
= X
®2  e;—hy(21,25) Ja !

of M(xy,X,) and the boundary conditiong(a;,x,) and
g(x4,a,). First, we can determine thg values at the four
corners

g(e;,e)=(—1)° lim lim
h1(z1,25)—€1 hy(z1,25)—e)
[e1—h1(Z1,25) [€2—hy(Z1,25) In(21,2)
¢(e11e2 121122)

(56)

wherep=0 when even number of takeb andp=1 other-
wise. Then we can compute tigevalues on various bound-
ary lines. First we computg(a; ,x,). From(50) and(56) we
can get

Gay(21,22)=  lim  [a;—hy(z1,2)][n— 1] o +73 o
h1(z1.20)—ay
+f§1132_fg11b2]’ (57)

which leads to

X2 [g(a11X2)¢(a11X2721122)]X2

G, (24,2 =f dx
al(l 2 a, 2 X2—hy(21,25)

(58)

Note thatz,,z, in this equation are restricted by the condi-
tion hy(z;,2z,)=a; . Equation(58) can be again reduced to a
first-order differential equation fay(a;,x,),
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Da,0(a1 X2y, +Sa 081, %) =[G, ], (59
W|th Da1: 27T| ¢(a1 ,X2 ,21 ,22) and Sal
=277i{[¢(a1,x2,zl,zz)]xz}|21:31,22:gz. The solution of
(59) reads

X2 Sal
g(a;,%,)=g(a;,ay)ex —f dXZD_
ap a;
+ szd Sal J‘de [Gal]
exp — Xy —— X
a2 2 Dal a2 2 Dal
X2 Sa1
X ex f dx, o/ (60)
as a;

Sinceg(a;,a;) andG,, are known from(56) and(57), the

solution of g(a;,x,) is explicit. In the same way we can
specify g(x;,a,), g(b;,X,), and g(x4,b,). Inserting all
these boundary values and corner values into Egf5. and
(52), all functions off? andf* are fixed and then the function
m(Xx4,X,) in (50) follows. With m(x;,x,) and the boundary
conditionsg(a;,X,) andg(x,,a,) known, Eq.(54) is com-

pletely defined and can be solved in various practical waysW

though the explicit solution seems to be unavailable.
In seeking the unique solution ¢64) we do not need
a(b;,x,) andg(x;,b,) for the boundary conditions. These

two known functions again serve as constraints for the func

tion n(y,,y,) as we discussed fdR3), (29), and(49).

Applying similar procedures, we can transform the more
general two-dimensional inverse problem with arbitrary
V1,1, in (32) to partial differential equations in a systematical

way. With largery, and v,, the order of the partial differen-

tial equation becomes larger and there are more constraint%

for function n(y,,y,) to be satisfied. We will not go into
further details in this respect.

The procedure can also be extendedgtaimensional
problems withq>2. Here we give only some results of Eq.
(1) when the continuous dilatation of the kernel
K(Z1.25,....2qX1,X2,... Xq) has simple singularity

K(Z1,2p,....2g/X1, X2, ... Xq)

_ ¢(Zl,22,...,Zq|X1,X2,...,Xq)

- H=zg[xi_hi(zl,ZZ,...,Zq)] '

(61)

In the spirit same ag35) and(36) we can define 2functions
K==-*land the correspondingd' 2unctionsnt=**1. The
final solution of(1) can be written as

[n]

T 2m)%u(zy, ...

9(X1,s..-Xg) , (62

12q)

where the notation

indicates an algebraic summation of
29 terms of allnl*"=

. Each term takes a sign-1)' with |
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[n]=nltFlopl-+otloplt oty gl =+ t]
B I T B e e I S
—pl=—— e (= 1)l ]

n +---4+(=1)n . (63

The development fron30) to (60) can be fully applied to
g-dimensional inverse problem with kernel having high-
order singularities

K(Z1,22,... ZglX1, X2, Xq)
D(21,2,...,Zg|X1, X0, .0 Xq)
= = = . (64
I1 (x—hi(z1.25....29)1"

Here we will not repeat the similar formalism.

V. CONCLUSION

In conclusion, we have generalized our method of solu-
tion to the inverse problem proposed in Rdf0] to the more
general cases. This generalization will enable us to deal with
a wider range of practical inverse problems that may occur in
many fields of research.

The essential results in our approach are the following.
e successfully reduced the inverse problem to strikingly
simple algebraic equationifor = ;Z%»;=0 in Eq. (64)], ex-
plicitly solvable ordinary or partial differential equatioffer

S iZ%v;=1), or other differential equations that can be
handled with essentially different methods from those used
conventionally for solving the integral equations. All these
reductions are based on the understanding of the properties
of the singular sets of the kernel and the discontinuities or
singularities of the integral associated to these sets.

As K(z|x) contains high-order poles, the integraly)
should be subject to certain constraints. These constraints are
not due to the integrand(x). They represent the intrinsic
links between the singularities of the kernel and the integral.
The understanding of these intrinsic relations may be of in-
terest in predicting the universal behaviors of measurable
quantities directly from the structure of transformation op-
erators.

We emphasize again that both the origialand n are
analytical and well behaved on the physical supports. The
key point is to extend the physical support to the complex
plane to analyzing the singularities and discontinuities in the
nonphysical regions. Moreover, we also analytically dilate
the integraln(y) and find that the discontinuities or singu-
larities occur exactly at the locations of the singularities of
the kernel.

Our approach relies on the fact that we need the explicit
functional forms forK(y|x) and n(y). In many practical
cases, however, we do not have explicit expressions for these
functions, but only limited amount of data fé¢(y|x) and
n(y). The analytical continuations cannot be directly made
in these cases. To make analytical continuation in these
cases, some proper expansi@n successive-expansipap-
proaches have to be invoked. We plan to discuss this more

being the number of minus signs in the superscript, namelypractical aspect in a future work.
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