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Theory of quantum fluctuations in classically chaotic Hamiltonian systems
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In a number of numerical experiments it has been demonstrated that the initial growth of quantum variances
of the dynamical variables for a chaotic trajectory is exponential in nature. This is a typical signature of
classical chaos on a generic quantum dynamical feature. Based on the theory of multiplicative noise we have
proposed a quantitative theory of this exponential divergence of quantum dispersions for general Hamiltonian
systems, the rate constant being determined by the correlation function of the fluctuations of the curvature of
the classical potential. The theory has been subsequently applied to a model driven double-well oscillator with
detailed classical and quantum-mechanical calculation to verify the theoretical propositions.
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PACS numbdps): 05.45+b, 03.65Bz

[. INTRODUCTION briefly present thé scaling of the Wigner equation approach
of Fox and Elstor{10], followed by a detailed treatment of
Chaos in dynamical systems is one of the key issues iglassical fluctuations of the curvature of the potential using
nonlinear physics todall,2]. The chaotic motion is not as- the theory of multiplicative noise in Sec. Ill. An application
sociated with the variation of stochastic parameters or forcedf the master equation for the quantum fluctuation distribu-
but is intrinsically due to unstable character of trajectories irfion function in the case of a driven double-well oscillator is
phase space. To be more specific, the instability is because gfven in Sec. IV. The paper is concluded in Sec. V.
exponential separation of initially nearby trajectories. The
rate of growth of the separation is measured by the largest Il. # SCALING OF WIGNER EQUATION
Lyapunov exponent. Very recently we have propokgda ] ) ) ) o
general relationship between fluctuations and diffusion for 1O start with we consider the quasiclassical distribution
Hamiltonian systems which relates the largest Lyapunov ex@PProach of Wigner. Over the years this has proved to be a
ponent to the fluctuations of the curvature of the potential irStandard starting point of analysis of quantum-classical cor-
a way that is reminiscent of the Kubo relations in statistical'®spondence. The Wigner distribution function is defined in
physics, so that the exponent can be viewed as a transpdifase spacgx;,p;} as follows:
coefficient in phase space. We have also shp#jrthat the
theory of multiplicative noise can be a good natural descrip- _ N *
tion o% classicari chaos in several occasgions. P Wik e =R m) ]f f déy - déng™ (3t &)
Recently a number of numerical experiments have dem-
onstrated_5—7] th.at the initial growth_qf guantum variances X (/,({Xi_gi})exr{(z”ﬁ)( E pigi)
of dynamical variables, such as position or momentum for a [
classical trajectory, is exponential in nature. This is a typical
signature of classical chaos on a generic dynamical featurd&here y(x) refers to the quantum wave function of an
The object of this paper is to propose a theory for this expoN-degree-of-freedom Hamiltonian system.
nential growth of quantum variances. We have shown that The time evolution of the Wigner functiow of a dy-
correlation between fluctuations in the curvature of the clashamical system characterized by a Hamiltonian of the form
sical potential which is amenable to a stochastic description N
in terms of the theory of multiplicative noig8] also deter- )
mines the rate of initial growth of dispersion. Based on H:Zﬁ (pi/2my) +V({xi}) (2
Wigner guantum-classical corresponderi®l0] we have
derivgd appropriate Fokker—l?lanpk e_quations _where the Qrifig given by
and diffusion terms have their origin in dynamical properties
of fluctuations of the curvature of the classical potential. Us-

Y

ing detailed classical and quantum-mechanical calculations, MZZ _ P M ﬂ M
the semiclassical analysis of the dynamics of quantum vari- 9t =1 2m; 9x; IXi| Ip;
ances has been numerically examined and verified in a model nytee by et
driven double-well oscillator which admits classical chaos. N J MARSZZDS N
The organization of the paper is as follows: In Sec. Il we Ny+ngt Ny ale- --(9X',2‘N nyt...ny!
odd
U—)n1+-~~+nNW
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One also recovers the Liouville equation in the limit Here
h—0.

Following Ref.[10] it is now convenient to introduce the _ J°H
: 3= i 5y (1D)
scaling I 92z,
X =X;(t) + 4, contains the second derivative of the potential. The matrix
2 (4) is thus determined by the nature of the classical motion. For
pi=pi(t) +A 7Y, a chaotic trajectory, the fluctuations drthus affect the evo-

. lution of quantum fluctuations. We address this aspect in
wherefi is the smallness parameter analogous to the eXpans.. |11 of the paper

sion parameter employed in Van Kampen's system size ex-
pansion.u and v in Eq. (4) refer to fluctuations in the coor-
dinate and momentum, respectively. The time evolution of
the fluctuation distribution function obeys

Ill. TREATMENT OF FLUCTUATIONS
OF THE CURVATURE OF THE POTENTIAL

Equation(10) may be rewritten in a more compact form

RS TIIRCORY _ﬂﬁJrM_ PV 9 as follows:
ot K my d g ] &Xjﬁxk vy
¢
+0(hY?). (5) -~ RV, (12
The initial distribution satisfies where
/ / 1 1 F=J- (13
(M) ) K (An)?) =0 5= ==, (6) 7,

andV refers to differentiation with respect to components of
where o specifies the spread in the initial distribution of #.
fluctuations Before proceeding further we would like to emphasize
two relevant points at this stage. First, we consider a fully
developed chaotic regime, i.e., the measure of a regular re-
() gion is overwhelmingly small so that the dynamical variables
{z;} may be treated as stochastic variables. Equatidts
To put Eq.(5) in a more compact form, it is convenient to and (13) then imply thatF in Eq. (12), which incorporates
invoke the symplectic structure of Hamiltonian dynamics.the fluctuations of the curvature of the potential, is a stochas-

For this, we specify tic process. _ _ . .
Second, in our theoretical and numerical considerations

x; for i=1...N that follow we do not make ang priori assumption on the
Zi= D, for i=N+1...2N nature of stochastic proce$qt). The special case that a
=N R stochastic process is a Gaussiarsaorrelated process, etc.,
Defining| as have received so much attention in the recent literature that it
is necessary to note that no such ad hoc assumption has been
0 E made. Equatior{12) may therefore be interpreted as a sto-
I=1_ E o chastic differential equation with multiplicative noise.
The characteristic curves corresponding to @¢) admit
where E is an NXN unit matrix, the Hamilton equations of general stochastic nonlinear differential equations

become ; i
7m=Fi(n...7n,1), i=1.N, (14

(8) Since the nonlinearity in Eq.14) generates higher mo-
ments, one cannot expect to find a differential equation for
(m). Thus one has to work with linear E¢L2) directly.
We now rewrite Eq(12) as

N 2
1 Kk 2.2
¢(M'V’O)_k1;[]_ EGXF{—F—ZU Vi |-

. dH
Zizz |

— ij 9
i 9z,

Again introducing scaling of; as

at

zi=z(t)+ 42y, 9 :
mHOERT © $=[Ao+ ahy(1)] ¢, (15
with
where
i = Mi for i=1...N _
— vy for i=N+1..2N, Ao=—Fo'V
one obtains the equation of motion for the fluctuation di:stri—and
bution function as Aj=—F,-V. (16)
dp(nt) dd(nt) itioni i imoli .
_ _izj Jin . (10) Here patrtitioning ofF into Fy and aF; implies thatF con

In; tains a constant paf, and a fluctuating parf,(t) which
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gives rise to instability. Herex is a smallness parameter () (e, [dg "

required to keep track of the strength of fluctuations due to ——=1 ~Fo-V— a(Fy(1)-V)+a fo dr dn

classical chaos. The symb¥l is used for the operator that

differentiates everything that comes after it with respect to dy

the components of. X(Fa(m)-VFy(g -V o= ]<¢>-
One of the main results for the linear equations of the n

form (15) with multiplicative noisg 8] may now be in order. (24

The average ofp obeys
<¢>:[Ao+ a(A)+ azf dr{(A.(t)exf TA.]

XA (t=7)))exd — TAo]]<¢>- 7

Since Eq.(12) neglects the effect of higher powerslofthe
above equation is a semiclassical equation for quantum fluc-
tuation distribution function. At the same time the equation
is second order i, i.e., to ordera®r, (with respect to the
strength of classical fluctuationsSince Eq.(24) contains
second-order derivatives with respect to the components of
7, it has the form of a Fokker-Planck equation.

The above result is based on the second-order cumulant

expansion, and is valid in the case when fluctuations are

small but rapid and correlation time is short but finite, or
more precisely,

((A1(D)Ay(t")))=0
We have, in generalA;)#0. Here((. . .)) implies
(aig;))=(aiq;) —(ai){q;)-

Equation(17) is exact in the limit correlation time, tends to

for [t—t'|>7.. (18

zero. Using relation$16), we obtain
d @
%: —Fo- V—a(F(t)-V)+ azf dr({F4(t)-V
0

X exp( — 7Fg- V)Fy(t— 1) V)Yexp( 7Fo- V)}<¢>>.
(19

The operator exp-7+,-V) provides the solution of the
equation

af(nt)
ot

=—Fy-Vi(nt) (20

(f signifies the “unperturbed” part of¢)) which can be

IV. APPLICATION
A. Theoretical considerations

As an application we consider a model double-well oscil-
lator characterized by its positiaxn and momentunp and
driven by a classical field of frequeney,. The Hamiltonian
[11] is given by

H=p?/2m+ax*—bx?+ gx coswt. (25)
Here the first term represents the kinetic energy, the second
and third terms comprise the potential energy of the double-
well oscillator, and the remaining part is the driving tegm.
includes the effect of coupling of the system with the field as
well as the strength of the field. The classical equations of
motion are

X=p,
.3 B (26)
p dax®+2bx—g coswgt.

The equations of motion for quantum fluctuation variabjes
and 7, corresponding tox and p [Eq. (14)] read as follows:

-1

whereJ is expressed as in earlier notation, and

d

dt

7
72

(27)

found explicitly in terms of characteristic curves. The equa-

tion
n=Fo(n) (21)

for fixed t determines a mapping from(7=0) to 7(7), i.e.,
n—n" with inverse(%’)” "= 5. The solution of(20) is

Fpt)=f( —t0)d("_t) —exq] —tFo- V1f(7,0)
n, n ., d(’l) 0 nY),
(22
|d(#~")/d()| being a Jacobian determinant.
The effect of exp—tF,- V) on f(#) is as follows:
o Jdyt
exp( —tFo- V) f(2,0=f(5 ',0) dn | (23

This simplification yields

z;=X and z,=p

are given by
PH  oH
|0 E|| 02,0z, 0z,02,
Y=k o]| #H #H
92,02, 92,07,
J is then reduced to
1
0 m
t)+2b '
(1) 0
where
£(t)=—12ax2.
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Therefore we have J
FLV=2 Fy—=&bm5— (309
an /)
dm ) !
& = F0+ Fl, (28)
2 and
with
Fi(g "t—7)-V_.=> Fy(t—7) ’
_[(1/m)772 ad o] O S A VT
7| 2bpy YULE) )
. =&(t=—m)n " ——.
whereF, and F; are the constant and fluctuating parts, re- an,

spectively. The fluctuations iR, i.e., in&(t), are due to the

stochasticity of the classical dynamical equation of motionThe average and cumulants in E84) can therefore be ex-

(26). Now for the sure part we write

1
FO,lza 72, Fo,2: 2bnq,

and for the fluctuating part we have, similarly,

F11=0, Fi,=&t) 7.

Without necessarily being correlated Z(t) has a short but
finite autocorrelation time,,. We may now apply the result

of Eq. (24).
The mappingn—7' is found by solving the “unper-
turbed” equations

. 1
771—m 72,

72=2b7;.

As a short time approximation we consider the variation of

m, and 7, during 7,
T__ 7 +
m= m 27T M1
, (29
7;=MN“T71+ 775.

where\ =+/2b/m.

The Jacobian determinafEqg. (24)] of this transforma-
tion or mapping reads

dy 7
dny

1 —7/m

—1.22.2.
—mA2r 1 =1=x 1,

and also we note

~1.

‘ a7 (309

dy_.

Next we consider the derivative terms in E@4). The
first term of the right hand side in ER4) can be written as
follows:

17 1 d

d
Fo-V=2, Foi —=—n, — +2bp, —. (30b
0 2 0j gm; m 72 an 71 a7,

Similarly we have

pressed as

J
(Fa(mt)- V) =(&(t))my EP

(300
(Fi(nt)-VFi(g "t—7)))-V_.

1%

9
=& Et—7)))m Fr i prsed

Also note that differentiation with respect ig " can be writ-
ten in terms ofy, and 7, [see Eq(29)];

0 T 0 N J
any T mMdny I,

and

s J T 1% T 1% N J
71 énz—f—m 7 dp, m 72 97, 71 Er
(308

The above relatior{30e can be used to simplify30d).
Therefore we obtain

(Fu(mt)- V. Fi(p " t=1))-V_,

2

r
J— S — _+
m 71 dn,dm; M 7172 2

9? T ( 92 J )
ans

We are now in a position to write down the master equation
(24) in the case of the model driven double-well system. This
is

J J c J
ﬂ: _ 7 2b-|—ac-|-az—l N ——
ot m dn, m ano
cy 9? 9?
L2t 2 L alnlen 2
a” 97207, a”71Co 077%
2
n172 d
2
— Ci—> , 32
i 1(97]5H<¢> 32

wherecy andc, are expressed in terms of correlation func-
tions as follows:
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TABLE |. Comparison of the rate of divergence of quantum

=
O 400.0 uncertainty calculated numericalljrom fully quantum consider-
5 ] ations, K,umericar With the rate of divergence calculated theoreti-
% 200.0 -] cally, Kineoreticar Lfrom Eq. (35), classical expressign
(e 1
] k . Kk .
5 0.0 4 b numerical theoretical
= ] 12.0 2.86 2.9
I —200.0 10.0 3.0 2.94
& 1 8.0 1.97 2.06
8—400.0',ﬁ.jf,.,,,,ﬁ,,.,,l 5.0 2.62 2.68
0.0 10.0 20.0
TIME
FIG. 1. Plot of the correlation functio(é(t)é(t—7))) vs time.  condition. A representative decay of correlation function
Both units are arbitrary. (<§(t)§(t— T))) is shown(b=10) in Fig. 1.
It has been pointed out earlier that we take care of fluc-
- fa<<§(t)§(t_7')>)d7 tuations upto the order af’. Sincear, is small, as implied
o Jo ' in the theory, it has been possible to subdivide the time axis

(33  in the intervals ofAt such thatAt>7; and alsoaAt<1.

a That is, 7, and 7, do not vary much during a timat in
C1= J'O (&¢(t—m))rdr, which &(t) has forgotten its past. Thus, on the coarse-grained
level determined byAt, the process is approximately Mar-
Also note thatc=(£(t)). kovian. 7. is thus very shortnot zerg, and is shorter com-

Note that Eq.(32) is a Fokker-Planck equation which pared to relevant time scales of the system, i.e»,aid 14.
takes into account the quantum fluctuations to a leading orf© implement this numerically we consider the first fall of
der, and that the drift and diffusion coefficients have beerthe correlation function, which is fitted by an exponential
derived using the classical dynamical properties of the chafunction of the type((&))exp(—B7) to extract the near-
otic system. Markovian part of the decays being determined by the fit,

On inspection of Eq(32), the average drift of quantum and calculate the integrah which is expressed as
fluctuations of the dynamical variables, and », corre-
sponding tox and p, respectively, can be written immedi- Cc,= Jar«g(t)g(t— 7)))dr.
ately as follows: 0

expkt) (34

1 1
ﬂl(t)N(E 7O+ 5k 72(0) Note thatc,=0 in the Markovian case.

Having calculated the value of; and also that of
and c(=(&(t))) from a long time series, the classical growth rate
m 1 constantk in Eqg. (35 can be obtained immediately. The
t)~| = k77(0)+ = 7.,(0) | exp(kt), entire procedure is repeated for various value®,0as dis-
7alt) (2 7(0)+ 5 el )) Pkt) played in Table I(second columnkeoretical-
The quantum calculation proceeds by direct quantization

ast is large. o of H, with X andp being position and momentum operators,
The average growth of quantum fluctuations is thus expOregpectively. We choose harmonic oscillator eigenvectors
nential in nature, which is in agreement with earlier numerl-{|n>} as our basis vector defined as

cal studie§5-7], and the rate constant of growkhis due to
the classical fluctuations of the curvature of the potential as

embedded in the correlation function g in ”)12.00
1 o? 112 g
k=|— (2b+ amc+ — cl> (35 = (a)
m m QE 8.00
=
: I =
B. Numerical verifications =
: . . = 400 (®)
To verify the exponential growth of quantum fluctuations Z
guantitatively, we first consider the classical motion corre- 8
sponding to the Hamiltonia(25). We choose the parameter 0.00 F=Forrrr—r— Ty
values[11] m=1, a=0.5,g=10, andw,=6.07, whereg in- .00 TIVE 1000

cludes the effect of the coupling and the driving field ampli-

tude.b is varied from set to set to achieve well developed FIG. 2. Plot of quantum variances with time. Cuna (s a plot
global chaos for the initial conditiong,=—3.5 andpy=0.0.  of the quantum variance in momentum with time, and cutvei¢

To calculate classical ensemble average quantities, the avefplot of the quantum variance in position with time. Both the units
aging is carried over a long time series for the given initialare arbitrary.
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Ly 400 L] 3.00 4
(&) ] (@] ]
=00 ] =2 -
— 3.00 4 - 7
% E Q(f 2.00 4
> 3 => 1
= 2.00 ] = .
o E o} ] FIG. 3. Plot of the quantum
= 1 00 = 100 4 variance in momentum with time
5 = for different values ob. The line
< < g indicated by the box refers to a
000, ETTTTEES 3.16 332 COETTTT o7z R 152 fully quantum calculation. The
TIME TIME continuous line refers to an expo-
nential fit for the quantum calcu-
Ly 399 3 T lation. The dashed line represents
= E = ] the classical solutiofEq. (34)],
=T 2.50 4 <€ ] . .
= = ] wherek is determined from clas-
< 500 3 < 100 E sical consideration(a) b=12.0,
= E = ] (b) b=10.0, (c) b=8.0, (dy/
S0 5 = 3 b=5.0. (Both units are arbitrary.
= E E= o050 4
= E = 1
= 100 - =
O o ]
0.50 F—rrrrr e e . 0.00 Frrrrrr e SRR RENS RRaan
0.9 1.04 1.12 1.20 0.22 0.38 0.54 0.70 0.86
TIME TIME
pZ 1 In Fig. 2 we plot a typical variation of uncertainty i
P 2021\ — 1 . ;
o>m T3 Mo [n)=(n+3)hw[n). (36)  (corresponding top,) and p (corresponding torp,) for the

wave packet centered at=-3.5 and p=0.0, and for
For computational purpose we set6.25 anda=1. The b=10.0. Itis evident that after an initial plateau portion the
undriven double-well potential when diagonalized in this ba-uncertainties irx andp diverge. To make this part prominent
sis (we have chosen 120 in numbagives 19 negative en- we cut off the plateau regions, and in FigaB-3(d) plot the
ergy eigenvalues. The time evolution of the systi¢éomdera  quantum variance ix where the exponential divergence is
periodic driving field can be followed by the Schiinger exhibited for various values ob (the line indicated by
equation boxes. The neglect of plateau regions is in accordance with
larget, as implied in solutior(34) (butt is not too large so
ihe =2 Ho ¢ that quantum correlations become strong enough to invali-
n mn¥m:? - . . .
m date the semiclassical approximatioit may be noted that
these plateau regions are not apparent in the kicked dynamics
[6], but may be inherent in many other observations of flows.
The plot of quantum variances for various value$ @ then
Cm=(m| ¢ (1)), fitted with exponential functions to determine the rate con-
and the Hamiltonian matrikl , is as given in11]. stants of divergencpumerica@S shown in Table)! This is
To bring forth quantum-classical correspondence we con'—nd'c"j‘te_d by the continuous lines in Flgs(_aB—S(d). For
struct, as our initial wave function, the minimum uncertaintycomparlson of the rats_:s, calcul_ated _cIaSS|caIIy as v_veII as
wave packet of the Gaussian form in both position and mo{T®m guantum-mechanical considerations, we superimpose
mentum representations centered around average positionSelutions (34) on Figs. 3a)-3(d) (dashed lineswith the
and average momentumcorresponding to initial conditions Kineoretical v@lU€s indicated in Table I. The accuracy of the
for the classical trajectory for a typical value bfandg.  agreement between the quantum case with the Gaussian
Thus wave packet and the corresponding classical case, as exhib-
ited in Figs. 3a)—3(d) and in Table I, is thus quite satisfac-
tory. It must be emphasized that the accuracy of the agree-
ment rests primarily on the implementation of the near-
Markovian character of the dynamics, the correlation time
where being the shortest time scale compared to the inverse of the
driving frequencyw or coupling constant). Our numerical
ch(0)=exp(— %|a|2)a* ”/\/m experience shows that if one accounts for the decay of cor-
relation function withinw * or g~%, the agreement remains
and within 10%. This lends support to the statistical description
of the fluctuations in the curvature of the potential, which has
been shown to be instrumental in several earlier occasions
investigated by u$3,4].

where

|¢<t:0>>=§ cn(0)|n),

a=
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C. Discussions V. CONCLUSIONS

The exponential growth of quantum uncertainty has ) ) ) o
proved to be an important manifestation of semiclassical Classical chaos is characterized by extreme sensitivity to
chaos. Although Wigner formalism has been explicitly em_ln[t|gl (.:on'dmons. Thys_the chaotlic dynamlc_s, 'although deter-
ployed in the earlier twd7,10] analyses(and also in the Ministic, is stochastic in nature in the statlstl_cal sense. It is
present ong it is interesting to note that this manifestation is therefore expected that statistical mechanical formalisms
accounted for by using classical arguments. For exampldnight be useful[3,4,12-14 in the description of classical
Fox and Eistori10] have considered a systematié Bxpan- chaos. We have seen that the theory of mulltlpl|cat|ve noise is
sion of the Wigner equation similar to the(Lexpansion of & goqd natural d(_escrlptlon for this purpose in the tre_atment of
the master equation by Van Kampen, where the quanturﬁ'ass'ca!l qu_ctuatlons in the curvature of the potential vyhose
uncertainty was shown to depend only on the contribution of°'Telation is subsequently shown to be instrumental in de-
the classical motion to Wigner equation, quantum dynamicdermining the rate of divergence of quantum variances. We
being subtle involved in the sense that the uncertainty prodhave numerically ver|f|ed. the t_)asm theoretical prqposmons,
uct puts a constraint in the initial Wigner densisp thatitis ~and note that the theory is valid for small but rapid fluctua-
not just as function). However, in a different analysis Bonci tions with a correlation tlme which is short but f|'n|te. This is
et al. [7], have shown that a quantum diffusion generatingn€cessary for a syst_ematlc separation of the time s_cales in-
mechanism also contributes to make the growth of the quant0/ved in the dynamics. We hope that the stochastic treat-
tum uncertainty faster than when this mechanism is absen'ﬂ“_e”tv which takes into account thg arb|trary correlation time,
Rather than emphasizing mechanisms, here we stress a diill be useful for further progress in such issues.
ferent aspect, namely, the statistical description of the curva-
ture of the potential embedded in the classical contribution to
the Wigner equation in terms of the theory of multiplicative ACKNOWLEDGMENTS
noise. An offshoot of this treatment is a quantitative analyti-
cal expression for the rate of divergence of the quantum un- Thanks are due to the Council of Scientific and Industrial
certainty. We point out in passing that our result is correct ufResearch for a fellowship to one of ¢S.0. D.S.R. is in-
to second order, but exact in the limit in which the correla-debted to the department of Science and Technology for par-
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