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Synchronization of integrate and fire oscillators with global coupling
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We study the behavior of globally coupled assemblies of a large number of integrate and fire oscillators with
excitatory pulselike interactions. On some simple models we show that the additive effects of pulses on the
state of integrate and fire oscillators are sufficient for the synchronization of the relaxations of all the oscilla-
tors. This synchronization occurs in two forms depending on the system: either the oscillators evolve “en
bloc” at the same phase and therefore relax together or the oscillators do not remain in phase but their
relaxations occur always in stable avalanches. We prove that synchronization can occur independently of the
convexity or concavity of the oscillator evolution function. Furthermore the presence of disorder, up to some
level, is not only compatible with synchronization, but removes some possible degeneracy of identical systems
and allows new mechanisms towards this stEg$4.063-651X96)06708-4

PACS numbegps): 05.20-y, 64.60.Cn, 87.10:e

[. INTRODUCTION sumed; i.e., each oscillator is supposed to interact with all the
others. Local interactions have also been investigated
The emergence of a large scale rhythmic activity in dy-[20,22,23 that show more complex behaviors.
namical systems with a high number of degrees of freedom These numerous studies do not, however, account for the
is a widespread phenomenon occurring in different fields. Irimportant case, especially in biology, of episodic pulselike
physics, macroscopic synchronization may be found in thénteraction, where oscillating units, cells or neurons, often
behavior of lasef1], charged density wavd®,3], and net- communicate through the sudden firing of a pulse. Biological
works of Josephson junctiofig,5]. In chemistry, oscillating  oscillators exchanging pulses are currently modeled as inte-
chemical reactions are the result of large scale synchronizegrate and firg(IF) oscillators[32,33], which are simply de-
activity [6,7]. Many biological systems display also large scribed by some real valued state variable—representing for
scale synchronizatiof8]. One of the most cited examples is example, a membrane potential—monotonically increasing
given by the southeastern fireflies, where a large number afp to a threshold. When this threshold is reached the oscil-
insects gathered on trees flash all togefl®er12. Other ex-  lator relaxes to a basal level by firing a pulse to the other
amples are reviewed ifiL3] and include cells of the heart oscillators and a new period begins. This is the case, for
pacemaker, circadian neural networks, glycolytic oscillationsexample, for firefies communicating through light flashes
in yeast cells suspension, collective oscillations of pancreatif9—11,34, for crickets exchanging chirg44,15, for cardiac
beta cells, and crickets that chirp in uniddd,15. Coherent cells interacting with voltage pulsd85], and for neurons
oscillations are also believed to be important in neuronateceiving and sending synaptic pulses.
activity [16,17). Large assemblies of oscillators with pulselike coupling
The previous systems exhibiting large scale periodic achave been studied only recently. In their seminal work,
tivity are usually modeled as a large assembly of coupledMirollo and Strogat4 36] prove rigorously that a population
oscillators. The periodicity shown by the whole system isof identical integrate and fire oscillators globally coupled by
then the result of the collective synchronization of a macro-exciting pulses added to the state variables can synchronize
scopic set of the elementary oscillators. Due to the largeompletely for a certain kind of oscillatqconvex oscilla-
diffusion of collective rhythmic behavior in nature, it is im- tors). As shown by Kuramot$37], who gives a description
portant to search and investigate all the possible mechanisma$ such a system in terms of a Fokker-Plank equation, the
that may lead to this phenomenon in populations of oscillacoherent collective synchronization persists when random
tors. noise is included in the system. Recently Comahl. [38]
Most of the works related to collective synchronization in have generalized the Mirollo and Strogatz model for arbi-
the last decade studied populations of stable limit cycle ostrary evolution function of the oscillators and arbitrary re-
cillators described by ordinary differential equations continu-sponse function to pulses and established some conditions
ously coupled in tim¢18—-27. Much theoretical understand- sufficient for synchronization. When transmission delays are
ing has been obtained for such systems, as well as on modetsken into account, Erngt al. [39] find that with excitatory
where the phases are the only relevant dynamical parametepsises, clusters of synchronized oscillators spontaneously
[18—25,28—-3Dor on models where phase and amplitude carform but are unstable and desynchronize after a time; partial
vary [26,27,3], and for populations of identical or almost synchronization is, however, achieved with inhibitory pulses
similar oscillators. Generally, global coupling has been asin the form of several stable clusters of oscillators in phase.
Other studies consider models of integrate and fire oscil-
lators with the pulses smoothed before acting on the oscilla-
*Electronic address: bottani@Ipthe.jussieu.fr tor state variabl§40—47. Recently Hansel, Mato, and Meu-
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nier [42] showed that rise and fall times can destabilize thespring-block model, where the fault between two tectonic
synchronized state of simple IF oscillators and Abbott andplates is described as a network of rigid blocks elastically
van Vreeswijk[41] showed that in this case the incoherentconnected and coupled semielastically and semifrictionally
asynchronous state can be stable. In a model with fall timet the surfaces of the fault. Due to the relative movement of
of the coupling between the oscillators, Tsodyks, Mitkov,the tectonic plates, the stresses on all the blocks increase
and Sompolinsky[40] showed that the complete synchro- until the stress of some block reaches an upper threshold and
nized state is unstable to inhomogeneity in the oscillator frel€laxes, causing the slipping of the block and a rearrange-
quencies. Finally Gerstner and van Hemméh7,43 ment of the constraints on the ne|ghbor|n.g blocks. This can
achieved a synthesis of results on IF oscillator models b©SSibly push other blocks to relax and trigger an avalanche

introducing a general model containing various versions of! Sl'ppér'SgS;[h"e" an earthqtiake. As f'kESt hoticed by Chrl'j.'
IF models as special cases and an analytical approach frolﬁnser{ |, the Previous sys. €ms can be Seen as assemblies
the point of view of a renewal theof@4—46. In the previ- of pulse coupled oscillators: each block is actually an oscil-

ous studies the oscillators are typically model neurons deI_ator with the stress upon it acting as the state variable and

scribed as a leaky integrator on a membrane potential. Thig'ei pulses being the .sudden Increment .Of the strain on the
assumption determines the form of the monotonic variatio elg_hbors of the slipping block. A_dlscretlzed Version of the
function of the state variable of the free oscillators, which in urnd_ge-l_(nopoff moqlel by Qlam|, Feder, and_Chrlstensen
this case must be convex. [5.6] with Ilngarly varying oscillators, nearest ne|ghbor§ cou-
In this paper we extend a previous stUdy] of IF oscil- pling, and direct action of the pulses on the state variable is
lators with linear or concave variation and with a global all- bf7l|%\/Seg7t05b(?[hs?I;orga'r:]zeldbcrkl]tlcgl. It fhﬁls. beer& pl)r_oposed
to-all excitatory pulse coupling directly added to the oscilla-[ 55,5759 that the critical be avior ot this modet Is re-
lated to the tendency to synchronization in such systems. In

tor state variables. According to the theorem of Mirollo andthis paper we see that the globally coupled models, which are
StrogatZ36] it was commonly believed that synchronization actually mean-field versions of the Olami-Feder-Christensen

of pulse coupled IF oscillators, could be achieved only with del t oritical and tvoicall hroni
convex oscillators. We show here that actually synchroniza—mo €l, aré not critical and typically synchronize.
This paper is organized as follows: In Secs. Il A and || B

tion can occur independently of the shape of the oscillators, "
which is not therefore a constraint for this behavior. We'V® show that because of a positive feedback of large groups

present and investigate some general mechanisms that, v9é syr)chr_onized oscillgators_on sm_aller ones, cor_nplete syn-
think, have not been sufficiently recognized previously and’ I‘Ol’llzatIOI’t] toLa sgttaﬂentlcalt%scilrllat(t)r:s IS posilﬁ/ll.e e”v en d
that lead to collective synchronization in assemblies of lineaf! €as€S Not taken into account by the theorem ot MIrolio an

oscillators without or with quenched disorder. These effectsg.trogatz[%]'r:n Seql.l i, we shov_v how tr?e mt;odfucﬂon Of.
sufficient for synchronization for linear oscillators, can also rllsorﬁer (r)]n|;[j € Osc'h ator lpropertles suc ”as the requenurel:s,
exist for models of leaky integrator oscillators and be com—t 1€ thresholds, or the pu s€ strengths aliows a new mecha-
bined with other mechanisms. nism that can _Iead to collective syr_1chron|zat|on. Two effecfcs
The aim of this paper is not to study a particular biologi- act together: first, the quenched disorder makes the effective
cal or physical phenomenon in detail but to get a better unrhythms of the oscillators all different. This causes any two

derstanding of the possible mechanisms of mutual entrainQ‘Q’Ci"""tor.S to relax frOT" time fo time simultanequsly. Seq—
nd, oscillators that fired simultaneously possibly remain

ment that can lead to collective synchronization in models o ; . ) . .
IF oscillators. Furthermore, systems of simple linear oscilla-OCkecj Ina synchronlz_ed group- Finally, in Sec. IV, we dis-
tors of the kind studied in this paper are also found in aCuss our r_esults, focusmg especially on the effects of convex-
different context than collective synchronization, which is Iy, Imeanty, or concavity of the oscillator state variation
the physics of earthquakes and self-organized criticpdig). function, on addltlwty or not of the pulses, on refractory tm_we
This phenomenon is the spontaneous organization of a d __fter a relaxation, and on the possible kinds of synchroniza-
namical system with a large number of degrees of freedo on.— .
out of thermodynamical equilibrium, in a critical, i.e., scale I_n this paper we study models ol |F c_)scnlators
invariant, state of evolution, which is the attractor of theog"_zl" - N represented cby a real state varialie= [0,
dynamics. The building up of the long range correlations andFil-i=1:- . - N, where theEj’ are the thresholds of the os-
power law behaviors characteristic of the critical state there€illators. The free evolution oD; is made of two parts: first,
fore does not require the fine tuning of a control parametef® charging, growth period where the state variallein-
(temperature, magnetic field, etas for the usual critical Créases monotonically in time as long as it is below the
phenomenon of second order phase transitions. Famous ekvesholdE] according to a given free evolution variation
amples of dynamical systems with a high number of degreeBinction E;(t) and, second, a relaxation when the threshold
of freedom believed to be self-organized critical are, for ex-S reached wherebf; is reset to zero and a growth period
ample, the sandpile model of Bak, Tang, and Wiesenfel@tarts again. We assume, as is generally done, that the char-
[48] together with several varianfd9—51], a model of front ~ acteristic time for the relaxation is very short compared to
propagation[52], evolution models for specief53], the the period of the free evolution so that the state vari&hlef
forest-fire mode[54], etc. Self-organized criticality has also an oscillator that fires is instantaneously reset to zero. It is
raised interest in geophysics as a possible phenomenon reonvenient to introduce the phases of the oscillators defined
sponsible for the scale invariant behavior of earthquakesis ¢i=t mod¢{ where ¢{ is the free period ofO;
whose distribution of their number as a function of their[E;(¢;) =Ef].
magnitude(Gutenberg-Richter distributioris a power law. The coupling between biological oscillators, for instance,
A classical model of earthquakes is the Burridge-Knopofffireflies, has been experimentally studied by perturbing the
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oscillating elements by single pulsg3,60. Knowing that However, as first noticed by Christensb], a large set of
fireflies interact through light flashes and that they are beescillators with linear evolution may effectively synchronize
lieved to be describable by coupled IF oscillatp®s36], the  completely.

interaction between the oscillators is studied by observing As we shall see, the convexity is a sufficient but not nec-
the response of the periodic flashing of a single firefly to anessary condition for synchronization. Convexity implies that
artificial flash[9]. Following such studies several types of the increment of the phase of an oscillator due to a pulse
couplings have been introduced in biological models involV-increases as the oscillator is nearer to the threshold, which
ing IF oscillators. In the situations of interest, an oscillator ispa5 the consequence that two oscillators effectively attract
coupled with others when it relaxes and the coupling take$,.h other in the course of time.

the form of a p_u_lse transmittepl to the others. The_conse- We show in the following that simply due to the hypoth-
quences of the firing on the oscillators that have received thgg;q ot 4qgitivity of pulses there is a positive feedback effect

pulse depend on the biological situations and on the mOdechfowards synchronization in the system, which is not neces-

Pulses may be excitatory, I.., incrementing th? state Va.‘”éary in the convex case for the validity of the theorem of
ables and' thy; anticipating the f|r|r!g of the receiving osCil-io15 and StrogatZ61]. We prove that this effect is suffi-
!ators, or_|_nh|b|tory, €., d_ecrementlng the states and delay(:ient for synchronization even on sets of linear and concave
ing the firing of the receivers. In this paper we consider

. lses: oscillators. Let us first introduce the notions of avalanche
excitatory pulses: - . . and absorption, which will be important in the following.
(1) An oscillator receiving a pulse has its state variable

: d by th | h. Thi del of ina | a. AvalanchesAn avalanche of successive firings may
Incremented by the pulse strength. This model of coupling i$,..r when an oscillator reaches the threshold: depending on
known as the phase advance model since the pulses push

il ds their threshold d iblv ab & other oscillator states the transmitted pulse may cause
oscillators towards their thresholds—and possibly above—,q gther oscillators to exceed the threshold and fire. Pos-
causing a sudden advance of the phases of the oscillators

by the ne Ises may themselves cause further relax-
their period of evolution(2) The pulse strength depends on y W pu y v . u X

. . ations and a cascade of firings until no pulse is sufficient
the number of oscillators that fire together and obey an ad; g P

ditivi i ciple: th lse f he simul | . “~“enough to bring another oscillator above threshold. In this
|t|V|ty.pr|nC|p'e. t € pulse from t € simu taneous relaxation study, we assume that the firings and their transmission are
of oscillators is an increasing function of the sum of all the

individual oul f the firi i For th K fvery fast compared to the free evolution period of the oscil-
Individual pulses of the firing oscillators. For the sake of4r¢ 50 that during an avalanche the continuous drive of the

simplicity we assume in this paper direct additivity: the Si- osqiiators is not acting. Avalanches are also important for

multaneous f?ring ofn_oscillators transmit_s a puls_e of the link with the models on lattices showing self-organized
strengthn, with & the pulse strength of a single oscillator. criticality, which will be discussed elsewhefi2].

To account for the global coupling) scales as the inverse of 1, “Apsorption rule and definition of synchronizatioks
the system sizes=aE./N with « a dissipation parameter. can pe seen in Fig. 1 in the model defined up to now, oscil-

lators can never get in phase. A supplementary rule, which

Il. IDENTICAL OSCILLATORS exists also in the model of Mirollo and Strogatz, and which

we call the rule of absorption is necessary for that. Since the

In this section all the oscillators are identical: pscillators synchronize through the firings, we can assume
Ei(t)=E(t),Vi and the pulses have the same strength. Wehat the oscillators get in phase when they fire in a same
first study the case of lined(t), which corresponds to the avalanche. We say that they are absorbed in a synchronized

limit of zero convexity of the model of Mirollo and Strogatz group of oscillators with identical pha$63]. Absorption is

[36]. implemented naturally by assuming that the oscillators that
relax during an avalanche are insensitive to the further pulses

A. Linear oscillators in the avalanche and remain until it ends at zero value. This

. . _ i rule corresponds actually to a refractory time of the oscilla-

[Between two firings, the state variable increases linearlyy,rs immediately after their relaxation. Absorption is neces-
Without loss of generality we take simpB;(t)=t modE. a1y for oscillators to get in phase and possibly to evolve
so that 6<E;<E.=1. Most studies do not consider a linear hereafter synchronously with the same phase. However, it is

variation of the state. Indeed the oscillators are commonly,ossiple to have a different definition of synchronization in
leaky integrators whose evolution between two firings is dejgdels of pulse coupled IF oscillators than evolution in

scribed by the differential equation phase that does not require the absorption rule. In this case
dE (1) synchronization corresponds to locking of the oscillators into
Nl g — vyE;, O<E;<E.=1, ) avalanches. Since we assume a separation of time scales be-
dt tween fast firings and slow continuous variation of the state

variables, locking in avalanches corresponds, on the scale of

where S, is a constant input current ang describes the the free oscillator period, also to a real synchronization of
dissipation. The solution of this differential equation is aavalanches in time. Consider in the model without absorption
convex function with the convexity controlled by the dissi- two oscillators that fire in the same avalanche as in Fig. 1,
pation vy. due to the second firing their state is different by the value

Mirollo and Strogatz[36] have rigorously proved that &, the pulse strength of a single oscillator. When the most
with >0 and with constant pulses a population of oscilla-advanced oscillator is back to the threshfd. 2), the dif-
tors always synchronizes. From their theorem the convexitference between the values of the state variables is smaller
seemed to be a necessary condition for synchronizatiorthan or equal ta, in the case of convex or linear oscillators,
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FIG. 1. Evolution without absorption. Values of the states of
two identical oscillators with convex variatiot@ The oscillator(1) FIG. 2. (8 Synchronization without absorption for identical
is at the threshold; the oscillat@®) is below the threshold at a convexoscillators.(1) Immediately after their avalanche two oscil-
distance smaller tha@d, which is the pulse strength of a single lators O; and O;_; have a gap between their staesof value 6.
firing. (b) The oscillator(1) has relaxed and the emitted pulse has r is the gap between the phases@fand O;_,, which does not
pushed the oscillatof2) above the threshold and makes it fire in change during the free evolution between firing®. When the
avalanche(c) Without absorption the firing of oscillato2) has  most advanced oscillator is at the threshold the gap between their
pushed(1) away from the origin: the oscillators remain dephasedphases has not changed but the gap between their state variables has
independently of the convexity. decreased due to the convexity. The second oscillator is at a dis-
tance of the threshold smaller thah the oscillators avalanche
respectively. In both cases the pulse from the next firing isagain together(b) Synchronization without absorption for identical
sufficient to push the second oscillator above or exactly alinear oscillators. Same as for the convex case, but due to the lin-
the threshold and therefore to make it fire also: the two osearity the gap between the state values does not change and is
cillators are again in the same avalanche. We see that if twexactly equal tas: the oscillators still avalanche togethée) Effect
oscillators at some time come to an avalanche together thegi concavity. The gap between the oscillator states increases as the
will thereafter continue to fire together in the same avalanch@air approaches the threshold.
also without absorption. It is therefore sensible to speak of
synchronization also in the case of locking of firings in thesynchronization occurs in a mod@él with the absorption
same avalanche. We shall discuss in the rest of the papeule. If in the versionB of the same model, but without
what kind of synchronization is possible for the different absorption, oscillators that are in a same avalanche remain
models. For systems of identical oscillators we can see itocked, then both modeh and B evolve in the same way,
Fig. 2 that locking in avalanches is possible for convex omwhere the same oscillators that are synchronized with iden-
linear variation functions but not for concave oscillators.tical phase in modeh are locked in an avalanche in model
Phase synchronization is in some cases equivalent to sy®. Therefore if complete synchronization occurs in models
chronization as locking in avalanches. Suppose that phas® then complete synchronization occurs also in model
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TABLE |. (a) Beginning of a cycle with the grou; at the  The growth of groups is therefore due to a positive feedback
threshold, the groufs; is at a distance(’ (b) Firing of G;. () mechanism where the larger groups attract the smaller ones.
G; is at the threshold(d) Firing of G;. (e) End of the cycleG; is  This effect exists only if there are groups of different sizes in

back at the threshold. the population. We shall now see that as long as the number
N of oscillators is sufficiently large, positive feedback al-
Gi G Si.)=Ei—E ways occurs until complete synchronization of the system. If
@ E, E, sgik).) the evolution o_f the system begins Wi_th random initial phases
) 0 E4+N,& ! for all the oscillators, all theg; are different: there are no
© E-E—-N& ]E groups and one could naively expe_ct no positive feedback
e y ) B and no evolution towards synchronization. However some
(d) Ec—Ej+(N;—N;)é 0 s+ (N;—Nj) o - - _
- *+ D) (0 groups are naturally formed in the first cycle of the evolu
© Ee B+ (Ni=Np) & sy =siiy+ (Ni=NDS  {ion ‘Indeed if two oscillators happen to be sulfficiently close

to each other, i.eE;.;—E;<§, the pulse from the first of
them drags the other in an avalanche and a group of two is

W'thQUt absorption in the form of !ockl_n_g of all the OSC'”a.' formed. Thereafter there are in the system single oscillators
tors in a stable avalanche. For simplicity we choose to in-

clude absorption in this section on linear oscillatéhere and a group of at least size two, so that the positive feedbacl_<
without loss of generalifyand in the following on concave mechanism can_proceed_. In order to see how probable a uni-
oscillators(then necessary for synchronization form random initial conflgqratlon leads to th_g feedback ef-
o : ' . fect we must therefore estimate the probability that at least
Proof of synchronizationLet us define the configuration

- two E; are separated by less tha@nin a set ofN random
(k) (k) i
as the set of ordered distinct value&i”<E; numbers between zero afii . The probabilityP(s)ds that

<.. ~<Eﬁ]‘1‘z=1 of the state variables present in the systemy, random numbers amongin [0, E.] are separated by a
just before the K+ 1)th avalanche. To eacEEfk) corresponds distance betweea ands+ds is given in the limitN>1 by
a group G; of N oscillators at this value and @a Poissonian:

=™ N®=N. Let us define the cycle as the time necessary

for all them, groups to avalanche exactly once. To trace the _ L (NJED)S

evolution of the system, it is useful to follow, cycle after P(s)ds= [ ds. ©)
cycle, the gaps{) =E{* —E{(i>]) between the values of

two groups. If one of these gapﬁ? becomes smaller than
the valueN™ s of the pulse of the ijth group, then the
(j)th group gets absorbed by thBth group. In Table | we
find the main steps of the variation of the gsffy on a cycle N
beginning withG; at the threshold. Since the oscillators are Nf P(s)ds=N(1—e *Ec), N>1. (4)
identical and linear, both groups have the same evolution as 0

long as neitheG; nor G; relaxes: they get the same pulses

from other relaxations with the same phase advances an§ysitive feedback and the absorption of oscillators into
between pulses their state varlz_;\bles increase at the same r foups may take place as long as there is at least one such a
From Table | we see that the first return map on a cycle folyap ‘it follows directly from(4) that this is typically the case
the gap between the oscillators is then if a/E.=1/N [64]. For a given level of conservation, the
k1) (k) number of oscillators.r?eeds only to be large enough to en-
S =Sij T(Nj=Né. (2)  sure the onset of positive feedback.
Initial configurations where no gap is smaller than
If N;>N; the gap between the two groups decreases on eagh= oE./N are in principle possible. However for large sys-
cycle. When the difference between the staigsand E;  tems their occurrence is exponentially small: each gap has
becomes less than or equal kg, then the relaxation of for large N a probability e ¢ of being greater than
G; dragsG; along in an avalanche. Due to the absorption,s= «/N, so that the probability that all the oscillators are too
both groups then form a greater group with+ N; elements.  far apart for pair formation goes a&s “N. Therefore we may
conclude that the set of initial configurations that does not
TABLE Il. (i) Probabilities of complete synchronization with |ead to absorptions is formed of extremely improbable con-
the statistical error obtained with 2000 samples &or0.5 for  figurations.
“S.ma”” C.Oncavities a:1005, 105, 1.1. The probabllltles Ob' TO Complete the proof that Synchroruza“on |S the general
tained with N=2000, 1000, 500, 400, 300, 200 are identical hehavior of our model, we would need to show that the set of
within the error.(ii) Estimated probabilities of complete synchroni- initial conditions for which the system evolves in a partially
zation with the assumption of uniform distribution of the size dif- synchronized configuration where positive feedback stops
ference between the two last groups in the system. acting is of almost vanishing measure. As we have seen with
Eq. (2), this can happen only when all groups are of equal

The number of gaps between initial random values satisfying
the condition for formation of a pair is then

1.005 1.05 11 size. It is a difficult task to calculate in general the probabil-
@) 99.6+0.1 95.6+0.4 90.6+0.6 ity for a random initial configuration to finally get stuck in
(i) 99.4 94.4 89.1 such a state. In any case, this is a physically ill-defined prob-

lem since this probability depends critically of the multiples
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necessity for synchronization of a “leaky” dynamics of the

2 000 100 g oscillators, which is related to the assumption of a convex
E. 2500 - < ] variation functionE(t). Let us stress, however, that the dem-
s 2000 © Sg ] onstratlor) |n_[36]_ for convex oscnlators_, proves c_omplete
= : §§1o synchronization in this case for any initial configuration
B 1500 [ é«j—, 1 apart from a set of null Lebesgue measure and is also valid
£ ’ 8§ R without additivity of the pulses. In the case of convex oscil-
; 1000 == e 07‘ ‘;8{ lators the positive feedback mechanism is not necessary for
g i T T synchronization. Additivity of pulses and the positive feed-
£ 500 Fll ] back mechanism that results is a further powerful mecha-
T ol L ‘ N nism, which allows synchronization under broader condi-
0 20 40 60 80 100 tions than the effect of convexity.
Mean duration (unit = free period) Our results with linear oscillators prove that leaky oscil-

lators are not necessary for the phenomenon of synchroniza-
tion and that other kinds of pulse coupled oscillators can be
considered. As we show now, the form of the state variation
function E(t) is actually not even a constraint for synchro-
nization since this phenomenon occurs also for concave
E(t).

FIG. 3. Binned distributions of the times for synchronization for
a population ofN=2000 linear oscillators with random uniform
initial phases, with conservation level=0.8, 0.5, 0.2, 0.1 and
over a sample of 5000 simulations; the time unit is the free period
Inset: Mean duratiog to synchronization as a function of for
different population sizeslsexp—(4.3£0.2)a.

. . - o B. Concave oscillators
of N: if N were prime, then for every initial condition form-

ing at least an initial group of two the system would unavoid- For the sake of simplicity we choose as a concave func-
ably synchronize completely. tion for the evolut|_on in time of the state variable c_>f the
Numerical simulations show that for increasimg the  Oscillators a function of the formE(t)=f,(t)=t° with
probability for incomplete synchronization decreases. Fo@>1. The effect of the concavity on the relative state of two
example, with a conservation level=0.2 we found for ~Oscillators may be seen in Fig(c. For two oscillatorsO;
N=200, 400, and 1000 incomplete synchronization ina@hd Oi.; with phase difference r, the difference
0.26%, 0.2%, and 0.05% respectively, of the cases foFi+1(t)—Ei(t) increases as they approach the threshold.
12 000 different initial configurations. Fd{=5000 we al- Therefore with large concavity it is more difficult for a pulse
ways obtained complete synchronization. When the synchrc®f an oscillator to trigger an avalanche. However, nothing
nization was only partial the final state of the system wadorbids a group of oscillators to synchronize if, when the first
always made of only two groups of equal si#£. ForN not oscillator reaches the threshold, the gaps between them are
divisible by two we always found complete synchronization.Smaller than the pulse strength. _ _ _
We see that the conditions for the existence of positive feed- Compared with the previous case of a linearly increasing
back are almost always fulfilled. E(t), we see that now the effect of positive feedback is op-
We studied the time necessary for synchronization nuPosed by the drawing apart effect of the concavity. In a first
merically. Figure 3 shows the distribution of the durations ofStep we will see that for small concavity the positive feed-
the transienfls until complete synchrony foN= 2000 and back effect prevails and that synchronization occurs. Al-
a=0.1,0.2,0.5,0.8. The mean time for synchronization in-though one would expect that for larger concavities groups
creases only slowly with the population size as a power lawvould not be able to grow, we will see in a second step that
with exponent-0.13+0.01. The distributions have a flat tail for systems starting their evolution with an initial random
towards long times corresponding to configurations Wheréilstnbun(_)n_ of the oscillator phases,_ large concavities have
two groups of almost similar size remain in the system, mak{he surprising consequence of favoring actually the synchro-
ing the positive feedback effect weak and slow to achieve th&!zation.
merging of the groups. The inset of Fig. 3 shols calcu-
lated by cutting the tail of the distributions, as a function of
a for N=200, 300, 400, 500, 1000, and 2000. The dura- We consider first the case of concave functi&{s) that
tion of the transienfTs decreases with larger conservation are close to the linear case. For clarity we only sketch here
level and fora e[0.2, 0.§ the decrease is exponentidly  the main steps of the demonstration and refer to Appendix A
«cexp—(4.3=0.2)a. Synchronization occurs then quite fast for details and for the complete demonstration. We show
in a few free periods. The duration of the transi@atde- there that for a random initial configuration Nf oscillators
pends on the additivity of pulses. Here we assumed perfegroups begin to form and grow by positive feedback as in the
additivity, however, if the effect of the firing of a group is case of linear oscillators. However, when only a few groups
not simply the sum of all the single firings but a smaller remain the positive feedback is sufficient to reduce the phase
function of their number, we expect some longer synchronigaps between the groups and to cause further synchroniza-
zation time. We conclude that for lardf synchronization is  tion only if the size differences of the groups are large
possible and occurs in a finite time even for oscillators withenough. The most difficult situation for the occurrence of
a linear variation that was excluded in the theorem ofsynchronization is when only two groups remain in the sys-
Mirollo and Strogat436]. This theorem and the older results tem, sayG; and G, with N; and N, oscillators N;>N,),
of Peskin[35] have been often erroneously interpreted as theespectively. There is then a limit valueof the size differ-

1. Small concavity &1
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TABLE lll. Probabilities of complete synchronization with the TABLE IV. (a) Oscillator O; is at the threshold(b) Firing of
statistical error for “large” concavitiea=1.55 anda=2 with O; assuming tha®; is not pushed above the threshdid). Effect of

N=500, 1000, 2000 and a uniform initial distribution of the the sumA; of all the pulses from other oscillators of the system
phases. The last column right shows the probabilities expected dsetween the firings oD; and the one 00;. (d) O; at the threshold.

for small concavities. (e) Firing of O; . (f) Effect of the sumA, of the pulses between the
firings of O; andO; back at the thresholdg) O; back at the thresh-
a old.
500 1000 2000 Estimata=1
& &,
1.55 68-1.0 83:0.8 95:0.5 50
2 93+05  99.9:0.1 100 25 @ f B
(b) 0 ¢+ 6
© Ay P+ 5+A;
encec betweenG; andG, so that complete synchronization (d) ) ¢
occurs only'ifc=N_l—N_2>c(a,N,a). That is, absorption (e b5~ (k) 0
occurs only if the size dlfference_ between the two groups isf) $e- ¢}")+A2 A,
sufficiently large so that the positive feedback attraction be oC ¢J(k+1): ¢}k)+( $t— ¢9)

tween the groups is strong and can overcome the effect a
concavity. Contrary to the case of linear oscillators, we see

here that two groups of different sizes — not only of equal For small concavitiesa=1.005,1.05,1.1 we found that
sizes — may remain apart and not synchronize. This is théhe durationTg of the transient until synchronization does
consequence of the drawing apart effect of the states by comot depend on the value of the concavity. In Fig. 4 we report
cavity [Fig. 2(c)]. Sincec(a,N,a) is a monotonically in- the distributions ofT s for a=1.05. It can be seen that typi-
creasing function oé, for larger concavities fewer final con- cally synchronization occurs in a few free periods. Further-

figurations synchronize completelffor large concavities, moreTgincreases only slightly with the population size as a
however, another effect leading to synchronization can ocpower law with a small exponentTgxN0%:001 for

cur; see below S o N=200-2000 andx=0.5. Large populations synchronize
For a givenN there is a finite value of the concavity so  therefore quite as fast as in the linear case.
thata<a=c<1. That is, for concavities smaller thanthe From what preceeds we would expect that synchroniza-

system synchronizes completely unless the two last remainion is impossible for large concavities. Without entering into
ing groups are of equal size, which is the same condition agetail we shall now see that assuming a natural uniform ini-
in the linear casea goes to 1 as N so the corresponding tial distribution of the oscillators phaséand not of the states
range of concave functions is quite small. We find, howeverg,) there is for large concavities a crossover in the behavior
that synchronization occurs in practice also for much Iargebf the system towards easier synchronization.
concavities with high probability.

The probability’? of synchronization corresponds to the 2. Large concavities
probability that the gapg between the two last groups is
larger thanc. Unfortunately it is difficult to calculate this
probability directly. However, we can estimakeby assum-
ing simply a uniform distribution ot in [0, N]. This as-
sumption is natural since we start the evolution with a uni
form initial distribution of the oscillator phaseB.is then the
ratio of the number of favorable casdé;-c, overN, to the
number of possible values @f Using the valugA3) of ¢ »
calculated in Appendix A we get 050 L

5ol

Let us first illustrate the mechanism at work on an ex-
tremely simplified model shown on Fig. 5a. where we re-
place the concave function by the union of its tangent seg-
ments at both extremities. That is, the free evolution function
“of the oscillators is now

300 [ e T
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P=1 a
2aa

N=200
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Thus, the probability of synchronization is independent of | ‘
the system size. In Table Il we summarize the results of : 0 o s 10 s 20
simulations obtained with 2000 samples, fo=0.5 and sev- Time (bins of width 0.5)

eral levels of concavity. We indicate also the probabilities of (unit of time = free period)

synchronization expected with the assumption of uniform

distribution of the size difference of the two last groups. FiG. 4. Binned distributions of the duratidhs of the transient
Within the statistical error the probabilities of synchroniza-yntil complete synchronization in a populationi# 2000 identical
tion are independent dil and correspond to the expecta- concave oscillators with concavitg=1.05 for 2000 samples of
tions. uniformly distributed random phases.

Histogram of the durations to
synchronization on 2000 samples
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E constant since all the states are incremented the same way
A (whereby the phase gaps get small&et the oscillators be
numbered by increasing order of their initial phases
&> ¢ The evolution ofO; towards the threshold is
caused as by free evolution between avalanches as well by
phase advances due to pulses. Before reaching the threshold,
an oscillatorO; receivesN—i pulses from the oscillators
with larger initial phases. For small initial phasés+{1) the
oscillatorsO; and O;_, receive many pulses and their evo-
lution towards the threshold is for a large part due to the
phase advances from pulses. Possibly there is sufficient evo-
lution due to pulses so that the state gaps do not increase
enough, due to the free evolution, to prevent a large ava-
lanche of the initially closely packed oscillators.

In Table (Ill) we see that for concavitiea=1.55 and
a=2 synchronization already occurs with a larger probabil-
ity than expected with the estimate from small concavities.
As expected the probability for synchronization increases
with a for a given population siz&l. We see also that the
probability increases withN. This is the consequence that
with a uniform distribution of phases the oscillators are at the
beginning denser for larger populations in the flat section of
E(¢) and larger synchronized groups form at the beginning
of the evolution thus enhancing the positive feedback. Large
¢ concavities favor synchronization only for a uniform distri-

bution of the initial phases. Indeed if, instead of the phases,
the statesk; of the oscillators were initially uniformly dis-

FIG. 5. (8)“Extremal” model with very large concavity. The tributed in[0,1], there would be, per definition, no clustering
state value evolution function is flat up to some phasavhere it  and the oscillators would stay apart, as is easy to verify by
abruptly monotonically increases up to the threshold. All the oscil{ooking at Fig. %a). An initial uniform distribution of the
lators with initial phase smaller thag have the same state value. phases is, however, a natural assumption for the beginning of
They synchronize at the same phase value as soon as they recetfge evolution.
any pulses. (b) For a large concavity but with a smooth state Finally, the main conclusion of this section is that surpris-
value evolution functiorE(t) = f,(t), the oscillator with small ini-  jngly the form of the oscillator state variation function
tial phases has also very close initial states. A pdlsgings them E(¢) is not actually relevant for synchronization that occurs

.
>

to almost the same phase. with a high probability for function€ (), which are con-
vex, linear, and even concave provided the phases are ran-
()= 0, ¢$e[0,1[(a-1)] g domly distributed initially. The usual interpretation of
()= (a—1)¢p+1, ¢e[lla—1)1], 6) “leakiness” (implying convexity as a requirement for syn-

chronization must therefore be revised. Up to now we have

with a>1. All the oscillators with initial phases in considered only identical oscillators. In the following sec-
[0,1/(a—1)] have the same initial state vallig=0 due to  tions we show that in populations of oscillators with different
the special form of the evolution function. It is clear from randomly distributed characteristics, synchronization occurs
Fig. 5(a) that all these oscillators get in phase and synchroalso in a different way than what we have seen up to now.
nize as soon as the first pulse of the evolution occurs. It is
then possible to show that the large synchronized group that
is thus formed absorbs thereafter the oscillators that were
initially in [1/(a—1),1] and the system synchronizes com- We shall see that with quenched disorder, synchronization
pletely. is the combined consequence of several causes. For the sake

For smoothelE(t) the same mechanism occysee Fig. of simplicity we show how synchronization occurs in the
5(b)]. For small phasesh—0 the slope of the evolution cases of oscillators with different free frequencies, different
function is small and thus theé(¢) are closer to each other amplitudes, and finally as well different frequencies as am-
than for larger phases where the slope is steeper. If the initigllitudes. The mechanisms at work are the same for the dif-
packing of the states subsists until one of the closely packeferent kinds of disorder although some important peculiari-
oscillators is at the threshold a large avalanche occurs arites depend on the models. In brief, these mechanisms and
thus the synchronization of many oscillators occurs. It is nothe main steps of the demonstrations are the following.
obvious that the states remain close to each other. Indeed We write the first return map for the phase of a given
during the free evolution of the systefinetween firingsthe  oscillator O; on a cycle beginning and finishing when an-
gaps between the phases do not change but the states géter given oscillatoO; is at the threshold. During such a
farther apart from each other due to the concavity. On theycle all the oscillators of the system fire once. The first
other hand, during firings the gaps between the states remareturn map shows that due to the quenched diso@jeand

lll. SYSTEMS WITH QUENCHED DISORDER
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O; inevitably fire at some time, after some cycles, in the E

same avalanche independently of the initial values of their A

states. After their relaxation, oscillators that have fired to- j [remmmmemmmmommommemmooonnnnnee -

gether are at the origin and in phase such BatE;=0 :IE'C E°
(assuming a refractory timeHowever, contrary to the case el _

of identical oscillators, the fact that they have simultaneously

relaxed together does not imply that they will forever con-

tinue to fire together. Indeed different intrinsic rhythms or

different responses to pulsésee beloyw dephase the oscil-

lators that were in phase. However, it is physically clear that 1)
for oscillators with sufficiently close characteristi¢ge-

quency, threshold, shape, efdhe disorder cannot destabi-

lize a group of oscillators that have fired once together. More
precisely, it is possible to state stability conditions that have . o o
to be fulfiled by any group of oscillators that have fired _FIG. 6. Two oscillator<); and; with different periodsg; and
together in order to remain synchronized. Since any two os®; (¢ <#;) and identical slope. In (1) the two oscillators have
cillators necessarily fire at some time simultaneously, all thé!'st relaxed in an avalanche and are in phase at the origin; both
possible groups fuifilling stability conditions are formed dur- 0Scillators evolve thereafter in phase. In (2) the oscill@pwith

ing the evolution. If the stability conditions are fulfilled by the highest frequency is at threshokf. O; is at a distance
the whole oscillator population larger groups progressively=i — i Pelow its threshold.

form up to complete synchronization independently of the

initial values ofE; . The probability for complete synchroni- duced until a further cycle would begin with values of the
zation is therefore the probability that a random sample obtateskE;=E{ and EjBch—a. Then the firing ofO; drags
OSCillatOI‘S fu|f|||S the Stab|l|ty Conditions on the WhOle SyS' O] a|ong in an ava|anche_ m;;_ ¢IC<O we are in the pre_

tem. vious situation by interchangin@; andO; . In any case the
conclusion is the same: at some time two oscillators with
different frequencies fire in a same avalanche.
Just after their relaxation in the same avalanche, the states
A. Distribution of frequencies and phases oD; andO; are both at zero. Since the oscilla-
In this section we consider models of linear IF oscillators!®'S have the same slopes the pulses from the rest of the
with a spread of intrinsic frequencies. Since we shall nofyStem increment the phases ©f and O; with the same
allow adaptatiorf65] of the free frequencies, two oscillators value and _both osu_llators e_volve tht_erefore in parallel with
that fire once simultaneously do not subsequently reach thi = Ej until the oscillator with the highest frequer;cy, say
threshold at the same time and in general do not fire simulQi» réaches first its thresholf WhenO; fires, E;=E} and
taneously again. For a system with a spread of the intrinsiés therefore below its threshol} (Fig. 6). Both oscillators
frequencies we shall therefore consider the synchronizatiofemain synchronized only if the pulse frod is sufficient to
of oscillators as relaxation in the same avalanche, which coPushO; above its threshold, so that the stability condition for
responds to temporal synchronization in the limit of a verya pair oscillators i€f + 6= ch (equivalently since the slope
short characteristic time for the transmission of the pulsess equal to oneg;+ 6= ¢j°).
compared to the period of free evolutisee also Sec. Il A More generally, for larger groups, suppose thaiscilla-
Let in our model all the oscillators be identical, apart fromtors O;,i=1,... N with ¢¢, ;> ¢° just fired together in an
their free periodsp{ which are uniformly randomly distrib- avalanche so tha#;=0, E;=0Yi. The oscillatorO; with
uted in an interval ¢, dmad- Without loss of generality the shortest periogthreshold is the first to reach again its
we take their common slope equal to one so that each oscithreshold. It triggers an avalanche involving the 1 other
lator has a threshol&;= ¢{ The pulse strengths of all the oscillators if
oscillators are supposed to be identical and equal to
Sd=aalN with a=(¢5,i,+ dman/2 the center of the distri-
bution interval of the periods. bl —Pis<is, Vi=2,...)n. (8)
We follow the steps of the demonstration of synchroniza-
tion outlined before. From Table IV we see that the first
return map of the phase @f; on a cycle between two returns This condition comes from the fact that thiet(1)th oscilla-

LY PR

he)

of O; at the threshold is tor receives in the avalanche a total puls® A random
(D (R e e configuration of frequencies may allow complete synchroni-

;=0 + (hi = ¢y). (7)  zation if the inequalitie$8) are fulfilled for all the oscillators

of the system = N). The probabilityP) for a system with

Since the periods are random parametefs; d)jc istypi- a random uniform distribution of N—2 periods in

cally a nonzero constant. If this difference is positi@ [ dri,, Prmad to allow complete synchronization is the prod-
comes closer to its threshoEI}’,¢jH¢j° at each repetition uct of the probabilities for each gap= (7, ,— ¢7) to be
of the cycle beginning wittO; at E{. Therefore after each smaller thani§. Sinces;.;>s; we get after a change of
cycle the time gap between the firings Of and O; is re-  variables:
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FIG. 8. Mean duration3 g until synchronization for the model
0 with a distribution of amplitudes of width=0.5 around the unit for
0 0.1 0.2 0.3 0.4 0.5

D/a : ' a=0.5, 0.6, 0.8(top to bottom as a function of the population
size N. Inset: mean durations to synchronization for the models
FIG. 7. Probability for a configuration allowing complete syn- With @ distribution of amplitudegbottom and of frequencietop)
chronization in a system of oscillators with a uniform random dis-for @ distribution widthD =0.2 and=0.5. For the distribution of
tribution of intrinsic frequencies. The probability depends only onfreauenciesTs=19+0.0&N.
the ratioD/a, whereD = ¢a— dmin @aNd a= (Pmaxt Pmin)/2 and
on the conservation parameter. From left to right, In the previous model the system synchronizes at the fre-
«=0.2, 03, 04, 0.5. quency of the fastest oscillator. This is a direct consequence
of the absorption rule that sets at the origin all the oscillators
PN=pr5dslf25dsz~ N J'Na‘ dse P ) that participate in an avalanphe. Itis thereforg interesting to
0 s Sy_1 study the same model but without the absorption rule. Let us
recall that for identical linear oscillators synchronization, as
locking in avalanches, was still possible without absorption.

—1_paPo_ —2p8 . . .
1-e poe For the model with a spread of frequencies the first return

N-1 (j+1)i1 map (7) is valid also without absorption. Let us take two
-> f(p5e‘f’5)l'e‘f’5, (10  oscillatorsO; and O; with ¢{<¢{ At some timeO; drags
=2 I* O; in an avalancheO; fires and relaxes to zero and, without

absorption, is immediately incrementedEo= 6 by the fol-
where 8=[ (St doi)/2]alN is the pulse strength and lowing f_iring of O;. Therefpre after the avalanc_he the Qscil-
p=N/(¢S.,— ¢S;) is the uniform density of the intrinsic lator O; is more advanced in phase and the oscillator with the
periods. This probability depends only on the rafiva of ~ highest frequenc; does not necessarily reach its threshold
the widthD of the distribution D= ¢%,..— ¢%;,) and on the first, contrary to the case with absorption. ,
center a= (¢S +¢S)/2 of the distribution through Itis easy to verify thcapi |sC thecflrst qf the té/vo (?:scnlators
p5=D/a. The probability (10) is plotted in Fig. 7 for (© reach its threshol&j it ¢;—¢j<s, ie., Ej—Ej<d. In
a=0.2, 0.3, 0.4, 0.5 antl=2300. We see that for a finite this case the firing 0O; automatically drag®; again in an
width D a large fraction of the initial samples of randomly a\éalancche since  we ChaveEi—Ej: 6 and thus
distributed periods allows complete synchronization, typi-Ei ~Ej<6=Ej—E;=Ej—Ei+6<4é. The two of oscilla-
cally for D/a<0.1 and a>0.2 synchronization occurs in tOrs are ther_efore !ocked in an avalar)che and form a stable
more than 95% of the cases. Nevertheless, after a flat secti@foup that fires with the longest periag’ of the two. If
at small widths,P decreases rapidly with increasimya. ¢ — ¢;> & then O is first at its threshold and fires before
Therefore, although complete synchronization is possiblé;. Although it is possible thaD; and O; avalanche again
with very high probability for smalD/a, the range of disor- together this time, the two oscillators cannot remain locked
der on the frequencies compatible with this behavior is lim-n an avalanche further. Indee&; —E;= ¢ since O; fired
ited. In the region of high synchronization probability we first and when O; is back at E{ we have Ei—F;
find that P is unaffected by the population size whBhis =Ef— EJ-°~|— 6> 6 so thatO; does not avalanche witQ; .
large (typically =100) since in this limit only the tails of the We see that without absorption synchronization of two
distributions at largeD/a actually depend oM. We have oscillators is still possible but at the lowest frequency. This
studied numerically the duration of the transi&gtuntil syn-  result can be straightforwardly generalizedNooscillators
chronization on simulationssee Fig. 8 ins¢t Up to following the same procedure as in the case with absorption.
N=500 we found thaflg increases linearly wittN with a  We find actually that the locking conditions for the whole
small slope. For instance, witB=0.2, a=1, «=0.5 we system are a set of inequalities equivalent8pso that the
haveTg=19+0.06N (Fig. 8 inse}. Since the divergence of probability of complete synchronization for a uniform distri-
Ts with N is only linear, synchronization occurs in a physi- bution of ¢; in [ ¢min, Pmax] IS given by the same expression
cally reasonable time. as(10).
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Let us just mention that the fact that synchronization
without absorption is also important for the behavior of some
lattice models of oscillators displaying self-organized criti-
cality [57,62. In these models the oscillators are locally
coupled by pulses without an absorption rule. As first shown
by Middleton and Tang on the Olami-Feder-Christensen
model[57], depending on the number of nearest neighbors,
oscillators have different effective frequencies. From what
precedes, we would expect some synchronization in the sys-
tem and, indeed, a tendency towards synchronization is ob-
served also on the lattice. Complete synchronization does not
occur, but there is partial synchronization at all sca6H.

We see finally that in a simple model of IF oscillators
with a spread of the free frequencies synchronization can
occur in the form of locked avalanches with or without the

absorption rule, i.e., a refractory time. How_ever, the presenCgulse of strengths dephases two oscillators that avalanched to-
or not of the absorption rule changes drastically the nature ofoiher and were in phase at the origin. The oscillxpwith lowest

the synchronized avalanches, which are respectively trigsiope gets the largest phase advandf) and reaches the thresh-
gered by the oscillator with the highest and shortest fregq pefore0; . If the stateE; of O; is at a distance to its threshold

frequency. That this sensibility to the absorption rule, to-g¢ smaller than the valus of the pulse of0; then the two oscil-
gether with a probability of synchronization is strongly de- |ators stay synchronized.

pendent, above some value, on the distribution width indi-
cates that, apart from some limits, in a real situationpulses oscillators with small slopes have larger effective fre-
synchronization is restricted by disorder on the frequenciesquencies than oscillators with large slopes.

In a model with pulses with a finite fall time Tsodyks,  Oscillators with close threshold values that avalanched
Mitkov, and Sompolinsky40] showed that synchronization together can remain locked in an avalanche and form a stable
is unstable. However, our results show that synchronizatiogroup. The stability conditions for the whole system Nf
is not incompatible in principle with disorder in frequencies oscillators are similar t¢8) and lead to the following prob-
in pulse coupled oscillators models in the limit of short in- ability P\ of complete synchronization for a uniform distri-
stantaneous pulses and when the notion of synchronization tution of slopes ifa—D/2,a+ D/2]:
avalanches is valid.

FIG. 9. Oscillator with different amplitude&{ and equal fre-
uency. With¢®=1 the oscillators have different slopas=Ef . A

a; 2a; (N-2)a;
’])N:pN_Zf dS:LJ dszf dsN_ze_Pstz
B. Oscillators with different amplitudes 0 51 SN-3

In this section we keep the frequencies of the oscillators ~ =1~ € "1—paje 2% (11)
equal(the period is¢f=1, Vi) and let the thresholds have NZ1 . .
different values(Fig. 9. Each oscillatorO; is then charac- _ 2 (j+1) (paerar)ie=ra1 (12)
terized by a threshol&{ and has a slopa;=E{ By disorder = j! P :

on the amplitudes we mean disorder on the thresholds with

related distribution of slopes. We keep the pulse equal for aWith p=N/D and a;=a,=a—D/2. Py depends orD/a

the oscillators:5=a/N. Since all the oscillators have the throughpa;=N(a/D—1/2) and isindependent of the dissi-
same free period, synchronization in the sense of variation ipation parametew. Py goes to 1 with increasinty and for
phase of all the oscillators and simultaneous relaxations ig finite population size the model does not synchronize only
possible in this model. We follow the same steps as previfor very large disorder, typicallp ~2a.

ously. Since the mechanisms at work are similar to those in In short, we see that as in the model with a distribution of
the model with a distribution of frequencies we leave thefrequencies, we found that the duration of the transient
details of the discussion to Appendix B. Since the frequenuntil synchronization increases linearly with (Fig. 8. For
cies are now equal and the slopes and thresholds are diffeidentical « andD/a, Tg is shorter in the case with disorder
ent, the main differences with the preceding section are imn the amplitudes than on the frequendiEgy. 8 inse}. Tg

the reasons why simultaneous firings occur and groups fornmdepends strongly on the dissipatian However, we do not
Here also the phase gap between any two oscillators changbave enough data for a precise relationship.

monotonically after each cycle, so that any two oscillators As in the model with a distribution of frequencies, com-
avalanche at some time together. The change in the phagéete synchronization occurs independently of the initial val-
gaps between the oscillators that finally cause the simultases of the phasestate$ if the locking conditions of all the
neous firings has for its origin also here the different rhythmscillators in a single group are fulfilled. The conditions for
of firings of the oscillators. But contrary to the previous this locking depend, however, on the models. Starting the
model where the different rhythms were intrinsic, now theevolution of the system from random phases, the formation
different rhythms of firings of the oscillators are only effec- of the possible stable groups comes from the evolution of the
tive and caused by the different responses of the oscillatonelative phase gaps between the oscillators due to different
to pulses. Indeed a given pulse causes a larger phase advambgthms that have their origin in the quenched disorder on
on an oscillator with a smaller slope. Under the effect ofthe characteristics of the oscillators. In the model with dif-
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ferent slopes they come from the different phase advance
responses to pulses of the oscillators.

For a given level of disorder and the samé¢he probabil-
ity of synchronization is much higher in the case of a disor-
der on the amplitudegthresholds than on the frequencies
with also shorteiTg (Fig. 8 insel. In short, disorder on the
amplitudes and slopes is not a strong restriction of synchro-
nization, which is much more limited by the disorder on the
frequencies. It is, however, not possible to conclude directly
on what happens when both disorders exist simultaneously
and we shall now therefore study this case.

C. Disorder on the frequencies and amplitudes

The mechanism of synchronization that we saw at work in
systems with two different kinds of disorder is still at work
and leads also to synchronization in a system with mixeti
disorder on the frequencies as well as on the thresholds. Foj,
two oscillatorsO; andO; as previously, the first return map
for the phase 0D; is now

FIG. 10. Oscillators with a spread of periods and thresholds

¢ a)e[1-1/2,1+1/2]>. Two oscillators O; and O; with
i<¢j° anda;>a; have different locking conditions according to

the strength of the dephasing pulde The locking condition de-

pends on the order of the firings, which dependstoriFor a small

A, O is at the threshold befor®; . For a largeA (case represented

k+1_ 4k
KT2=p"+ A -
d)l ¢J A':l (13 in the figure, the oscillatorO; , which has the largest period, is first
with at the threshold.
e o @A As seen in Fig. 12 the duration of the transient occurs in
Ajj=(gj=d+— 96 (14 only a few periods although it increases polynomially with
idj

the disorder width. While the duration increases also with the
The phase variation, ; is due now to the difference of the Population sizeN, we do not have enough data to establish a
free frequencieffirst term of(14)] as well as to the different Precise relation. . .
term of (14)]. Since there is no relation between the signs ofSynchronize following the same principles. A model with a
#°— ¢° and ofa;—a, the two terms may be opposite. But distribution of frequencies and slopes and with constant
| i . ., .
generically they do not cancel each other since the periodiréshold has been presented 47]. We can also consider
and slopes are random. The phase gap betv@eand O; dlsorder on th.e pu!se strengths. Le_t us, for mstance_, take a
varies therefore monotonically and both oscillators avaPopulation of identical oscillators with a q_qenched d|§order
lanche at some time together. only on the pulse strengths so that the firing on oscillators
Here also there are locking conditions of oscillators in©i transmits to the rest of the system a pulse of strength
avalanches so that stable groups form and may grow up t8i/N- The phase gap between two oscillat@s and O
complete synchronization. However it is not possible in thisvares then ass; j=(a;—«;)/N. Since genericallys; ;#0
case to get the probability of complete synchronization pro@"Y two oscillators participate at some time in the same ava-
ceeding as previously by simply establishing the locking

conditions for all theN oscillators in an avalanche. These 1.05 — . : . SR
conditions are necessary but not sufficient anymore to ensure & 1 . ]
synchronization for any initial distribution of the oscillator § ] E
states. Indeed it is possible to verify that for large disorder § 095 ]
there are cases where the formation of a stable group be- & 09 F ]
. . c .

tween two oscillatorO; and O; with a;>a; actually de- z ]
pends on the configuration of the phase values in the system © 0.85 G 1
and of its history(Fig. 10. We studied the probability of 2 0.8 L E
synchronization numerically on simulations with random §

thresholds and periods uniformly distributed in o 075 ¢ ]
[1-D/2,1+ D/2][1—-D/2,1+ D/2]. We see in Fig. 11 for - ST
N=300, 400, 500 an@=0.5 that up toD~0.1 complete 0.05 0.075 0.1 0.125 0.15 0.175 0.2

synchronization occurs in more than 99% of the cases and distribution width (1)

that the probability is still high for larger widths. In the cases
without complete synchronization the asymptotic behavior g1 11. probability of synchronization for a systemMobscil-

consists in the periodic avalanches of a large stable groutors with a uniform spread of periods and thresholds ,&;)
with some few small ones. For small disorder the probabilityc [ 1—1/2,1+1/2]2, with N=300, 400 as a function of the width

of synchronization depends only weakly dh for a given
D the probabilities found forN=300, 400, 500 are all
within the statistical errors.

for «=0.5. Each point is the probability obtained with 1000
samples of random oscillator parameter and is represented with the
statistical error.
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. 30 however, increment the duration of the transient towards
8 : synchronization and reduce the range of favorable param-
8 o5f eters in the case with disorder.
S — Concerning additivity we see that it is nevertheless true
§ 20 that convexity favors synchronization, since it is the only
? , case that synchronizes also without additivity. However,
& that h | thout additivity. H
~§}_3 15 | without additivity, i.e., without positive feedback, the dura-
-% 2 [ tion of the transient diverges then at least as &) ~* in the
28 10 - linear limit a— 1 [36]. Therefore without additivity a large
<l r ] convexity is necessary to keep the durations of the transitory
25 s e ' not too long.

- 0 0.05 0.1 0.15 0.2 0.25 Let us mention that as shown recently by Tsodyks, Mit-

Distribution width (1) kov, and Sompolinskj40], Hansel, Mato, and Meuni¢42],
and Abbott and van Vreeswijld1] smooth pulses with finite
rise and fall time can crucially affect the behavior and desta-
with disorder on the frequencies and on the threshol#iS, ;) b.mze SynChronlza_tlon. In this paper we assume fast interac-
e[1-1/2,1+1/2]2 as a function of the distribution widt’hlfor tions and absorption: when two oscillators fire one after the
N=500 ’400 300 and=0.5. T grows polynomially withD, for other, the pulse of the second one occurs entirely during the
N=500, Te~4.5+ 63D+ 31602 with  correlation coefficient  TEfractory time of the first so that the oscillators synchronize
0.99992. in phase. The existence of a refractory time and absorption
(i.e., assumption of fast pulses, however, not necessary
lanche and since the slopes and thresholds are identical th@r synchronization for identical convex and linear oscilla-
two oscillators are automatically locked. tors, in which case synchronization occurs also without ab-
We see finally that with instantaneous pulses, models wit/$orption as Iocklng of the oscillators in stable avalqnches; in
quenched disorder on several oscillator characteristics magther words, this corresponds to out-of-phase locking of the
also evolve to synchronization by the same mechanism dg?scillators. _ __
evolution of the gaps and locking in stable groups. The Foridentical linear and concave oscillators the probability
analysis and the estimation of the probability of synchroni-0f synchronization depends entirely on the initial configura-

FIG. 12. Mean duratioff g until synchronization for the models

zation is, however, more complicated. tion of the phases and/or states of the system. Indeed, some
sets of initial configurations do not synchronize, for instance,
IV. CONCLUSION when the initial phases are equally spaced so that no group

can be formed or in cases where the evolution leads to con-

In this paper we have highlighted with some simple mod-figurations with groups of the same size. For linear and
els the existence of several mechanisms leading to synchrixghly concaveE(¢) the measure of the unfavorable initial
nization of IF oscillators. A surprising result is that, contrary configuration is vanishingly small. It is larger and limits the
to common belief, synchronization can actually occur everprobability of complete synchronization for “moderate”
in basic models and for identical oscillators independently otoncavity. The degeneracy of the nonfavorable configuration
the shape of the oscillators. In particular oscillators do nodisappears if some disorder is included in the models such as
need to have a convex evolution function in order to syn-a small spread on the frequencies, thresholds, or pulse
chronize [66]. Therefore the common interpretation that strengths.
“leakiness” in the evolution of the free oscillators, which  With fast pulses we found indeed that synchronization is
implies convexity, is necessary for synchronization shouldpossible also with a range of disorder on the oscillator char-
be revised. We conclude that the observation of synchroniacteristics. We find that the most difficult situation for syn-
zation in a system of IF oscillators implies by itself nothing chronization is when the oscillators have different frequen-
about the shape of the oscillator internal state variation funceies, where, for small disorder, a system with a given random
tion E(¢). Actually, for very concave oscillators synchroni- sample of frequencies synchronizes almost always but, for
zation occurs very easily for the natural choice of initial ran-larger disorder, the probability of synchronization decreases
dom phases. It is the opposite for a random initialrapidly. Synchronization occurs then in the form of locking
distribution of the states. Therefore the nature of the randonm avalanches and should be affected by softer additivity. On
configuration at the beginning of the evolution has possiblythe other hand, disorder on the shape of the oscillators —
important consequences. It would be interesting to study ibccurring here through disorder on the thresholds and hence
the nature of the random initial configuration has similardifferent slopes— with otherwise identical frequencies does
consequences also in more sophisticated models. not constrain severely synchronization. When both kinds of

In this paper we assumed direct additivity of the pulsesdisorder are mixed the probability of complete synchroniza-
which is probably an excessive requirement for realistic aption is limited by the spread on the frequencies.
plications. The positive feedback effect between groups of A point of interest would be to investigate how the dis-
different sizes, which is the only mechanism of synchronizacussed effects occur in more complex realistic models, for
tion for linear oscillators, occurs also for a softer form of instance, of biological relevance. In particlar it would be im-
additivity where the pulse from one group is not directly portant to study the robustness of the results when the inter-
proportional to the number of oscillators in the group butaction pulses have finite rise and fall times and for systems
merely an increasing function of it. Softer additivity would, that are not globally coupled.
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APPENDIX A: PROOF OF SYNCHRONIZATION
FOR SMALL CONCAVITY

e YLy

In this Appendix we prove the synchronization of an as- e ®
sembly ofN identical oscillators with state evolution func-
tion E(t)=t%te[0,1],a>1 in the limita—1. Let us first
study the synchronization of only two isolated grohsand
G; of N; andN; oscillators, respectively, with;>N; in the
absence of any other exterior pulses. In Table V, we trace the
variation of the phases and state variables of the two groups ~ f=-=--=mmmcememadpecmmaralone--
on a cycle of relaxations beginning with the largest group at h= 0% o <
the threshold. We deduce from there that the first return map !
for the phase of the second gro® is

m
h -
>
7
A
g
o

|
}

B 1 (1= [(#H7 N ST N 3R, (AD) °

which has an attractive fixed poirky(a,N;,N;,d). If the

new phase after a cycle¢}‘+l is in the interval b.

l.=[#c(a,N;,8),1] where ¢.(a,N;,8)=(1—N;8) then @ 9,

G; is absorbed in the relaxation @; (see Fig. 13 ¢, o

corresponds to the phase at whih is just pushed at the FIG. 13. Test for the synchronization of two groups for concave

threshold by the pulse ;. If ¢o>J¢ then the gap be- oscillators.(a) The firing of G; causes the avalanche of the second
[ c» . P k+1 . .

tween the two groups gets smaller on each repeated cycfioUP Gz if E2+N;6=1, that is if $) V= e o is the fixed

until it becomes sufficiently small for the groups to ava- point O_f the.f'rSt return map for the phaske ?fz on each cycle

lanche together and to merge. On the other hangif ¢, beginning withG, at the threshold(b) If ¢{** "< ¢, the second

the two groups never avalanche together and remain apar'[.“?fouloS never comes.

is analytically difficult to test directly if¢q is in I,. How-

ever, sincgAl) is monotonic on each side of the fixed point, __ N(1-a) a al a [«

it is more convenient to test b/ " is in I, when ¢i'= ¢°, C=—%ma |17 E) In( 1 5) + Eln(ﬁﬂ

i.e., is just at the border df,. With ¢}‘= ¢, this gives the 5

inequality +o((a—1)%). (A3)

h(N;,Nj) =} 1= pl'=1—(1-N;8)*@—(N;5)2=0, . . _
(A2) Contrary to the case of linear oscillators, two groups of dif-
ferent sizes — not only of equal size — may remain apart
where h(N;,N;) is the variation of the phase @&; on a  and not synchronize: if their size difference is too small, i.e.,
cycle assuminggbﬁ‘: ¢.. Let us examine(A2) for two  c<c, positive feedback is not efficient enough and absorp-
groups with sizes N+c)/2 and (N—c)/2. The function tion does not occurc(a,N) is an increasing function af, so
g(c)=h((N+c)/2,(N—c)/2) is monotonically increasing in that for larger concavities fewer configurations with two
¢ so that the attraction between the two groups is strongegroups can synchronize. We will see that this determines the
when the size difference is bigger. For a givdranda the  probability that a system withl random initial phases syn-
conditiong(c)=0 is fulfilled whenc=c(a,N) with chronizes.

TABLE V. Evolution of the phases of two isolated grou@ and G; of N; and N; oscillators
(N;>Nj) on a cycle where the firing of the first group does not succeed to drag the second one along in an
avalanchd (¢})?+N;6<E;=1].

G; Gj
G; at threshold 1 ok
Relaxation ofG; 0 [()2+N;5]
G, at threshold 1-[(N*+N; 8112 1
Relaxation ofG; {1-[(4)*+N; 8] 8+ N; 5112 0

G; at threshold 1 1-{(1-[(¢})2+N; 5]+ N; 5}
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TABLE VI. (a) O; at the threshold(b) Firing of O;, O; received a pulsé, causing an advance in phase
dla;. (c) Oj at the threshold, the ternj {2)46(a;—a;)/a;a; comes from the j(—2) other pulses since the
relaxation ofO;. (d) Firing of O;. (e) O; back at the thresholdN—j+ 1) other pulses from the rest of the
system occurred since the relaxation@f.

b b,
@ 1 ¥
(b) 0 o+ 8l
(© 1- M +(j—2)8(a;—a;)/aja— o/a; 1
(d) 1- M +(j—2)8(a;—a;)/aja + sl — 5la; 0
(e 1 o+ (N—-1)8(a;—a;)/a;a;

Up to now we have considered only two isolated groups(N—1)/2, that is, ifg(c=1)=0. This is the case when
In order to see if synchronization can occur when there are

more groups, let us choose two groups and see if at some — a a a\ a [a\]7t

time they merge together. With many groups it is not pos- a<a=1- N[(l_ E)ln( 1=3 Eln(f)

sible to write a simple first return function on a cycle for the

gap between two successive groups since this return map 1

depends sensitively on the history of the system during this +o0 aﬁz)- (A4)

cycle. However, we can simplify the question and prove that

two groups can merge by focusing on the most severe consincea>1 there is an interval of concavities with the same
dition. For that, let us isolate the two groups from the rest ofsgnditions of synchronization as the linear case. Then syn-
the system as if they would not be affected by the pulsegnronization can stop only if the two last groups are of the
from the oscillators outside of the pair. It is easy to see thaksme size. Sinca is close to 1, the corresponding range of
if the two groups can synchronize in these circumstancegoncave functions is quite small. However, as discussed in

they still synchronize in the real situation with the influenceggc. | B, synchronization occurs in practice also with high
of exterior pulses. Indeed, the pulses of the rest of the systemygpability for much larger concavities.

increment all the states in the same way and so they do not
change the gajk;(t)—E;(t). Therefore ifO; and O; are
close enough to avalanche together, they do so independently
of pulses of other oscillators in the system. We can therefore In this Appendix we detail the conditions under which
focus our study on the case of an isolated pair of oscillatorssynchronization occurs in the model of Sec. Ill B of oscilla-
Let the sizes of the two groups Ileandn—c. The groups tors with a distribution of amplitudeghresholds We follow
merge if(A4) is fulfilled with Nj=n andN;=n—c. Differ- the same steps as for the model with a distribution of fre-
ently from previously we now studfA2) with N;+N;#N. quencies(Sec. Il A). From Table VI we get the first return
Sinceh(n,n—c) is again a monotonically increasing func- map for the phase dd; on a cycle beginning witl®; at the
tion of c, the biggerc, the stronger the attraction. Therefore threshold:
the most stringent condition for synchronization is for two

groups of minimal size difference. Keeping this in mind

we should now examin€A2) as a function ofn; i.e., we

examine f(n)=0 with f(n)=h(n,n—c) when n
e[c+1,(N+c)/2]. The functionf(n) is monotonically de-

creasing on the variation interval ofwith the highest value

f(c+1)=0. The smallest valueg((N+c)/2) is equal to Let a;>a;, then on each cycle; is closer to¢°=1. The
g(c). This value is the change in phase that we studied prephase difference; — ¢; decreases and after some repetitions
viously for a system of two groups of sizeBl{c)/2 and  of the cycle the firing of; dragsO; along in an avalanche.
(N—c)/2. If the conditiong(c)=0 is fulfilled, thenf is also  Therefore as in Sec. lll A also in this model any two oscil-
positive over the whole intervahe[c+1,(N+c)/2] and lators avalanche at some time together. The change in the
any pair of groups with size differenae synchronizes. Fi- phase gaps between the oscillators that finally cause the si-
nally we see that it is for the case of only two groups of sizegnultaneous firings has for its origin the different rhythms of
(N+c)/2 and (N—c)/2 that synchronization is the most dif- the firings of the oscillators. Contrary to the previous model,
ficult and it is this case that determines the most stringemivhere the different rhythms were intrinsic, now the different
condition for this phenomenon. Therefore, assuming that, ashythms of firings of the oscillators are only effective and

in the case of linear oscillators, synchronized pairs spontanesaused by the different responses of the oscillators to pulses.
ously form during the first cycle we find that the probability Indeed the value of the phase advance caused by a pulse of
that the system synchronizes completely for random initiagiven strength depends on the slopes of the oscillators. Due
phases corresponds to the probability thatc(a,N). Unfor-  to the quenched disorder on the slopes the oscillators evolve
tunately this is also difficult to calculate. The system syn-more or less rapidly under the phase advance caused by
chronizes with the highest probability if synchronization is pulses and have therefore different effective rhythms of evo-
possible even for two groups of sizedN{1)/2 and lution. The evolution towards synchronization due to the dif-

APPENDIX B: DISTRIBUTION OF AMPLITUDES

G U=+ (N-1)6 = (1)
it
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ferent rhythms comes in addition to the positive feedbackf O; andO; were the only oscillators in their avalanche then
attraction between groups of different sizes, which caused =(N—2)d and(B2) is equivalent taa;—a;<a;/(N—2).
also the evolution of the phase gaps between oscillators. For a group ofm=2 oscillatorsO;,i=1,... m with
Both effects drive the system in the state of maximal syn4a;.,>4&; the locking conditions are
chronization compatible with the disorder.

We establish now the stability conditions of synchronized i—1 ,
groups, i.e., the conditions of locking in avalanches. Two (@-a)<aig—,. i=1,...m (B3)
oscillatorsO; and O;, say witha;>a;, that avalanche to- . N ) o )
gether and are in phase at the origip= ¢;=0 are dephased These mequa!ltles are obtained considering the following.
by the pulses from other oscillators, the oscillaBmwith the (1) Th_e_m oscillators that avalanched together and were at
smallest slope being the most advanced. letbe the the origin are dephased by a total pulse: (N—m) & before
summed strength of the pulses of the other oscillators bethe oscillatorO; is back(the first of them at the threshold.
tween the last simultaneous avalanchépfandO; and the (2) Theith oscillator in the avalanche receives 1 pulses
return ofO; back at the threshola shifts the two oscillators ~ from the oscillators that preceded it. _ _
apart by the phase difference=A(a;,—a;)/(aa)). If the Complete synchronlzat!or) is possible(B3) is fulfilled .
slopesa; anda; are close enough thenis sufficiently small ~ for m=N—1. Indeed, if this is the case a stable group with
for O; and O; still to relax in the same avalanche triggered N—1 elements forms. Then, this group and the st os-

by O;. The locking condition for two oscillators that ava- Cillator of the system inevitably participate in a same ava-
lanched together itsee Fig. §: lanche and the whole system becomes in phase without, now,

any exterior dephasing pulse.
B s The relation(12) in Sec. Il B gives the probability for a
al ai<_ (82)  uniform random distribution ofN slopes in an interval

A .
aa; g [a—D/2,a+D/2] of fulfilling (B3).
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