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We study the behavior of globally coupled assemblies of a large number of integrate and fire oscillators with
excitatory pulselike interactions. On some simple models we show that the additive effects of pulses on the
state of integrate and fire oscillators are sufficient for the synchronization of the relaxations of all the oscilla-
tors. This synchronization occurs in two forms depending on the system: either the oscillators evolve ‘‘en
bloc’’ at the same phase and therefore relax together or the oscillators do not remain in phase but their
relaxations occur always in stable avalanches. We prove that synchronization can occur independently of the
convexity or concavity of the oscillator evolution function. Furthermore the presence of disorder, up to some
level, is not only compatible with synchronization, but removes some possible degeneracy of identical systems
and allows new mechanisms towards this state.@S1063-651X~96!06708-6#

PACS number~s!: 05.20.2y, 64.60.Cn, 87.10.1e

I. INTRODUCTION

The emergence of a large scale rhythmic activity in dy-
namical systems with a high number of degrees of freedom
is a widespread phenomenon occurring in different fields. In
physics, macroscopic synchronization may be found in the
behavior of laser@1#, charged density waves@2,3#, and net-
works of Josephson junctions@4,5#. In chemistry, oscillating
chemical reactions are the result of large scale synchronized
activity @6,7#. Many biological systems display also large
scale synchronization@8#. One of the most cited examples is
given by the southeastern fireflies, where a large number of
insects gathered on trees flash all together@9–12#. Other ex-
amples are reviewed in@13# and include cells of the heart
pacemaker, circadian neural networks, glycolytic oscillations
in yeast cells suspension, collective oscillations of pancreatic
beta cells, and crickets that chirp in unison@14,15#. Coherent
oscillations are also believed to be important in neuronal
activity @16,17#.

The previous systems exhibiting large scale periodic ac-
tivity are usually modeled as a large assembly of coupled
oscillators. The periodicity shown by the whole system is
then the result of the collective synchronization of a macro-
scopic set of the elementary oscillators. Due to the large
diffusion of collective rhythmic behavior in nature, it is im-
portant to search and investigate all the possible mechanisms
that may lead to this phenomenon in populations of oscilla-
tors.

Most of the works related to collective synchronization in
the last decade studied populations of stable limit cycle os-
cillators described by ordinary differential equations continu-
ously coupled in time@18–27#. Much theoretical understand-
ing has been obtained for such systems, as well as on models
where the phases are the only relevant dynamical parameters
@18–25,28–30# or on models where phase and amplitude can
vary @26,27,31#, and for populations of identical or almost
similar oscillators. Generally, global coupling has been as-

sumed; i.e., each oscillator is supposed to interact with all the
others. Local interactions have also been investigated
@20,22,23# that show more complex behaviors.

These numerous studies do not, however, account for the
important case, especially in biology, of episodic pulselike
interaction, where oscillating units, cells or neurons, often
communicate through the sudden firing of a pulse. Biological
oscillators exchanging pulses are currently modeled as inte-
grate and fire~IF! oscillators@32,33#, which are simply de-
scribed by some real valued state variable—representing for
example, a membrane potential—monotonically increasing
up to a threshold. When this threshold is reached the oscil-
lator relaxes to a basal level by firing a pulse to the other
oscillators and a new period begins. This is the case, for
example, for fireflies communicating through light flashes
@9–11,34#, for crickets exchanging chirps@14,15#, for cardiac
cells interacting with voltage pulses@35#, and for neurons
receiving and sending synaptic pulses.

Large assemblies of oscillators with pulselike coupling
have been studied only recently. In their seminal work,
Mirollo and Strogatz@36# prove rigorously that a population
of identical integrate and fire oscillators globally coupled by
exciting pulses added to the state variables can synchronize
completely for a certain kind of oscillator~convex oscilla-
tors!. As shown by Kuramoto@37#, who gives a description
of such a system in terms of a Fokker-Plank equation, the
coherent collective synchronization persists when random
noise is included in the system. Recently Corralet al. @38#
have generalized the Mirollo and Strogatz model for arbi-
trary evolution function of the oscillators and arbitrary re-
sponse function to pulses and established some conditions
sufficient for synchronization. When transmission delays are
taken into account, Ernstet al. @39# find that with excitatory
pulses, clusters of synchronized oscillators spontaneously
form but are unstable and desynchronize after a time; partial
synchronization is, however, achieved with inhibitory pulses
in the form of several stable clusters of oscillators in phase.

Other studies consider models of integrate and fire oscil-
lators with the pulses smoothed before acting on the oscilla-
tor state variable@40–42#. Recently Hansel, Mato, and Meu-*Electronic address: bottani@lpthe.jussieu.fr
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nier @42# showed that rise and fall times can destabilize the
synchronized state of simple IF oscillators and Abbott and
van Vreeswijk@41# showed that in this case the incoherent
asynchronous state can be stable. In a model with fall times
of the coupling between the oscillators, Tsodyks, Mitkov,
and Sompolinsky@40# showed that the complete synchro-
nized state is unstable to inhomogeneity in the oscillator fre-
quencies. Finally Gerstner and van Hemmen@17,43#
achieved a synthesis of results on IF oscillator models by
introducing a general model containing various versions of
IF models as special cases and an analytical approach from
the point of view of a renewal theory@44–46#. In the previ-
ous studies the oscillators are typically model neurons de-
scribed as a leaky integrator on a membrane potential. This
assumption determines the form of the monotonic variation
function of the state variable of the free oscillators, which in
this case must be convex.

In this paper we extend a previous study@47# of IF oscil-
lators with linear or concave variation and with a global all-
to-all excitatory pulse coupling directly added to the oscilla-
tor state variables. According to the theorem of Mirollo and
Strogatz@36# it was commonly believed that synchronization
of pulse coupled IF oscillators, could be achieved only with
convex oscillators. We show here that actually synchroniza-
tion can occur independently of the shape of the oscillators,
which is not therefore a constraint for this behavior. We
present and investigate some general mechanisms that, we
think, have not been sufficiently recognized previously and
that lead to collective synchronization in assemblies of linear
oscillators without or with quenched disorder. These effects,
sufficient for synchronization for linear oscillators, can also
exist for models of leaky integrator oscillators and be com-
bined with other mechanisms.

The aim of this paper is not to study a particular biologi-
cal or physical phenomenon in detail but to get a better un-
derstanding of the possible mechanisms of mutual entrain-
ment that can lead to collective synchronization in models of
IF oscillators. Furthermore, systems of simple linear oscilla-
tors of the kind studied in this paper are also found in a
different context than collective synchronization, which is
the physics of earthquakes and self-organized criticality@48#.
This phenomenon is the spontaneous organization of a dy-
namical system with a large number of degrees of freedom
out of thermodynamical equilibrium, in a critical, i.e., scale
invariant, state of evolution, which is the attractor of the
dynamics. The building up of the long range correlations and
power law behaviors characteristic of the critical state there-
fore does not require the fine tuning of a control parameter
~temperature, magnetic field, etc.! as for the usual critical
phenomenon of second order phase transitions. Famous ex-
amples of dynamical systems with a high number of degrees
of freedom believed to be self-organized critical are, for ex-
ample, the sandpile model of Bak, Tang, and Wiesenfeld
@48# together with several variants@49–51#, a model of front
propagation@52#, evolution models for species@53#, the
forest-fire model@54#, etc. Self-organized criticality has also
raised interest in geophysics as a possible phenomenon re-
sponsible for the scale invariant behavior of earthquakes,
whose distribution of their number as a function of their
magnitude~Gutenberg-Richter distribution! is a power law.

A classical model of earthquakes is the Burridge-Knopoff

spring-block model, where the fault between two tectonic
plates is described as a network of rigid blocks elastically
connected and coupled semielastically and semifrictionally
to the surfaces of the fault. Due to the relative movement of
the tectonic plates, the stresses on all the blocks increase
until the stress of some block reaches an upper threshold and
relaxes, causing the slipping of the block and a rearrange-
ment of the constraints on the neighboring blocks. This can
possibly push other blocks to relax and trigger an avalanche
of slippings, i.e., an earthquake. As first noticed by Chris-
tensen@55#, the previous systems can be seen as assemblies
of pulse coupled oscillators: each block is actually an oscil-
lator with the stress upon it acting as the state variable and
the pulses being the sudden increment of the strain on the
neighbors of the slipping block. A discretized version of the
Burridge-Knopoff model by Olami, Feder, and Christensen
@56# with linearly varying oscillators, nearest neighbors cou-
pling, and direct action of the pulses on the state variable is
believed to be self-organized critical. It has been proposed
@47,55,57–59# that the critical behavior of this model is re-
lated to the tendency to synchronization in such systems. In
this paper we see that the globally coupled models, which are
actually mean-field versions of the Olami-Feder-Christensen
model, are not critical and typically synchronize.

This paper is organized as follows: In Secs. II A and II B
we show that because of a positive feedback of large groups
of synchronized oscillators on smaller ones, complete syn-
chronization of a set ofidenticaloscillators is possible even
in cases not taken into account by the theorem of Mirollo and
Strogatz@36#. In Sec. III, we show how the introduction of
disorder on the oscillator properties such as the frequencies,
the thresholds, or the pulse strengths allows a new mecha-
nism that can lead to collective synchronization. Two effects
act together: first, the quenched disorder makes the effective
rhythms of the oscillators all different. This causes any two
oscillators to relax from time to time simultaneously. Sec-
ond, oscillators that fired simultaneously possibly remain
locked in a synchronized group. Finally, in Sec. IV, we dis-
cuss our results, focusing especially on the effects of convex-
ity, linearity, or concavity of the oscillator state variation
function, on additivity or not of the pulses, on refractory time
after a relaxation, and on the possible kinds of synchroniza-
tion.

In this paper we study models ofN IF oscillators
Oi ,i51, . . . ,N represented by a real state variableEiP@0,
Ei
c], i51, . . . ,N, where theEi

c are the thresholds of the os-
cillators. The free evolution ofOi is made of two parts: first,
a charging, growth period where the state variableEi in-
creases monotonically in time as long as it is below the
thresholdEi

c according to a given free evolution variation
functionEi(t) and, second, a relaxation when the threshold
is reached wherebyEi is reset to zero and a growth period
starts again. We assume, as is generally done, that the char-
acteristic time for the relaxation is very short compared to
the period of the free evolution so that the state variableEi of
an oscillator that fires is instantaneously reset to zero. It is
convenient to introduce the phases of the oscillators defined
as f i[t modf i

c where f i
c is the free period ofOi

@Ei(f i
c)5Ei

c#.
The coupling between biological oscillators, for instance,

fireflies, has been experimentally studied by perturbing the
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oscillating elements by single pulses@33,60#. Knowing that
fireflies interact through light flashes and that they are be-
lieved to be describable by coupled IF oscillators@9,36#, the
interaction between the oscillators is studied by observing
the response of the periodic flashing of a single firefly to an
artificial flash @9#. Following such studies several types of
couplings have been introduced in biological models involv-
ing IF oscillators. In the situations of interest, an oscillator is
coupled with others when it relaxes and the coupling takes
the form of a pulse transmitted to the others. The conse-
quences of the firing on the oscillators that have received the
pulse depend on the biological situations and on the models.

Pulses may be excitatory, i.e., incrementing the state vari-
ables and thus anticipating the firing of the receiving oscil-
lators, or inhibitory, i.e., decrementing the states and delay-
ing the firing of the receivers. In this paper we consider
excitatory pulses:

~1! An oscillator receiving a pulse has its state variable
incremented by the pulse strength. This model of coupling is
known as the phase advance model since the pulses push the
oscillators towards their thresholds—and possibly above—
causing a sudden advance of the phases of the oscillators on
their period of evolution.~2! The pulse strength depends on
the number of oscillators that fire together and obey an ad-
ditivity principle: the pulse from the simultaneous relaxation
of oscillators is an increasing function of the sum of all the
individual pulses of the firing oscillators. For the sake of
simplicity we assume in this paper direct additivity: the si-
multaneous firing ofn oscillators transmits a pulse of
strengthnd, with d the pulse strength of a single oscillator.
To account for the global coupling,d scales as the inverse of
the system size:d5aEc /N with a a dissipation parameter.

II. IDENTICAL OSCILLATORS

In this section all the oscillators are identical:
Ei(t)5E(t),; i and the pulses have the same strength. We
first study the case of linearE(t), which corresponds to the
limit of zero convexity of the model of Mirollo and Strogatz
@36#.

A. Linear oscillators

Between two firings, the state variable increases linearly.
Without loss of generality we take simplyEi(t)5t modEc
so that 0<Ei<Ec51. Most studies do not consider a linear
variation of the state. Indeed the oscillators are commonly
leaky integrators whose evolution between two firings is de-
scribed by the differential equation

dEi~ t !

dt
5S02gEi , 0<Ei<Ec51, ~1!

where S0 is a constant input current andg describes the
dissipation. The solution of this differential equation is a
convex function with the convexity controlled by the dissi-
pationg.

Mirollo and Strogatz@36# have rigorously proved that
with g.0 and with constant pulses a population of oscilla-
tors always synchronizes. From their theorem the convexity
seemed to be a necessary condition for synchronization.

However, as first noticed by Christensen@55#, a large set of
oscillators with linear evolution may effectively synchronize
completely.

As we shall see, the convexity is a sufficient but not nec-
essary condition for synchronization. Convexity implies that
the increment of the phase of an oscillator due to a pulse
increases as the oscillator is nearer to the threshold, which
has the consequence that two oscillators effectively attract
each other in the course of time.

We show in the following that simply due to the hypoth-
esis of additivity of pulses there is a positive feedback effect
towards synchronization in the system, which is not neces-
sary in the convex case for the validity of the theorem of
Mirollo and Strogatz@61#. We prove that this effect is suffi-
cient for synchronization even on sets of linear and concave
oscillators. Let us first introduce the notions of avalanche
and absorption, which will be important in the following.

a. Avalanches. An avalanche of successive firings may
occur when an oscillator reaches the threshold: depending on
the other oscillator states the transmitted pulse may cause
some other oscillators to exceed the threshold and fire. Pos-
sibly the new pulses may themselves cause further relax-
ations and a cascade of firings until no pulse is sufficient
enough to bring another oscillator above threshold. In this
study, we assume that the firings and their transmission are
very fast compared to the free evolution period of the oscil-
lators so that during an avalanche the continuous drive of the
oscillators is not acting. Avalanches are also important for
the link with the models on lattices showing self-organized
criticality, which will be discussed elsewhere@62#.

b. Absorption rule and definition of synchronization.As
can be seen in Fig. 1 in the model defined up to now, oscil-
lators can never get in phase. A supplementary rule, which
exists also in the model of Mirollo and Strogatz, and which
we call the rule of absorption is necessary for that. Since the
oscillators synchronize through the firings, we can assume
that the oscillators get in phase when they fire in a same
avalanche. We say that they are absorbed in a synchronized
group of oscillators with identical phase@63#. Absorption is
implemented naturally by assuming that the oscillators that
relax during an avalanche are insensitive to the further pulses
in the avalanche and remain until it ends at zero value. This
rule corresponds actually to a refractory time of the oscilla-
tors immediately after their relaxation. Absorption is neces-
sary for oscillators to get in phase and possibly to evolve
thereafter synchronously with the same phase. However, it is
possible to have a different definition of synchronization in
models of pulse coupled IF oscillators than evolution in
phase that does not require the absorption rule. In this case
synchronization corresponds to locking of the oscillators into
avalanches. Since we assume a separation of time scales be-
tween fast firings and slow continuous variation of the state
variables, locking in avalanches corresponds, on the scale of
the free oscillator period, also to a real synchronization of
avalanches in time. Consider in the model without absorption
two oscillators that fire in the same avalanche as in Fig. 1;
due to the second firing their state is different by the value
d, the pulse strength of a single oscillator. When the most
advanced oscillator is back to the threshold~Fig. 2!, the dif-
ference between the values of the state variables is smaller
than or equal tod, in the case of convex or linear oscillators,
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respectively. In both cases the pulse from the next firing is
sufficient to push the second oscillator above or exactly at
the threshold and therefore to make it fire also: the two os-
cillators are again in the same avalanche. We see that if two
oscillators at some time come to an avalanche together they
will thereafter continue to fire together in the same avalanche
also without absorption. It is therefore sensible to speak of
synchronization also in the case of locking of firings in the
same avalanche. We shall discuss in the rest of the paper
what kind of synchronization is possible for the different
models. For systems of identical oscillators we can see in
Fig. 2 that locking in avalanches is possible for convex or
linear variation functions but not for concave oscillators.
Phase synchronization is in some cases equivalent to syn-
chronization as locking in avalanches. Suppose that phase

synchronization occurs in a modelA with the absorption
rule. If in the versionB of the same model, but without
absorption, oscillators that are in a same avalanche remain
locked, then both modelA andB evolve in the same way,
where the same oscillators that are synchronized with iden-
tical phase in modelA are locked in an avalanche in model
B. Therefore if complete synchronization occurs in models
A then complete synchronization occurs also in modelB

FIG. 1. Evolution without absorption. Values of the states of
two identical oscillators with convex variation.~a! The oscillator~1!
is at the threshold; the oscillator~2! is below the threshold at a
distance smaller thand, which is the pulse strength of a single
firing. ~b! The oscillator~1! has relaxed and the emitted pulse has
pushed the oscillator~2! above the threshold and makes it fire in
avalanche.~c! Without absorption the firing of oscillator~2! has
pushed~1! away from the origin: the oscillators remain dephased
independently of the convexity.

FIG. 2. ~a! Synchronization without absorption for identical
convexoscillators.~1! Immediately after their avalanche two oscil-
latorsOi andOi21 have a gap between their statesE of valued.
t is the gap between the phases ofOi andOi21, which does not
change during the free evolution between firings.~2! When the
most advanced oscillator is at the threshold the gap between their
phases has not changed but the gap between their state variables has
decreased due to the convexity. The second oscillator is at a dis-
tance of the threshold smaller thand: the oscillators avalanche
again together.~b! Synchronization without absorption for identical
linear oscillators. Same as for the convex case, but due to the lin-
earity the gap between the state values does not change and is
exactly equal tod: the oscillators still avalanche together.~c! Effect
of concavity. The gap between the oscillator states increases as the
pair approaches the threshold.
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without absorption in the form of locking of all the oscilla-
tors in a stable avalanche. For simplicity we choose to in-
clude absorption in this section on linear oscillators~here
without loss of generality! and in the following on concave
oscillators~then necessary for synchronization!.

Proof of synchronization.Let us define the configuration
as the set of ordered distinct valuesE1

(k),E2
(k)

,•••,Emk

(k)51 of the state variables present in the system

just before the (k11)th avalanche. To eachEi
(k) corresponds

a group Gi of Ni
(k) oscillators at this value and

( i51
mk Ni

(k)5N. Let us define the cycle as the time necessary
for all themk groups to avalanche exactly once. To trace the
evolution of the system, it is useful to follow, cycle after
cycle, the gapssi , j

(k)5Ei
(k)2Ej

(k)( i. j ) between the values of
two groups. If one of these gapssi , j

(k) becomes smaller than
the valueNi

(k)d of the pulse of the (i )th group, then the
( j )th group gets absorbed by the (i )th group. In Table I we
find the main steps of the variation of the gapsi , j

(k) on a cycle
beginning withGi at the threshold. Since the oscillators are
identical and linear, both groups have the same evolution as
long as neitherGi nor Gj relaxes: they get the same pulses
from other relaxations with the same phase advances and
between pulses their state variables increase at the same rate.
From Table I we see that the first return map on a cycle for
the gap between the oscillators is then

si , j
~k11!5si , j

~k!1~Nj2Ni !d. ~2!

If Ni.Nj the gap between the two groups decreases on each
cycle. When the difference between the statesEi and Ej
becomes less than or equal toNid, then the relaxation of
Gi dragsGj along in an avalanche. Due to the absorption,
both groups then form a greater group withNi1Nj elements.

The growth of groups is therefore due to a positive feedback
mechanism where the larger groups attract the smaller ones.
This effect exists only if there are groups of different sizes in
the population. We shall now see that as long as the number
N of oscillators is sufficiently large, positive feedback al-
ways occurs until complete synchronization of the system. If
the evolution of the system begins with random initial phases
for all the oscillators, all theEi are different: there are no
groups and one could naively expect no positive feedback
and no evolution towards synchronization. However some
groups are naturally formed in the first cycle of the evolu-
tion. Indeed if two oscillators happen to be sufficiently close
to each other, i.e.,Ei112Ei,d , the pulse from the first of
them drags the other in an avalanche and a group of two is
formed. Thereafter there are in the system single oscillators
and a group of at least size two, so that the positive feedback
mechanism can proceed. In order to see how probable a uni-
form random initial configuration leads to the feedback ef-
fect we must therefore estimate the probability that at least
two Ei are separated by less thand in a set ofN random
numbers between zero andEc . The probabilityP(s)ds that
two random numbers amongN in @0, Ec] are separated by a
distance betweens ands1ds is given in the limitN@1 by
a Poissonian:

P~s!ds5
N

Ec
e2~N/Ec!sds. ~3!

The number of gaps between initial random values satisfying
the condition for formation of a pair is then

NE
0

a/N

P~s!ds5N~12e2a/Ec!, N@1. ~4!

Positive feedback and the absorption of oscillators into
groups may take place as long as there is at least one such a
gap. It follows directly from~4! that this is typically the case
if a/Ec>1/N @64#. For a given level of conservation, the
number of oscillators needs only to be large enough to en-
sure the onset of positive feedback.

Initial configurations where no gap is smaller than
d5aEc /N are in principle possible. However for large sys-
tems their occurrence is exponentially small: each gap has
for large N a probability e2a of being greater than
d5a/N, so that the probability that all the oscillators are too
far apart for pair formation goes ase2aN. Therefore we may
conclude that the set of initial configurations that does not
lead to absorptions is formed of extremely improbable con-
figurations.

To complete the proof that synchronization is the general
behavior of our model, we would need to show that the set of
initial conditions for which the system evolves in a partially
synchronized configuration where positive feedback stops
acting is of almost vanishing measure. As we have seen with
Eq. ~2!, this can happen only when all groups are of equal
size. It is a difficult task to calculate in general the probabil-
ity for a random initial configuration to finally get stuck in
such a state. In any case, this is a physically ill-defined prob-
lem since this probability depends critically of the multiples

TABLE I. ~a! Beginning of a cycle with the groupGi at the
threshold, the groupGj is at a distances( i , j )

(k) ~b! Firing of Gi . ~c!
Gj is at the threshold.~d! Firing of Gj . ~e! End of the cycleGi is
back at the threshold.

Gi Gj s( i , j )5Ei2Ej

~a! Ec Ej s( i , j )
(k)

~b! 0 Ej1Nid
~c! Ec2Ej2Nid Ec

~d! Ec2Ej1(Nj2Ni)d 0 si
(k)1(Nj2Ni)d

~e! Ec Ej1(Ni2Nj )d s( i , j )
(k11)5s( i , j )

(k) 1(Nj2Ni)d

TABLE II. ~i! Probabilities of complete synchronization with
the statistical error obtained with 2000 samples fora50.5 for
‘‘small’’ concavities a51.005, 1.05, 1.1. The probabilities ob-
tained with N52000, 1000, 500, 400, 300, 200 are identical
within the error.~ii ! Estimated probabilities of complete synchroni-
zation with the assumption of uniform distribution of the size dif-
ference between the two last groups in the system.

1.005 1.05 1.1

~i! 99.660.1 95.660.4 90.660.6
~ii ! 99.4 94.4 89.1
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of N: if N were prime, then for every initial condition form-
ing at least an initial group of two the system would unavoid-
ably synchronize completely.

Numerical simulations show that for increasingN the
probability for incomplete synchronization decreases. For
example, with a conservation levela50.2 we found for
N5200, 400, and 1000 incomplete synchronization in
0.26%, 0.2%, and 0.05% respectively, of the cases for
12 000 different initial configurations. ForN55000 we al-
ways obtained complete synchronization. When the synchro-
nization was only partial the final state of the system was
always made of only two groups of equal sizeN/2. ForN not
divisible by two we always found complete synchronization.
We see that the conditions for the existence of positive feed-
back are almost always fulfilled.

We studied the time necessary for synchronization nu-
merically. Figure 3 shows the distribution of the durations of
the transientTS until complete synchrony forN52000 and
a50.1,0.2,0.5,0.8. The mean time for synchronization in-
creases only slowly with the population size as a power law
with exponent;0.1360.01. The distributions have a flat tail
towards long times corresponding to configurations where
two groups of almost similar size remain in the system, mak-
ing the positive feedback effect weak and slow to achieve the
merging of the groups. The inset of Fig. 3 showsTS , calcu-
lated by cutting the tail of the distributions, as a function of
a for N5200, 300, 400, 500, 1000, and 2000. The dura-
tion of the transientTS decreases with larger conservation
level and foraP@0.2, 0.8# the decrease is exponential:TS
}exp2(4.360.2)a. Synchronization occurs then quite fast
in a few free periods. The duration of the transientTS de-
pends on the additivity of pulses. Here we assumed perfect
additivity, however, if the effect of the firing of a group is
not simply the sum of all the single firings but a smaller
function of their number, we expect some longer synchroni-
zation time. We conclude that for largeN synchronization is
possible and occurs in a finite time even for oscillators with
a linear variation that was excluded in the theorem of
Mirollo and Strogatz@36#. This theorem and the older results
of Peskin@35# have been often erroneously interpreted as the

necessity for synchronization of a ‘‘leaky’’ dynamics of the
oscillators, which is related to the assumption of a convex
variation functionE(t). Let us stress, however, that the dem-
onstration in @36# for convex oscillators proves complete
synchronization in this case for any initial configuration
apart from a set of null Lebesgue measure and is also valid
without additivity of the pulses. In the case of convex oscil-
lators the positive feedback mechanism is not necessary for
synchronization. Additivity of pulses and the positive feed-
back mechanism that results is a further powerful mecha-
nism, which allows synchronization under broader condi-
tions than the effect of convexity.

Our results with linear oscillators prove that leaky oscil-
lators are not necessary for the phenomenon of synchroniza-
tion and that other kinds of pulse coupled oscillators can be
considered. As we show now, the form of the state variation
function E(t) is actually not even a constraint for synchro-
nization since this phenomenon occurs also for concave
E(t).

B. Concave oscillators

For the sake of simplicity we choose as a concave func-
tion for the evolution in time of the state variable of the
oscillators a function of the formE(t)5 f a(t)5ta, with
a.1. The effect of the concavity on the relative state of two
oscillators may be seen in Fig. 2~c!. For two oscillatorsOi
and Oi11 with phase difference t, the difference
Ei11(t)2Ei(t) increases as they approach the threshold.
Therefore with large concavity it is more difficult for a pulse
of an oscillator to trigger an avalanche. However, nothing
forbids a group of oscillators to synchronize if, when the first
oscillator reaches the threshold, the gaps between them are
smaller than the pulse strength.

Compared with the previous case of a linearly increasing
E(t), we see that now the effect of positive feedback is op-
posed by the drawing apart effect of the concavity. In a first
step we will see that for small concavity the positive feed-
back effect prevails and that synchronization occurs. Al-
though one would expect that for larger concavities groups
would not be able to grow, we will see in a second step that
for systems starting their evolution with an initial random
distribution of the oscillator phases, large concavities have
the surprising consequence of favoring actually the synchro-
nization.

1. Small concavity a*1

We consider first the case of concave functionsE(t) that
are close to the linear case. For clarity we only sketch here
the main steps of the demonstration and refer to Appendix A
for details and for the complete demonstration. We show
there that for a random initial configuration ofN oscillators
groups begin to form and grow by positive feedback as in the
case of linear oscillators. However, when only a few groups
remain the positive feedback is sufficient to reduce the phase
gaps between the groups and to cause further synchroniza-
tion only if the size differences of the groups are large
enough. The most difficult situation for the occurrence of
synchronization is when only two groups remain in the sys-
tem, sayG1 andG2 with N1 andN2 oscillators (N1.N2),
respectively. There is then a limit valuec̄ of the size differ-

FIG. 3. Binned distributions of the times for synchronization for
a population ofN52000 linear oscillators with random uniform
initial phases, with conservation levela50.8, 0.5, 0.2, 0.1 and
over a sample of 5000 simulations; the time unit is the free period.
Inset: Mean durationTS to synchronization as a function ofa for
different population sizes,TS}exp2(4.360.2)a.
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encec betweenG1 andG2 so that complete synchronization
occurs only if c5N12N2. c̄(a,N,a). That is, absorption
occurs only if the size difference between the two groups is
sufficiently large so that the positive feedback attraction be-
tween the groups is strong and can overcome the effect of
concavity. Contrary to the case of linear oscillators, we see
here that two groups of different sizes — not only of equal
sizes — may remain apart and not synchronize. This is the
consequence of the drawing apart effect of the states by con-
cavity @Fig. 2~c!#. Since c̄(a,N,a) is a monotonically in-
creasing function ofa, for larger concavities fewer final con-
figurations synchronize completely~for large concavities,
however, another effect leading to synchronization can oc-
cur; see below!.

For a givenN there is a finite valueā of the concavity so
thata,ā⇒ c̄,1. That is, for concavities smaller thanā the
system synchronizes completely unless the two last remain-
ing groups are of equal size, which is the same condition as
in the linear case.ā goes to 1 as 1/N so the corresponding
range of concave functions is quite small. We find, however,
that synchronization occurs in practice also for much larger
concavities with high probability.

The probabilityP of synchronization corresponds to the
probability that the gapc between the two last groups is
larger thanc̄. Unfortunately it is difficult to calculate this
probability directly. However, we can estimateP by assum-
ing simply a uniform distribution ofc in @0, N]. This as-
sumption is natural since we start the evolution with a uni-
form initial distribution of the oscillator phases.P is then the
ratio of the number of favorable cases,N2c, overN, to the
number of possible values ofc. Using the value~A3! of c̄
calculated in Appendix A we get

P512
12a

2aa F S 12
a

2 D lnS 12
a

2 D1
a

2
lnS a

2 D G
1oF S 12a

a D 2G . ~5!

Thus, the probability of synchronization is independent of
the system size. In Table II we summarize the results of
simulations obtained with 2000 samples, fora50.5 and sev-
eral levels of concavity. We indicate also the probabilities of
synchronization expected with the assumption of uniform
distribution of the size difference of the two last groups.
Within the statistical error the probabilities of synchroniza-
tion are independent ofN and correspond to the expecta-
tions.

For small concavitiesa51.005,1.05,1.1 we found that
the durationTS of the transient until synchronization does
not depend on the value of the concavity. In Fig. 4 we report
the distributions ofTS for a51.05. It can be seen that typi-
cally synchronization occurs in a few free periods. Further-
moreTS increases only slightly with the population size as a
power law with a small exponent:TS}N

0,0960.01 for
N5200–2000 anda50.5. Large populations synchronize
therefore quite as fast as in the linear case.

From what preceeds we would expect that synchroniza-
tion is impossible for large concavities. Without entering into
detail we shall now see that assuming a natural uniform ini-
tial distribution of the oscillators phases~and not of the states
Ei) there is for large concavities a crossover in the behavior
of the system towards easier synchronization.

2. Large concavities

Let us first illustrate the mechanism at work on an ex-
tremely simplified model shown on Fig. 5a. where we re-
place the concave function by the union of its tangent seg-
ments at both extremities. That is, the free evolution function
of the oscillators is now

FIG. 4. Binned distributions of the durationTS of the transient
until complete synchronization in a population ofN52000 identical
concave oscillators with concavitya51.05 for 2000 samples of
uniformly distributed random phases.

TABLE III. Probabilities of complete synchronization with the
statistical error for ‘‘large’’ concavitiesa51.55 anda52 with
N5500, 1000, 2000 and a uniform initial distribution of the
phases. The last column right shows the probabilities expected as
for small concavities.

a
500 1000 2000 Estimatea*1

1.55 6861.0 8360.8 9560.5 50
2 9360.5 99.960.1 100 25

TABLE IV. ~a! OscillatorOi is at the threshold.~b! Firing of
Oi assuming thatOj is not pushed above the threshold.~c! Effect of
the sumD1 of all the pulses from other oscillators of the system
between the firings ofOi and the one ofOj . ~d! Oj at the threshold.
~e! Firing ofOj . ~f! Effect of the sumD2 of the pulses between the
firings ofOj andOi back at the threshold.~g! Oi back at the thresh-
old.

fi fj

~a! f i
c f j

(k)

~b! 0 f j
(k)1d

~c! D1 f j
(k)1d1D1

~d! f j
c2f j

(k)2d f j
c

~e! f j
c2f j

(k) 0
~f! f j

c2f j
(k)1D2 D2

~g! f i
c f j

(k11)5f j
(k)1(f i

c2f j
c)
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E~f!5H 0, fP@0,1/~a21!#

~a21!f11, fP@1/~a21!,1#,
~6!

with a.1. All the oscillators with initial phases in
@0,1/(a21)# have the same initial state valueEi50 due to
the special form of the evolution function. It is clear from
Fig. 5~a! that all these oscillators get in phase and synchro-
nize as soon as the first pulse of the evolution occurs. It is
then possible to show that the large synchronized group that
is thus formed absorbs thereafter the oscillators that were
initially in @1/(a21),1# and the system synchronizes com-
pletely.

For smootherE(t) the same mechanism occurs@see Fig.
5~b!#. For small phasesf→0 the slope of the evolution
function is small and thus theE(f) are closer to each other
than for larger phases where the slope is steeper. If the initial
packing of the states subsists until one of the closely packed
oscillators is at the threshold a large avalanche occurs and
thus the synchronization of many oscillators occurs. It is not
obvious that the states remain close to each other. Indeed
during the free evolution of the system~between firings! the
gaps between the phases do not change but the states get
farther apart from each other due to the concavity. On the
other hand, during firings the gaps between the states remain

constant since all the states are incremented the same way
~whereby the phase gaps get smaller!. Let the oscillators be
numbered by increasing order of their initial phases
f i11
(0) .f i

(0) The evolution ofOi towards the threshold is
caused as by free evolution between avalanches as well by
phase advances due to pulses. Before reaching the threshold,
an oscillatorOi receivesN2 i pulses from the oscillators
with larger initial phases. For small initial phases (i→1) the
oscillatorsOi andOi21 receive many pulses and their evo-
lution towards the threshold is for a large part due to the
phase advances from pulses. Possibly there is sufficient evo-
lution due to pulses so that the state gaps do not increase
enough, due to the free evolution, to prevent a large ava-
lanche of the initially closely packed oscillators.

In Table ~III ! we see that for concavitiesa51.55 and
a52 synchronization already occurs with a larger probabil-
ity than expected with the estimate from small concavities.
As expected the probability for synchronization increases
with a for a given population sizeN. We see also that the
probability increases withN. This is the consequence that
with a uniform distribution of phases the oscillators are at the
beginning denser for larger populations in the flat section of
E(f) and larger synchronized groups form at the beginning
of the evolution thus enhancing the positive feedback. Large
concavities favor synchronization only for a uniform distri-
bution of the initial phases. Indeed if, instead of the phases,
the statesEi of the oscillators were initially uniformly dis-
tributed in@0,1#, there would be, per definition, no clustering
and the oscillators would stay apart, as is easy to verify by
looking at Fig. 5~a!. An initial uniform distribution of the
phases is, however, a natural assumption for the beginning of
the evolution.

Finally, the main conclusion of this section is that surpris-
ingly the form of the oscillator state variation function
E(f) is not actually relevant for synchronization that occurs
with a high probability for functionsE(f), which are con-
vex, linear, and even concave provided the phases are ran-
domly distributed initially. The usual interpretation of
‘‘leakiness’’ ~implying convexity! as a requirement for syn-
chronization must therefore be revised. Up to now we have
considered only identical oscillators. In the following sec-
tions we show that in populations of oscillators with different
randomly distributed characteristics, synchronization occurs
also in a different way than what we have seen up to now.

III. SYSTEMS WITH QUENCHED DISORDER

We shall see that with quenched disorder, synchronization
is the combined consequence of several causes. For the sake
of simplicity we show how synchronization occurs in the
cases of oscillators with different free frequencies, different
amplitudes, and finally as well different frequencies as am-
plitudes. The mechanisms at work are the same for the dif-
ferent kinds of disorder although some important peculiari-
ties depend on the models. In brief, these mechanisms and
the main steps of the demonstrations are the following.

We write the first return map for the phase of a given
oscillatorOj on a cycle beginning and finishing when an-
other given oscillatorOi is at the threshold. During such a
cycle all the oscillators of the system fire once. The first
return map shows that due to the quenched disorderOi and

FIG. 5. ~a!‘‘Extremal’’ model with very large concavity. The
state value evolution function is flat up to some phasef̂, where it
abruptly monotonically increases up to the threshold. All the oscil-
lators with initial phase smaller thanf̂ have the same state value.
They synchronize at the same phase value as soon as they receive
any pulsed. ~b! For a large concavitya but with a smooth state
value evolution functionE(t)5 f a(t), the oscillator with small ini-
tial phases has also very close initial states. A pulsed brings them
to almost the same phase.
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Oj inevitably fire at some time, after some cycles, in the
same avalanche independently of the initial values of their
states. After their relaxation, oscillators that have fired to-
gether are at the origin and in phase such thatEi5Ej50
~assuming a refractory time!. However, contrary to the case
of identical oscillators, the fact that they have simultaneously
relaxed together does not imply that they will forever con-
tinue to fire together. Indeed different intrinsic rhythms or
different responses to pulses~see below! dephase the oscil-
lators that were in phase. However, it is physically clear that
for oscillators with sufficiently close characteristics~fre-
quency, threshold, shape, etc.!, the disorder cannot destabi-
lize a group of oscillators that have fired once together. More
precisely, it is possible to state stability conditions that have
to be fulfilled by any group of oscillators that have fired
together in order to remain synchronized. Since any two os-
cillators necessarily fire at some time simultaneously, all the
possible groups fulfilling stability conditions are formed dur-
ing the evolution. If the stability conditions are fulfilled by
the whole oscillator population larger groups progressively
form up to complete synchronization independently of the
initial values ofEi . The probability for complete synchroni-
zation is therefore the probability that a random sample of
oscillators fulfills the stability conditions on the whole sys-
tem.

A. Distribution of frequencies

In this section we consider models of linear IF oscillators
with a spread of intrinsic frequencies. Since we shall not
allow adaptation@65# of the free frequencies, two oscillators
that fire once simultaneously do not subsequently reach the
threshold at the same time and in general do not fire simul-
taneously again. For a system with a spread of the intrinsic
frequencies we shall therefore consider the synchronization
of oscillators as relaxation in the same avalanche, which cor-
responds to temporal synchronization in the limit of a very
short characteristic time for the transmission of the pulses
compared to the period of free evolution~see also Sec. II A!.
Let in our model all the oscillators be identical, apart from
their free periodsf i

c which are uniformly randomly distrib-
uted in an interval@fmin

c ,fmax
c #. Without loss of generality

we take their common slope equal to one so that each oscil-
lator has a thresholdEi

c5f i
c The pulse strengths of all the

oscillators are supposed to be identical and equal to
d5aa/N with a5(fmin

c 1fmax
c )/2 the center of the distri-

bution interval of the periods.
We follow the steps of the demonstration of synchroniza-

tion outlined before. From Table IV we see that the first
return map of the phase ofOj on a cycle between two returns
of Oi at the threshold is

f j
~k11!5f j

~k!1~f i
c2f j

c!. ~7!

Since the periods are random parameters,f i
c2f j

c is typi-
cally a nonzero constant. If this difference is positiveOj

comes closer to its thresholdEj
c ,f j→f j

c at each repetition
of the cycle beginning withOi at Ei

c . Therefore after each
cycle the time gap between the firings ofOi andOj is re-

duced until a further cycle would begin with values of the
statesEi5Ei

c and Ej>Ej
c2d. Then the firing ofOi drags

Oj along in an avalanche. Iff j
c2f i

c,0 we are in the pre-
vious situation by interchangingOj andOi . In any case the
conclusion is the same: at some time two oscillators with
different frequencies fire in a same avalanche.

Just after their relaxation in the same avalanche, the states
and phases ofOi andOj are both at zero. Since the oscilla-
tors have the same slopes the pulses from the rest of the
system increment the phases ofOi andOj with the same
value and both oscillators evolve therefore in parallel with
Ei5Ej until the oscillator with the highest frequency, say
Oi , reaches first its thresholdEi

c WhenOi fires,Ej5Ei
c and

is therefore below its thresholdEj
c ~Fig. 6!. Both oscillators

remain synchronized only if the pulse fromOi is sufficient to
pushOj above its threshold, so that the stability condition for
a pair oscillators isEi

c1d>Ej
c ~equivalently since the slope

is equal to one,f i
c1d>f j

c).
More generally, for larger groups, suppose thatn oscilla-

torsOi ,i51, . . . ,N with f i11
c .f i

c just fired together in an
avalanche so thatf i50, Ei50,; i . The oscillatorO1 with
the shortest period~threshold! is the first to reach again its
threshold. It triggers an avalanche involving then21 other
oscillators if

f i11
c 2f1

c< id, ; i52, . . . ,n. ~8!

This condition comes from the fact that the (i11)th oscilla-
tor receives in the avalanche a total pulseid. A random
configuration of frequencies may allow complete synchroni-
zation if the inequalities~8! are fulfilled for all the oscillators
of the system (n5N). The probabilityPN for a system with
a random uniform distribution ofN22 periods in
@fmin

c ,fmax
c # to allow complete synchronization is the prod-

uct of the probabilities for each gapsi[(f i11
c 2f1

c) to be
smaller thanid. Since si11.si we get after a change of
variables:

FIG. 6. Two oscillatorsOi andOj with different periodsf i
c and

f j
c ,(f i

c,f j
c) and identical slope. In (1) the two oscillators have

just relaxed in an avalanche and are in phase at the origin; both
oscillators evolve thereafter in phase. In (2) the oscillatorOi with
the highest frequency is at thresholdEi

c . Oj is at a distance
Ej
c2Ei

c below its threshold.
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ds2•••E
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dsNe

2rsN ~9!

512e2rd2rde22rd

2 (
j52

N21
~ j11! j21

j !
~rde2rd! je2rd, ~10!

where d5@(fmax
c 1fmin

c )/2#a/N is the pulse strength and
r5N/(fmax

c 2fmin
c ) is the uniform density of the intrinsic

periods. This probability depends only on the ratioD/a of
the widthD of the distribution (D5f max

c 2fmin
c ) and on the

center a5(fmax
c 1fmin

c )/2 of the distribution through
rd5D/a. The probability ~10! is plotted in Fig. 7 for
a50.2, 0.3, 0.4, 0.5 andN5300. We see that for a finite
width D a large fraction of the initial samples of randomly
distributed periods allows complete synchronization, typi-
cally for D/a,0.1 anda.0.2 synchronization occurs in
more than 95% of the cases. Nevertheless, after a flat section
at small widths,P decreases rapidly with increasingD/a.
Therefore, although complete synchronization is possible
with very high probability for smallD/a, the range of disor-
der on the frequencies compatible with this behavior is lim-
ited. In the region of high synchronization probability we
find thatP is unaffected by the population size whenN is
large~typically *100) since in this limit only the tails of the
distributions at largeD/a actually depend onN. We have
studied numerically the duration of the transientTS until syn-
chronization on simulations~see Fig. 8 inset!. Up to
N5500 we found thatTS increases linearly withN with a
small slope. For instance, withD50.2, a51, a50.5 we
haveTS.1910.06N ~Fig. 8 inset!. Since the divergence of
TS with N is only linear, synchronization occurs in a physi-
cally reasonable time.

In the previous model the system synchronizes at the fre-
quency of the fastest oscillator. This is a direct consequence
of the absorption rule that sets at the origin all the oscillators
that participate in an avalanche. It is therefore interesting to
study the same model but without the absorption rule. Let us
recall that for identical linear oscillators synchronization, as
locking in avalanches, was still possible without absorption.
For the model with a spread of frequencies the first return
map ~7! is valid also without absorption. Let us take two
oscillatorsOi andOj with f j

c,f i
c At some timeOi drags

Oj in an avalanche:Oi fires and relaxes to zero and, without
absorption, is immediately incremented toEi5d by the fol-
lowing firing of Oj . Therefore after the avalanche the oscil-
latorOi is more advanced in phase and the oscillator with the
highest frequencyOj does not necessarily reach its threshold
first, contrary to the case with absorption.

It is easy to verify thatOi is the first of the two oscillators
to reach its thresholdEj

c if f i
c2f j

c,d, i.e., Ei
c2Ej

c,d. In
this case the firing ofOi automatically dragsOj again in an
avalanche since we haveEi2Ej5d and thus
Ei
c2Ej

c,d⇒Ej
c2Ej5Ej

c2Ei
c1d,d. The two of oscilla-

tors are therefore locked in an avalanche and form a stable
group that fires with the longest periodf j

c of the two. If
f i
c2f j

c.d thenOj is first at its threshold and fires before
Oi . Although it is possible thatOi andOj avalanche again
together this time, the two oscillators cannot remain locked
in an avalanche further. Indeed,Ej2Ei5d sinceOj fired
first and when Oj is back at Ej

c we have Ei
c2Ei

5Ei
c2Ej

c1d.d so thatOi does not avalanche withOj .
We see that without absorption synchronization of two

oscillators is still possible but at the lowest frequency. This
result can be straightforwardly generalized toN oscillators
following the same procedure as in the case with absorption.
We find actually that the locking conditions for the whole
system are a set of inequalities equivalent to~8! so that the
probability of complete synchronization for a uniform distri-
bution off i in @fmin ,fmax# is given by the same expression
as ~10!.

FIG. 7. Probability for a configuration allowing complete syn-
chronization in a system of oscillators with a uniform random dis-
tribution of intrinsic frequencies. The probability depends only on
the ratioD/a, whereD5fmax2fmin and a5(fmax1fmin)/2 and
on the conservation parametera. From left to right,
a50.2, 0.3, 0.4, 0.5.

FIG. 8. Mean durationsTS until synchronization for the model
with a distribution of amplitudes of widthl50.5 around the unit for
a50.5, 0.6, 0.8~top to bottom! as a function of the population
size N. Inset: mean durations to synchronization for the models
with a distribution of amplitudes~bottom! and of frequencies~top!
for a distribution widthD50.2 anda50.5. For the distribution of
frequenciesTS.1910.06N.
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Let us just mention that the fact that synchronization
without absorption is also important for the behavior of some
lattice models of oscillators displaying self-organized criti-
cality @57,62#. In these models the oscillators are locally
coupled by pulses without an absorption rule. As first shown
by Middleton and Tang on the Olami-Feder-Christensen
model @57#, depending on the number of nearest neighbors,
oscillators have different effective frequencies. From what
precedes, we would expect some synchronization in the sys-
tem and, indeed, a tendency towards synchronization is ob-
served also on the lattice. Complete synchronization does not
occur, but there is partial synchronization at all scales@62#.

We see finally that in a simple model of IF oscillators
with a spread of the free frequencies synchronization can
occur in the form of locked avalanches with or without the
absorption rule, i.e., a refractory time. However, the presence
or not of the absorption rule changes drastically the nature of
the synchronized avalanches, which are respectively trig-
gered by the oscillator with the highest and shortest free
frequency. That this sensibility to the absorption rule, to-
gether with a probability of synchronization is strongly de-
pendent, above some value, on the distribution width indi-
cates that, apart from some limits, in a real situation
synchronization is restricted by disorder on the frequencies.

In a model with pulses with a finite fall time Tsodyks,
Mitkov, and Sompolinsky@40# showed that synchronization
is unstable. However, our results show that synchronization
is not incompatible in principle with disorder in frequencies
in pulse coupled oscillators models in the limit of short in-
stantaneous pulses and when the notion of synchronization in
avalanches is valid.

B. Oscillators with different amplitudes

In this section we keep the frequencies of the oscillators
equal~the period isf i

c51, ; i ) and let the thresholds have
different values~Fig. 9!. Each oscillatorOi is then charac-
terized by a thresholdEi

c and has a slopeai5Ei
c By disorder

on the amplitudes we mean disorder on the thresholds with
related distribution of slopes. We keep the pulse equal for all
the oscillators:d5a/N. Since all the oscillators have the
same free period, synchronization in the sense of variation in
phase of all the oscillators and simultaneous relaxations is
possible in this model. We follow the same steps as previ-
ously. Since the mechanisms at work are similar to those in
the model with a distribution of frequencies we leave the
details of the discussion to Appendix B. Since the frequen-
cies are now equal and the slopes and thresholds are differ-
ent, the main differences with the preceding section are in
the reasons why simultaneous firings occur and groups form.
Here also the phase gap between any two oscillators changes
monotonically after each cycle, so that any two oscillators
avalanche at some time together. The change in the phase
gaps between the oscillators that finally cause the simulta-
neous firings has for its origin also here the different rhythms
of firings of the oscillators. But contrary to the previous
model where the different rhythms were intrinsic, now the
different rhythms of firings of the oscillators are only effec-
tive and caused by the different responses of the oscillators
to pulses. Indeed a given pulse causes a larger phase advance
on an oscillator with a smaller slope. Under the effect of

pulses oscillators with small slopes have larger effective fre-
quencies than oscillators with large slopes.

Oscillators with close threshold values that avalanched
together can remain locked in an avalanche and form a stable
group. The stability conditions for the whole system ofN
oscillators are similar to~8! and lead to the following prob-
ability PN of complete synchronization for a uniform distri-
bution of slopes in@a2D/2,a1D/2#:

PN5rN22E
0

a1
ds1E

s1

2a1
ds2•••E

sN23

~N22!a1
dsN22e

2rsN22

512e2ra12ra1e
22ra1 ~11!

2 (
j52

N21
~ j11! j21

j !
~ra1e

2ra1! je2ra1, ~12!

with r5N/D and a15amin5a2D/2. PN depends onD/a
throughra15N(a/D21/2) and isindependent of the dissi-
pation parametera. PN goes to 1 with increasingN and for
a finite population size the model does not synchronize only
for very large disorder, typicallyD;2a.

In short, we see that as in the model with a distribution of
frequencies, we found that the duration of the transientTS
until synchronization increases linearly withN ~Fig. 8!. For
identicala andD/a, TS is shorter in the case with disorder
on the amplitudes than on the frequencies~Fig. 8 inset!. TS
depends strongly on the dissipationa. However, we do not
have enough data for a precise relationship.

As in the model with a distribution of frequencies, com-
plete synchronization occurs independently of the initial val-
ues of the phases~states! if the locking conditions of all the
oscillators in a single group are fulfilled. The conditions for
this locking depend, however, on the models. Starting the
evolution of the system from random phases, the formation
of the possible stable groups comes from the evolution of the
relative phase gaps between the oscillators due to different
rhythms that have their origin in the quenched disorder on
the characteristics of the oscillators. In the model with dif-

FIG. 9. Oscillator with different amplitudesEi
c and equal fre-

quency. Withfc51 the oscillators have different slopesai5Ei
c . A

pulse of strengthd dephases two oscillators that avalanched to-
gether and were in phase at the origin. The oscillatorOj with lowest
slope gets the largest phase advance (d/aj ) and reaches the thresh-
old beforeOi . If the stateEi of Oi is at a distance to its threshold
Ei
c smaller than the valued of the pulse ofOj then the two oscil-

lators stay synchronized.
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ferent slopes they come from the different phase advance
responses to pulses of the oscillators.

For a given level of disorder and the samea the probabil-
ity of synchronization is much higher in the case of a disor-
der on the amplitudes~thresholds! than on the frequencies
with also shorterTS ~Fig. 8 inset!. In short, disorder on the
amplitudes and slopes is not a strong restriction of synchro-
nization, which is much more limited by the disorder on the
frequencies. It is, however, not possible to conclude directly
on what happens when both disorders exist simultaneously
and we shall now therefore study this case.

C. Disorder on the frequencies and amplitudes

The mechanism of synchronization that we saw at work in
systems with two different kinds of disorder is still at work
and leads also to synchronization in a system with mixed
disorder on the frequencies as well as on the thresholds. For
two oscillatorsOi andOj as previously, the first return map
for the phase ofOj is now

f j
k115f j

k1D i , j ~13!

with

D i , j5~f j
c2f i

c!1
aj2ai
aiaj

d. ~14!

The phase variationD i , j is due now to the difference of the
free frequencies@first term of~14!# as well as to the different
response of oscillators of different slopes to pulses@second
term of ~14!#. Since there is no relation between the signs of
f j
c2f i

c and ofaj2ai the two terms may be opposite. But
generically they do not cancel each other since the periods
and slopes are random. The phase gap betweenOi andOj
varies therefore monotonically and both oscillators ava-
lanche at some time together.

Here also there are locking conditions of oscillators in
avalanches so that stable groups form and may grow up to
complete synchronization. However it is not possible in this
case to get the probability of complete synchronization pro-
ceeding as previously by simply establishing the locking
conditions for all theN oscillators in an avalanche. These
conditions are necessary but not sufficient anymore to ensure
synchronization for any initial distribution of the oscillator
states. Indeed it is possible to verify that for large disorder
there are cases where the formation of a stable group be-
tween two oscillatorsOi and Oj with ai.aj actually de-
pends on the configuration of the phase values in the system
and of its history~Fig. 10!. We studied the probability of
synchronization numerically on simulations with random
thresholds and periods uniformly distributed in
@12D/2,11D/2#@12D/2,11D/2#. We see in Fig. 11 for
N5300, 400, 500 anda50.5 that up toD;0.1 complete
synchronization occurs in more than 99% of the cases and
that the probability is still high for larger widths. In the cases
without complete synchronization the asymptotic behavior
consists in the periodic avalanches of a large stable group
with some few small ones. For small disorder the probability
of synchronization depends only weakly onN: for a given
D the probabilities found forN5300, 400, 500 are all
within the statistical errors.

As seen in Fig. 12 the duration of the transient occurs in
only a few periods although it increases polynomially with
the disorder width. While the duration increases also with the
population sizeN, we do not have enough data to establish a
precise relation.

At this point it is not difficult to imagine other models that
synchronize following the same principles. A model with a
distribution of frequencies and slopes and with constant
threshold has been presented in@47#. We can also consider
disorder on the pulse strengths. Let us, for instance, take a
population of identical oscillators with a quenched disorder
only on the pulse strengths so that the firing on oscillators
Oi transmits to the rest of the system a pulse of strength
a i /N. The phase gap between two oscillatorsOi and Oj
varies then assi , j5(a i2a j )/N. Since genericallysi , jÞ0
any two oscillators participate at some time in the same ava-

FIG. 10. Oscillators with a spread of periods and thresholds
(f i

c ,ai)P@12 l /2,11 l /2#2. Two oscillators Oi and Oj with
f i
c,f j

c andai.aj have different locking conditions according to
the strength of the dephasing pulseD. The locking condition de-
pends on the order of the firings, which depends onD. For a small
D, Oi is at the threshold beforeOj . For a largeD ~case represented
in the figure!, the oscillatorOj , which has the largest period, is first
at the threshold.

FIG. 11. Probability of synchronization for a system ofN oscil-
lators with a uniform spread of periods and thresholds (f i

c ,ai)
P@12 l /2,11 l /2#2, with N5300, 400 as a function of the widthl
for a50.5. Each point is the probability obtained with 1000
samples of random oscillator parameter and is represented with the
statistical error.
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lanche and since the slopes and thresholds are identical the
two oscillators are automatically locked.

We see finally that with instantaneous pulses, models with
quenched disorder on several oscillator characteristics may
also evolve to synchronization by the same mechanism of
evolution of the gaps and locking in stable groups. The
analysis and the estimation of the probability of synchroni-
zation is, however, more complicated.

IV. CONCLUSION

In this paper we have highlighted with some simple mod-
els the existence of several mechanisms leading to synchro-
nization of IF oscillators. A surprising result is that, contrary
to common belief, synchronization can actually occur even
in basic models and for identical oscillators independently of
the shape of the oscillators. In particular oscillators do not
need to have a convex evolution function in order to syn-
chronize @66#. Therefore the common interpretation that
‘‘leakiness’’ in the evolution of the free oscillators, which
implies convexity, is necessary for synchronization should
be revised. We conclude that the observation of synchroni-
zation in a system of IF oscillators implies by itself nothing
about the shape of the oscillator internal state variation func-
tion E(f). Actually, for very concave oscillators synchroni-
zation occurs very easily for the natural choice of initial ran-
dom phases. It is the opposite for a random initial
distribution of the states. Therefore the nature of the random
configuration at the beginning of the evolution has possibly
important consequences. It would be interesting to study if
the nature of the random initial configuration has similar
consequences also in more sophisticated models.

In this paper we assumed direct additivity of the pulses,
which is probably an excessive requirement for realistic ap-
plications. The positive feedback effect between groups of
different sizes, which is the only mechanism of synchroniza-
tion for linear oscillators, occurs also for a softer form of
additivity where the pulse from one group is not directly
proportional to the number of oscillators in the group but
merely an increasing function of it. Softer additivity would,

however, increment the duration of the transient towards
synchronization and reduce the range of favorable param-
eters in the case with disorder.

Concerning additivity we see that it is nevertheless true
that convexity favors synchronization, since it is the only
case that synchronizes also without additivity. However,
without additivity, i.e., without positive feedback, the dura-
tion of the transient diverges then at least as (12a)21 in the
linear limit a→1 @36#. Therefore without additivity a large
convexity is necessary to keep the durations of the transitory
not too long.

Let us mention that as shown recently by Tsodyks, Mit-
kov, and Sompolinsky@40#, Hansel, Mato, and Meunier@42#,
and Abbott and van Vreeswijk@41# smooth pulses with finite
rise and fall time can crucially affect the behavior and desta-
bilize synchronization. In this paper we assume fast interac-
tions and absorption: when two oscillators fire one after the
other, the pulse of the second one occurs entirely during the
refractory time of the first so that the oscillators synchronize
in phase. The existence of a refractory time and absorption
~i.e., assumption of fast pulses! is, however, not necessary
for synchronization for identical convex and linear oscilla-
tors, in which case synchronization occurs also without ab-
sorption as locking of the oscillators in stable avalanches; in
other words, this corresponds to out-of-phase locking of the
oscillators.

For identical linear and concave oscillators the probability
of synchronization depends entirely on the initial configura-
tion of the phases and/or states of the system. Indeed, some
sets of initial configurations do not synchronize, for instance,
when the initial phases are equally spaced so that no group
can be formed or in cases where the evolution leads to con-
figurations with groups of the same size. For linear and
highly concaveE(f) the measure of the unfavorable initial
configuration is vanishingly small. It is larger and limits the
probability of complete synchronization for ‘‘moderate’’
concavity. The degeneracy of the nonfavorable configuration
disappears if some disorder is included in the models such as
a small spread on the frequencies, thresholds, or pulse
strengths.

With fast pulses we found indeed that synchronization is
possible also with a range of disorder on the oscillator char-
acteristics. We find that the most difficult situation for syn-
chronization is when the oscillators have different frequen-
cies, where, for small disorder, a system with a given random
sample of frequencies synchronizes almost always but, for
larger disorder, the probability of synchronization decreases
rapidly. Synchronization occurs then in the form of locking
in avalanches and should be affected by softer additivity. On
the other hand, disorder on the shape of the oscillators —
occurring here through disorder on the thresholds and hence
different slopes— with otherwise identical frequencies does
not constrain severely synchronization. When both kinds of
disorder are mixed the probability of complete synchroniza-
tion is limited by the spread on the frequencies.

A point of interest would be to investigate how the dis-
cussed effects occur in more complex realistic models, for
instance, of biological relevance. In particlar it would be im-
portant to study the robustness of the results when the inter-
action pulses have finite rise and fall times and for systems
that are not globally coupled.

FIG. 12. Mean durationTS until synchronization for the models
with disorder on the frequencies and on the thresholds (f i

c ,ai)
P@12 l /2,11 l /2#2 as a function of the distribution width for
N5500, 400, 300 anda50.5.TS grows polynomially withD, for
N5500, TS.4.5163D1316D2 with correlation coefficient
0.99992.
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APPENDIX A: PROOF OF SYNCHRONIZATION
FOR SMALL CONCAVITY

In this Appendix we prove the synchronization of an as-
sembly ofN identical oscillators with state evolution func-
tion E(t)5ta,tP@0,1#,a.1 in the limit a→1. Let us first
study the synchronization of only two isolated groupsGi and
Gj of Ni andNj oscillators, respectively, withNi.Nj in the
absence of any other exterior pulses. In Table V, we trace the
variation of the phases and state variables of the two groups
on a cycle of relaxations beginning with the largest group at
the threshold. We deduce from there that the first return map
for the phase of the second groupGj is

f j
k11512$12@~f j

k!a1Nid#1/a1Njd%1/a, ~A1!

which has an attractive fixed pointf0(a,Ni ,Nj ,d). If the
new phase after a cyclef j

k11 is in the interval
I c[@fc(a,Ni ,d),1# where fc(a,Ni ,d)5(12Nid)

1/a then
Gj is absorbed in the relaxation ofGi ~see Fig. 13!. fc
corresponds to the phase at whichGj is just pushed at the
threshold by the pulse ofGi . If f0.fc , then the gap be-
tween the two groups gets smaller on each repeated cycle
until it becomes sufficiently small for the groups to ava-
lanche together and to merge. On the other hand iff0,fc
the two groups never avalanche together and remain apart. It
is analytically difficult to test directly iff0 is in I c . How-
ever, since~A1! is monotonic on each side of the fixed point,
it is more convenient to test iff j

k11 is in I c whenf j
k5fc,

i.e., is just at the border ofI c . With f j
k5fc this gives the

inequality

h~Ni ,Nj ![f j
k112f j

k512~12Nid!1/a2~Njd!1/a>0,
~A2!

where h(Ni ,Nj ) is the variation of the phase ofOj on a
cycle assumingf j

k5fc . Let us examine~A2! for two
groups with sizes (N1c)/2 and (N2c)/2. The function
g(c)[h„(N1c)/2,(N2c)/2… is monotonically increasing in
c so that the attraction between the two groups is stronger
when the size difference is bigger. For a givenN anda the
conditiong(c)>0 is fulfilled whenc> c̄(a,N) with

c̄5
N~12a!

2aa F S 12
a

2 D lnS 12
a

2 D1
a

2
lnS a

2 D G
1o„~a21!2…. ~A3!

Contrary to the case of linear oscillators, two groups of dif-
ferent sizes — not only of equal size — may remain apart
and not synchronize: if their size difference is too small, i.e.,
c, c̄, positive feedback is not efficient enough and absorp-
tion does not occur.c̄(a,N) is an increasing function ofa, so
that for larger concavities fewer configurations with two
groups can synchronize. We will see that this determines the
probability that a system withN random initial phases syn-
chronizes.

FIG. 13. Test for the synchronization of two groups for concave
oscillators.~a! The firing ofG1 causes the avalanche of the second
groupG2 if E21N1d>1, that is if f j

(k11)>fc . f0 is the fixed
point of the first return map for the phase ofG2 on each cycle
beginning withG1 at the threshold.~b! If f j

(k11),fc the second
groups never comes.

TABLE V. Evolution of the phases of two isolated groupsGi and Gj of Ni and Nj oscillators
(Ni.Nj) on a cycle where the firing of the first group does not succeed to drag the second one along in an
avalanche@(f j

k)a1Nid,Ec51#.

Gi Gj

Gi at threshold 1 f j
k

Relaxation ofGi 0 @(f j
k)a1Nid#1/a

Gj at threshold 12@(f j
k)a1Nid#1/a 1

Relaxation ofGj $12@(f j
k)a1Nid#1/a1Njd%1/a 0

Gi at threshold 1 12$(12@(f j
k)a1Nid#1/a1Njd%1/a
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Up to now we have considered only two isolated groups.
In order to see if synchronization can occur when there are
more groups, let us choose two groups and see if at some
time they merge together. With many groups it is not pos-
sible to write a simple first return function on a cycle for the
gap between two successive groups since this return map
depends sensitively on the history of the system during this
cycle. However, we can simplify the question and prove that
two groups can merge by focusing on the most severe con-
dition. For that, let us isolate the two groups from the rest of
the system as if they would not be affected by the pulses
from the oscillators outside of the pair. It is easy to see that
if the two groups can synchronize in these circumstances,
they still synchronize in the real situation with the influence
of exterior pulses. Indeed, the pulses of the rest of the system
increment all the states in the same way and so they do not
change the gapEi(t)2Ej (t). Therefore ifOi and Oj are
close enough to avalanche together, they do so independently
of pulses of other oscillators in the system. We can therefore
focus our study on the case of an isolated pair of oscillators.
Let the sizes of the two groups ben andn2c. The groups
merge if ~A4! is fulfilled with Ni5n andNj5n2c. Differ-
ently from previously we now study~A2! with Ni1NjÞN.
Sinceh(n,n2c) is again a monotonically increasing func-
tion of c, the biggerc, the stronger the attraction. Therefore
the most stringent condition for synchronization is for two
groups of minimal size difference. Keeping this in mind
we should now examine~A2! as a function ofn; i.e., we
examine f (n)>0 with f (n)[h(n,n2c) when n
P@c11,(N1c)/2#. The functionf (n) is monotonically de-
creasing on the variation interval ofn with the highest value
f (c11)>0. The smallest valuef „(N1c)/2… is equal to
g(c). This value is the change in phase that we studied pre-
viously for a system of two groups of sizes (N1c)/2 and
(N2c)/2. If the conditiong(c)>0 is fulfilled, thenf is also
positive over the whole intervalnP@c11,(N1c)/2# and
any pair of groups with size differencec synchronizes. Fi-
nally we see that it is for the case of only two groups of sizes
(N1c)/2 and (N2c)/2 that synchronization is the most dif-
ficult and it is this case that determines the most stringent
condition for this phenomenon. Therefore, assuming that, as
in the case of linear oscillators, synchronized pairs spontane-
ously form during the first cycle we find that the probability
that the system synchronizes completely for random initial
phases corresponds to the probability thatc, c̄(a,N). Unfor-
tunately this is also difficult to calculate. The system syn-
chronizes with the highest probability if synchronization is
possible even for two groups of sizes (N11)/2 and

(N21)/2, that is, ifg(c51)>0. This is the case when

a,ā[12
a

N F S 12
a

2 D lnS 12
a

2 D1
a

2
lnS a

2 D G21

1oS a
1

N2D . ~A4!

Sinceā.1 there is an interval of concavities with the same
conditions of synchronization as the linear case. Then syn-
chronization can stop only if the two last groups are of the
same size. Sinceā is close to 1, the corresponding range of
concave functions is quite small. However, as discussed in
Sec. II B, synchronization occurs in practice also with high
probability for much larger concavities.

APPENDIX B: DISTRIBUTION OF AMPLITUDES

In this Appendix we detail the conditions under which
synchronization occurs in the model of Sec. III B of oscilla-
tors with a distribution of amplitudes~thresholds!. We follow
the same steps as for the model with a distribution of fre-
quencies~Sec. III A!. From Table VI we get the first return
map for the phase ofOj on a cycle beginning withOi at the
threshold:

f j
~k11!5f j

~k!1~N21!d
aj2ai
ajai

. ~B1!

Let aj.ai , then on each cyclef j is closer tofc51. The
phase differencef i2f j decreases and after some repetitions
of the cycle the firing ofOi dragsOj along in an avalanche.
Therefore as in Sec. III A also in this model any two oscil-
lators avalanche at some time together. The change in the
phase gaps between the oscillators that finally cause the si-
multaneous firings has for its origin the different rhythms of
the firings of the oscillators. Contrary to the previous model,
where the different rhythms were intrinsic, now the different
rhythms of firings of the oscillators are only effective and
caused by the different responses of the oscillators to pulses.
Indeed the value of the phase advance caused by a pulse of
given strength depends on the slopes of the oscillators. Due
to the quenched disorder on the slopes the oscillators evolve
more or less rapidly under the phase advance caused by
pulses and have therefore different effective rhythms of evo-
lution. The evolution towards synchronization due to the dif-

TABLE VI. ~a! Oi at the threshold.~b! Firing ofOi , Oj received a pulsed, causing an advance in phase
d/aj . ~c! Oj at the threshold, the term (j22)d(aj2ai)/ajai comes from the (j22) other pulses since the
relaxation ofOi . ~d! Firing of Oj . ~e! Oi back at the threshold; (N2 j11) other pulses from the rest of the
system occurred since the relaxation ofOi .

fi fj

~a! 1 f j
(k)

~b! 0 f j
(k)1d/aj

~c! 12f i
(k)1( j22)d(aj2ai)/ajai2d/aj 1

~d! 12f i
(k)1( j22)d(aj2ai)/ajai1d/ai2d/aj 0

~e! 1 f j
(k)1(N21)d(aj2ai)/ajai
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ferent rhythms comes in addition to the positive feedback
attraction between groups of different sizes, which causes
also the evolution of the phase gaps between oscillators.
Both effects drive the system in the state of maximal syn-
chronization compatible with the disorder.

We establish now the stability conditions of synchronized
groups, i.e., the conditions of locking in avalanches. Two
oscillatorsOi andOj , say withaj.ai , that avalanche to-
gether and are in phase at the originf i5f j50 are dephased
by the pulses from other oscillators, the oscillatorOi with the
smallest slope being the most advanced. LetD be the
summed strength of the pulses of the other oscillators be-
tween the last simultaneous avalanche ofOi andOj and the
return ofOi back at the threshold.D shifts the two oscillators
apart by the phase differencet5D(ai2aj )/(aiaj ). If the
slopesai andaj are close enough thent is sufficiently small
for Oi andOj still to relax in the same avalanche triggered
by Oi . The locking condition for two oscillators that ava-
lanched together is~see Fig. 9!:

D
ai2aj
aiaj

,
d

aj
. ~B2!

If Oi andOj were the only oscillators in their avalanche then
D5(N22)d and ~B2! is equivalent toai2aj,ai /(N22).

For a group ofm>2 oscillatorsOi ,i51, . . . ,m with
ai11.ai the locking conditions are

~ai2a1!,a1
i21

N2m
, i51, . . . ,m. ~B3!

These inequalities are obtained considering the following.
~1! Them oscillators that avalanched together and were at
the origin are dephased by a total pulseD5(N2m)d before
the oscillatorO1 is back~the first of them! at the threshold.
~2! The i th oscillator in the avalanche receivesi21 pulses
from the oscillators that preceded it.

Complete synchronization is possible if~B3! is fulfilled
for m5N21. Indeed, if this is the case a stable group with
N21 elements forms. Then, this group and the lastNth os-
cillator of the system inevitably participate in a same ava-
lanche and the whole system becomes in phase without, now,
any exterior dephasing pulse.

The relation~12! in Sec. III B gives the probability for a
uniform random distribution ofN slopes in an interval
@a2D/2,a1D/2# of fulfilling ~B3!.
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