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We consider unbiased diffusion on a random comb structure~an infinitely long backbone with loopless
branches of arbitrary length emanating from it!. If ^t(6 j u0)&w5T0 is the mean time~averaged over all random
walks! for first passage from an arbitrary origin 0 on the backbone to either of the sites1 j or 2 j on it in a
given realization of the structure, the exact diffusion constant for the problem is defined as
K5 lim j→` j

2^1/T0&c , where ^ &c stands for the configuration average over the realizations of the random
comb. The diffusion constant in the mean-field approximation is given byKMF5 lim j→` j

2/^T0&c . We compute
T0 exactly for an arbitrary realization of the comb and then show rigorously that, owing to the suppression of
the relative fluctuations inT0 in the ‘‘thermodynamic limit’’ j→`, we haveKMF5K whenever the moments
of certain random variablesG(L,a,b) are finite; here the site-dependent random variablesL, a, andb are,
respectively, the branch length, stay probability at the tip of a branch, and the backbone-to-branch jump
probability. Finally, we discuss different situations in whichK will not be equal toKMF , although the transport
remains diffusive, as opposed to those in which anomalous diffusion occurs.@S1063-651X~96!04508-4#

PACS number~s!: 05.40.1j, 02.50.Ey, 05.60.1w

I. INTRODUCTION

The important problem of transport in disordered media
has received a great deal of attention for a number of years
now @1#. In particular, random walks on comblike
structures—regular, hierarchical, and random—have been
studied in detail in recent times. These structures provide
tractable models for investigating transport in more complex
systems, such as percolation clusters, finitely ramified frac-
tals, porous media, etc. A comb consists of an infinitely long
backbone of sites to which teeth~loopless branches! are at-
tached. Transport along the backbone is the object of inter-
est. If all the branches are of the same~finite! length we have
a regular comb. In this case motion along the backbone is
purely diffusive~the mean square displacement diverges lin-
early with time!; the presence of the branches simply pro-
vides for a delay and leads to a smaller value of the diffusion
constant. However, if the branches all are of infinite length,
the diffusion is anomalous@2#, in that the mean square dis-
placement diverges ast1/2, although the distribution of the
position of the random walker is asymptotically Gaussian. If
the branches have hierarchical lengths, one can have regular
as well as anomalous diffusion depending on the values of
the parameters that describe the structure~ @3–10# and the
references cited therein!.

Random combs constitute another class of structures on
which a wide variety of diffusive and subdiffusive processes
occur. Here, branches of random lengths~with a given dis-
tribution! are attached to random sites on the backbone. Both
unbiased diffusion and field-induced drift have been studied
@11–16# on random combs. A comprehensive treatment of
the problem has been given recently@17#, delineating the
precise conditions on the branch length distribution under
which different kinds of behavior ensue. Analytical treat-
ments of the problem have essentially used a ‘‘mean-field’’
approach—in the present context, this means a premature
configuration averaging over the realizations of the random

comb. As a result, a random walk on the random comb is
reduced to a random walk on a regular linear lattice with a
certain common effective waiting-time distribution at each
site. In view of the extensive applicability of the random
comb model, it is important to examine carefully whether
this approximation is justified. It is the purpose of this paper
to establish explicitly the validity of the mean-field approxi-
mation when the motion on the comb is diffusive: in other
words, when normal diffusion occurs on the random comb,
we show that the diffusion constant in the mean-field ap-
proximation is equal to the true diffusion constant.

The rest of the paper is organized as follows. In the next
section we define the diffusion constantK in terms of the
mean first passage timeT0 to reach boundary sites6 j from
an origin 0 on the backbone, in the limitj→` ~the ‘‘ther-
modynamic limit’’ in the present context!. An exact expres-
sion forT0 is derived for an arbitrary realization of the ran-
dom comb. In Sec. III we use this to compute first the mean-
field valueKMF of the diffusion constant. The fluctuations in
T0 are then analyzed to show that their contribution toK
vanishes in the thermodynamic limit, leading to the equality
of KMF andK. The precise conditions under which this takes
place are identified. In Sec. IV we discuss situations in which
the mean-field approximation does not hold good even at the
level of the diffusion constant.

II. THE DIFFUSION CONSTANT ON A RANDOM COMB

A. Definition of the diffusion constant

The diffusion constant on a statistically homogeneous
structure such as the random comb under consideration can
be defined in either of two equivalent ways@18,19#. From the
asymptotic (n→`) behavior of the variance of the displace-
ment j (n) in time n, we have

K5 lim
n→`

n21
Š^ j 2~n!&w‹c , ~1!
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where Š ‹w denotes the average over random walks on a
given realization of the random comb, andŠ ‹c denotes the
subsequent configuration average over these realizations.
The alternative definition ofK involves the asymptotic
( j→`) behavior of the mean first passage time~MFPT! to
start from some origin and reach either one of the two exit
points at1 j and2 j :

K5 lim
j→`

j 2Š^t~6 j u0!&w
21
‹c . ~2!

We shall use this definition, as it is relatively easier to cal-
culate the MFPT concerned. We use the abbreviationT0 for
the MFPT^t(6 j u0)&w on a given realization of the structure.
Strictly speaking, the thermodynamic limit in Eqs.~1! and
~2! should precede the configuration averaging. As long as
the expressions concerned converge uniformly, the inter-
change of the order of operation is permissible. We shall
assume that this is the case and defer a discussion of the
exceptional cases to Sec. IV.

B. Calculation of the MFPT

The derivation of a formula forT0 proceeds in several
steps. Consider first a chain (2 j , . . . ,0, . . . ,j ) of (2 j11)
sites, such that the jump probability from any site to either of
its neighbors is1 1/2, theonly exception being a particular
site r . At this site, the random walker stays on at the end of
a time step with a probabilityg r , or jumps to site (r61)
with a probability (12g r)/2. Writing Tl for the MFPT
^t(6 j u l )&w to start from sitel and reach either of the exit
points at1 j and2 j , we have the set of linear equations:

Tl511 1
2 ~Tl211Tl11!, 2~ j22!< l<~ j12!, lÞr ,

~3!

T6~ j21!511 1
2T6~ j22! , ~4!

Tr5~12g r !
211 1

2 ~Tr211Tr11!. ~5!

Solving forT0, we find

T05^t~6 j u0!&w5 j 21~ j2ur u!S g r

12g r
D . ~6!

Next, consider the same chain, but with an arbitraryset
$r % of sites at which the random walker has stay probabilities
$g r%. As a direct consequence of the Markov property of the
walk, and at the level of the MFPT, the contribution~to
T0) of different sites is verified in a straightforward manner
to be simplyadditive. We thus arrive at the crucial result

T05 j 21(
r

~ j2ur u!S g r

12g r
D . ~7!

When everyg r50, this reduces to the well-known result
T05 j 2 for a simple unbiased random walk on a linear chain.

Now suppose there is a branch ofLr sites at the backbone
site r , with transition probabilities as indicated in Fig. 1. For
the sake of generality, we have introduced a backbone-to-
branch jump probabilityb r as well as a stay probabilitya r at
the end of the branch. This enables one to encompass at one
stroke a variety of possible physical situations and boundary

conditions. Once again, at the level of the MFPT, the pres-
ence of the branch atr is entirely equivalentto a branchless
site with a certain specific stay probability g r : if
^t(r61ur )&w is the MFPT to escape fromr to the neighbor-
ing sitesr61 in the presence of the branch atr , this equiva-
lence is expressed by

g r512^t~r61ur !&w
21 . ~8!

@Some reflection shows that^t(r61ur )&w is identically equal
to (12g r)

21#. Now, a straight-forward calculation similar to
the one leading to Eq.~6! yields

^t~r61ur !&w5
1

12b r
F2b r~Lr21!111

b r

12a r
G . ~9!

Using this in Eq.~8!, we get, say,

g r

12g r
5S b r

12b r
D F2Lr1 a r

12a r
G[G r . ~10!

Substitution in Eq.~7! gives, finally, the compact formula

T05^t~6 j u0!&w5 j 21(
r

~ j2ur u!G rd r , ~11!

whereG r has been defined in Eq.~10!; further,d r51 if there
is a branch (Lr>1) at the siter , and d r50 otherwise
(Lr50). On the random comb we may regard$Lr ,b r ,a r% as
a set of independent random variables that are identically
distributed at each siter of the backbone. The difficulty, of
course, is the fact that it is thereciprocalof T0 that must be
configuration averaged in Eq.~2! for K.

Various special cases are read off easily from Eq.~11!. In
particular, amyopic random walk corresponds tob r51/3
anda50, leading to

T05 j 21(
r

d rLr~ j2ur u!. ~12!

FIG. 1. Branch ofLr sites at backbone siter . Jump probabilities
out of different sites are indicated.
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III. EQUALITY OF THE MEAN-FIELD
AND EXACT VALUES OF K

The mean-field~MF! approximation to the diffusion con-
stantK corresponds to neglecting the fluctuations inT0 from
one realization of the comb to another, and thus to replacing
^T0

21&c by ^T0&c
21 in the thermodynamic limitj→` in-

volved in the computation ofK using Eq. ~2!. Since
( r5-( j -1)
j -1 ( j2ur u)5 j 2, we have

^T0&c5 j 2F11K b

12b S 2L1
a

12a D L
c

G5 j 2~11^G&c!,

~13!

where we have dropped the site labelr on the quantitiesa,
b, L, andG for brevity. Thus

KMF5 lim
j→`

j 2

^T0&c
5~11^G&c!

21

5F11K b

12b S 2L1
a

12a D L
c

G21

. ~14!

If, further, b anda are constants that do not vary randomly
from site to site, Eq.~14! reduces to

KMF5F11
b

12b S 2^L&c1
a

12a D G21

, ~15!

where^L&c is the average length of a branch. In particular,
for a myopic walk (b51/3,a50) we have the simple ex-
pression

KMF5~^L&c11!21, ~16!

while a reflecting boundary condition at the branch tips
(a51/2) givesKMF5(^L&c13/2)21, etc.

We now show that the mean-field result, Eq.~14!, is in
fact the exact value of K as defined in Eq.~2!. Defining
dT05T02^T0&c and assuming that all the moments ofdT0
exist, we have from Eqs.~2! and ~14!

K5KMF1 lim
j→`

(
n52

`

~21!nj 2^T0&c
2n21^~dT0!

n&c

5KMF1 (
n52

`

~21!n~11^G&c!
2n21

3 lim
j→`

j22n^~dT0!
n&c . ~17!

We have used̂dT0&50 and the fact that̂T0& scales asj
2.

What is needed, therefore, is the leading behavior~as
j→`) of ^(dT0)

n&c for n>2. Recalling that dT0
5T02^T0&c , we have

j22n^~dT0!
n&c5(

l50

n

~ l
n!~21! l~11^G&c!

n2 l j22l^T0
l &c .

~18!

The correction toKMF , if any, is therefore controlled by the
leading@or O( j 2l)# term in ^T0

l &c . From Eq.~11! we have

j22l^T0
l &c5 (

k50

l

~k
l ! j22kK F(

r
~ j2ur u!d rG r G kL

c

. ~19!

We therefore require the leading@or O( j 2k)# term in

(
r1

•••(
r k

~ j2ur 1u!•••~ j2ur ku!^G r1
•••G r k

&c . ~20!

An inspection of the summand shows that this leading be-
havior can only arise from that term in the multiple sum in
which all the indicesr i are distinct and no two of them are
equal. TheO( j 2k) term therefore comes only from the re-
stricted sum

(
r1

8
•••(

r k

8^G r1
&c•••^G r k

&c~ j2ur 1u!•••~ j2ur ku!

5^G&c
k(
r1

8
•••(

r k

8~ j2ur 1u!•••~ j2ur ku!; ~21!

the primes denote the restrictionr iÞr j . As a consequence,
only the first moment̂ G&c of the random variableG r ap-
pears in the quantities of interest in the present context. But
the leading, orO( j 2k), term in Eq.~21! is precisely the same
as that of theunrestrictedsum

^G&c
k(
r1

8
•••(

r k

8~ j2ur 1u!•••~ j2ur ku!, ~22!

which is trivially evaluated to yieldj 2k^G&c
k . Using this in

Eq. ~19!, we have

^T0
l &c5 j 2l~11^G&c!

l1 lower orders in j. ~23!

Insertion in Eq.~18! shows at once that the coefficient of
j 2n in ^(dT0)

n&c vanishes, so that~in view of the limit
j→`)

K5KMF . ~24!

While the explicit derivation we have given above helps
us understand the precise conditions under which the result
of Eq. ~24! is obtained, a shorter formal proof is also pos-
sible, along the lines of the central limit theorem. The linear
dependence ofT0 on the set of random variables$G r% in Eq.
~11! implies at once that the corresponding characteristic
functions

G~u!5^exp$ iuT0%&c ~25!

and

g~u!5^exp$ iuG%&c ~26!
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are related by

G~u!5exp$ i j 2u% )
r52~ j21!

~ j21!

g@~ j2ur u!u#

5exp$ i j 2u%g~ ju!)
r51

j21

g2~ru!. ~27!

If all the moments of the random variableG exist, we have
the cumulant expansion

lng~u!5 (
n51

`
~ iu!nkn
n!

~28!

and similarly, for the random variableT0,

lnG~u!5 (
n51

` ~ iu!nx
n

n!
. ~29!

Equation~27! then yields, on equating the coefficients ofu
on both sides,

x
1
5^T0&c5 j 2~11k1!5 j 2~11^G&c!, ~30!

which is just Eq.~13!; further,

x
2
5^~dT0!

2&c5
1

3
k2~2 j

31 j !, ~31!

wherek25^G2&c2^G&c
2 In general,x

n
is related tokn by

x
n
5knF j n12(

r51

j21

r nG , n>2. ~32!

The leading large-j behavior of( r51
j -1 r n is j n11/(n11). This

implies at once that, for very large values ofj ,

x
n

1/n

x
1

→S 2knn11D
1/n

~11^G&c!
21 j 1/n21. ~33!

This shows precisely how the fluctuations ofT0 about its
mean valuê T0&c are suppressed in the limitj→`: that is,
thedistributionof T0 converges to a degenerate distribution
with a single point of increase at^T0&c , validating Eq.~24!.
The precise factors responsible for this result are as follows:
~i! the additivity property of the contributions to the MFPT,
T0, from different branches;~ii ! the linear dependence of
T0 upon the random site variables$G r%; and ~iii ! the linear
dependence of the coefficients ofG r upon the distance
( j2ur u) or, equivalently, the distanceur u, in the expression
for T0 @see Eq.~11!#.

IV. EXCEPTIONS TO THE MEAN-FIELD RESULT

We have seen that the diffusion constant for an unbiased
random walk on a random comb is given by the mean-field
approximation when all the moments of the site variableG
exist—essentially when all the moments of the branch length
distribution are finite. It is clear from the definition ofK in
Eq. ~2! that, as long aŝG&c ~essentially the mean branch

length^L&c) is finite, the diffusion is normal; i.e., the MFPT
^T0&c scales asj

2 asymptotically; or, equivalently, the mean
square displacement of the random walk has a leading
asymptotic behavior proportional to the timen. If the higher
moments ofG r ~or Lr) diverge, the diffusion constant is
renormalized by the fluctuations in$Lr% to a value other than
the mean field one. On the other hand, if^G&c ~or ^L&c) itself
diverges, the diffusion is anomalous; i.e., the random walk
along the backbone of the comb is subdiffusive, with the
mean square displacement diverging typically astn,n<1.
The central quantity of interest is then the exponentn. This
is a separate problem that is addressed elsewhere~@14,17#,
and references therein!. We are concerned here with the situ-
ation in whichK can differ fromK MF owing to the nonex-
istence of the second and higher moments of the branch-
length distribution.

In this context, it is worth remembering thatK may differ
from KMF even if all the moments ofL exist, if the branches
at different sites are sufficientlycorrelated instead of being
independently distributed. As an extreme instance, suppose
all the branches areidentical, i.e., the random variables
G2( j21)5G2 j5•••G05G15•••G j21 in each realization.
Now, the expression we have derived forT0, Eq. ~11!, is
valid for any given set of variables$G r%. Therefore

K5 lim
j→`

K j 2

j 21G( r~ j2ur u! L
c

5^~11G!21&, ~34!

in contrast to the mean-field answer

KMF5~11^G&!21. ~35!

Even if the variables$G r% are uncorrelated to each other
~and this is the random comb problem in which we are in-
terested at present!, whenG r does not have finite moments of
all orders, the preceding demonstration thatK5KMF does
not go through. It is precisely here that the question of uni-
form convergence inj , mentioned at the end of Sec. II,
comes up. A simple example illustrates the kind of situation
that can arise. Consider the case when there is no branch at
any site except the origin, and consider a myopic random
walk on such a structure. From Eq.~12!, we have
T05 j 21L j , so that j 2/T05@11(L/ j )#21 on this structure.
It is obvious that the behavior of this quantity depends on the
manner in which the limits are taken: ifL, j→` such that
L/ j is finite, we have a finite diffusion constant~as defined
here! on the backbone. IfL and j are allowed to become
unbounded independently, the limiting value of
@11(L/ j )#21 is 1 or 0, depending on whetherj→` or
L→` first. It is therefore clear that various kinds of subdif-
fusive behavior~on the backbone! can be obtained by letting
the lengthL of the sole branch tend to infinity such as some
power of j greater than unity. These are the situations con-
sidered in greater detail by Goldhirsch and Gefen@20,21#.
All these possibilities show that the physical problem of in-
terest must be specified carefully in each case. As already
stated, we have been concerned in this paper with a random
comb in which all the sites on the backbone arestatistically
equivalent, the random variables$Lr ,b r ,a r% being indepen-
dently and identically distributedat each siter . If, therefore,
one takes the view that the thermodynamic limitj→` is
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unrelated to the manner in which the branch lengths$Lr%
may become unbounded in some realization of the random
comb, then the averaging over the distribution of the latter
must be done independently, preceding thej→` limit. The
~exact! relation between the characteristic functionsG and
g @see Eq.~27!# must be used to compute^ j 2/T0&c , and the
j→` limit must be taken subsequently.@We note that
^1/T0&c52 i lims→0G̃(s), whereG̃(s) is the Laplace trans-
form of G(u)#. The divergence of the second and higher
moments of$Lr% will be reflected, of course, in the nonana-

lyticity of lnG(u) at u50; the expansion of Eq.~29! breaks
down, and the second term in the small-u behavior of
lnG(u) will typically beO(ug) where 0,g,1, signaling the
departure of the trueK from the mean-field valueKMF .
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