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Validity of the mean-field approximation for diffusion on a random comb
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We consider unbiased diffusion on a random comb structameinfinitely long backbone with loopless
branches of arbitrary length emanating frop it (t(=+j|0)),= T, is the mean timéaveraged over all random
walks) for first passage from an arbitrary origin 0 on the backbone to either of the-sjteg —j onitin a
given realization of the structure, the exact diffusion constant for the problem is defined as
K=lim;_..j%1/Ty)., where( ). stands for the configuration average over the realizations of the random
comb. The diffusion constant in the mean-field approximation is giveld = Iimj_ij/(To)c. We compute
T, exactly for an arbitrary realization of the comb and then show rigorously that, owing to the suppression of
the relative fluctuations iffy in the “thermodynamic limit” j —oo, we haveK ;==K whenever the moments
of certain random variableB(L,«,B) are finite; here the site-dependent random variables, and 8 are,
respectively, the branch length, stay probability at the tip of a branch, and the backbone-to-branch jump
probability. Finally, we discuss different situations in whi€hwill not be equal taky,z, although the transport
remains diffusive, as opposed to those in which anomalous diffusion 0¢81863-651%96)04508-4

PACS numbegps): 05.40:+j, 02.50.Ey, 05.60+w

I. INTRODUCTION comb. As a result, a random walk on the random comb is
reduced to a random walk on a regular linear lattice with a
The important problem of transport in disordered mediacertain common effective waiting-time distribution at each
has received a great deal of attention for a number of yearsite. In view of the extensive applicability of the random
now [1]. In particular, random walks on comblike comb model, it is important to examine carefully whether
structures—regular, hierarchical, and random—have beethis approximation is justified. It is the purpose of this paper
studied in detail in recent times. These structures providéo establish explicitly the validity of the mean-field approxi-
tractable models for investigating transport in more complexnation when the motion on the comb is diffusive: in other
systems, such as percolation clusters, finitely ramified fracwords, when normal diffusion occurs on the random comb,
tals, porous media, etc. A comb consists of an infinitely longve show that the diffusion constant in the mean-field ap-
backbone of sites to which teettoopless branchgsare at-  proximation is equal to the true diffusion constant.
tached. Transport along the backbone is the object of inter- The rest of the paper is organized as follows. In the next
est. If all the branches are of the saffigite) length we have section we define the diffusion constaftin terms of the
a regular comb. In this case motion along the backbone igean first passage tinW, to reach boundary sites j from
purely diffusive(the mean square displacement diverges lin-an origin 0 on the backbone, in the linjitzo (the “ther-
early with time; the presence of the branches simply pro-modynamic limit” in the present contextAn exact expres-
vides for a delay and leads to a smaller value of the diffusiorsion for T, is derived for an arbitrary realization of the ran-
constant. However, if the branches all are of infinite lengthdom comb. In Sec. Ill we use this to compute first the mean-
the diffusion is anomaloug2], in that the mean square dis- field valueKyr of the diffusion constant. The fluctuations in
placement diverges a3/, although the distribution of the T, are then analyzed to show that their contributionkto
position of the random walker is asymptotically Gaussian. Ifvanishes in the thermodynamic limit, leading to the equality
the branches have hierarchical lengths, one can have regulaf K\ andK. The precise conditions under which this takes
as well as anomalous diffusion depending on the values dflace are identified. In Sec. IV we discuss situations in which
the parameters that describe the strucfuf8—10 and the the mean-field approximation does not hold good even at the
references cited thergin level of the diffusion constant.
Random combs constitute another class of structures on
which a wide variety of diffusive and SudeﬁUSIVQ ProCeSSes || 11 DIFEUSION CONSTANT ON A RANDOM COMB
occur. Here, branches of random lengthsth a given dis-
tribution) are attached to random sites on the backbone. Both A. Definition of the diffusion constant
unbiased diffusion and field-induced drift have been studied
[11-164 on random combs. A comprehensive treatment o
the problem has been given recenfly7], delineating the
precise conditions on the branch length distribution unde
which different kinds of behavior ensue. Analytical treat-
ments of the problem have essentially used a “mean-field’
approach—in the present context, this means a premature K= lim n™X(2(n)w)e. (1)
configuration averaging over the realizations of the random n—o

The diffusion constant on a statistically homogeneous
lstructure such as the random comb under consideration can
be defined in either of two equivalent wayi8,19. From the
lEisymptotic t—o0) behavior of the variance of the displace-
mentj(n) in time n, we have
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where ( ),, denotes the average over random walks on a

given realization of the random comb, afid. denotes the m
subsequent configuration average over these realizations. L

The alternative definition ofK involves the asymptotic ’
(j—<°) behavior of the mean first passage tiihéFPT) to < >
start from some origin and reach either one of the two exit

points at+j and —j:

K=1im j%(t(=]0))y e )

j—oe

culate the MFPT concerned. We use the abbreviafigfor
the MFPT(t(*=j|0)),, on a given realization of the structure.

Strictly speaking, the thermodynamic limit in Eq4) and T T
(2) should precede the configuration averaging. As long as
the expressions concerned converge uniformly, the inter-
change of the order of operation is permissible. We shall
assume that this is the case and defer a discussion of &
exceptional cases to Sec. IV.

We shall use this definition, as it is relatively easier to cal-
ﬁ,)/z B2
T

FIG. 1. Branch oL, sites at backbone site Jump probabilities
t of different sites are indicated.

conditions. Once again, at the level of the MFPT, the pres-
ence of the branch atis entirely equivalento a branchless
site with a certain specific stay probability y,: if

The derivation of a formula foil, proceeds in several (t(r+1]r)), is the MFPT to escape fromto the neighbor-
steps. Consider first a chain-(, ...,0,...j) of (2j+1) ing sitesr +1 in the presence of the branchrathis equiva-
sites, such that the jump probability from any site to either ofience is expressed by
its neighbors ist+ 1/2, theonly exception being a particular
siter. At this site, the random walker stays on at the end of Y =1—(t(r=1[r) . (8)
a time step with a probabilityy, , or jumps to site (= 1)
with a probability (1-1v,)/2. Writing T, for the MFPT
(t(=j|1)) to start from sitel and reach either of the exit
points at+j and —j, we have the set of linear equations:

B. Calculation of the MFPT

[Some reflection shows thét(r +1|r)),, is identically equal
to (1—v,) ~1]. Now, a straight-forward calculation similar to
the one leading to E(6) yields

T=1+3(Ti_1+Tis1), —(j—2)sIs(j+2), I#r,

3 1
@ (tr=1r))w= 18 {ZB(L —1)+1+1'Ba} 9
To-1=1+3T+j-2), 4 '
T=(1—y) 4T, 1+ T, 0. (5) Using this in Eq.(8), we get, say,
Solving for T, we find
g forT, Ye _( Br )[2L+ _r. 10
) ) ) Y 1-v 1-5; -
To=<t(iJ|0)>w=12+(J—Ilrl)(l (6)
r

Substitution in Eq(7) gives, finally, the compact formula

Next, consider the same chain, but with an arbitreey
{r} of sites at which the random walker has stay probabilities _ . . .
{y,}. As a direct consequence of the Markov property of the To=(t(=[0))w=] +Er (G=IrbTvér,
walk, and at the level of the MFPTthe contribution(to

IO)bOf <_jiffe|rendt ds_,ti_tes i/svvetLified in. a st;a}[ir%]htforwarld r’n""lrtmerwherel“r has been defined in EQLO); further, 5,=1 if there
0 be Simplyadditive WWe thus arrive at the crucial resu is a branch [,=1) at the siter, and 6,=0 otherwise

(L,=0). On the random comb we may regdtd , 3, ,a,} as

) (7) a set of independent random variables that are identically
distributed at each site of the backbone. The difficulty, of
course, is the fact that it is threciprocal of T that must be
configuration averaged in EqR) for K.

Various special cases are read off easily from @4). In
particular, amyopic random walk corresponds t8,=1/3
anda=0, leading to

(11)

To=i?+2 <j—|r|>(17r

r

When everyy,=0, this reduces to the well-known result
To=j? for a simple unbiased random walk on a linear chain.
Now suppose there is a branchlgfsites at the backbone
siter, with transition probabilities as indicated in Fig. 1. For
the sake of generality, we have introduced a backbone-to-

branch jump probability3, as well as a stay probability, at
the end of the branch. This enables one to encompass at one To=j2+ > 8L.(j—|r). (12)
stroke a variety of possible physical situations and boundary
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Ill. EQUALITY OF THE MEAN-FIELD
AND EXACT VALUES OF K

The mean-fieldMF) approximation to the diffusion con-
stantK corresponds to neglecting the fluctuationd infrom

one realization of the comb to another, and thus to replacing

(Tobe by (To)o b in the thermodynamic limitj—o in-
volved in the computatlon ofk using Eg. (2). Since
312 (= Ir))=j2 we have

§

where we have dropped the site lalbebn the quantitiesy,
B, L, andT for brevity. Thus

B
1-8

<T0>c:]2

2L+ a)> }=12<1+<F>c>,
i (13

i2

J
J—>w<T >C

B
ol

K =(1+(T))*

a
2L+—)>
a
C

-1
14

If, further, B8 and « are constants that do not vary randomly

from site to site, Eq(14) reduces to

-1

b T

T1-p

Kvr=|1

(2<L>C+%

where(L). is the average length of a branch. In particular,

for a myopic walk 3=1/3,&=0) we have the simple ex-
pression

Kwr=((L)c+1)7 1, (16)
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The correction tdK e, if any, is therefore controlled by the
leading[or O(j?')] term in(Th).. From Eq.(11) we have

K
7 (Toe= E k)1‘2k<[2 (=IrD) 5F} > . (19

We therefore require the leadifigr O(j?)] term in

22 () G (T T e (20)
r Mk

An inspection of the summand shows that this leading be-
havior can only arise from that term in the multiple sum in
which all the indiceg; are distinct and no two of them are
equal. TheO(j?") term therefore comes only from the re-
stricted sum

Z B 2 ’<rrl>c' : '<Frk>c(j _lrll)' . (J _|rk|)
r %

j=lraD---G=Ind)s @D

:<r>'ér2 /rE "

the primes denote the restrictiogwr;. As a consequence,
only the first momen{T"). of the random variabld", ap-
pears in the quantities of interest in the present context. But
the leading, 00(j2¥), term in Eq.(21) is precisely the same
as that of theunrestrictedsum

(e -2 G=Inb--G=Ind, (22

which is trivially evaluated to yield 2%(I')¥. Using this in

while a reflecting boundary condition at the branch tipsgq. (19), we have

(@=1/2) givesKye=((L)+3/2)"%, etc.

We now show that the mean- f|eld result, E@4), is in
fact the exactvalue of K as defined in Eq(2). Defining
8To=To—(Tp). and assuming that all the moments &k,
exist, we have from Eqg$2) and (14)

[

K= KMp+nmE< D& Toye " H(8To)"e

J*)OC

oo

=KMF+n§2 (—D)"(L+(T)) "t

X limj=2(5To)". (17

j—oo

We have used5T,)=0 and the fact thafT,) scales ag?.
What is needed, therefore, is the leading behavas
j—) of ((6Tg"). for n=2. Recalling that 5T,
=To—(To)e, We have

1—2"<(5T0>“>c=|§0 (MDA 2(To)e.
(18)

(TH)e=j?(1+(I')o)' +lower orders inj. (23
Insertion in Eq.(18) shows at once that the coefficient of
j2"in ((8To)"). vanishes, so thafin view of the limit
j—*)
K= KMF . (24)

While the explicit derivation we have given above helps
us understand the precise conditions under which the result
of Eq. (24) is obtained, a shorter formal proof is also pos-
sible, along the lines of the central limit theorem. The linear
dependence of; on the set of random variabl¢F,} in Eq.
(11) implies at once that the corresponding characteristic
functions

G(6)=(expi 0To}). (25)

and

9(0)=(expliol'})c (26)
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are related by length(L).) is finite, the diffusion is normal; i.e., the MFPT
(-1 (To)c scales ag? asymptotically; or, equivalently, the mean
_ 5 ) square displacement of the random walk has a leading
G(6)=expij ﬂ}r:gil) al(j—Ir)é] asymptotic behavior proportional to the timelf the higher
moments of[', (or L,) diverge, the diffusion constant is
5 ) ) renormalized by the fluctuations {i., } to a value other than
=explij“019(] e)r[[l 9°(ro). (27 the mean field one. On the other hand,Ii. (or (L)) itself
diverges, the diffusion is anomalous; i.e., the random walk
If all the moments of the random variableexist, we have along the backbone of the comb is subdiffusive, with the

-1

the cumulant expansion mean square displacement diverging typicallytdsy<1.
The central quantity of interest is then the exponenThis
= (i6)"k, is a separate problem that is addressed elsewi#del7),
Ing(6)= 21 o (28 and references therginVe are concerned here with the situ-
" ' ation in whichK can differ fromK = owing to the nonex-
and similarly, for the random variablg,, istence of the second and higher moments of the branch-
length distribution.
(i 0)”Xn In this context, it is worth remembering thiitmay differ

M s

INnG(6)=

(290  from Ky even if all the moments df exist, if the branches

at different sites are sufficientlyorrelatedinstead of being
independently distributed. As an extreme instance, suppose
all the branches arédentical i.e., the random variables

=1 Nl

Equation(27) then yields, on equating the coefficients ibf
on both sides,

I j-y=F_j=---To=Iy=---T'j_; in each realization.
=(To)e=j%(1+ky)=]2(1+(T),), 30 Now, the expression we have derived b, Eq. (11), is
X, = (Toke=JX D=1+ (30 valid for any given set of variabled",}. Therefore
which is just Eq.(13); further, j2
K=lim{—>—=——) =(1+0)71), 34
R j%<12+rzru—|rl>>c @+, @4
X,=((5To)?)c=5ka(2)%+]), (3D)

in contrast to the mean-field answer
wherek,=(T'?).—(I')2 In general,y is related tok, by

K= (1+(T))~*. (35)
ji—1
x =k |j"+2> 1", n=2. (32 Even if the variableqI',} are uncorrelated to each other
" r=1 (and this is the random comb problem in which we are in-

: terested at presenivhenI’, does not have finite moments of
The leading largg-behavior of=!Z,r"is j"**/(n+1). This g orders, the preceding demonstration that Ky does
implies at once that, for very large valuesjof not go through. It is precisely here that the question of uni-
form convergence irj, mentioned at the end of Sec. I,
comes up. A simple example illustrates the kind of situation
that can arise. Consider the case when there is no branch at
any site except the origin, and consider a myopic random

This shows precisely how the fluctuations B about its Walk on such a structure. From Eql2), we have
mean valueg(T,), are suppressed in the limjit>e: that is,  To=i°+Lj, S0 thatj?/To=[1+(L/j)]"* on this structure.
the distribution of T, converges to a degenerate distribution It i obvious that the behavior of this quantity depends on the
with a Sing'e point of increase QT())Ci Va"dating Eq(24) manner in which the limits are taken: [|_f,J—>OO such that
The precise factors responsible for this result are as follows:/] is finite, we have a finite diffusion constaf@s defined
(i) the additivity property of the contributions to the MFPT, her@ on the backbone. It andj are allowed to become
To, from different branchestii) the linear dependence of unbounded independently, the limiting value of
T, upon the random site variablég,}: and (iii) the linear [1+(L/j)]™* is 1 or 0, depending on whethgr—c or
dependence of the coefficients & upon the distance L— first. Itis therefore clear that various kinds of subdif-
(i—Ir|) or, equivalently, the distande|, in the expression fusive behaviorfon the backbonecan be obtained by letting
for Ty [see Eq(1D)]. the lengthL of the sole branch tend to infinity such as some
power of j greater than unity. These are the situations con-
sidered in greater detail by Goldhirsch and Gefan,21.
All these possibilities show that the physical problem of in-
We have seen that the diffusion constant for an unbiaseterest must be specified carefully in each case. As already
random walk on a random comb is given by the mean-fieldstated, we have been concerned in this paper with a random
approximation when all the moments of the site variable comb in which all the sites on the backbone atatistically
exist—essentially when all the moments of the branch lengtlequivalent the random variabled., , 3, ,«,} beingindepen-
distribution are finite. It is clear from the definition &f in dently and identically distributedt each site. If, therefore,
Eqg. (2) that, as long agI'). (essentially the mean branch one takes the view that the thermodynamic lift is

1/n
X

n

Xy

1/n
(L+(T)e) "t (33

Ky
n+1

—

IV. EXCEPTIONS TO THE MEAN-FIELD RESULT
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unrelated to the manner in which the branch lendthg lyticity of INnG(6) at 6=0; the expansion of E¢29) breaks
may become unbounded in some realization of the randorjown, and the second term in the sm@llbehavior of
comb, then the averaging over the distribution of the lattefng(g) will typically be O(6”) where 0< y<1, signaling the

must be done independently, preceding fhex limit. The  geparture of the tru& from the mean-field valu e .
(exac} relation between the characteristic functid@sand

g [see Eq(27)] must be used to compu{g?/Ty)., and the
j—oe limit must be taken subsequentlyWe note that
(1Tg)c= —ilimg_G(s), whereG(s) is the Laplace trans-
form of G(6)]. The divergence of the second and higher We are thankful to M. C. Valsakumar for numerous use-
moments of L,} will be reflected, of course, in the nonana- ful discussions.
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