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Numerical computation of finite size scaling functions:
An alternative approach to finite size scaling

Jae-Kwon Kim, Adauto J. F. de Souzand D. P. Landau
Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602
(Received 1 February 1996

Using single cluster flip Monte Carlo simulations we accurately determine new finite size scaling functions
which are expressed only in terms of the variabte&, /L, whereé, is the correlation length in a finite system
of sizeL. Data for thed=2 andd=3 Ising models, taken at different temperatures and for different size
lattices, show excellent data collapse over the entire range of scaling variable for susceptibility and correlation
length. From these finite size scaling functions we can estimate critical temperatures and exponents with rather
high accuracy even though data are not obtained extremely close to the critical point. The bulk values of the
renormalized four-point coupling constant are accurately measured and show strong evidence for hyperscaling.
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I. INTRODUCTION quantity with temperature near criticality characterizes its
critical behavior, even if it is not describable by a power law.
True critical phenomena can possibly take place only irA criterion telling whether a quantity measured on a finite
the limit in which the size of the system becomes infinitelattice at a temperaturg is distinguishable from the thermo-
(i.e., the thermodynamic limit The singular behavior of a dynamic valugvalue in the thermodynamic limits the ratio
system near a critical point is characterized by the bulk valOf the linear size of the latticel() to the correlation length
ues of various physical quantities; it is technically impos-[£(T)]: providedL/&(T) is sufficiently large, the measured
sible, however, to directly obtain information about infinite duantity becomes essentially independentLofThus, one
lattices from Monte Carlo simulation. Practically, however, N€€ds very large. at temperatures wherg(T) becomes
it is not necessary to make the size of the lattice infinite inf@'9€. Unfortunately, in this situation critical slowing down
order to estimate a thermodynamic value through a Montdmits the quality of the data. Recently, new techniques of
Carlo simulation of finite lattices: The concept of finite size o> have been introducg,6], which enable one to extract

salng £S5 [ nroduced 1o xvapolate e mormaton S1CE, e abes Tivec o 2 e o
available from the finite system to the infinite volume limit, pnysical q - ) ; g

" niques is the calculation of some FSS functions defined in
has been remarkably successful. The most frequent applica-

. T . PIC%rms of a nonconventional FSS variable.
tion of FSS[2] has been primarily concerned with extracting In this paper, we numerically calculate certain FSS func-
some universal quantities such as the critical expomeot

) o ’ tions which are different from the “usual” ones and extract
some ratios of the critical exponents, without knowledge Ofegtimates for the values of critical parameters for the two-

the bulk values in the scaling regime. The standard finite sizgng three-dimensional Ising models. In the next section we
scaling variable isx=tL*” with the reduced temperature provide the theoretical background, and in the following sec-
t=|K;—K]|/K¢, whereK is the inverse couplin =J/KT  tion we calculate bulk values of the correlation leng#, (
andK. is the inverse critical coupling. Of course, use of thismagnetic susceptibility ¥), and renormalized four-point

variable presupposes knowledge of the correct critical cOUgqypling constantd(®)). We summarize and conclude in the
pling and the uncertainty iK. introduces a source of error fina| section.

into the analysis. Another formulation proposed by Fisher
usedt=|KL—K|/KL), but since this requires knowledge of
multiple finite lattice “critical couplings” it has seldom been
used. Some nonuniversal critical parameters Kkecan also The fundamental assumption of FSS thefty is that
be calculated by different FSS techniques, e.g., the fourtiA (t), the value of some thermodynamic quantiyon a
order cumulant ratio method3] or the microcanonical finite lattice of linear size., can be expressed as
Monte Carlo(MC) method[4].
Nonetheless, determining bulk valug., in the thermo- AL()=LP"fA(S(L 1)),  s(L,t)y=L/&(1) (1)
dynamic limit) is an important task of MC simulations, be-
cause physical quantities can then be directly compared witfor a bulk quantityA which has a power-law critical singu-
experiment. Also, the variation of a suitable thermodynamidarity A(t) ~t~* wheret=|K.—K|/K,. Equation(1) is valid
for values ofL and ¢(t) which are large; otherwise, there
should be corrections to FSS, which unless explicitly stated
“Permanent address: Departmento dsidal e Matemiica, Uni-  are ignored throughout this work.
versidade Federal Rural de Pernambuco, 52171-900, Recife, Per- Notice that using the critical form fo€, &(t)~t™", we
nambuco, Brazil. can rewrite the scaling variab&L ,t) as
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s(L,t)=[A(t)/LP'*]~ "I, 2) explicit expression for the inverse correlation lengthass

gap, that is consistent with Ed5), for the two-dimensional
so that Eq(1) may be rewritten as (2D) O(N) (N>>2) spin models, which exhibits an exponen-
tial critical singularity. Also, very extensive numerical veri-

fication [5] of Eq. (5) was given fory and ¢ for the 2D O
(N) models withN=2 and 3.

where the relation between the scaling functibpand.F, is . . .
9 R A In order to define a correlation length, we consider the

given by Fourier transform of th€connected two-point correlation
Fa(s)=s""fA(s). (4  function,
For A=¢, Eq. (3) shows that (t)/L is just a function of _ - _
&(t)/L and vice versa, and this leads to the relation G(k)—; explik-x){Sp" S ®)
AL(t) =A(t) Qa(x(L,1)), (®)  whereS, denotes the spin variable at site Whenx is suf-

ici . ~eIxl/g i
wherex(L,t)=¢, (t)/L is the ratio of the correlation length ficiently large (Sp- Sy e - holds[11], so we will have

on a finite latticeto the lattice size, an@(x) is given by G(k) " 1=G(0) [1+K2E2+O(K*]. 9)

Qa(X)=Falf: 1(x)). ® By choosingk=(27/L,0), we obtain

Using the same observation, it is trivial to obt@fj another
equivalent form, VG(0)/G(k)—1, (10

1
gL_zsin(w/L)

Ay (D) =A(t L,t)), 7
s (D=ALDGAX(L.) " for values ofL that are large enough that terms* can be
where b is a scaling factor and@ja(x) is another scaling Safely ignored.
function. The renormalized coupling constagif) may be defined

It is evident that giveri , one can determine the other two as[12]
scaling functions from Eqs4) and (6), and all the scaling @ o
functions,f,, Fa, Qa, andG, should be universal. It has g =3(L/&)"Uy, (11
also been argued8] that a certain asymptotic form of . . . . .
fA(s) can be expressed in terms of the critical expongnt where D is th_e lattice dlmen3|onal|t32/ gtnd.the foqrth order
by fitting this functional form one can extract an estimate forcumulant is given by, =1-(S")/3(S%)?, with S being the
the critical exponent. order parameter. The bulg® has a well defined scaling

It is worth stressing that use of the scaling function Pehavior(7],
rather thanF would be more convenient in many cases, par-
ticularly because one does not need the bulk correlation

length to define the former. Note that there is no explicit (4) yascribes the non-Gaussian character of the the model
dependence of the scaling variables, so that knowledge of tq%e only for a Gaussian model dog€)(t) vanish ag— 0 in '

grltlct:al fclt_)uptllng_ t|_s nﬁt regﬁ_wel_d,_agd thmabecfmels md;apetn- the absence of certain multiplicative corrections to scaling,
e_tr_] (I)'t a C”H??' yr'] ISL Independen V? uelo af implying the violation of the hyperscaling relation
criticality, x., which characterizes a universality class for 8D y—2A+ y>0. For a system where the hyperscaling rela-

given geometry{9], forms the upper boqnd of. In other tion is satisfiedwithout certain multiplicative corrections to
words, the sqall_ng funcﬂo_nQ_ is defined _only OVEr  scaling, as in the four-dimensional Ising modets bulk
0<x=X.. A priori, the two limits of the scaling function e in the scaling regime remains a constant that charac-
Q are known for a continuous phase transition:igizes its universality class.
lim,_.oQ(x)—1 and lim_., Q—0, becausé, converges to Employing the single cluster Monte Carlo algoritfifr8],
its bulk value in the former case whik(t) diverges in the we simulated the 2D and 3D Ising models, on the square and
latter case withA (t) finite. In general, as we will show in  simple cubic lattices, respectively, with fully periodic bound-
this work, for A=¢, x, or g, Qa(x) turns out to be a ary conditions imposed. For each lattice at a given tempera-
monotonically decreasing function &f ture, we generated up to 30 bins of data each of which is
It is important to realize that the knowledge of the scalingcomposed of 10 000 measurements. In order to reduce the
function Q@ nearx=0 plays as relevant a role as that nearcorrelation between data points, only configurations 3-7
X=X, to the extraction of necessary information of the criti- Monte Carlo steps apart were considered. Our quoted errors,
cal behavior in[deep scaling region. It can be easily seen by which are purely statistical in nature, are the standard devia-
noting thatx(L,t) for a fixed temperature arbitrarily close to tion of the binned values. Aware of the bad performance of
criticality can be made arbitrarily close to zero by simply some random number generators in the context of the single
choosing a value of sufficiently large. cluster algorithm14], we have double-checked our results
Equations(3) and (5) do not include any critical expo- by comparing data generated by two different implementa-
nents, so that one might conjecture that their validity can beions of the algorithm, each one using a different kind of
extended to non-power-law singularities. Although a generatandom number generator. Most of the data were obtained
proof of this conjecture is missing, kaher[10] obtained an  with a linear congruential random number generator of the

g(4)(t)~tDV72A+ Y. (12)
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TABLE I. A_ as a function of L at K=0.425.
£.(K=0.425=15.752 ... from Eq. (17). Note that our{, con-
verges to its bulk value fdr =80, within the small statistical errors,
and that the value of monotonically decreases with or ¢ pud @ ®8§ © 0 ° 1
\ @Pa m‘”m @
L &L X XL 08 Qo“’o J
[
16 9.833) 0.6142) 102.42) - oS
18 10.564) 0.5872) 119.83) il S oRZ o
20 11.185) 0.5592) 137.06) a o \ '
22 11.744) 0.5342) 153.55) L
25 12.445) 0.4982) 177.17) m°
27 12.8%5) 0.4762) 191.97) 02r 7
30 13.376) 0.4442) 212.76)
32 13.697) 0.4282) 224.79) %90 20 40 60 80 10.0
34 13.926) 0.4092) 235.29) s
36 14.196) 0.3942) 246.68)
40 14.546) 0.3632) 264.96) FIG. 1. Fa(s) for the 2D Ising model. Each “curve” demon-
50 15.198) 0.3042) 296.01.0) strates the data collapse for two different valueKoNote t_hat_th_e
60 15.406) 0.2571) 312.51.0) lower curve converges tdFa(s)=1, i.e., thermodynamic limit,
70 15.627) 0.2231) 321.31.4) more slowly than the upper curve.
1?)8 115577511%) 8123&; gggiig tion holds for a slightly Iarger value af(smallerx) than that
110 15.7710 0.1431) 331015 for ¢, namely,s=6.346. Figure 1 shows the data collapse
forFa(s).
150 15.714) 0.1051) 331.41.9 From the data in Table I, we can easily determine

Fa(s) and Qa(x). In order to satisfy the asymptotic condi-
tions, for the former one may try a polynomial function of

form x;, ;=69 06%;+ 1 mod(ZY). The other random num- either 15 or e~ S, while for the latter a polynomial ok or
ber generator was a multiplicative, lagged Fibonacci generae™ ** may be tried. That is,
tor of the formx; 1 =X;_ 4423 1393, Which showed a good

performance in a single cluster simulational test of the Ising Fa(s)=1+by/s+by/s*+ -, (13
system[15]. We observed complete agreement between the
two sets of data within our statistical errors. We therefore Qa) =1+ byxtbx*+ -, (14
believe that to within the error bars quoted here our data ar
not biased due to any correlation among the random num-
bers. (We also tried the well known R250 routine but the Fa(S)=1+c.e 5+ce 5+ -+, (15)
data exhibited some systematic deviation and we did not
consider them in our analysjs. Oa(X)=1+ce” Pty ..., (16)

In general, it turns out that for the same number of fitting
parameters the polynomial of the exponentials fits better than
that of the simple scaling variables. This is especially true for
the magnetic susceptibility and the four-point renormalized
We now investigate the finite size behavior for a varietycoupling constant. For instance, by considering terms
of multiplicatively renormalizable physical quantiti¢s0] up to the fourth —order of the polynomial,
defined on a finite lattice of linear side, in particular, the ~ x*/Nor(degree of freedom} 3.3 and 0.3, respectively, for
susceptibilityy and correlation lengtig. First, we choose a the Q,(x), assuming the simple polynomial and that of the
certainK and perform measurements Af (K) for various ~ €xponential. Considering up to the ™ term, we obtain
values ofL. In Table | we present our data fé¢=0.425, ~ C1=~2.402€,=—16.338¢;=80.688, anct,= —134.6 for
with L varying from 16 to 150. The reason for starting from <y With x“/Npe=0.31, while they are—0.768,-8.490,
L =16 is that near thik the systematic error in our definition 3%-032, and —89.203, respectively, for Q; with
of &, Eq.(10), is about~ 102 which is comparable to our X“/Npr=0.20. .
typical statistical errors. From these data in Table | one sees A Ppriori, the estimates are accurate only for
that ¢ is indistinguishable from its bulk value far=80, to ~ X<&L,/Lo=Xo, With L denoting the smallest value bffor
within very small statistical error. In terms of the scaling K=0.425; for the estimate of the coefficients forx,, one
variables, this means tha=5.076 or x<0.196. As we needs similar data foi_ at a largeiK, which might modify
stressed earlier, this condition hol@s terms of the scaling the values of the coefficients. Nevertheless, with the infor-
variable$ regardless of the temperature as long as it remainmation of the finite size scaling functio@,, it is now pos-
in the scaling regime(This is indeed the fundamental state- sible to extract accurate bulk data from the Monte Carlo data
ment of FSS. We note that fory the thermodynamic condi- on a modestlysmalllattice provided a data poiriat another

. RESULTS
A. 2D Ising model
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TABLE Il. The extraction of the¢ and y for the 2D Ising model based on the computation of the
94(x). The “ave.” for eachK denotes the average over the extracted bulk values from the different values

of L(x).
K L &L X XL & X
0.430 20 13.0(r) 0.650 158.%4) 23.1617) 650.416.2
30 16.677) 0.556 274.%4) 23.331)) 653.25.4)
40 18.978) 0.474 377.%) 23.209) 647.54.2
50 20.578) 0.411 461.18) 23.318) 650.43.9
60 21.578) 0.359 524.81.5 23.307) 651.05.5
80 22.5710) 0.282 597.2.2 23.238) 649.76.3
100 22.8911) 0.229 625.82.3 23.159) 646.65.9
120 23.1217) 0.193 638.%5.0 23.2313 647.212.4
ave. 23.2111) 649.52.2
exact 23.22
0.434 80 32.947) 0.412 1047.82.5 37.347) 1478.611.9
160 36.779) 0.230 1426.8.0) 37.1914) 1476.0423.1)
ave. 37.2711) 1477.31.9
exact 37.21
0.436 50 31.5) 0.632 761.71.9 53.1020) 2745.@43.7
60 35.3%11) 0.589 977.482.7) 53.1819) 2743.839.8
70 38.5412) 0.551 11863) 53.4118) 2759.437.7)
80 41.2313) 0.515 138®) 53.6517) 2779.431.9
90 43.087) 0.479 15682) 53.018) 2724.817.5
100 45.0413) 0.450 17462) 53.37114) 2751.124.7)
120 47.9614) 0.400 203%5) 53.6913) 2776.822.4
160 50.5%20) 0.316 23847) 52.9617) 2724.122.9
ave. 53.3(28) 2750.620.9
exact 53.16
0.438 80 51.88L3) 0.649 17774) 91.97131) 7209.7142.9
160 76.3134) 0.477 425913) 93.6439) 7378.293.0
ave. 92.821.20 7294.q119.)
exact 92.86

temperature  satisfies x<x;. Our results for extremely close to the exact values. Since all of our data used
K=0.430,0.434,0.436, and 0.438 are summarized in Tabléor the analysis were far>0.006, the quality of the result is
Il. surprisingly good.

We notice that the bulk values thus extracted for a given
K do not change with respect tlo indeed verifying this B. The 3D Ising model
form of FSS for the mode(see Fig. 2 alsp We also note ) )
that the values of the bulk thus extracted are in excellent W€ begin with our Monte Carlo measurement at

agreement with the corresponding exact values given by th =0.220, the results of which are summarized in Table Iil.
formula We observe that the thermodynamic conditiongfas almost

satisfied for L/f(a)% 60/10.89=5.5. Nevertheless, we also
note thaty and increase, albeit very slowly, beyond this
1/¢(K)=In(cotK) — 2K, 17) value. Tr)l(is is gnother indication thatrzertainyquariltities con-
verge to the thermodynamic value more slowly than the cor-
within typically less than 0.5% of the statistical errors. As arelation length.
test of our y, we fitted the data over the range from  Assuming thatA (K=0.220) reaches its bulk value for
K=0.425 to 0.438 to L=70, we obtain

B c,=—0.418, c,=—18.83, c3=99.38, c,~—436.4,
—t. (18) 1 2 3 4 19

The besty? fit gives K,=0.440 70(5) andy=1.755(9) ¢c,=—0.607, c,=—56.31, c3=416.75, c,~—1399.9,
(y=1.752 by fixing K. to the exact critical point being (20
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bulk y and ¢ thus extracted are compared with those tradi-

tionally obtained, again yielding remarkable agreemset
0] o wmege o K=0425 ] 'I_'a_ble I_\/). Figgre 3 exhibits excellent data collapse for the
LHIIN a K=0.430 finite size scaling functiorQ(x) for A=y, £, andg®.
os | % . °‘%‘ o K=0436 | In order to determin& ., v, andy we fitted our bulk data
) o, "‘o‘ over the range 0.2¢K=<0.2212 to the simple power-law
= % . singularity. We fixed the critical point in the fit, and then
S0 s *a /&» ] repeated the fit for several different fixed critical points. The
% *a results, shown in Fig. 4, indicate that thé values of the
04 “. ¢ I £ and y data favor the range of K, over
X e e, 0.221 646=K.<0.221 670, being consistent with other re-
02 % . cent result§18]. The empirical formulas we obtained from
i the best fit are as follows:
0.0 . . . .
0.0 0.2 04 0.6 0.8 10 £=C4|K—K|/K;) ™", C=0.4710, K,=0.221 658,

FIG. 2. Qa(x) for the 2D Ising model. v=0.6418, (22)

c1=—7.238, ¢;=21.42, c;=—16.09, ¢,~3.67, X=Cy([K=Kl/Ke)™7, C,=1.0892, K=0.221 646,
(21)
y=1.2388. (23)

Be;gz:)t:;/il%,jgrlg.g(x), Ox(x). andQy(x), overthe range The value ofv is larger by approximately 1.5% than those
Based on the knowledge @,(x), we calculate the bulk €xtracted by most other methods, while the valug aigrees
values of the correlation length, magnetic susceptibility, and!P 10 ~10"°. The effect of including the term of the con-
four-point renormalized coupling constant for varidgsup fluent correction to the scaling turns out to pe minimal: the
to K=0.2212. The largest value &f we simulated for the confluent correction term would usually be important when

calculation is just 64. Obviously, the computation of the bulkdata with rather smaller bulk values of the correlation length
value at & larger than 0.2212 requires a larger valud.df are considered. Given the modest size lattices used and the

order to keep the value of smaller thanx,. One way to distance from the critical points at which the actual measure-

avoid the need for a largér is to repeat the measurement of MeNts were madet%-0.002), we find the agreement with
A, at a slightly larger value oK, e.g.,K=0.2212; this will high resolution studies to be extremely gratifying.

extend the range of over whichQ, is accurately computed.

In the region whereQ,(x)~0, however, one needs ex- IV. DISCUSSION AND CONCLUSION

tremely precise measurements to reduce the errors in the es- In this paper we computed an alternative finite size scal-
timates of the bulk valuegl6]. pap P

A summary of our results is shown in Table IV. We seeing function, defined in terms of the scaling varialie/L,

that the four-point renormalized coupling constant remaingOr t'he 2D qnd 3D Ising models. This 'type Of. finite size
unchanged, i.eg®~24.5, forK=0.2206. Its slow varia- scaling function has the advantage of being defined even for

tion for K<<0.2206 may be due to the presence of correction% Q}%L\@uii gff‘ thg';hggrﬁn¥ﬁ&frgﬂiorgitégz%nct:: t((:er;ttl-FSS
to scaling. Hence the hyperscaling relation is indeed satis: y ' ' P

fied, confirming the previous verificatiofwithin rather giigrgi/e:nerigzsjrggﬁr:xilrll?sp?‘:?atr?ntehre \?v)gec:]t:silr?/z%n ttr)wgt the
larger statistical errors thougfbased on the traditional effect of t)r/1e vioIation’of FSS is negli ’ibl small at least for
Monte Carlo measuremefit2,17]. We would like to stress, gligioly

. ; L=16 for the two- and three-dimensional Ising models. We
however, that it was not possible to measgf® beyond illustrated how the function can be used for the extraction of
K=0.2206 in Ref[12], even using. as large as =90. The

correct bulk values near criticality, and that it can be used in
extracting accurate critical parameters provided the values of

TABLE lll. A (K) at K=0.220 for the 3D Ising model. . _ : .
L(K) ing the correlation length are sufficiently large, i.e., approxi-

L & X XL g mately§>.5. o . _

One might wonder if this technique requires an accurate
16 7.852) 0.4911) 228.87) 9.525) bulk value of a physical quantith at least at one point of
20 8.852) 0.4431) 298.17) 11.435) temperature. As far as the extraction of critical parameters is
24 9.562) 0.3981) 351.81.1) 13.447) concerned, however, this is not necessarily the case. To see
30 10.2@3) 0.34qQ1) 407.11.1) 16.51) this, imagine that we start with a fake “bulk value®’(t)
36 10.562) 0.2931) 439.51.2) 19.22) instead of the correct onA(t). The scaling function®’
40 10.683) 0.2671) 455.21.5) 21.43) defined in terms of the fake bulk value,Q',
50 10.8%3) 0.2171) 467.91.3) 23.55) =AL/A () =[A(t)/A’(1)]Qa, simply rescales the cor-
60 10.893) 0.1821) 472.30.8) 24.25) rect scaling function by a constant; accordingly, every bulk
70 10.913) 0.1561) 473.01.0) 24.75) value calculated at any other temperature usilfjgrescales

the correct one with an overall factér (t)/A(t). This over-
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TABLE IV. The extraction of the& andy for the 3D Ising model. The uncertainties in the values afe
not considered for our error estimates. Traditional Monte Carlo measurements are in rows labeled MC.

K L &L X XL Q(L4) & X 9(4)
0.217 16 5.301) 0.331 114.2) 17.711) 5.621) 130.82) 25.51)
20 5.491) 0.275 124.%4) 21.22) 5.631) 130.714) 25.41)
28  56Q1)  0.200 130.11) 2462  5.621) 131.403) 25.92)
ave. 5.621) 130.94) 25.63)
0.219 20 7.3®)  0.366 212.47) 15.32)  8.042) 262.29) 24.96)
30 7.883) 0.263 251.61.5 21.895) 8.034) 260.91.6) 25.76)
ave. 8.0%4) 261.62.1) 25.31.1)
MC 50 8.1 263 26
0.2203 30 11.1®) 0.372 481.45.3 14.91) 12.319) 602.76.6) 24.62)
40  12.0@63) 0.300 561.42.6) 19.32) 12.443) 608.23.1)  25.14)
ave. 12.3815) 605.58.9 24.97)
0.2206 24  11.2(6) 0.467  467.42.8  10.32) 14.556) 834.25.0 24.52)
30 12.49100 0.416 589.22.7) 12.52) 14.6612) 844.43.9 24.62)
36 13.285) 0.369 673.83.6) 14.93) 14.6Q5) 836.94.5 24.53)
40 13.704) 0.343 718.(8.4) 16.32) 14.664) 838.45.0) 24.43)
50 14.285) 0.286 789.74.0 19.433) 14.685) 839.75.3 24.24)
60  14.383) 0.240  809.91.6) 22.43) 14535  827.62.6)  25.14)
ave. 14.616)  837.05.7) 24.63)
MC 75 14.5 828 24
0.2210 40 16.78) 0.419 1045.(8.1) 12.31) 19.735) 1511.55.5 24.52)
50 18.15%4) 0.363 1245.7%.1) 15.1(2) 19.828) 1524.37.1) 24.44)
ave. 19.7712) 1518(15) 24.53)
0.2212 56 21.99) 0.393 1796.010.5 13.61) 24.8910 238214) 24.52)
64 22.897) 0.358 1971.610.4 15.52) 24.8610) 238213 24.44)
ave. 24.8812)  238214) 24.53)
all factor is unimportant for the extraction of the critical be-
havior. One can thus repeat our analysis arbitrarily close to a
critical point, where the effect of corrections to scaling can . ;25 |
be arbitrarily small. We anticipate that such an analysis will
121
065 +
> ) ,___‘-,)—H'I—[-[-.I"l"‘H:H‘*FPH_
0 K=0.2200 062 B2
1ot o K=0.2206
40 |
08y =20t
Z
Qi
06 | 0
022162
04}
FIG. 4. The resulting estimates for the critical exponepntsnd
v for different choices of the critical couplin§. . The correspond-
025 020 030 070 0.50 ing errors are given by the light dotted lines. Sdlithshedi curves

FIG. 3. Qa(x) for the 3D Ising model. The solid lines are from

the best fits.

X

correspond toy (&) data. The shadings show acceptable values for
the critical parameters. On the botto? plotted againsK ; ver-
tical arrows locate our best estimates Kqr, whereas the horizontal

PEEEES

ones indicate the error bars.
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yield extremely accurate estimates of the critical parameters;arlo simulation[17,19. Although our current estimate of
and our study of the 3D Ising model along this line is underthe critical parameters cannot compete with the highest reso-
way. (This observation is also important for some calcula-lution Monte Carlo studies, our estimates are really surpris-
tions of lattice gauge theory. For example, in full lattice ingly good considering how far from the critical point the
QCD, the computation of the ratio of the mass of variousdata are taken. Thus, although the determination of a finite
lattice hadrons is of primary concern, and for this purposattice correlation function is needed, this method offers a

the overall factor is simply unimportapt. simple alternative to standard finite size scaling methods.
We would like to stress again that the technique we have

illustrated is extremely general; it holds regardless of the

functional form of the critical singularity, and irrespective of ACKNOWLEDGMENTS
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